ETREE — A DATABASE-ORIENTED METHOD FOR
GENERATING LARGE OCTREE MESHES

Tiankai Tu'

David R. O’Hallaron?

Julio C. Lopez?

LComputer Science Department, tutk@cs.cmu.edu
2Computer Science Department and Electrical and Computer Engineering Department, droh@cs.cmu.edu
3Electrical and Computer Engineering Department, jclopez@cs.cmu.edu
Carnegie Mellon University, Pittsburgh, PA, U.S.A.

ABSTRACT

This paper presents the design, implementation and evaluation of the etree, a database-oriented method for large
out-of-core octree mesh generation. Our main idea is to map an octree to a database structure and perform all
octree operations by querying the database. We use two database techniques — the linear quadtree and the B-tree
to index and store the octants on disk. We introduce two two new techniques — auto navigation and local balancing
to address the special need of mesh generation. Preliminary evaluation suggests that the etree method is an effective
way of generating very large octree meshes (4.3 GB with 13.6 million elements) on a memory-limited machine (128

MB).

Keywords: octree mesh, etree, linear octree, auto navigation, local balancing, B-tree

1. INTRODUCTION

This is an exciting moment for the mesh generation
community. Disk capacity is exploding and price per
bit is plummeting, with gigabytes of storage available
for under a thousand dollars. At the same time, ma-
ture RAID disk technology aggregates both storage
and I/O bandwidth to provide hundreds of gigabytes
to terabytes of fast storage for only tens of thousands
of dollars. Typical RAID I/O throughput (128 MB/s)
is similar to typical main memory throughput (100
MB/s) [1]. After years of stagnation, DRAM prices
have plummeted, from $30/MB to less than $1/MB,
with main memory sizes on typical systems increasing
by an order of magnitude over the past several years.
And of course, CPU speed continues to double every
18 months, with clock rates over 1 GHz the norm, and
2 GHz machines available.

These technology trends suggest a good opportunity
to exploit out-of-core techniques for mesh generation.
Faster CPUs provide the computational throughput to
create and refine the mesh. Exploding disk capacities

make it possible to store large meshes on conventional
disks. Larger main memory capacities can provide ef-
fective caches for the data stored on disk. And in-
creased I/O throughput makes it possible to stream
large amounts of data into memory at rates that ap-
proach main memory transfer rates.

However, it is difficult to implement an out-of-core ap-
proach due to the irregularity nature of most meshes.
Fortunately, the simplicity and adaptability of the oc-
tree structure gives us some hope that we can effi-
ciently store and retrieve octree mesh stored on disk.

In this paper, we present the etree, a database-oriented
method for generating large out-of-core octree meshes.
The key idea is to extend database techniques to sup-
port mesh generation. We use the linear quadtree tech-
nique to assign to each octant a unique key that en-
codes its location and size, and store the octants in a
well-known database structure — the B-tree. In or-
der to address the special need of octree mesh gener-
ation, we develop two new techniques — auto naviga-
tion and local balancing to support octree-level oper-



ations. All these components are implemented in the
etree library. An application can invoke etree library
function calls to manipulate an octree mesh stored on
disk. The etree library automatically performs exten-
sive optimization to improve the running time and re-
duce the disk I/O. Our experiments show that with
the etree method, it takes about 2.6 hours to generate
a very large finite element octree mesh ( 4.3 GB with
13.6 million elements) on a machine with only 128 MB
physical memory.

Section 2 briefly discuss two different ways of gen-
erating octree meshes. Section 3 describe the etree
method. Section 4 presents the the etree library and
its components. Section 5 evaluates various aspects
of the etree library with an etree-based finite element
mesh generator. Section 6 concludes our work.

2. OCTREE MESH GENERATION

An octree algorithm [2] recursively subdivides a prob-
lem domain into eight equal size octants until certain
resolution level is achieved. Figure 1 is an octree de-
composition of a two-dimensional domain. (For con-
venience, we use octree and octant to refer to quadtree
and quadrant, respectively in this paper.)

Figure 1: Quadtree decomposition of a domain.

In the area of mesh generation, octree decomposition
has been a successful strategy for generating three-
dimensional unstructured mesh. In practice, there are
two different ways of using the octree data structure.
One way is to warp the leaf octants to obtain tetra-
hedral elements [3, 4]. The other way is to use the
leaf octants as finite elements directly without further
modification [5, 6]. To ensure good element quality,
both methods require that the octree be balanced, that
is, two leaf octants sharing a face or an edge are no
more than twice as large or small (2-to-1 constraint).
In this paper, we focus on how to generate a mesh
that uses the leaf octants directly as elements, which
we will refer to as octree mesh.

An octree mesh can be constructed and balanced using
either in-core or out-of-core methods. An in-core algo-

rithm accommodates the octree in the virtual memory,
an operating system facility that enables an applica-
tion to allocate much more memory than what'’s phys-
ically available. The virtual memory uses the phys-
ical memory efficiently by treating it as a cache for
an address space stored on disk, keeping only the ac-
tive areas in physical memory. This mechanism works
silently and automatically, without any intervention
from the application program. However, if the allo-
cated virtual memory far exceeds the physical memory
and the data accesses are not localized, severe swap-
ping of data between the disk and the memory will
occur, which, in turn, will hurt the performance of the
in-core algorithm significantly. Therefore, an in-core
algorithm is practically memory-bound.

An out-of-core method, on the other hand, uses the
memory directly as a cache for the disk-resident oc-
trees. The size of the octree mesh is thus disk-bound
instead of memory-bound. The critical issue is to de-
cide which part of the octree should be cached in the
memory so that most data accesses can directly read
from or write to the memory.

One candidate solution is to use the out-of-core pointer
method [7], that is, each in-core pointer is mapped to
an out-of-core pointer in the form of (disk page num-
ber, offset). The operation of following a pointer in
an in-core algorithm is transformed to seeking an off-
set on a disk page and retrieve the data object. The
application programs should make arrangement to en-
sure that the out-of-core pointers are not scattered
randomly on disk pages. Otherwise, the performance
will be dominated by disk I/O latency. This method,
though conceptually simple, is not easy to implement.
And the result is often application-specific.

3. THE ETREE METHOD

The design goal of the etree is to provide a general
method for efficiently generating large octree meshes
out of core. Our approach is to leverage and extend
database techniques to address the special need of
mesh generation. As a result, applications can manip-
ulate an octree mesh by simply querying the database
instead of chasing the pointers.

Figure 2 shows the process of generating a mesh us-
ing the etree method. In the construct step, an octree
is constructed in the same way as in an in-core algo-
rithm, except that it is built and stored on disk. The
decompositions of the octants are dependent on the
geometry or physics being modeled. The result is an
unbalanced octree. Next, the balance step recursively
decomposes all the (big) octants that violate the 2-to-1
constraint until no illegal conditions exist. Finally, in
the transform step, mesh-specific information such as
the element-node relationship and the nodes’ coordi-



nates are derived from the balanced octree, and stored
in two databases, one for the mesh elements, and the
other for the mesh nodes.

application-specific input

[——
element
database

7 v T /'
rons» ] G o | i
octree octree \
etree librar —
node
database

Figure 2: Etree method of generating octree
meshes.

Conceptually, such a process can be implemented with
a traditional database system. A unique key can be
assigned to each octant that encodes the location and
size of an octant. Then the octants can be treated
as records and stored in a table that corresponds to
the octree. Since the structural information is already
encoded in the key value, the internal octants, which
serve for the navigation purpose, can be optionally
excluded from the table. Operations on the octree can
be translated to SQL queries, a high-level declarative
query language, to the database.

However, we observe that the such a direct database
approach introduces trade-offs. On the one hand, ex-
plicit pointer chasing is avoided. All operations are
done through uniform queries to the database, which
adds simplicity. On the other hand, an explicit opera-
tion history, such as a stack, has to be maintained to
keep track of which octants have been processed and
which have not. This adds complexity to the applica-
tion program.

In order to avoid the negative aspect, we use the
database technique as one of the building blocks in the
etree, and extend the core database functionality by
introducing new techniques that support octree-level
operations.

4. THE ETREE LIBRARY

The technical details of the etree method can be best
explained by an anatomy of its implementation —
the etree library. Figure 3 shows the components of
the etree library. An application accesses the library
through a simple well-defined Application Program-
ming Interface (API). The library is divided in the
following modules: 1. linear quadtree, a powerful en-
coding scheme to assign keys to octants; 2. auto navi-
gation, a mechanism for traversing the octree automat-
ically; 3. local balancing: a technique that speeds up
octree balancing operations; and 4. B-tree, a database
index structure to store and access octants on disk.

Application

Etree API

Linear
quadtree
Auto
navigation
Octant
blocking

B-Tree

Etree library

Figure 3: Etree architecture.

4.1 The etree API

The small API of the etree library is shown in Fig-
ure 4. The API is inspired by Unix file I/O and can
be categorized into three classes.

e Initialization and cleanup: An etree can be
opened/created and closed as if it were an or-
dinary file.

e Octant-level operations: The etree provides a
complete set of operations to manipulate octants
stored on disk. For example, searching for an oc-
tant or inserting a new octant. Each octant is
addressed by an abstract data type location_t,
which we will explain in Section 4.2.

e Octree-level operations: This is the distinctive
feature of the etree method. Instead of push-
ing the workload to the applications, the etree
library supports octree-level operations directly.
For example, the function call etree_construct
automatically accomplishes the construct step in
Figure 2. The only input from the application is
a function that the etree library can use to deter-
mine how to process an octant.

This API allows users to manipulate octree meshes at
different levels. It also hides the complexities of the
etree internal mechanisms and optimizations.

4.2 Linear quadtrees

In order to map an octree to a database structure, we
use the linear quadiree [8] technique, a method that
assigns a unique key to each leaf octant. The key en-
codes the location and size information of the octant.
We can use a database structure such as the B-tree
(see Section 4.5) to index the keys.



/* Initialization and cleanup */
etree_t *etree_open(const char *path, int flag, ...);

int etree_close(etree_t *ep);

* Octant-level operations */
int etree_insert(etree_t *ep, location_t loc, const void *value);
int etree_search(etree_t *ep, location_t loc, location_t *hitloc, void *value);
int etree_update(etree_t *ep, location_t loc, const void *value);
int etree_delete(etree_t *ep, location_t loc);

int etree_append(etree_t *ep, location_t loc, void *value);

I* Octree-level operations */
typedef int decom_t(location_t loc, const void *value, void *childvalue[8]);
int etree_construct(etree_t *ep, location_t rootloc, const void *rootvalue,
decom_t *autodecom);
int etree_balance(etree_t *ep, decom_t *baldecom);
int etree_sprout(etree_t *ep, location_t loc, const char *childvalue([8]);
int etree_initcursor(etree_t *ep, location_t loc);

int etree_getcursor(etree_t *ep, location_t *loc, void *value);

int etree_advcursor(etree_t *ep);

Figure 4: Etree API.

One of the well-known encoding schemes for lin-
ear quadtree is the Morton code. The Mor-
ton code [9] maps d—dimensional points to one-
dimensional scalars. The mapping can be done quickly
by interleaving the bits of a point’s coordinate (the bi-
nary representation).

y

8

7

6 h m

5

4
e|g

3 b j |
d|f

2

1 a | ¢ i k

0

Figure 5: A domain decomposition.

We adopt this scheme and transform the left-lower cor-
ner of each octant to the Morton code. To distinguish
an octant from its ancestors that share the same left-
lower corner, we append the level of an octant to the
Morton code of its left-lower corner. The result is a
unique key assignment for each octant, which is usu-
ally referred to as the locational code [2]. An example'
is shown in Figure 6.

I The underscore in the locational code is for illustration
purpose only. A locational code is just a binary string.

e’s left-lower corner (2, 3)

binary form (010, 011)

interleave the bits to
obtain Morton code

010 011

001101

append the level of e
001101_11

Figure 6: Interleaving bits and appending level to
obtain the locational code.

To isolate the details of the bit-interleaving and
level appending, we define an abstract data type
location_t that can be used to address an octant. It
consists of the 3D coordinate of an octant’s left-lower
corner and the octant’s level in the octree, as shown in
Figure 7. With this unique key, we can find an octant
directly. Therefore, we only store leaf octants in the
etree database.

typedef struct location_t {
unsigned long long x, y, Z;
int level;

} location_t;

Figure 7: Definition of location_t.

One important property of the Morton code is that the
ordering of leaf octants based on their locational code
is exactly the preorder traversal of the octree (leafs).
Figure 8 shows the ordering based on locational codes
for the octree in Figure 8. There are two applications
of this property in the etree library: (1) clustering
nearby octants on disk pages; (2) finding an octant
without knowing its exact locational code.

a b c d
—> —> —>

000000_10 000100_10 001000_10 001100_11

e f g h
—> —> —

001101_11 001110_11 001111 11 010000_01

i

i - i - k - | s m
100000_10 100100_10 101000_10 101100_10  110000_01

Figure 8: Leaf octants sorted according to their lo-
cational code.



The first application exploits the fact that the pre-
order traversal of the leaf octant in the corresponding
domain follows a Z pattern, as shown in Figure 9.
Such an ordering is called the Z-order [10, 11], which
tends to cluster spatially close data points in their one-
dimensional ordering [12]. Therefore, we can store the
leaf octants sequentially on the disk pages according
to their locational code, which naturally results in the
clustering of nearby octants.

y

Figure 9: Z-order curve through the domain.

The second application entails a more subtle expla-
nation. We will illustrate our point by the following
example. To find the neighbor on the south side of oc-
tant e in Figure 5, we assume the neighbor is of equal
size as e and derive the neighbor’s locational code —
(001100-113). Searching the database will return oc-
tant d, since its key matches the search key. Similarly,
to find the neighbor of e on the north side, we derive
a key (011000_112). However, searching the database
for this key does not return an exact match since there
is no such leaf octant in the domain. Observe that the
expected neighbor is actually octant h whose key is
(010000-012). We can see from Figure 8 that h'’s key
value is the maximum among all the keys that are less
than the search key (011000_-113).

This occurrence is not accidental. Because a subtree
root is always the first one among all the octants of
the subtree in the preorder traversal. Even when the
subtree (except for the subtree root) does not really
exist, this relationship still holds. Therefore, by re-
turning the octant whose key is the maximum among
all the keys that are less than the search key, we can
always find the subtree root for the search key. Thus,
we are able find an octant, such as the neighbor octant
in our example, without knowing its exact locational
code.

4.3 Auto navigation

The linear quadtree only solves the problem of how
to address individual octants, but does not provide a
programming model for octree construction. Although

it is possible to construct an octree by repeatedly in-
serting and deleting octants from the database, the
application programs, however, have to keep record of
which octants have been decomposed and which have
not. On the other hand, many insertions are in fact un-
necessary because those octants are later decomposed
and removed from the database.

O : octants not yet
processed (in memory)

© : non-leaf octants being
decomposed (in memory)

octants that can be @ : leaf octants (flushed to
flushed to the database database)

Figure 10: Auto navigation through an octree being
constructed.

To solve this problem, the etree provides a higher-level
abstraction to support automatic octree construction
through the function call etree_construct. The un-
derlying technique is what we called auto navigation.
The basic idea of auto navigation is very simple. Since
the ordering of expanding an octree under construc-
tion is independent of the correctness of the result,
the octree traversing logic can be decoupled from the
application’s logic and incorporated into the etree li-
brary.

Auto navigation is implemented in the etree library
through a data structure called the navigation octree,
which is an in-core octree that is dynamically grown
and pruned in the main memory, as shown in Fig-
ure 10. The application provides a function to guide
the operation of the navigation octree.

Initially, the navigation octree only has the root oc-
tant. The application function is invoked to decide
what to do with the root. If a decomposition is needed,
eight children octants are allocated and linked to the
root using ordinary in-core pointers. This procedure
is then carried on in the depth-first order. At any
moment when an octant does not need to be fur-
ther decomposed, it is certainly a leaf octant and is
pruned off from the navigation octree and flushed to
the database. With the depth-first expansion and
pruning, we can guarantee that the memory require-
ment of a navigation octree of depth d is bounded by
O(8d), in contrast to O(8%) for a complete octree being
constructed in the main memory.

With auto navigation, the applications are relieved



from the burden of traversing an out-of-core octree
for expansion, which is a complicated and error-prone
task. On the other hand, database operation can be
significantly optimized. Since the order (preorder) of
flushing the leaf octants is the same as the order im-
posed by the locational codes, a new leaf octant that
is pruned off the navigation octree can be appended to
the end of all octants that are currently stored in the
database. In fact, the complexity of an append opera-
tion is only O(1) while an insertion operation involves
a search algorithm to locate the right position for the
insertion, which may incur additional disk I/O to read
in database pages.

4.4 Local balancing

An octree obtained after the construction step must
be balanced to conform to the 2-to-1 constraint. For
example, the initial domain decomposition shown in
Figure 5 violates this constraint because octant e has
a neighbor h on the north whose edge size is four times
as large as e’s. A balancing operation will discover this
illegal status and decompose octant h further to obtain
a legal octree mesh as shown in Figure 11.

h2 h4
m
h, h,
elg
b j
d|f
a c i k

Figure 11: A balanced domain decomposition.

The etree library provides a function call
etree_balance to isolate the applications from
the details of enforcing the 2-to-1 constraint. One
straightforward way to implement this function is
to iterate through all the octants in the unbalanced
octree and check their neighbors to determine whether
further decomposition is necessary. We refer to this
approach as global balancing. Though conceptually
simple, global balancing has two major drawbacks.
First, multiple iterations through the domain may
be needed to propagate the impact of a tiny octant.
Second, each neighbor-finding operation will incur the
cost of searching the database.

We avoid global balancing by doing local balancing,
which consists of three steps. First, we partition the
whole domain into equal-size blocks. Next, we con-
duct internal balancing to enforce the 2-to-1 constraint
within each block. Finally, we do boundary balancing

Interactions between blocks
are absorbed by the octants

on the boundaries \ "X \

Octants in the same block are
stored consecutively on disk Bloek 1 Block 3
pages in Z-order \_)

Figure 12: Local balancing.

to resolve interactions between adjacent blocks. Fig-
ure 12 gives a conceptual view about this scheme.

Appropriate block size: The size of the blocks
should be chosen to satisfy the following two condi-
tions: (1) it should equal to the size of some subtree
root’s size; (2) it should be at least as large as the
largest octant in the domain.

With the first condition, each block is mapped to a
subtree root?. We will use this condition to prove the
correctness of the local balancing scheme. With the
second condition, we can guarantee that all the octants
in the domain can fit into some block and thus be
processed.

Internal balancing: Internal balancing is per-
formed block by block. We traverse the whole domain
once to process all the blocks. For each block, we read
all the octants that belong to the block. Based on the
position and size information retrieved, we initialize a
structure called the blocking array. The cardinality of
each dimension of the array is set to be the size of the
block divided by the size of the smallest octant in the
domain.

The blocking array is initialized in the following man-
ner. At beginning of processing each block, all array
elements are set to be 0. Upon reading a new octant,
we determine the position of the octant’s left-lower
corner relative to the left-lower corner of the contain-
ing block. Suppose the position is (i, j}, then the array
element [4, j] is set to be the size of the octant divided
by the size of the smallest octant in the domain. Fig-
ure 13 shows the content of the blocking array after
retrieving information of the octants belonging to the
left-lower block of the domain shown in Figure 5.

After the blocking array is initialized, we can resolve
the 2-to-1 constraint within the block without query-

2We assume the blocks are aligned properly.



Figure 13: Content of the blocking array.

ing the database. The reason is that all the infor-
mation regarding octants in a vicinity (block) has al-
ready been recorded in the blocking array. Finding a
neighbor (of equal size) is done by modifying the array
indexes and accessing an array element directly.

To be more specific, we iterate through the blocking
array element by element. For each element [i, j], we
check whether there is an octant anchoring its left-
lower corner at (i,7) and if so, whether its neighbors
will trigger its further decomposition. The fact that
an octant needs to be decomposed is recorded but the
decomposition is not performed immediately. For a
decomposing octant, we initialize the array elements
corresponding to its eight children. Notice that one
of its children must have the same left-lower corner as
itself. Therefore, the old size value at [4, j] will be over-
written. By doing so, we always keep the latest octant
information in the blocking array. It should be noted
that several iterations may be needed to propagate the
impact of a tiny octant.

After processing all the blocks, the etree obtains a
complete list of octants that violate the 2-to-1 con-
straint locally and need to be further decomposed.
Then the actual database operations of deleting and
inserting octants are carried out in batch mode.

Also, at the time of processing each block, the octants
on the block’s boundary are recorded in a separate list.

Boundary balancing: We proceed to iterate
through the boundary octant list, and check each oc-
tant’s neighbors to determine whether the 2-to-1 con-
straint is violated, and if so, perform a decomposition.
In this process, a new list for new boundary octants
is generated, which is used as the input to the next
iteration.

Note that the total cost of searching neighbors in the
database for boundary balancing is much cheaper than
the case of global balancing because the number of
boundary octants is far less than the number of the
octants in the entire domain.

Correctness of local balancing: We show the
correctness of the local balancing scheme by proving
that the interactions between adjacent blocks are al-
ways absorbed by octants on the boundaries between
blocks and will never propagate into the blocks.

o] oI

(1) @ ®3)

Figure 14: Three cases for internal neighbors of a
boundary octant.

Figure 14 shows the three scenarios of the relationship
between a boundary octant b and its internal neigh-
bors in the same block. The dark line represents the
boundary of the block. Since the 2-to-1 constraint is
resolved locally, the neighbors of b can only be one of
the following three cases: (1) half as large as b; (2) as
large as b; or (3) twice as large as b.

However, case (3) is impossible. Because the first con-
dition imposed on the block size implies that each
block maps to a subtree root, thus octant b must be
a descendant of this subtree root (block). In other
words, octant b must be a child of some octant that is
twice as large as b. However, since an octree is a dis-
joint decomposition of the domain, it is impossible for
octant b to have an internal neighbor that overlaps the
region covered by b’s parent, as shown in Figure 15.

Impossible for an octant to overlap
the region covered by b’s parent

¥
1= TS -

[ T

Figure 15: Case(3) is an impossible scenario.

With cases (1) and (2) as the possible initial condi-
tion for the first iteration of boundary balancing, we
can prove by induction that the internal octants will
never be affected by the interactions between adjacent
blocks.

Figure 16 shows that with case (1) as the initial con-
dition, the decomposition of b will result in four chil-
dren octants of equal size to b’s internal neighbors. So
there is no further impact on the internal octants. On
the other hand, the two children of b in the bottom
half become the new boundary octants whose internal
neighbors are their siblings of the same size. Thus case
(2) is the new initial condition.



Internal octants Internal octants

in the same block not affected by the

asb decomposition
Decompose

octant b P/ ¢

/'

A tiny octant on
the boundary of
another block

Figure 16: Case (1): internal neighbors not affected
by the decomposition of the boundary octant.

Figure 17 shows that with case (2) as the initial condi-
tion, the decomposition of b will result in four children
octants half as large as b’s internal neighbor. But the
2-to-1 constraint is still maintained. So the impact is
not propagated into the block either. Again, the new
boundary octants have internal neighbors of the same
size, which is case (2).

Internal octant Internal octant not

in the same affected by the

block as b decomposition
octant b

/ /
e

A tiny octant on
the boundary of
another block

Decompose

Figure 17: Case (2): internal neighbors not affected
by the decomposition of the boundary octant.

Therefore, the impact from adjacent blocks is always
absorbed by the (dynamically changing) boundary oc-
tants.

4.5 B-tree
Index
nodes
w& Leal
E— }'nodes

Figure 18: B-tree structure.

B-tree is the most important index structure in
database and file systems [13, 14, 15, 16]. Figure 18
shows the structure of a B-tree. There are two types of
nodes in a B-tree: the leaf nodes and the indez nodes.

An array of records in

ascending key order Unused space

Ikeylidatall keyzidatazl [keynidatan‘ [ \{"

v
Pointer to next
leaf node

Figure 19: B-tree leaf node.

The leaf nodes contain data to be searched. The struc-
ture of a leaf node is an array of records with the form
(key, data), shown in Figure 19. The entries are stored
in ascending key order and all the keys in leaf node is
smaller than any key stored in the next leaf node.

An array of <key, pointer>

pairs in ascending key order Unused space
S A

sl 7 T T T Teon |

Figure 20: B-tree index node.

The index nodes contain routing information to guide
the search for a given key value. The structure of an
index node is an array of pairs (key, pointer), shown
in Figure 20. These entries are also stored in as-
cending order. The sequence of keys in an index node
(K1 < Ky < ... < Ky ) divides the search space
covered by that node. Each key value K; has an as-
sociated pointer P;, which points to a successor node
that contains further information about all keys K
such that K; < Ky < K;y1.

B-tree nodes are mapped to disk pages. B-tree point-
ers are actually disk page numbers. A B-tree index
node can have a large number of pointers, in contrast
to a binary tree where each index node has at most
two successors. As a result, B-tree tends to be wide
and short in structure.

Operations on a B-tree are defined in such a way that
the B-tree structure is always balanced. That is, every
path from the root to the leaf always has the same
length. Therefore, the dominant performance factor
— disk page accesses, is always the same for all the
search operations.

Searching for a key k starts from the B-tree root, which
is an index node. A pointer P; is followed such that
K; <k < K;y,. If P; leads to an index node, repeat



the procedure. Otherwise, search the leaf node for the
entry with a matching key value.

Inserting a new record into the B-tree may cause a
split of a B-tree node into two if the node is fully oc-
cupied. Similarly, deleting a record may cause two
B-tree nodes (at the same level) to be merged if one of
the node’s occupancy drops below 50%. As a result,
a B-tree has a minimum space utilization of 50% and
an average of 69% [17].

5. EVALUATION

In this section, we present the performance evaluation
of the etree. We conducted a series of experiments to
answer the following questions: (1) Is the etree method
feasible? (2) How does the running time vary with the
physical memory size? (3) What is the impact of auto
navigation? (4) What is the impact of local balancing?

5.1 Methodology

In order to evaluate the etree method in a real-
world scenario, we developed an etree-based octree
mesh generator that produces a family of finite el-
ement meshes for San Fernando earthquake wave-
propagation simulations [18].

Figure 21 summarizes the characteristics of each mesh,
which comprises an identical volume of 50 km x
50 km x 12.5 km. Roughly speaking, mesh sfj is
sufficiently fine to resolve a wave with a period of k
seconds, under the assumption of 10 mesh nodes per
wavelength. The Elements and Nodes columns con-
tain the total number of finite (octant) elements and
nodes in the domain, respectively. The Slave Nodes
column records the number of the nodes that are lo-
cated on an edge or a face of another element, which
is a subset of the total nodes in the mesh.

Mesh Elements Nodes Slave Nodes
SF10 7,940 12,118 4,432
SFb5 76,330 105,886 34,858
SF2 1,838,524 2,213,035 407,336
SF1 13,597,124 | 15,097,365 1,649,855

Figure 21: Summary of San Fernando meshes.

The mesh generation process is driven by the mate-
rial model developed by Harold Magistrale and Steve
Day at San Diego State University [19]. We sam-
pled the material model and stored the result in an
etree database, which we will refer to as the material
database. The size of the material database is 785 MB.

We conducted all the experiments on a PIII 1GHz ma-
chine with Ultra 160 SCSI controller and disk running
Linux 2.4.17. The physical memory for the experi-
ments ranges from 128 MB to 880 MB. Before each

experiment, we sequentially scan two 1.5 GB files to
flush the operating system’s buffer cache.

5.2 Is the etree method feasible?

To answer this question, we generated meshes of differ-
ent sizes and measured the time required to generate
them. For this experiment we configured the physical
memory to be 128 MB, and fixed the size of the B-tree
buffer in the etree library to 8 MB and the size of the
blocking array to 16 MB. Figure 22 shows the elapsed
wall clock times to generate meshes of different sizes.
Although these measurements are specific to this par-
ticular application, they show the result of generating
a non-trivial, real-world octree mesh, serving as a good
indication of whether the etree method is feasible in
terms of running time and memory requirement.

Mesh | Elements | DB size Time Thrput

(MB) (s) (elem/s)
SF10 7,940 2.5 39.9 199
SF5 76,330 24 186.0 410
SE2 1,838,524 583 | 1,636.7 1,123
SF1 13,597,124 4,300 | 9,448.8 1,439

Figure 22: Etree-based mesh generator running
time and throughput.

Our first observation is that the total running time to
generate our largest mesh, SF1, is approximately 2.6
hours. Although we have no benchmark to compare
our results, generating a 13.6 million element mesh
(4.3 GB) in the order of 2 to 3 hours appears to be
reasonable.

Second, the overall throughput increases with mesh
size. Our intuition is that since the etree library caches
mesh data in its memory buffer, as more data access to
the cache occur, higher throughput is achieved. There-
fore, larger mesh generations are more likely to benefit
from the caching. The bottom line is that the through-
put does not decrease as the mesh size increases, which
implies that the total running time increases at most
linearly as the mesh size increases.

Third, all the experiments are performed on a machine
with only 128 MB of physical memory. The buffers
allocated by the etree library is only 24 MB. Thus,
the etree method is a feasible solution to generate large
octree meshes on memory-limited machines.

5.3 How does the running time vary with the
physical memory size?

We are not only interested in the effect of memory size
on the running time of our method, but also inter-
ested in determining the running time of etree related
operations and application-specific computation. We
perform an experiment similar to the one described



in the previous section; we generated the meshes with
the same library parameters, i.e., B-tree buffer and
blocking array size, except that this time we varied
the amount of physical memory available to operating
system.

Besides the total running time, we measured the time
for the following operations of our mesh generator:
(1) construct, (2) balance, (3) transform, (4) query and
(5) findslave. The first three operations are general
etree operations, i.e., excluding application-specific
computation, in the corresponding construct, balance
and transform step described in section 3. These op-
erations account for the time executing library code to
navigate and search the etree. Query is an application-
specific operation and accounts for the time required
to query the materials database in all the steps of
the mesh generator. Findslave is also an application-
specific operation and accounts for the time required
to compute the master / slave relationship between
nodes.

SF10 SF5 SF2 SF1
100% -
o -
1|
80% - et
1
Q 1 1 !
£ o | 1
S 60% et
= 1
g | 1
£
5 b ff
% -
40% L
20% - "
0%
©® © N O © © N O @ © N O ® © N O
I 8 53 & 8 53 & B3 53 A B 9 &
4 Qb8 S Q58 S Qb8 S d 53
Memory size (MB)

construct Hbalance transform
B query O findslave

Figure 23: Total running time vs. Physical memory
size.

Figure 23 shows the running time for the mesh genera-
tion process. The results are presented in four groups,
one for each mesh. Each group presents the running
time for a given mesh with different physical memory
configuration. Within each group the running time is
normalized to the 128 MB case. We can see that the
performance improves slightly (less than 15%) as the
physical memory size increases from 128 MB to 880
MB.

The figure also shows us that the general etree op-
erations of construct, balance and transform account
for at maximum 30% of the total running time. Fig-
ure 24 magnifies the running time of the general etree
operations to a larger scale. Again, there is no signifi-
cant performance change as the physical memory size
increases.

Both sets of results show that the memory size does
not have a significant impact on running time. We also
deduce from the results that the etree is not relying
on the operating system’s internal caching mechanism
to achieve its performance.

SF10 SF5 SF2 SF1

100%

80% -

60% -

oy

Running time

40% - |

20% + =

0%

8858 %838 888 88378
Memory size (MB)
\ Aconstruct M balance [ transform \

Figure 24: Etree operation running time vs. Physi-
cal memory size.

5.4 What is the impact of auto navigation?

For these experiments we made 880 MB of physical
memory available to the operating system and varied
the size of the B-tree buffer in the etree library. Fig-
ure 25 shows the effectiveness of the auto navigation
technique. In all four cases, the construction time of
the etree does not depend on the size of B-tree buffer
as long as there is a buffer, even if it is a small one.
Auto navigation requires only small amount of mem-
ory footprint to cache the B-tree nodes on the path
from the B-tree root node to the rightmost B-tree leaf
node, which is no more than a few disk pages. Reduc-
ing the B-tree buffer size does not increase the etree
construction time as long as the buffer is big enough
to hold this path.

We can also see from Figure 23 and Figure 24 that
the construct step only accounts for a very insignifi-
cant portion of the total running time. This is a proof
that the auto navigation is very effective and does not
deserve further effort for optimization.

5.5 What is the impact of local balancing?

In these experiments we fixed the amount of the phys-
ical memory and the B-tree buffer size and varied the
blocking array size. Figure 26 shows the effect of local
balancing. The z-axis is the maximum blocking ar-
ray size allowed in the etree library. The y-axis is the
time to balance an octree. The data-points plotted on
the y-axis, i.e., ¢ = 1, corresponds to the case where



1e+06

sil ——
Sf2 -~
S5 -k
sf10 -
100000 | B
7
13
T
E 10000 | 4
=R
S
3
]
B
2
5
S 1000 | B
e
3
© * * * Ko * * * *
100 | B
a8 ol
iz} = s} a i} o
10 L .

1000 10000
B-tree buffer size(KB)

Figure 25: Etree construction time vs. B-tree buffer
size (log-log scale)

local balancing is disabled and global balancing is per-
formed. In all the four cases, a significant reduction
in execution time is achieved by enabling the blocking
array and doing local balancing. The speed-up factor
ranges from 8x (SF1) to 28x (SF10).

1e+08

1le+07 ’\\ B

1e+06 Ko B

7
3
T
E
g O
g )
S 100000 |- ]
5
s S
E]
°
g -
8 10000 | T ]
R %
i
1000 | ]
=|
100 y ; - o

1 10 100 1000 10000 100000
Blocking array size(KB)

Figure 26: Octree balancing time vs. Etree blocking
array size (log-log scale)

A simple analysis can show why there is a wide dis-
crepancy between the speed-up factors. The perfor-
mance gain of local balancing comes from two aspects:
the faster array-based neighbor-finding algorithm, and
the one-time traversal of the domain. In the case of
SF10, the size of the mesh etree is small enough to
be entirely cached in the etree memory buffer, thus
multiple traversals through the domain required by
global balancing do not incur additional disk I/O. So
the larger speed-up factor is mainly due to the faster
array-based neighbor-finding algorithm, which avoids
the costly operations of searching the B-tree.

On the other hand, the size of the SF1 mesh etree far

exceeds the etree buffer size. As a result, multiple
traversals of global balancing requires a substantial
amount of repeated disk accesses, and thus becomes
the bottleneck. Local balancing achieves its speed-up
mainly by traversing the domain once, with the array-
based neighbor-finding algorithm playing a secondary
but still important role. In fact, for the SF1 mesh,
the global balancing method traverses the domain four
times. But we get a speed-up of 8 by enabling blocking
array. The extra performance gain can be attributed
to the array-based neighbor-finding.

6. CONCLUSION

We focus on how to generate large octree meshes out
of core. Our solution is the etree, a database-oriented
method that enables an application to generate meshes
by querying a database. We introduce two new tech-
niques — auto navigation and local balancing for fast
construction and balancing of an out-of-core octree.
The main result from our experiments is that the etree
method can generate very large octree meshes in a rea-
sonable amount of time with a low memory require-
ment.

ACKNOWLEDGEMENTS

We gratefully acknowledge the contributions of Jacobo
Bielak, Omar Ghattas and Eui Joong Kim in the de-
velopment of the etree method. This work is spon-
sored in part by the National Science Foundation un-
der Grant CMS-9980063, and in part by a grant from
the Intel Corporation.

References

[1] Bryant R., O’Hallaron D. Computer Systems: A
Programmer’s Perspective. Prentice-Hall, 2002

[2] Samet H. Applications of Spatial Data Structures:
Computer Graphics, Image Processing and GIS.
Addison-Wesley Publishing Company, 1990

[3] Shephard M.S., Georges M.K. “Automatic Three-
Dimensional Mesh Generation by the Finite Oc-
tree Technique.” International Journal for Nu-
merical Methods in Engieering, vol. 32, 1991

[4] Bern M., Eppstein D., Gilbert J. “Provably Good
Mesh Generation.” Proceedings of 31st Sympo-
stum on Foundation of Computer Science, pp.
231-241. 1990

[6] Young D.P., Melvin R.G., Bieterman M.B., John-
son F.T., Samant S.S., Bussoletti J.E. “A Locally
Refined Rectangular Grid Finite Element: Ap-
plication to Computational Fluid Dynamics and
Computational Physics.” Journal of Computa-
tional Physics, vol. 92, 1-66, 1991



[6]

[12]

[13]

[14]

[15]

[16]

Wang J. Octree-Based Finite Element Method
for Elastic Wave Propagation with Application
to Earthquake Ground Motion. Master’s the-
sis, Computational Mechanics Laboratory, De-
partment of Civil and Environmental Engineer-
ing,Carnegie Mellon University, May 1999

Salmon J., Warren M.S. “Parallel, out-of-core
methods for N-body simulation.” Proceedings of
the Fighth SIAM Conference on Parallel Process-
ings for Scientific Computing. 1997

Gargantini I.  “An Effecive Way to Repre-
sent Quadtrees.” Communicatoins of the ACM,
vol. 25, no. 12, 905-910, Dec 1982

Morton G.M. “A computer oriented geodetic data
base and a new technique in file sequencing.”
Tech. rep., IBM, Ottawa, Canada, 1966

Orenstein J.A., Merrett T.H. “A Class of Data
Structure for Associative Searching.” Proceedings
of ACM SIGACT-SIGMOD, pp. 181-190. Water-
loo,Ontario,Canada, 1984

Orenstein J.A. “Spatial Query Processing in an
Object-Oriented Database System.” Proceedings
of ACM SIGMOD, pp. 326-336. Washington D.C,
1986

Faloutsos C., Roseman S. “Fractals for Secondary
Key Retrieval.” Proceedings of the Eighth ACM
SIGACT-SIGMID-SIGART Symposium on Prin-
ciples of Database Systems (PODS). 1989

Bayer R., McCreight E.M. “Organization and
Maintenance of Large Ordered Indices.” Acta In-
formatica, vol. 1, 173-189, 1972

Comer D. “The ubiquitous B-Tree.” ACM Com-
puting Surveys, vol. 11, no. 2, 121-137, Jun 1979

Gray J., Reuter A. Transaction Processing: Con-
cepts and Techniques, chap. 15. Morgan Kauf-
mann Publishers, Sep 1992

Silberschatz A., Korth H.F., Sudarshan S.
Database system concepts, chap. 11. McGrill Hill
Companies, Inc., third edn., 1997

Yao A.C. “On random 2,3 trees.” Acta Informat-
ica, vol. 9, 159-170, 1978

Bao H., Bielak J., Ghattas O., Kallivokas L.,
O’Hallaron D., Shewchunk J., Xu J. “Large-scale
Simulation of Elastic Wave Propagation in Het-
erogeneous Media on Parallel Computers.” Com-
puter Methods in Applied Mechanics and Engi-
neering, 1998

[19] Magistrale H., Day S., Clayton R., Graves

R. “The SCEC Southern California Reference
Three-Dimensional Seismic Velocity Model Ver-
sion 2.” Bulletin of the Seismological Soceity of
America, Dec 2000



