
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
Web3D 2014, August 08 – 10, 2014, Vancouver, British Columbia, Canada.
2014 Copyright held by the Owner/Author. Publication rights licensed to ACM.
ACM 978-1-4503-3015-2/14/08 $15.00

Spatial Data Structures For Accelerated 3D Visibility Computation To Enable
Large Model Visualization On The Web.

Christian Stein
christian.stein@igd.fraunhofer.de

Max Limper
max.limper@igd.fraunhofer.de

Arjan Kuijper
arjan.kuijper@igd.fraunhofer.de

Fraunhofer IGD, Darmstadt / TU Darmstadt

Figure 1: Visualization of octree (left) and bounding interval hierarchy (right) for two powerplant models of ∼13/ ∼57 millions of triangles.
Both structures are computed directly inside the browser. By accelerating the visibility determination, the data structures are the key to an
interactive experience when rendering CAD data of such magnitude. Efficient hierarchies can be constructed in ∼20-30 ms already.

Abstract

The visualization of massive 3D models is an intensively exam-
ined field of research. Due to their rapidly growing complexity of
such models, visualisation them in real-time will never be possible
through a higher speed of rasterization alone. Instead, a practical
solution has to reduce the amount of data to be processed, using a
fast visibility determination.
In recent years, the combination of Javascript and WebGL raised
attention for the possibility of rendering hardware-accelerated 3D
graphics directly in the browser. However, when compared to desk-
top applications, they are still fighting with their disadvantages of a
generally slower execution speed, or a downgraded set of function-
ality.
We demonstrate the integration of spatial data structures, computed
on the client side, using latest technology trends to mitigate the
shortcomings of the 3D Web environment. We employ comparably
small bounding volume hierarchies to accelerate our visibility de-
termination, as well as to enable specific culling techniques. This
allows for an interactive visualization of such massive 3D data sets.
Our in-depth analysis of different data structures and environments
shows which combination of data structure and visibility determi-
nation techniques are currently the best fit for the Web.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality I.3.6 [Methodology and
Techniques]: Standards—Languages

Keywords: Spatial Data Structures, Culling, Visibility Determi-
nation, WebGL, X3D, X3DOM

1 Introduction

In the area of computer graphics, there is a long history of
organizing 3D model data in hierarchical data structures. While for
standardized rasterization traditionally the data is structured within
scene graphs in a semantic way, a spatial structuring is able to
supported the visibility determination. The set of scene elements is
reduced during the visibility determination by a number of culling
operations, each removing elements not contributing to the final
image. For ray-tracing systems, spatial structures are typically
static and constructed by a pre-processing step based on the set of
triangles, while for collision detection they are based on bounding
volumes and updated continuously. While various types of data
structures have been intensively studied in these contexts, this
knowledge has not been transferred to the Web environment so
far, prevented, for example, by the comparably slow processing
speed of available scripting languages. There have been efforts
to use (pre-processed) server-side data structures for client-side
rendering [Schwenk et al. 2013]. However, this paper aims for a
server-independent, on-the-fly visualization of previously unknown
model data. A concrete application scenario is the on-the-fly
examination of only recently edited real-world CAD models,
directly inside the browser - for example a manager reviewing
the latest changes of his CAD expert group. In the last decade,
JavaScript has evolved from being only the ”scripting language of
the Web” to a true allrounder, used in almost any application area.
This trend is driven by a widespread list of open-source libraries,
frameworks or plattforms like node.js. By supporting only a very
limited subset of the languages features, code conformant to the
asm.js subset of JavaScript allows to mitigate its major drawback
of slow processing speed. Thereby, asm.js enforces the progression
of moving more and more logic to the client.
At the same time, the approaching arrival of WebGL 2 enhances
the set of hardware features to be used in the Web, allowing for
more sophisticated rendering methods and algorithms.
Hence, we propose the integration of spatial data structures for
visibility determination, computed on the client side, inside the
Web environment. This study covers the choice of data structure
and techniques for visibility determination. Their respective trade-
offs are evaluated across different environments. Our results show
that, using the mentioned cutting-edge technologies, an interactive

53

visualization of massive 3D models on the Web becomes possible.

2 Related Work

2.1 Spatial Data Structures

The basic concept of spatial data structures is the exploitation of
spatial coherence, based on the principle of recursive decompo-
sition. On the highest level, the whole scene is contained in the
root node and then gets subdivided on a space- or object-basis, de-
pending on the chosen kind of data structure. Given a scene of n
elements, and a branching factor of m, each node of the resulting
tree of height h = dlogm ne hierarchically combines the bound-
ing volumes of its children. That way, the spatial coherence can
be exploited to limit the amount of volume-based computations, for
example for intersection tests, to a number that grows only logarith-
mically with the number of objects inside the scene.
We categorize these hierarchies based on their characteristics, like
their way of partitioning and the type of bounding volumes (boxes,
spheres, etc.) used. Often these are inherently connected: for exam-
ple, when using (axis-aligned) bounding boxes for the subdivision,
overlaps and holes in the covered space can be easily avoided at the
same time which is not possible for spheres.

Regular subdivisions The basic uniform spatial subdivision is
the regular grid. In its simplest version, the space is uniformly par-
titioned by a raster of cells, conformable to a three dimensional
array. Each cell contains a list of the scene objects with intersecting
bounding volumes. The construction is based on the scene objects
getting ”rasterized” into the grid cells, which can be done in O(n).
Because multiple cells might hold the same object’s reference, al-
ready visited objects can be tagged during traversal, a technique
called mailboxing.
The octree can be thought of as the hierarchical extension of the
regular grid. The use of macro cells results in additional levels of
down-scaled versions of the grid [Meagher 1982]. For each node,
the space is subdivided using axis-aligned planes for x-, y- and z-
axis, passing through the center of the covered space, into eight
subspaces, one for each child. Intersecting scene objects might be
stored in every node, as well as only in the leaves. The octree can
be adaptive in various ways, e.g. an adaptive maximal depth per
branch or, similar to the BIH, the splitting planes could be offset in
order to adapt to the scene objects’ geometry. While this decreases
the degree of regularity and the uniformity of the subdivision, it
might trade off the adaptivity and/or impede other optimizations at
the same time, which directly depend on such regularity (for exam-
ple, the coherent grid traversal).

Irregular subdivisions The k-d tree [Bentley 1975] basically is
a binary tree which contains a hyperplane at each node, splitting
the covered space in two half-spaces. Typically, these hyperplanes
alternatingly align with the k coordinate axes, but other/further
ordering-dimensions are possible. [Wald et al. 2007b] rated the
k-d tree to have the most efficient traversal, opposed by the most
costly build. Construction in O(n log n) is possible by presorting
and maintaining the sort-order [Wald and Havran 2006]. Further
variations are multi-level [Wald et al. 2003] or fuzzy [Günther et al.
2006] k-d trees.
The surface area heuristic (SAH)[MacDonald and Booth 1990]
minimizes the expected traversal costs by balancing the expected
costs for possible child nodes, based on their surface area, weighted
by the number of objects contained. Although the required calcula-
tions can be reduced by clever approximation [Hunt et al. 2006], it
is still too expensive for the real-time demands of our target appli-

cations, especially when additionally considering the limited pro-
cessing speed of the Web environment.
The Bounding Volume Hierarchy (BVH) has been studied inten-
sively in the context of ray-tracing in the 1980s already [Kay and
Kajiya 1986; Weghorst et al. 1984; Goldsmith and Salmon 1987].
The BVH references each object only once, and its nodes might
contain the same space multiple times. By this partitioning of scene
objects, it naturally adapts to the geometry, which is referenced
only in its leaves. Each node’s bounding volume recursively en-
closes the bounding volumes of its children minimally. While its
traversal speed is close to the k-d tree’s, the BVH has the superior
construction performance [Wald et al. 2007b]. It is suited for dy-
namic as well as incremental updates [Larsson and Akenine-Möller
2006; Kopta et al. 2012].
The Bounding Interval Hierarchy (BIH) was proposed indepen-
dently, with only minor differences, by three groups of researchers
[Havran et al. 2006; Woop et al. 2006; Wächter and Keller 2006].
Focusing on a fast construction, the spatial median split is used as
building strategy. Compared to the BVH the BIH is faster to build,
easier to update and brings a smaller code layout, but trades off the
BVHs tighter bounding. As the fast BVH-traversal could addition-
ally be applied to BIHs with only minor modifications [Wald et al.
2007a], Wald et al. generally recommend the BIH for ray-tracing
[Wald et al. 2007b] although the best approach certainly always de-
pends on the actual problem.

2.2 Visibility

The term culling depicts the process of removing typically
not/rarely visible elements from the set of geometry to be rendered.
The purpose is the speed-up, accomplished by the rasterization hav-
ing less/simpler items to process, which exploits the trade-off be-
tween the time saved in rendering costs and the time needed to
determine the elements to be culled. Another trade-off relates to
the granularity at which the scene data is processed. Considering
different levels of granularity (object, polygon or pixel level) it de-
termines the effectiveness of each respective technique: while a
higher level implies less items, and therefore a faster processing,
a lower level yields finer granularity, and thus higher accurracy.
There are two categories of object visibility algorithms: Conser-
vative techniques try to determine the set of visible objects, and
thereby ususally overestimate the visibility consistently, while non-
conservative techniques render objects in a simpler/cheaper way
and gain performance at the cost of the resulting image’s correct-
ness.
This paper evaluates two conservative culling techniques. We im-
plemented the hierarchical view frustum culling based on a bit-
mask [Assarsson and Möller 2000]. Out of the variety of occlusion
culling algorithms rarely any are viable with the available perfor-
mance in the Web environment yet. For example, the latest ad-
vances in software occlusion culling [Barbagallo et al. 2012; Chan-
drasekaran (Intel) 2013] rely on SIMD-instructions, which are not
available in web browsers yet (Firefox’s Nightly got experimental
support for SIMD added very recently1). Instead, the occlusion
culling implementations evaluated within this paper are based on
the CHC++ algorithm [Bittner et al. 2004; Mattausch et al. 2008]
and its LatentQuery extension. The CHC++ algorithm makes use
of hardware occlusion queries, in order to determine invisible nodes
within a hierarchical spatial data structure during rendering. Target-
ing for game engine optimization, the LatentQuery extension eval-
uates queries only in the next frame after they have been issued.
Thereby, for very high frame rates, it aims to completely avoid any
delays originating from queries being not ready for evaluation. A
further difference is the way previously invisible nodes are batched

1https://twitter.com/FirefoxNightly/status/418774452739252224

54

into queries. It aggregates nodes as long as their multiplied proba-
bility of staying invisible stays above a given threshold, where the
original algorithm adds nodes to a query until a local optimum of
their averaged probabilities is exceeded. This allows the user to
control the average amount of batched queries by adjusting the re-
spective threshold.

2.3 JavaScript, Typed Arrays and asm.js

JavaScript usually runs client-side in the browser, in a so-called
sandbox environment. Recently, with the arrival of node.js2, it is
also used standalone, and especially server-side, as well. One of
JavaScript’s biggest drawbacks is its comparably slow execution
speed when compiled just-in-Time (JIT).
Lately, there have been two opposing developments, both enabling
developers to bring their C/C++ (legacy) code to the browser. On
one hand, the Native Client3, a sandboxing technology, is devel-
oped as an open-source project by Google. On the other hand,
asm.js4 consists of a strict subset of the JavaScript language. By
limiting the language’s features, it allows for performance improve-
ments like ahead-of-time optimization, pushing the execution speed
closer to native code. Asm.js-code is quite unpractical to be written
manually by the developer, but rather intended to be cross-compiled
from other languages (e.g., C++), where the developers can take ad-
vantage of the tools they already have for those ecosystems.
Emscripten5 is one such transcompiler: it takes bitcode as input
and emits JavaScript-code. Depending on the setup and optimiza-
tion level, this output ranges from rather standard JavaScript to
asm.js. It runs in the so-called Module environment, a JavaScript
object maintaining its own heap-structure based on TypedArrays6,
which encapsulates the cross-compiled functionality. Hence, for
these objects living inside Module, developers have to take care of
their lifetime manually. In return, the cross-compiled asm.js code
runs significantly faster, compared to hand-written JavaScript. Em-
scripten received a lot of attention in May 2013, when Epic Games
and Mozilla revealed their collaboration on employing emscripten
to port the Unreal Engine 3 to the Web7. So far, with only Mozilla’s
Firefox fully supporting asm.js, the performance of cross-compiled
code varies quite heavily across different browsers.

2.4 WebGL2

The first draft for the upcoming WebGL2 specification8 was pub-
lished on September 26, 2013. So far, the arrival of first official
implementations is unforeseeable, yet in July 2013 already, Mozilla
had released a prototypical, experimental WebGL2 context9. After
getting enriched continously during the following weeks, its fea-
ture set now includes, for instance, occlusion queries and trans-
form feedback. So far, these features are only available in Firefox’s
Nightly builds, their activation depends on a set of browser and en-
viroment variables. Despite the experimental state of this WebGL2
implementation, the results of its evaluation can be assumend to
match those of an official implementation, as it largely conforms to
the specification draft.

2http://nodejs.org/
3https://developers.google.com/native-client/dev/
4http://asmjs.org/
5https://github.com/kripken/emscripten/wiki
6https://www.khronos.org/registry/typedarray/specs/latest/
7https://www.unrealengine.com/news/epic-games-releases-epic-citadel-

on-the-web
8http://www.khronos.org/registry/webgl/specs/latest/2.0/
9https://wiki.mozilla.org/Platform/GFX/WebGL2

3 Testing Framework

3.1 Choice of Spatial Data Structures

Generally, spatial data structures might be using any type of bound-
ing volume, branching with any favored factor, entailing the respec-
tive trade-offs. The selection of test candidates has to be well-
considered: When targeting for on-the-fly visualization of previ-
ously unknown model data, any time-consuming pre-processing is
not an option. This eliminates a vast number of bounding volume
types already. Different spatial data structures can be compared
most effectively if they are based on the same type of bounding
volume: identical functionality can be used, rendering the evalua-
tion indepedent of bounding volume properties. Regarding the ease
of construction and the tightness of the composition, axis-aligned
bounding boxes are best suited. Since the data structures will have
to handle a set of objects, it could seem reasonable to pick struc-
tures which partition objects. In general, the geometric density of
models is initially unknown and varies quite heavily. Therefore, the
spatial data structures need to be adaptive.
The selected candidates are the bounding interval hierarchy (BIH)
and the octree. The BIH, as a union of the k-d tree’s and BVH’s ad-
vantages, effectively partitions the space in an object-adaptive way.
The same holds for the octree, if the maximal depth for the recur-
sive construction adapts to the amount of drawables remaining in
the respective branch.
Both have been studied intensively in the context of ray-tracing.
However, this knowledge has not been transfered to the con-
text of real-time rasterization inside the Web environment, with
its specific properties and trade-offs, yet. For example, the
unusual relation of processing speed between the CPU envi-
ronment (built on JavaScript) and the GPU posts differing de-
mands on the application of data structures for support the vis-
ibility determination. On the other hand, in contrast to their
application in ray-tracing, a frequently repeated reconstruction
might be one feasible way of achieving dynamic hierarchies.

Figure 2: Subdivision scheme of
octree(left) and BIH (right) in 2D.
Narrower line-width means deeper
in the hierarchy.

The candidates differ re-
garding their branching
factor and subdivision
strategy. Focusing on
a fast construction and
maximum comparability
between the data struc-
tures, no construction
heuristic is used. As
the construction process
is based on the axis
aligned bounding vol-
umes of complete ge-
ometries instead of trian-
gles, the significance of heuristics like the SAH for this use case
requires further investigation. The subdivision strategies are visual-
ized in figure 2. The spatial median split is used for the BIH: start-
ing with the scene’s bounding volume, in every step the longest
axis of the current bounding volume is chosen. All drawables of
the current (sub-)set are sorted along this axis with respect to their
bounding volume’s center and split at the median. For both re-
sulting subsets a plane is calculated and stored as offset along the
chosen axis, splitting the original bounding volume and enclosing
the subset’s bounding volumes minimally. Often these subvolumes
overlap. The recursion terminates as soon as the maximal depth is
reached or if only a single drawable remains in the subset. In the
latter case the nodes bounding volume is shrinked to the bounding
volume of the drawable (not visualized in the figure).
The octree simply subdivides a node as long as more any of the
drawables contained covers only a subset of the bounding volumes

55

Figure 3: Transitions between different representations of the scene data and their properties.

 - per frame
 traversal

 - user
 input

 - update traversal on
 initialization / input
 - results in N drawables

Application
Structured

Representation

Optimized
Representation

Rendering
Representation

 - M visible drawables
 (M << N)

 - X3D + HTML - scene graph
 - semantic
 structure

 - spatial data structure
 - accelerated visibility
 determination

of possible child nodes.
Within our study, spatial data structures are constructed and main-
tained based on the bounding volumes of the scene’s objects. This
coarse granularity compensates for the slow processing speed, be-
ing one of the major drawbacks of the Web environment. Though
this leads to a lower accuracy of the visibility determination, it
yields no loss in correctness of the resulting image.
As stated previously [Scherzer et al. 2010], the properties of the
hierarchy, like the proper termination depth, can significantly influ-
ence the performance of any (occlusion) culling algorithm. Thus,
the performance of the candidate data structures is evaluated with
respect to different setups. The optimal depth levels of the given
data structures for the respective test scenes are also evaluated to
estimate their feasibility regarding client-side and on-the-fly con-
struction and maintenance in the Web environment.

3.2 Implementation

The candidates were experimentally integrated in a branch of the
x3dom10 framework [Behr et al. 2009], a JavaScript library, which
renders X3D11, which was embedded into website’s HTML, using
WebGL. The scene objects targeted for processing in the spatial
data structure are organized as subtree under a specific X3D group-
ing node. While the remainder is processed normally by x3dom, the
list of drawables of this subtree is collected during the first scene
graph traversal (cf. figure 3). The scene graph’s semantic represen-
tation is broken up to create an optimized one, in form of the chosen
spatial data structure. However, this structure stays connected to
the scene graph, which serves as application interface. This allows
x3dom to forward user input and trigger a rebuild of the spatial data
structure, if required due to changes of the geometry.
With the help of a chosen spatial data structure, visibility determi-
nation is performed per frame, with respect to the enabled culling
techniques. It results in the rendering representation: the set of
drawables of the visible scene objects, enriched with additional in-
formation, like their current screen space coverage.
The spatial data structures, the different traversers using them, as
well as the culling techniques, were implemented twice: on one
hand in JavaScript, and on the other hand in C++ (cross-compiled
to asm.js). From a software engineering perspective, the functional-
ity was abstracted at various spots to allow for an efficient exchange
of the used funtionality at runtime. Thus, it is possible to not only
switch between cross-compiled and hand-written JavaScript, but
also to freely switch between the different data structures or tra-
versers. For an exchange of the data structure or variation of its
parameters, a reconstruction of the hierarchy is inevitable so far.
Particular attention has to be paid to the integration of the hardware
occlusion queries. Althoug the emscripten crosscompiler is able to
translate OpenGL calls to WebGL, the functionality of Mozilla’s
WebGL2 prototype has not been included yet. Thus, the needed
WebGL2 functionality is wrapped in global JavaScript functions,
which are then called from within the asm.js code. However, cross-
ing the border between the asm.js Module enviroment and stan-
dard JavaScript is expensive, especially when occuring thousands

10http://x3dom.org
11http://www.web3d.org/realtime-3d/x3d/what-x3d

Figure 4: Hardware specifications and browser versions
of the testing machine.

Property Value
CPU Intel Core i7-4770 @3.4 GHz
RAM 32 GB
Gfx GeForce GTX 770
OS Windows 7 64 bit SP1

Browser Version
Chrome 33.0.1750.154 m

Firefox(Nightly) 31.0a1

of times during a traversal including occlusion culling.
Another important aspect is the efficient application hardware oc-
clusion queries. After the construction of the spatial data structure,
all bounding volumes are known, for its (inner) nodes as well as
for the set of drawables. The difficulties arise because the CHC++
algorithm batches entirely different subsets of bounding volumes
for each and every occlusion query. Thus, in order to draw those
bounding boxes, different subsets of vertices have to be rendered
up to a multiple of thousand times per frame. In a native applica-
tion, updating and passing a client-side index array, stored in main
memory, seems to be a promising approach to draw such highly
frequent changing data, yet this feature is not available in WebGL.
Both options, the deletion and recreation of vertex buffer objects, as
well as overwriting their content with glBufferSubData, came out
not to be viable on a per frame basis, at least required in the magni-
tude. Thus, although draw calls are a huge performance bottleneck
for WebGL, for each and every bounding volume a single draw call
has to be issued. Thus, the same index buffer and vertex buffer,
representing a single unit-size axis-aligned bounding box, is posi-
tioned, scaled and oriented by a transformation matrix uniform, for
the rendering of each bounding box.

4 Evaluation

The performance is evaluated for two different browsers: The key
aspect of this evaluation are the differences in performance for the
four possible combinations of the standard JavaScript or asm.js en-
viroment, executed by the Browsers Chrome or Firefox (Nightly).
Note that Chrome does not directly support asm.js. However, based
on internal optimizations, Chrome is able to execute such code sig-
nificantly faster compared to standard JavaScript12.
For evaluations which are not directly related to rendering, the test
scene contains five thousands randomly positioned utah teapots. A
scene with that many elements is needed to force the BIH construc-
tion to result in a hierarchy consisting of roughly the same amount
of nodes as an octree of depth five or higher. For the evaluation
of the culling techniques, two powerplant models (see. figure 1)
with individual geometric properties are used. The first well-known
powerplant (left side), supplied by the University of North Carolina

12https://blog.mozilla.org/futurereleases/2013/11/26/chrome-and-opera-
optimize-for-mozilla-pioneered-asm-js/

56

at Chapel Hill13 (ca. 13.6 millions of triangles) delivers a moderate
til high geometric density, whereas the powerplant model from EDF
(Électricité de France, right side), consisting of roughly 57 millions
of triangles, represents a very demanding real-world model.
The geometry is loaded in form of x3dom’s BinaryGeometry [Behr
et al. 2012], which provides a great loading and rendering perfor-
mance. However, during conversion to this format, the geometry
chunks that represent the mesh data are optimized, to reduce draw
calls. This has a negative impact on the occlusion properties, a fact
detailed in section 4.3.
All measures are based on the JavaScript-function perfor-
mance.now(). Its implementation is browser-dependent: While it
accurately returns fractions of milliseconds in Firefox, Chrome re-
turns millisecond values only. This introduces errors not negligible,
especially when measuring very short time intervals. We will refer
to this later on.

4.1 Construction Time

The BIH’s node count completely depends on the overall amount of
drawables. If every leaf node contains only one drawable, it simply
can not grow deeper. In contrast, the octree’s maximal depth, when
using the given strategy, depends on the positioning and size of the
bounding volumes. Compared to the BIH, the octree grows that
much faster, that its subdivision usually only stops when reaching
the maximal depth.
The construction time was measured as the average time consumed
over a series of 50 constructions for the teapot test scene, processed
in consecutive frames. The results for the four environments are
listed in figure 5. The maximal depth parameters are impossible to
relate for spatial data structures with differing branching factors and
construction algorithms. Hence, construction times are contrasted
with respect to the resulting node count. Generally, the BIH’s con-
struction performance for similar node counts is a trifle better com-
pared to the octree, as the results of the js-environment show. This
is reasoned in the construction algorithms: while for the BIH with
increasing depth a decreasing number of drawables is processed,
depending on the spatial distribution this number might stay rather
constant for the octree.
For node counts above one thousand a re-construction is already too
expensive to be done per frame. Firefox delivers the better perfor-
mance.
Both spatial data structures were chosen because of their ability to
adapt to the geometry. Figure 1 shows this similarity of the result-
ing hierarchies.

4.2 Hierachical Traverse Performance

The hierarchical traversal of the spatial data structure simply col-
lects the drawable. It does not distinguish the different structures:
for the traversal of a certain node count it needs the same amount
of time, if no additional calculations, e.g. with respect to culling
techniques, are performed. Initially, we compare this traversal per-
formance for the different environments to find an estimate for
the maximally manageable node count if all culling techniques
are deactivated (cf. figure 6). Because of the generally unsta-
ble JavaScript performance, the traversal times are averaged over
a number of subsequent renderings of the teapot scene. It is im-
portant to note that, for the asm.js-environment, the costs of cross-
environment calls add up to the traverse time. While these calls
did not matter for the construction (one environment switch), dur-
ing traversal there is one cross-border-call for each visible draw-
able. The traverse times for Chrome are not as accurate as for Fire-
fox, because of the lower precision of its implementation of perfor-

13http://gamma.cs.unc.edu/POWERPLANT/

Figure 5: Construction times for octree and BIH for a scene with
5k elements within different environments in ms.

Chrome Firefox
js asm js asm

depth #nodes #leaves octree
3 577 505 108.7 10.9 30.5 6.7
4 4377 3830 153.2 40.2 79.1 29.9
5 31777 27805 393.7 198.5 390.1 195.4

BIH
7 483 242 19.7 4.7 6.6 4.1

10 3367 1684 42.2 24.9 23.6 17.8
30 21469 10735 197.4 131.3 139.0 103.8
50 30429 15215 237.8 187.2 188.2 156.0

0

50

100

150

200

250

300

350

400

500 5500 10500 15500 20500 25500 30500

co
n

st
ru

ct
io

n
 t

im
e

 (
m

s)

number of nodes

Chrome (octree, js)

Chrome (octree, asm)

Firefox (octree, js)

Firefox (octree, asm)

Chrome (bih, js)

Chrome (bih, asm)

Firefox (bih, js)

Firefox (bih, asm)

mance.now(). Hence, these results have a margin of uncertainty of
at least 0.5 milliseconds.
The results are similar to those of the construction evaluation: gen-
erally, Firefox performs better, but only Chrome’s js-variant is re-
ally falling behind, while its asm.js-variant can keep up. In con-
trast to the asm-environment, standard JavaScript struggles with the
garbage collection, uncontrollably kicking in and decreasing per-
formance considerably then.
Defining a threshold of 10 ms as maximum for the hierarchical
traversal excluding any further calculations, a node count of up to
25k is feasible when using the asm.js environment.

Figure 6: Average traverse performance for octrees of varying
depth and different browsers/environments in ms.

Chrome Firefox
depth #nodes js asm js asm

3 585 4.59 1.41 1.86 1.97
4 4441 11.34 3.24 3.28 3.00
5 24745 48.38 13.75 10.09 7.98

1

10

100

250 2500 25000

tr
av

e
rs

e
ti

m
e

 (
m

s)

number of nodes

Chrome(js)

Chrome(asm)

Firefox(js)

Firefox(asm)

4.3 Visibility Determination

The visibility determination reduces not only the amount of ren-
dered drawables, but also the amount of traversed nodes. When
counterbalancing the costs of the required calculations against the

57

saved rendering costs, conservative culling techniques can be eval-
uated quite reasonably. This information is implicitly contained in
the frame time.
The culling techniques are evaluated in combination with each spa-
tial data structure, and a reasonable range of maximal depth values.
We use the powerplant models for these analyses to most strongly
conform to real-life-applications.

Figure 7: Traverse times using view frustum culling for octrees of
varying depth in ms.

Chrome Firefox
depth #nodes js asm js asm

3 225 4.34 1.23 1.54 1.35
4 977 5.29 1.03 1.70 1.18
5 4801 15.45 2.04 3.11 1.69
6 22161 30.14 7.44 8.55 4.70
7 95401 71.36 26.31 41.81 21.94

1

2

4

8

16

32

64

3 4 5 6 7

tr
av

er
se

 t
im

e
(m

s)

maximal depth

Chrome (js)

Chrome (asm)

Firefox (js)

Firefox (asm)

View frustum culling Figure 7 shows the average traverse times
(rendering times excluded) for a walkthrough of the smaller power-
plant (13.6M triangles), using view frustum culling: only Chrome
with standard JavaScript falls considerably behind. Up to a maxi-
mum depth level of six (ca. 20k nodes), the traverse times are low
enough to allow for an interative experience. An interesting de-
tail are the higher traverse times for 255 nodes than for 977 nodes
when using asm.js. This directly depends on the less efficient view
frustum culling, resulting from a comparably bad granularity of the
spatial subdivision as a result of the node count being too low. This
gets exacerbated by a higher number of cross-environment calls, as
more drawables are returned as being visible than actually should.
This comparison indicates increasing benefits for the utilization of
asm.js for a rising node count. As Firefox with asm.js showed the
best performance, it is used to analyse the effects of varying spatial
data structures and depth levels on view frustum culling. By using
the same scene for all measurements, the resulting frame time can
be used as performance indicator. Figure 8 lists the view frustum
culling results for BIH and octree of varying depth levels. The plot
visualizes the direct correlation between the number of traversed
nodes (complement of the culled nodes) and the frame time (smaller
= better). We see the octree generally performing better than the
BIH, the optimal node count (corresponding to the highest frame
rate) for both of them is located somewhere between five and fifteen
thousand nodes. A higher node count of the BIH does not generally
introduce additional calculations for view frustum culling: most of
the additional nodes form subtrees under (previous) leaves which
might already have been completely in- or outside the frustum. The
frame time of the BIH stays almost constant for higher node counts,
while the percentage of traversed nodes is falling. In contrast, for
the octree the percentage of traversed nodes and most notably the
frame time are rising distinctively.
As mentioned previously, on one hand, for very low node counts
the hierarchies’ granularity does not allow efficient view frustum
culling which results in unnecessary rendering costs. On the other
hand, for very high node counts, the increase in accuracy of the
culling does not have to pay off anymore. The immense traversal

effort dominates the spared rendering costs, as illustrated by the
strong decrease of the render time percentage. Certainly, this ”bar-
rier” totally depends on the details of the scene and their relation to
the viewing area.

Figure 9 further depicts the different view frustum culling be-

Figure 8: View frustum culling costs in ms for Firefox with asm.js
employing BIH and octree, indicating a correlation between the
amount of nodes traversed and the resulting frame time as result of
the best fitting data structure granularity for the given scene.

BIH
depth 10 30 50 100 400

nodes 183 4635 9319 21019 91219
traversed 153.9 3441.5 5139.3 11946.7 48759.2
% traversed 84.1 74.2 55.1 56.8 53.4
frame time 37.1 30.1 24.4 25.8 27.3
render time 35.2 28.0 22.5 23.3 21.9

% rend. time 94.7 93.3 92.3 90.1 80.3
octree

depth 3 4 5 6 7
nodes 225 977 4801 22161 95401

traversed 124.7 457.9 2042.5 9866.5 46438.1
% traversed 55.4 46.8 42.5 44.5 48.6
frame time 26.7 19.5 18.2 21.3 39.4
render time 25.1 18.1 16.3 16.4 17.3

% rend. time 94.1 93.0 89.7 77.1 44.0

0

10

20

30

40

50

60

70

80

90

100 1000 10000 100000

%
 t

ra
ve

rs
e

d
 /

 f
ra

m
e

 t
im

e
 (

m
s)

number of nodes

bih % traversed

bih frame time

octree % traversed

octree frame time

Figure 9: View frustum culling frame time and percentage of tra-
versed nodes during a walkthrough for BIH and octree.

0

10

20

30

40

50

60

70

80

90

100

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

%
 t

ra
ve

rs
e

d
 /

 f
ra

m
e

 t
im

e
 (

m
s)

progress of walkthrough

bih % traversed

bih frame time

octree % traversed

octree frame time

Figure 10: Different points of view during a walkthrough:
outside (left) and inside (middle). Bounding volumes reaching out
to far, thus interfering with occlusion culling.(right)

58

haviour of BIH and octree for the best performing maximal depths
of 5 and 50. During a short period of the walkthrough, the camera is
positioned outside of the geometry (cf. figure 10 - left): frametime-
as well as culling-wise the BIH slightly outperforms the octree tem-
porarily here. Yet, throughout the majority of the walkthrough, the
camera moves completely inside the data structure (cf. figure 10 -
middle): here, the octree performs better.

Occlusion culling Occlusion culling ist not a conservative
culling technique per se, a visibility threshold greater than one
pixel (any geometry occupying less pixels is culled) makes it a non-
conservative one. However, the current Firefox WebGL2 prototype
does not support other/user-defined thresholds. Therefore, we eval-
uate it by comparing the frame times, as well. Up to this point,
Chrome does not support the required WebGL2 features, hence all
measurements were taken in Firefox.
During conversion to BinaryGeometry, using the AOPT tool14, the
optimization for reduced draw calls batches geometry sharing the
same material. Sometimes, this yields a bad fitting of the result-
ing bounding volumes. Figure 10 (right) visualizes this problem:
Because of small (possibly visible) parts, the bounding volumes of
mostly hidden geometries are reaching out too far and thereby in-
terfere with the occlusion culling algorithm. A query, rendering
a hierarchy node which contains these ”empty” parts of bounding
volumes, will falsely determine the corresponding geometry as vis-
ible. All occlusion culling measurements were taken from walk-
throughs of the EDF powerplant model.
The benefit of combining view frustum culling with occlusion
culling is shown in figure 13. For an octree of depth 4 (4681 nodes),
there is already a notable benefit. Yet, for a depth of 5 (37097
nodes), the results are most impressive, as the frame times for acti-
vated occlusion culling are very close to those of depth 4, while for
a node count that high, with only view frustum culling activated,
interactive rendering had not been possible anymore.
Octree and BIH were contrasted by comparing the results for hierar-
chies of comparable granularities. Again, as illustrated in figure 14,
the octree outperforms the BIH for the majority of the walkthrough
while the camera is moving deeply inside the spatial data structure.
For this part, the query time for the octree is lower as well. Yet,
for the last 20 percent of the walkthrough, when the camera is look-
ing from the outside, the BIH shows better results considering both,
query time and frame time.
Both occlusion culling traversers, CHC++ and LatentQuery, pro-

Figure 11: Breakdown of average times spent during a frame by
the CHC++ in ms normalized to the frame time.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

3 4 5 6 7

Fr
ac

ti
o

n
 o

f
fr

am
e

 t
im

e

Maximal depth

Traverse

Render

Query

Sort

cess the hierarchy nodes in order of their distance to the camera po-
sition. Therefore, the nodes are managed in a queue, sorted by their
distance. When a node is traversed and its children are not culled,
they are inserted into this queue. Figure 11 breaks down the average

14www.instantreality.org

times spent on different tasks per frame during an occlusion culling
traversal. It visualizes the relations as fractions normalized to the
frame time using an octree of varying maximal depth. For the first
levels, the increasing node count delivers better results, based on
the finer granularity of the occlusion tests. Yet, later on, the joined
effort of traversal and occlusion queries for the rapidly increasing
node count gets too high, resulting in a performance collapse. The
sort time corresponds to the time spend to keep this queue sorted.
The traverse time consists of the time for the traversal of the hierar-
chy including view frustum culling, as well as the calculations for
the query batching.
Figure 12 compares the average costs of the different tasks
for occlusion culling with an octree of depth 5 (37097 nodes)
using js/asm.js. The time spend on tasks involving CPU
calculations gets reduced significantly by the use of asm.js.

Figure 12: Average times per task for js
and asm.js in ms for CHC++ and octree.

0

5

10

15

20

25

30

35

40

45

js asm.js

ti
m

e
(m

s)

environments

sort

query

render

traverse

In figure 15,
the query and
frame time are
compared for the
two occlusion
culling variants.
The evaluation of
queries within the
same frame al-
lows the CHC++
to instantly per-
ceive and react
to changes like
camera move-
ment and thus deliver a more accurate occlusion determination.
However, the time elapsing while the traverser waits for a query
result to become retrievable is costly and weights even heavier
when aiming for very high frame rates. If such a high frame rate,
for example in games, has been achieved, the one-frame-delay
before the algorithm reacts on changes is probably neglegible.

5 Conclusion and Future Work

In this paper, client-side computed spatial data structures were
shown to be feasible for the Web. The shortcomings of the Web
environment were mitigated through the use of the latest technol-
ogy trends. Both, asm.js and the WebGL2 features, contributed
significantly to allow for an interactive visualization of massive
3D models. Besides the speedup, the utilization of asm.js prevents
performance break downs due to JavaScript garbage collection.
However, the integration still has room for improvement, for
example direct read/write on asm.js’s TypedArray heap from both
environments, to decrease the amount of cross-border calls. Further
investigation needs to be invested on the memory footprint of these
techniques and its optimization, being a particularly important
aspect for both, large model visualization and the web environment.
A considerable improvement in stabilty and conformance of the
WebGL2 features is likely to happen within the near future, which
will further improve the gain.
The evaluated data structures proved to be efficient in not only
accelerating the visibility determination, but also allowing for
more complex algorithms like CHC++ to be performed. View
frustum culling profited notably when combined with a spatial data
structure. An efficient occlusion culling, the key for the interactive
visualization of massive 3D data sets, is achievable by employing
comparably small hierarchies already. The octree showed better
results when the camera was completely inside the spatial data
structure, while the BIH performed better for the rest. We believe
this to be a result of the BIH being more affected by problematic
bounding volumes than the octree. The selected culling techniques
were a good choice to cover scenarios of different geometric

59

Figure 13: Comparison of simple view frustum culling with CHC++ (combined of occlusion and view frustum culling) employing the
octree of maximal depth levels 4 and 5. The CHC++ with the octree of level 4 performs best. The application of occlusion culling immensly
improves the performance for the previously unmanageable node count of the octree of level 5 (37097 nodes). It outperforms the level 4
octree with only view frustum culling for the majority of the walkthrough. Compared to the level 4 octree, the higher granularity for occlusion
culling never improves the frame time for a longer period of the walkthrough.

0

50

100

150

200

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

fr
am

e
ti

m
e

(m
s)

progress of walkthrough

vfc octree 5

chc++ octree 5

vfc octree 4

chc++ octree 4

Figure 14: Comparison of octree(maximal depth 4, 4861 nodes) and BIH (maximal depth 50, 8101 nodes) with the CHC++ traverser (view
frustum and occlusion culling) activated: The octree invests less time for queries, while delivering a better culling, resulting in a lower frame
time, for the majority of the walkthrough.

0

10

20

30

40

50

60

70

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

q
u

e
ry

 t
im

e
 /

 f
ra

m
e

 t
im

e
 in

 (
m

s)

progress of walkthrough

octree query time

octree frame time

bih query time

bih frame time

Figure 15: Comparison of CHC++ and LatentQuery traversers’s query time versus overall frame time for an octree (max. depth 4). By
evaluating queries in the same frame they have been issued in, the CHC++ traverser is able to perceive changes of the visibility immediately.
In return for the image error, resulting from evaluating its queries only in the next frame, and although spending more time on queries, the
LatentQuery traverser delivers the overall lower frame times and thus better performance.

0

10

20

30

40

50

60

70

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

chc++ query time

chc++ frame time

latentquery query time

latentquery frame time

60

distribution and density. The optimal depth for a data structure is
influenced by a wide range of properties of both, the scenario and
the hardware. This is especially true for the latter, as any wasted
processing power is the more significant the less performance the
environment provides. The optimal depth of the data structures
is particularly dependent on the respective scene properties. At
best, such a system would initially classify the performance of its
current environment to act on this basis.
So far, only static scenes are fully supported, dynamic changes
force a rebuild of the data structures. The construction time for
moderate node counts is already too high to allow for per-frame
rebuilds. While the effort to support dynamic scenes is comparably
low for the octree, most easily done by only re-inserting the respec-
tive geometry into the hierarchy, for the BIH more sophisticated
methods like (re-)balancing are the strategy of choice. Such update
strategies simply adjust the modified nodes’ bounding volumes,
which push the changes up to their parents. After a certain amount
of degradation, the hierarchy gets ”repaired”, a task to be possibly
executed in the background using web workers.

References

ASSARSSON, U., AND MÖLLER, T. 2000. Optimized view frus-
tum culling algorithms for bounding boxes. Journal of Graphics
Tools 5, 9–22.

BARBAGALLO, L. R., LEONE, M. N., BANQUIERO, M. M.,
AGROMAYOR, D., AND BURSZTYNR, A. 2012. Techniques for
an image based occlusion culling engine. Argentine Congress on
Computer Sciences (CACIC).

BEHR, J., ESCHLER, P., JUNG, Y., AND ZÖLLNER, M. 2009.
X3dom: A dom-based html5/x3d integration model. In Proceed-
ings of the 14th International Conference on 3D Web Technol-
ogy, ACM, New York, NY, USA, Web3D ’09, 127–135.

BEHR, J., JUNG, Y., FRANKE, T., AND STURM, T. 2012. Using
images and explicit binary container for efficient and incremental
delivery of declarative 3d scenes on the web. In Proceedings of
the 17th International Conference on 3D Web Technology, ACM,
New York, NY, USA, Web3D ’12, 17–25.

BENTLEY, J. L. 1975. Multidimensional binary search trees used
for associative searching. Communications of the ACM 18, 9
(Sept.), 509–517.

BITTNER, J., WIMMER, M., PIRINGER, H., AND PURGATH-
OFER, W. 2004. Coherent hierarchical culling: Hardware oc-
clusion queries made useful. Computer Graphics Forum 23, 3,
615–624. Proceedings Eurographics 2004.

CHANDRASEKARAN (INTEL), C., 2013. Software oc-
clusion culling update. http://software.intel.com/en-
us/blogs/2013/09/06/software-occlusion-culling-update-2,
Last Visited: 31.03.14.

GOLDSMITH, J., AND SALMON, J. 1987. Automatic creation
of object hierarchies for ray tracing. Computer Graphics and
Applications, IEEE 7, 5, 14–20.

GÜNTHER, J., FRIEDRICH, H., WALD, I., SEIDEL, H. P., AND
SLUSALLEK, P. 2006. Ray tracing animated scenes using mo-
tion decomposition. Computer Graphics Forum 25, 3 (sep), 517–
525. (Proceedings of Eurographics).

HAVRAN, V., HERZOG, R., AND SEIDEL, H. P. 2006. On the fast
construction of spatial hierarchies for ray tracing. In Interactive
Ray Tracing 2006, IEEE Symposium on, 71–80.

HUNT, W., MARK, W., AND STOLL, G. 2006. Fast kd-tree con-
struction with an adaptive error-bounded heuristic. In Interactive
Ray Tracing 2006, IEEE Symposium on, 81–88.

KAY, T. L., AND KAJIYA, J. T. 1986. Ray tracing complex scenes.
ACM SIGGRAPH Computer Graphics 20, 4 (Aug.), 269–278.

KOPTA, D., IZE, T., SPJUT, J., BRUNVAND, E., DAVIS, A., AND
KENSLER, A. 2012. Fast, effective bvh updates for animated
scenes. In Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, I3D ’12, 197–204.

LARSSON, T., AND AKENINE-MÖLLER, T. 2006. A dynamic
bounding volume hierarchy for generalized collision detection.
Computer Graphics 30, 3 (June), 450–459.

MACDONALD, D. J., AND BOOTH, K. S. 1990. Heuristics for ray
tracing using space subdivision. The Visual Computer: Interna-
tional Journal of Computer Graphics 6, 3 (May), 153–166.

MATTAUSCH, O., BITTNER, J., AND WIMMER, M. 2008. Chc++:
Coherent hierarchical culling revisited. Computer Graphics Fo-
rum (Proceedings Eurographics 2008) 27, 2, 221–230.

MEAGHER, D. 1982. Geometric modeling using octree encoding.
Computer Graphics and Image Processing 19, 2, 129 – 147.

SCHERZER, D., YANG, L., AND MATTAUSCH, O. 2010. Exploit-
ing temporal coherence in real-time rendering. In ACM SIG-
GRAPH ASIA 2010 Courses, ACM, New York, NY, USA, SA
’10, 24:1–24:26.

SCHWENK, K., VOSS, G., BEHR, J., JUNG, Y., LIMPER, M.,
HERZIG, P., AND KUIJPER, A. 2013. Extending a distributed
virtual reality system with exchangeable rendering back-ends.
The Visual Computer 29, 10, 1039–1049.

WÄCHTER, C., AND KELLER, A. 2006. Instant ray tracing:
The bounding interval hierarchy. In Rendering Techniques 2006
Proceedings of the 17th Eurographics symposium on Rendering,
139–149.

WALD, I., AND HAVRAN, V. 2006. On building fast kd-trees for
ray tracing, and on doing that in o(n log n). In Proceedings of
the 2006 IEEE symposium on interactive ray tracing, 61–70.

WALD, I., BENTHIN, C., AND SLUSALLEK, P. 2003. Distributed
interactive ray tracing of dynamic scenes. In Proceedings of the
2003 IEEE Symposium on Parallel and Large-Data Visualization
and Graphics, IEEE Computer Society, PVG ’03, 11–.

WALD, I., BOULOS, S., AND SHIRLEY, P. 2007. Ray tracing
deformable scenes using dynamic bounding volume hierarchies.
ACM Transactions on Graphics 26, 1 (Jan.).

WALD, I., MARK, W. R., GÜNTHER, J., BOULOS, S., IZE, T.,
HUNT, W., PARKER, S. G., AND SHIRLEY, P. 2007. State of
the art in ray tracing animated scenes. In STAR Proceedings of
Eurographics 2007, D. Schmalstieg and J. Bittner, Eds., 89–116.

WEGHORST, H., HOOPER, G., AND GREENBERG, D. P. 1984.
Improved computational methods for ray tracing. ACM Trans-
actions on Graphics 3, 1 (Jan.), 52–69.

WOOP, S., MARMITT, G., AND SLUSALLEK, P. 2006. B-kd trees
for hardware accelerated ray tracing of dynamic scenes. In Pro-
ceedings of the 21st ACM SIGGRAPH/Eurographics symposium
on Graphics hardware, ACM, GH ’06, 67–77.

61

