
Web 3D Indoor Authoring and VR Exploration via Texture Baking Service

Federico Spini, Enrico Marino, Michele D’Antimi, Edoardo Carra, Alberto Paoluzzi∗

Università Roma Tre, Rome, Italy

Figure 1: Image from real-time navigation of a quasi-photorealistic indoor VR environment. No light or material nodes are in the final
scenegraph, but just geometry and textures, automatically baked on a remote Web service via a physically-based render engine. Both scene
authoring and navigation are in the browser, without any software or plugin installation.

Abstract

An interactive user-experience with virtual environments of high
visual-quality usually demands either authoring tools of movie-
industry level and a server farm, or a native application on the
client, or both. Conversely, we introduce here a novel 3D work-
flow, targeting specifically the largest needs of high-quality VR ex-
perience. Our workflow architecture incorporates both authoring
and navigation of quasi-photorealistic scenes directly on the Web
platform, thus including mobile and VR devices, and is specifically
addressed to the common use by the street man. No software instal-
lation is needed. Both simplified authoring and exploration tools are
Three.js based, and are mutually connected by a Web service that
automatically produces high quality textures, which include light-
ing effects, multiple soft shadows, reflections and refractions, by
exploiting the Blender’s physically-based Cycles render engine.

Keywords: Web Rendering, Virtual Environments, Graphics Pro-
cessing, 3D Visualization, Baking Service

Concepts: •Human-centered computing → Interaction
paradigms; •Computing methodologies → Graphics systems
and interfaces; •Information systems→ World Wide Web;

1 Introduction

This work introduces a novel web-based architecture to support
both the authoring of synthetic 3D indoor environments and the vir-
tual walkthrough of such scenes with quasi-photorealistic quality.
The proposed architecture implements a linear workflow composed
by three consecutive steps, namely (i) authoring, (ii) processing and
(iii) exploring.

∗e-mail: [spini | marino | dantimi | carra | paoluzzi]@dia.uniroma3.it
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). c© 2016 Copyright held by the owner/author(s).
SIGGRAPH 2016 Posters, July 24-28, 2016, Anaheim, CA
ISBN: 978-1-4503-ABCD-E/16/07
DOI: http://doi.acm.org/10.1145/9999997.9999999

Authoring and/or editing (i) and scene walkthrough (iii) have been
implemented as serverless web applications. Processing (ii) — here
called baking — is performed as a remote web service accessed via
HTTP protocol, and is responsible for a variety of off-line com-
putations, performed with the aim of making the scene available
for browsers running on commodity hardware, while maintaining a
near-photorealistic perceived quality.

In particular, we pursue the near-photorealism of the indoor scene
by focusing on special lighting interactions, i.e. on accurate soft
shadows, light reflections and refractions which, in accordance with
[Joon 2010] and [Wang and Doube 2011], return an enhanced per-
ceived quality. Unfortunately, a native WebGL implementation of
these techniques, by simply exploiting the graphics pipeline in the
browser, results too slow to be executed on most part of the wide
range of devices equipped with a browser, and especially on those
with limited graphics power. The approach we discuss in this paper
aims to overcome this impediment, and to provide a from-good to
very-good 3D experience on every kind of device supporting Web-
GL, i.e. on almost the totality of modern computing appliances.

So, holding our the focus on modeling and interactively visiting
indoor environments, where a critical condition holds, i.e. the still-
ness of the scene, we are enabled to statically precompute, once and
for all, the aforementioned light interactions. This process goes
under the name of baking, and take place during the processing
phase, storing the result in suitable web objects, ready to be pro-
vided on demand. The hypothesis of stillness holds in a variety
of use-patterns, and in particular for VR environments used for e-
commerce, museum walkthroughs, and many other applications.

The resulting web suite can find several uses, ranging from culture
(e.g. virtual museums), to social trade (e.g. enabling people to visit
places they are unable to reach), to some prominent commercial
use (e.g. real-estate, home staging), to security and serious games
applications. The main goal of this project was to broaden the ac-
cessibility of 3D synthetic indoor environments, both for designers,
which are asked to face the web authoring tool as a simplified CAD
editor, and for explorers, which may move inside the scene in man-
ners well tested by the videogames world.

The remainder of this document is organized as follows. Section 2
provides an overview of related work. Section 3 presents the pro-
posed architecture and tools. Finally, Section 4 contains some con-
clusive remarks and figures future developments.

http://doi.acm.org/10.1145/9999997.9999999

2 Related Work

Several solutions have been proposed in past years to let “mobile”
devices — and even ancient PDAs — render 3D models. Several
authors, including [Lamberti et al. 2003; Diepstraten et al. 2004;
Quax et al. 2006; Doellner et al. 2012] faced the problem by propos-
ing a remote rendering approach. The common idea was to per-
form the scene rendering remotely, either on a large server or on a
server cluster. Conversely, our approach relies only partially (and
on-demand) on remote pre-computations, but the scene rendering
is essentially performed client-side.

The work of [dos Santos et al. 2009] specifically addresses the
problem of virtual environment rendering on machines with lim-
ited graphic computational power, directly from a web perspective.
They propose to employ a 3D warping technique for generating
views locally in the client, while 3D rendering of the scene is again
done remotely, on demand, but the proposed approach has no pho-
torealistic concerns.

Several software products can be found on the Internet, in general
orbiting around the interior design industry, and covering — typ-
ically only partially — the same problem presented in this work.
Both small companies1,2 and big players like Autodesk3 but also re-
lated players such as Ikea4, introduced web based simplified CAD
softwares, that allow the user to design an indoor space and fur-
nish it by choosing furniture from predefined libraries, in order to
produce photorealistic single pictures of the environment. Virtual
indoor walk-throughs on the web, with remarkable photorealistic
quality, are instead allowed by Shapespark5. In this case the author-
ing process is not in the direct control of the user, since they write
internally the widget code for web navigation. CGCloud6 provides
high-quality virtual walk-throughs. In this case the Unreal Engine
is used for the rendering, but a platform-specific application must
be downloaded and executed on the client. The same apply to the
well know Google’s Sketchup7.

Hence, as far as we know, no web-based workflow or interactive
framework currently support both the authoring process and the
fluid navigation of 3D synthetic indoor environments, ensuring a
good perceived quality on rendering large scenes in the browser,
even on underperforming devices.

3 System Architecture

The main contribution of this work is the definition of a workflow
designed specifically for the web platform, which allows for creat-
ing, editing and exploring synthetic 3D indoor environments. The
three phases, (i) authoring, (ii) processing and (iii) exploring are
designed to be executed linearly, although a feedback loop between
phases (i) and (ii) can take place. An iterative feedback may so
apply to the design of the 3D scene and, since the baking process
may require some long time, depending on the requested quality,
the designer may get a quick and coarse rendering preview.

Figure 2 shows the modular components implementing this ap-
proach, respectively named Web 3D Editor, Baking Service, and
Web VR Explorer. The second component is an HTTP web service,
while the others are server-less WebGL-based HTML5 web appli-
cations, using the well-known Three.js 3D library. This design im-

1Room Sketcher http://http://www.roomsketcher.com
2Floorplanner http://www.floorplanner.com
3Autodesk Homestyler http://www.homestyler.com/floorplan
4IKEA http://www.ikea.com/ie/en/customer-service/planning-tools/
5Shapespark http://www.shapespark.com
6CG Cloud http://cgcloud.pro
7Sketchup http://www.sketchup.com/

plies that the system does not require any installation of additional
software or plugin in order to be used.

Web 3D Editor
WebGL + ThreeJS

Web VR Explorer
WebGL + ThreeJS

Baking Service
NodeJS + Express

Blender + Python script

scene
.json

Web Services

Web Client

baked
scene
.json

+ textures
+ envmaps
+ geometry data

Figure 2: System architecture.

Enabling context Indoor scenes are inherently static. Forms of
movement could only be introduced by dynamic objects placed in
the scene (e.g. a running fan). We leave out such kind of objects,
thus obtaining a steady scene. Lost of dynamism is not crucial for
a good general perception of the surrounding environment. This
one is clearly a necessary precondition for a massive a-priori com-
putation of light interactions with scene objects. The a-posteriori
introduction on the client of some animated objects in the rendered
scene is also possible, and will be further investigated.

Scene Representation The scene produced by the Web 3D Ed-
itor is transmitted to the baking service as a JSON document, the
data-interchange format of the Web. It consists of a linearized ver-
sion of the Three.js scenegraph data-structure maintained by the
Editor, augmented with some more attributes needed for the bak-
ing process. This representation contains both geometry data and
texture images as base64 encoded data URLs. As side effect of the
baking process, some minor customizations are applied to optimize
the bandwidth consumption, relying on the browsers cache. In par-
ticular (a) the geometric data are stored in separated binary buffer
files, linked via HTTP URL in the JSON document; (b) the im-
age textures and shadow maps are merged together in the so called
lightmapped texture and again stored separately in binary images
file as well as envmaps to encode the reflections and refractions. By
using binary files directly, we are enabled to leverage the possibil-
ity to send and receive binary data using the JavaScript type Array
Buffer via XMLHttp Request Level 2.

3.1 Baking Service

The Baking Service is a remote web service that takes a JSON scene
representation as its input, computes the lightmapped textures, the
envmaps for reflections and refractions and stores the enhanced
graphic information in a format that is compliant with the input,
so enabling the feedback authoring loop.

Lightmapped Textures This is the term used to denote the en-
hanced texture image, whose construction is exemplified in Fig-
ure 5. The figure shows the texture of a parquet shadowed by desk-
tops and office chairs. The baked lightmap is blended on top of the
object texture, thus making pointless a dynamic light computation
at runtime, during the interactive exploration of the environment.

Interface The service exposes a simple yet expressive REST-like
HTTP API: POST /bake, to request a baking job; GET /jobs,
to get info about the currently running jobs; GET /jobs/{id},

http://http://www.roomsketcher.com
http://www.floorplanner.com
http://www.homestyler.com/floorplan
http://www.ikea.com/ie/en/customer-service/planning-tools/
http://www.shapespark.com
http://cgcloud.pro
http://www.sketchup.com/

Figure 3: Lightmapped texture creation.

to get informed about the state of a particular running job (refer-
enced by the id); DELETE /jobs/{id} to stop and delete a
running job. A single integer value enclosed in the POST bak-
ing request synthetically controls the expected output quality of the
lightmapped textures.

APIs are authenticated and associated to the calling user via JSON
Web Token. The requests are handled by a Node.js web server,
using Express.js for its simplicity and clearness in routing requests.

Figure 4: Comparison between some details with or without the
application of the lightmapped textures and reflection envmaps.

Process The baking process is ultimately executed by Blender,
and precisely by its Cycles render engine, which implements a
physically-based ray-tracing algorithm. This opensource Blender
tool can be controlled and configured through Python scripts,
and implements out-of-the-box a CUDA-based parallel rendering.
Blender and Cycles have a vast and active community of users and
developers, strongly orienting our choice of the baking engine.

The Baking Service controls Blender via a Python script. First
the input JSON scene is parsed. Since the input is essentially a
Three.js scenegraph exported from the Editor, each parsed entity
must be translated into a similar Blender’s data-structure. Although
the Blender expressiveness — for example in terms of applicable
materials — is by far larger than the corresponding Three.js one,
the mapping between analogous structures can be simply and in-
tuitively defined. We performed an empirical study to identify the
best performing mapping of parameter values.

Once the input has been parsed and mapped into Blender, the real
baking process can take place: for each object inside the scene
the corresponding lightmapped texture is created (or “baked”) and

stored. When the process is completed the user who sent the job is
notified via email, and provided with a link, either to directly ac-
cess the Web VR Explorer, or to iterate again in the Web Editor. A
comparison of texture imagess before and after the baking process
is shown in Figures 4. It is easy to appreciate the enhanced realism.

Metrics In the following we provide some indicative metrics to
understand the magnitude of processing time. To bake the “Mod-
ern Green House” scene, the one shown in Figures 4 and 7, it takes
4h and 38min of computation using CUDA drivers, on a machine
equipped with a 3.6 GHz Intel Core i7-3820 processor, 16GB of
RAM and NVIDIA GeForce GTX 670 (2GB of VRAM) as graphic
processor. The scene is composed by 206 objects with 8 lights. It
is worth noting that it is not unusual for an interior designer or an
architect to wait for a time this long during a render stage of a de-
tailed, photorealistic picture. With the same order of magnitude of
time our system allows instead for a complete virtual environment
exploration.

3.2 Web 3D Editor

The Editor is essentially a simplified CAD server-less web applica-
tion, including many interaction tools the designer may be accus-
tomed to.

In general, the Editor allows for the following operations:
(i) add/remove objects (basic objects such as cube, sphere, torus,
etc., generated on-the-fly, or complex objects represented in the
standard 3D format .obj) and lights (ambient light, directional
light, point light, spot light) in the scene to build the scene-
graph; (ii) translate/rotate/scale objects/lights; (iii) change mate-
rials and specific parameters related to each kind of object/light;
(iv) import/export the scene in a JSON document; (v) request via
HTTP the Baking Service to process the scene and make it quasi-
photorealistic; get-info about the status of a request; or abort it.

Furthermore, the Editor may be equipped with a collection of
free 3D models, imported in various formats, including .obj and
.mtl, and often representing pieces of furniture, so allowing the
designer for exploiting the very large amount of Web 3D reposito-
ries of resources.

Figure 5: Images from Web 3D Editor and its catalog.

3.3 Web VR Explorer

The Web VR Explorer8 allows to navigate in first person the pho-
torealistic scene, processed by the Baking Service. Virtual tour ex-
perience is enhanced by collision detection, which avoids walking
through objects and spaces, and enables the viewer to go up and
down stairs (see Figure 7, first row). A 2D map can be also switched
on to facilitate user orientation in large scenes (see Figure 7, second
row). The stereoscopic view for wearable devices (see Figure 8)
supports appliances like Google Cardboard.

Our approach to virtual walk-through of inner environments is sup-
ported by a static 3D model and allows an unrestricted user interac-

8Demo available at http://cvdlab.github.com/bak3d-demo.

http://cvdlab.github.com/bak3d-demo

tion [Shi and Hsu 2015]. Various techniques have been adopted to
maintain a high framerate. To remove the lights in the scene avoids
computationally expensive real-time calculation of light effects,
since photorealistic lighting informations are directly stamped on
textures, resulting in a lightweight render loop. A smart scheme
of collision detection drastically reduces the number of objects to
be considered for casted rays. The objects of the scene are orga-
nized in an octree, dynamically computed only once at scene load-
ing time [Ericson 2004]. Hence the intersection test are yet per-
formed at every frame redrawing, but only against a limited number
of objects, i.e. those present in the same octree cell of the observer
and closer to her.

Metrics In our tests we took as a reference point for consumer
standard hardware the MacBook Air 13-inch, Mid 2012. On
this machine, “Modern Green House” scene exploration using the
browser Google Chrome, is performed constantly at 60 fps.

Figure 6: “Open Space Office” demo from Web VR Explorer.

Figure 7: “Modern Green House” demo from Web VR Explorer.

4 Conclusions

In this paper we have discussed a strongly simplified visual 3D
workflow to provide a high-level user-experience on web clients
(desktop, tablet and mobile, reaching wearables like Google Card-
board). Very simple and compact 3D data structures are produced
by the editor on the browser, automatically transmitted to a remote
web baking service, and given back as a real-time enjoyable VR
experience with high realism and frame rate. We are currently pro-
viding several optimizations, and are also working to automatize
at maximum degree the generation of built environments using the
novel LAR (Linear Algebraic Representation) data structure [Di-
carlo et al. 2014]. The project discussed here is actually a com-
ponent of a much larger programme to provide indoor mapping
and indoor/outdoor 3D realistic models starting from (a) cadaster
documents and/or building drawings, and (b) outdoor/indoor drone
flights and their returned set of photographs and generated point
clouds. The possible applications range from security enforcing
inside small areas and public buildings, to e-commerce, to virtual
access to cultural heritage, to serious games, and much more.

Figure 8: Web VR Explorer stereoscopic view, enabling the use of
VR devices such as Google Cardboard.

Acknowledgements This work, made in the CVDLAB of the
Roma Tre University, was partially supported by grant 2016 from
SOGEI, the ICT company of the Italian Ministry of Economy and
Finance.

References

DICARLO, A., PAOLUZZI, A., AND SHAPIRO, V. 2014. Linear al-
gebraic representation for topological structures. Comput. Aided
Des. 46 (Jan.), 269–274.

DIEPSTRATEN, J., GORKE, M., AND ERTL, T. 2004. Remote line
rendering for mobile devices. In Computer Graphics Interna-
tional, 2004. Proceedings, 454–461.

DOELLNER, J., HAGEDORN, B., AND KLIMKE, J. 2012. Server-
based rendering of large 3d scenes for mobile devices using g-
buffer cube maps. In Proceedings of the 17th International Con-
ference on 3D Web Technology, ACM, New York, NY, USA,
Web3D ’12, 97–100.

DOS SANTOS, M. C., PEDRINI, H., AND BATTAIOLA, A. L.
2009. An architecture for rendering web 3d virtual environments
on computers with limited graphic processing power. In Pro-
ceedings of the XV Brazilian Symposium on Multimedia and the
Web, ACM, New York, NY, USA, WebMedia ’09, 30:1–30:8.

ERICSON, C. 2004. Real-Time Collision Detection. CRC Press,
Inc., Boca Raton, FL, USA.

JOON, J. S. 2010. Principles of photorealism to develop photore-
alistic visualisation for interface design: A review. In Computer
Graphics, Imaging and Visualization (CGIV), 2010 Seventh In-
ternational Conference on, 17–25.

LAMBERTI, F., ZUNINO, C., SANNA, A., FIUME, A., AND
MANIEZZO, M. 2003. An accelerated remote graphics archi-
tecture for pdas. In Proceedings of the Eighth International
Conference on 3D Web Technology, ACM, New York, NY, USA,
Web3D ’03, 55–ff.

QUAX, P., GEUNS, B., JEHAES, T., LAMOTTE, W., AND VAN-
SICHEM, G. 2006. On the applicability of remote rendering of
networked virtual environments on mobile devices. In Systems
and Networks Communications, 2006. ICSNC ’06. International
Conference on, 16–16.

SHI, S., AND HSU, C.-H. 2015. A survey of interactive remote
rendering systems. ACM Comput. Surv. 47, 4 (May), 57:1–57:29.

WANG, N., AND DOUBE, W. 2011. How real is really? a percep-
tually motivated system for quantifying visual realism in digital
images. In Multimedia and Signal Processing (CMSP), 2011 In-
ternational Conference on, vol. 2, 141–149.

