
3drepo.io: Building the Next Generation Web3D Repository
with AngularJS and X3DOM

Timothy Scully∗

3D Repo Ltd
London, UK

Jozef Doboš
3D Repo Ltd
London, UK

Timo Sturm
Fraunhofer IGD

Darmstadt, Germany

Yvonne Jung
Hochschule Fulda
Fulda, Germany

Abstract

This paper presents a novel open source web-based 3D version
control system positioned directly within the context of the recent
strategic plan for digitising the construction sector in the United
Kingdom. The aim is to achieve reduction of cost and carbon emis-
sions in the built environment by up to 20% simply by properly
managing digital information and 3D models. Even though previ-
ous works in the field concentrated mainly on defining novel We-
bGL frameworks and later on the efficiency of 3D data delivery over
the Internet, there is still the emerging need for a practical solution
that would provide ubiquitous access to 3D assets, whether it is for
large international enterprises or individual members of the gen-
eral public. We have, therefore, developed a novel platform lever-
aging the latest open web-based technologies such as AngularJS
and X3DOM in order to define an industrial-strength collaborative
cloud hosting service 3drepo.io. Firstly, we introduce the work and
outline the high-level system architecture as well as improvements
in relation to previous work. Next, we describe database and front-
end considerations with emphasis on scalability and enhanced secu-
rity. Finally, we present several performance measurement experi-
ments and a selection of real-life industrial use cases. We conclude
that jQuery provides performance benefits over AngularJS when
manipulating large scene graphs in web browsers.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics; I.3.4 [Computer Graphics]: Graphics
Utilities—Application packages

Keywords: AngularJS, X3DOM, 3D Repo, version control, BIM

1 Introduction

Within the Architecture, Engineering and Construction (AEC)
industry, the idea of digital design and virtual data manage-
ment was popularised by concepts such as Virtual Building by
Graphisoft [Cyon Research 2003], Building Information Modelling
(BIM) by Autodesk [Autodesk, Inc. 2003] and Integrated Structural
Modelling by Bentley Systems [Kuhfeld 2010]. In order to benefit
from these process changes, the UK Government mandated the use
of collaborative 3D technologies on all public construction by 2016
[BIM Industry Working Group 2011]. The aim is to change the be-
havior of the construction supply chain and to adopt novel digital-
ized ways of collaborating based on 3D models enriched with tech-
nical specifications. Ultimately, the data formats and classifications
are meant to be standardized across different levels of detail and
attribute layers. The core premise is to lower the built environment

∗tim.scully@3drepo.org

Figure 1: Screenshot of the 3drepo.io front-end showing the
London Olympic Stadium Transformation federated 3D model.
The visualisation is composed of 3 individually version controlled
projects; 2 roof sections and a bowl. The total of 323,940 scene
graph nodes was optimized to 880. Thanks to X3DOM, this solu-
tion runs on desktops, tablets and mobiles alike. Model courtesy of
Balfour Beatty Construction Services UK.

capital expenditure and carbon emissions during the construction
and operation by up to 20%. In support of this mandate, a Common
Data Environment (CDE) as a single source of digital information
was defined [The British Standards Institution 2013]. This entails
design and construction documentation such as engineering draw-
ings, 3D models, plan of works, bills of quantities, etc. As of Febru-
ary 2015, the UK Government unveiled BIM Level 3 Strategic Plan
which further aims to move away from static file asset management
systems to dynamic cloud-based hosted environments supported by
databases [HM Government 2015].

Yet, deliberate vendor lock-in and lack of interoperability between
various instances of competing editing software are still a serious is-
sue. Many times, even different offerings by the same vendor suffer
from data loss on import due to often rapid growth by acquisition.
This problem has been only partially resolved by the introduction
of the Industry Foundation Classes (IFC) ISO 16739 [2013] open
3D data format which in turn is based on the Standard for the Ex-
change of Product Model Data (STEP) ISO 10303 [2014] dating
back to 1994. Since IFC can represent some but not all aspects of
the construction process, an ongoing IFC Alignment extension pro-
poses new definitions and data models for infrastructure projects.
Nonetheless, IFC data representation is convoluted without strict
hierarchical composition joined by weak links making it prone to
errors as demonstrated in the sample IFC files by the buildingS-
MART alliance, e.g. Office Building shown in Fig. 6.

Thus, we embark on a quest to fulfil the vision of the BIM Level 3
as mandated by the UK Government and create a file-format inde-
pendent version control system in the cloud. The inspiration comes
from XML3DRepo [Doboš et al. 2013], a Representational State
Transfer (REST) Application Programming Interface (API) written
as a combination of XML3D [Sons et al. 2010] front-end and 3D
Repo [Doboš and Steed 2012] back-end. In order to devise a robust

3drepo.io

enterprise-level solution, this paper introduces significant database
(DB) and server architecture improvements. The new system has
been successfully tested on several large-scale engineering projects
presented throughout the paper and in the supplemental materials.

The associated client application, depicted in Fig. 1, is written in
AngularJS [Hevery et al. 2009] and X3DOM [Behr et al. 2009].
Angular, as it is commonly known, provides two-way data bind-
ing in order to automatically synchronise client views with models,
thus decoupling the direct Document Object Model (DOM) manip-
ulation from the application logic. The system works by parsing an
HTML web page on the client-side for custom tags to be interpreted
as directives that provide bindings with a locally maintained model
of the application data. Notable is the client routing which takes
away processing burden from the web server. Instead of request-
ing fixed page templates pre-populated with data, the server pro-
vides JSON-based information which is requested asynchronously
by Angular to prevent refreshing the whole web page. Working off
the principle that declarative programming is suitable for connect-
ing software components while imperative programming is better
at managing application logic, we attempt to obtain the best of both
worlds. Thus, we devise an Angular-based user interface (UI) logic
with rendering via declarative 3D represented by X3DOM.

Contributions. Firstly, we begin by describing the existing open
source and proprietary solutions. Next, we explore the benefits of
unifying AngularJS with X3DOM. Hence, our contributions can be
summarized as follows:

1. A practical solution to 3D version control on the web.
2. Improved NoSQL database schema for commercial 3D assets.
3. Novel REST API for X3D data serving.
4. Demonstration of case studies in an industrial setting.
5. Comparative evaluation of managing large scene graphs using

jQuery and AngularJS.
6. Open source implementation available on GitHub.

2 Related Work

Central to this work is the aforementioned CDE as specified by the
British Standards Institution. Its role is to act as a single source
of truth for the construction project holding different types of 3D
models and associated attributes together with metadata such as au-
thor, timestamp, etc. Thus, a closely related work is that of Doboš et
al. [2013] which defines XML3DRepo REST API as well as perfor-
mance measurements on different encoding formats. In this paper,
we take a similar approach but with significant considerations for
the usability of the proposed solution as well as its actual appli-
cation to a commercial environment. Instead of basing the front-
end on XML3D, we utilise X3DOM by Behr et al. [2009]. Pre-
viously, the benefit of XML3D over X3DOM was its fine-grained
resource compositing which was not possible with the <Inline>
functionality in X3D alone. Large-scale industrial models tend to
encompass tens of thousands of components, thus, lowering the
number of XmlHTTPRequest (XHR) calls becomes crucial. For-
tunately, with the recent introduction of the Shape Resource Con-
tainer (SRC) [Limper et al. 2014], we are able to minimize the
number of requests by interleaving geometry and normals with tex-
tures inside a single server response, see §3.2. In contrast, the
GL Transmission Format (glTF) [Robinet and Cozzi 2013] draft
specifies an imperative encoding that might become one of the sup-
ported containers, cf. [Coughlin 2014], although without the bene-
fits of interleaving or progressive streaming [Limper et al. 2014].
In addition, XML3D puts emphasis on animation, skinning and
dataflows [Klein et al. 2012] none of which are important in ar-
chitectural visualisation. Nevertheless, Schubotz and Harth [2012]

also devised a prototype server with XML3D rendering, although,
without external referencing of resources. Furthermore, XHR re-
quests in combination with a NoSQL database were previously used
by Olbrich [2012] on Extensible 3D (X3D) [2013] communication.

Another closely related work is that of Mouton et al. [2014]. Their
system establishes a scalable model-driven web service architec-
ture targeting 3D Computer Aided Design (CAD) in web browsers.
Models are stored using macro-parametric approach in a traditional
Product Data Management (PDM) system with the addition of a 3D
server which executes complex CAD operations remotely. Simi-
larly, one of the most recent systems, still in beta, is Onshape.com,
a CAD editor developed by the original SolidWorks team. This
system, backed by $64m venture funding, aims to deliver radical
change in collaborative 3D editing directly in web browsers à la
Google Docs. Other notable browser-based editing tools include
Clara.io, WebGL Studio [Agenjo et al. 2013] and Verold acquired
by Box. It is our belief that a solution for ubiquitous access to 3D
must support the widest range of modelling tools, hence we do not
attempt editing. Instead, we rely on a domain-specific version con-
trol system [Doboš and Steed 2012] and build a solution on top.

Several solutions target the IFC data format directly. BIM-
Server [Beetz et al. 2010] by TNO and Eindhoven University of
Technology is a dedicated open source IFC model server based on
a Berkeley DB key/value data store. This system supports a basic
query language [Mazairac and Beetz 2012] and automated IFC val-
idation [Zhang et al. 2014]. Versioning is achieved on a per-object
basis such that each instance in a model is assigned a unique key
as a composite of an object ID, project ID and a revision number.
However, the absence of globally unique identifier (GUID) values
in many parts of the IFC specification makes delta change detec-
tion incomplete. In addition, the system supports subprojects that
can federate multiple IFC components within the same 3D space.
IFCWebServer is another open source solution that provides on-
the-fly parsing and retrieval of objects from IFC files. Its associated
IFCWebViewer renders models converted to COLLADA [Barnes
and Finch 2008] using SpiderGL [Di Benedetto et al. 2010] library.

On the other hand, proprietary platforms such as Autodesk BIM
360 or Sunglass.io are based on three.js library and serve json-based
meshes while storing attributes in a flat file. Graphisoft BIM Server
acts as a document store with built-in version control. Component-
level locking enables multi-user collaboration by sharing updates
via a centralised DB. This, however, does not scale well and sup-
ports only a limited number of proprietary file formats. In addi-
tion, version control is limited to fixed assets rather than actual delta
changes. Some of this functionality is also provided by commercial
solutions such as GrabCAD, Trimble Connect (formerly BIMShare,
then GTeam) or TeamPlatform, amongst others.

3 Architecture Overview

The aim of the 3drepo.io Software as a Service (SaaS) platform
is to provide an enterprise-level version control system in the cloud
that would scale to complex 3D models without the need for in-
stalling plug-ins in web browsers. What is more, the security of the
infrastructure has to be of utmost importance as high-profile con-
struction projects are being stored and accessed remotely. Fig. 2
depicts the architecture of the overall system. On the server side,
the persistent data storage is provided by 3D Repo. The Bouncer
service enables secure access to and from the database with two tier
authentication as shown in Fig. 3. Long lasting computations such
as model transcoding are passed onto a queue of dedicated Compute
Nodes. On the client side, the rendering is achieved using X3DOM
while the UI interaction is handled by AngularJS, see §7.

3drepo.io

WebdClient

Internet Intranet

WebdServer

P
K

1

P
K

2

ReplicadDatabase

RESTdAPI

Bouncer

ComputedNode

ComputedNode

...

Figure 2: Architecture overview diagram. Web request is routed from Web Server through the publicly accessible REST API. Behind a
second private-key protected firewall, a Bouncer service decides on validity of the request before serving data directly from the database or
processing heavy-weight computations via Compute Nodes before storage.

3.1 3D Repo

3D Repo is an open source non-linear version control system for
3D models based on a NoSQL database MongoDB [Doboš 2015].
Various types of assets are decomposed into their constituent scene
graph components and stored as individually version controlled
documents in a database. These polymorphic documents consist of
key/value pair properties that are transmitted and stored as Binary
JSON (BSON) entities. Each document is assigned a revision tu-
ple which consists of a Unique ID (UID), a functional requirement
of the database, and a Shared ID (SID) common to corresponding
components across different revisions. Further compulsory fields
include the node type, level of the api and all paths from the
root node to itself. In order to provide a truly file-format indepen-
dent version control, models are loaded using the Open Asset Im-
port Library (Assimp) [Schulze et al. 2014] and transcoded into a
unified 3D Repo specific scene graph representation. This is then
uploaded to the database for storage. The scene graph is by design
data agnostic and the only requirement it poses is for its nodes to be
organised in a directed acyclic graph (DAG) data structure. This de-
sign enables version control on over 40 popular 3D formats includ-
ing COLLADA, IFC, FBX, OBJ, DWG, etc. Additional attributes,
loaded from comma separated files, can be attached as child nodes
into the scene graph itself. In 2014, 3D Repo system won the Mon-
goDB World Innovation Award in the open source category.

3.2 X3DOM

X3DOM [Behr et al. 2009] is a JavaScript-based open source
framework for declarative 3D graphics on the web which relies on a
polyfill implementation to include the missing parsing capability in
web browsers. Based on the open ISO standard X3D [Web3D Con-
sortium 2013] with its XML encoding, the framework seamlessly
integrates interactive 3D elements into HTML that can then be eas-
ily modified at runtime via DOM scripting. Despite this, including
the whole 3D scene into an HTML document, even if indirectly
using the X3D <Inline> node comes along with its own prob-
lems. Raw ASCII-encoded 3D mesh data with position and other
vertex attributes should not be part of the HTML document as it
is potentially massive. Therefore, with the <BinaryGeometry>
node, a method and a container format was presented that allows
for efficient splitting of geometry from the main scene-graph. This
is comparable to other popular web multimedia elements such as
images or videos [Behr et al. 2012]. A further optimization that
allows for progressive streaming based on criteria such as camera
distances or screen sizes was presented by Limper et al. [2013a].
Following this, they integrated both the geometry and appearance
into a single container called SRC [Limper et al. 2014]. However,
with this approach the whole <Shape> node is no longer acces-

sible for online modifications. Hence, the suitability of different
X3D transmission formats is analysed in §6. Nevertheless, render-
ing is much more efficient when having flattend the scene graph to
reduce the number of draw calls. This should be done before data
delivery as explained by [Aderhold et al. 2013]. Yet, to maintain
the ability for online modifications of individual parts of complex
3D models, the <MultiPart> node [Behr and Sturm 2015] was
introduced in X3DOM. This builds on an offline optimization pro-
cess which creates large homogenous chunks but provides an online
API to manipulate the visualization based on the original data struc-
ture. During the optimization process, a single JSON-based file is
generated which holds the whole information to map between the
converted data chunks and the original structures. This informa-
tion is later used by the API to preserve the ability to manipulate
individual parts of the scene.

3.3 AngularJS

Over the past few years, Angular has become an increasingly pop-
ular choice for rapid development of dynamic HTML pages. This
open source framework simplifies the design and implementation
of single-page websites by providing two mechanisms; data bind-
ing and client-side routing. Their implementation is designed in
such a way as to supercede the use of more established dynamic
frameworks such as jQuery, even though a subset of it exists within
Angular. The community actually discourages that the two method-
ologies be mixed, and the consensus is that everything should be
implemented in one or the other. This lends itself to a dichotomic
view of the client-side design which presents an interesting conun-
drum. On the one hand, there is the need for a fluid UI consisting
of a single project page. On the other, it has to render complex 3D
models with associated attributes that need to be optimized through
lazy fetching for performance reasons.

Data binding. In Angular, the dynamic parts of a web page are
attached to a specific controller. This defines the scope contain-
ing a set of variables that control the dynamic output. When one
is updated, the output is automatically changed to reflect the new
state, even for user input fields. This method of linking means that
there are no direct DOM manipulations like in jQuery. If still be-
ing unavoidable, Angular has introduced the concept of directives.
These are attached to an element in the DOM using the common
HTML tag structure. Thus, directives define a connection between
the element, its attributes, and the controller scope. Typically, a
watch is set up to monitor the scope so when it changes, the ex-
pression activates and the element attributes are changed accord-
ingly. In jQuery, in contrast, the dynamic page manipulation is per-
formed using events and functions. If the user interacts with a page
through an input element, an event is fired. A listener is attached

to this event that activates a set of functions in response. Creation
of dynamic content then becomes a case of first identifying the ele-
ment in the DOM, and then changing its attributes through a call to
the setAttribute() function. Thus, a key difference between
jQuery and AngularJS is the requirement for prior knowledge of the
DOM. When a page is manipulated by Angular, it must first know
which tags in the DOM have an attached directive. Hence, it must
perform a compilation step where it loops over all the elements in
DOM to parse the directives. In jQuery, the code already knows
which elements to manipulate, or uses the browsers’ built-in query
selectors to find the elements in DOM. Typically, the direct DOM
access is implemented using a tree structure, hence retrieving indi-
vidual elements can be more efficient. In the case of 3D scenes, this
can have serious performance implications, see Fig. 5 for examples.

Client-side routing. When the user navigates to another page,
Angular can utilise client-side routing in order to dynamically
switch the contents of a page without requiring a refresh. This
happens by switching the website template that controls the lay-
out of the content, and the controller that is in charge. If the viewer
needs to update, AngularJS will call JavaScript code on a specially
designed viewer object that controls loading of X3DOM elements
efficiently without the need for a refresh.

4 Database Schema

We extend the previous work of Doboš et al. [2013] to offer both
commercial and performance improvements. The first step is to
switch the database conceptually from per project to per account.
This provides greater security while simplifying the backup pro-
cedure at the same time. The second step is to introduce a sepa-
rate pre-processed X3DOM cache into DB. This allows for a spe-
cific scene to be served up quickly, without the need of repeated
transcoding. In the final step, new types of scene graph nodes are
introduced that support the addition of attributes and metadata, fed-
eration of different projects and visualisation of map tiles.

4.1 Access Control

In XML3DRepo, the design of the system was based around es-
tablishing functionality, thus did not include security features. In
a commercial offering, however, data security and access control
are of paramount importance. Engineering models and semantic
data can offer opportunities to nefarious groups that might wish to
exploit them. To mitigate these, the notions of users, groups and
companies are introduced. Each account is given a separate DB
to store their projects creating a natural Chinese wall on the same
instance. This means sensitive information can be protected not
only from other companies or organizations, but groups within the
same organization. Thus, in each DB, there is a new set of col-
lections storing information on users/groups detailing their access
privileges. Previously in 3D Repo, each repository represented a
project containing two collections, a history and a scene. The his-
tory, stored as a DAG of revisions, contained the lists of added,
deleted, modified and unmodified components. The scene collec-
tion, on the other hand, contained the actual 3D assets represented
as a scene graph, also a DAG. In this paper, the notion of a DB
is modified from representing a single project to a company which
stands for a user, an organization, or a business unit. Each project
then becomes a set of collections stored in a database, namely
db.project.scene and db.project.history. In addi-
tion, the db.project.users collection is added that details
the users and their permissions on a specific project. Furthermore,
projects can be made public in which case anyone has read but not
write permissions. In the particular use-case of a NoSQL data store,

Database Level Authentication

Project Level Authentication
project.users

db.users

Post-Authentication

Pre-Authentication

Figure 3: Two step authentication process at DB and project levels.

a further advantage is achieved by preserving each DB as a sepa-
rate file on a disk. Thus, backing up a particular account’s data is
as simple as backing up the file. Hence, accounts can be stored in
different geographical locations, while still using the same “cloud”.

4.1.1 User Authentication

To facilitate access control on specific projects, the system needs to
store a set of user credentials. These contain the username and pass-
word plus additional attributes such as email, first and last name,
etc. To simplify and strengthen the implementation, these are stored
using the DB’s built-in user management system which provides
several distinct advantages as follows:

1. Firstly, the database automatically protects the user details with
its own role-based system. Hence, the ability to read and write
user credentials can be tightly controlled. For example, a web-
based front-end can be given permissions to change other users’
passwords, but not its own. The same applies to roles. This
means that an intruder pretending to be the front-end user would
have great difficulty in overtaking the account or gaining super-
user permissions. In addition, the safe storage of passwords is
controlled through a well tested mechanism of the DB itself.

2. Secondly, it allows the inclusion of enterprise-level features
such as Kerberos [Neuman et al. 2005] or Lightweight Direc-
tory Access Protocol (LDAP) [Sermersheim 2006]. Using a uni-
fied authentication method means that collections, and therefore
projects, can be locked at a database level. Thus, a company
that decides to situate our solution on premise rather than in
the cloud can have full control over access. This is especially
important for those users who have raw access to the database,
and may have restrictions imposed through legal entities. Such
a situation is prevalent in consultancies, where different teams
within the same company may be working for competing clients.

Once the user has been authenticated, the system checks their per-
missions against a specific project. Due to their sensitive nature,
the permissions are stored in the db.project.users collec-
tion within a company database. In the enterprise version, this al-
lows read/write permissions to be restricted per project through DB
collection roles. This completes a two-step authentication process,
shown in Fig. 3, controlling access to project resources. As a con-
venience measure, the users store a set of bookmarks in their profile
to keep track of projects. These are separate from the permissions
stored at the project-level, thus can be links to data the users do
not necessarily have permissions on. If trying to access it, however,
they will be denied access at the point of entry.

4.2 Additional Node Types

A set of scene graph node types was defined in [Doboš
2015], namely cameras, comments, materials, meshes,
revisions, textures and transformations. We extend

Figure 4: Test scene with 10,000 spheres being randomly colored.

this list by 3 new nodes. The first is a metadata node contain-
ing information about a particular sub-tree of the scene graph. The
second is a reference node that allows the collation of multiple
projects into a single scene graph. The third is a map node for lon-
gitude and latitude values that point to map tiles from systems such
as Google Maps, e.g. Fig. 1. See GitHub for detailed definitions.

Metadata node. The metadata node adds the ability to store de-
scriptive information, i.e. attributes, about its parent in the scene
graph. Although it is not the only application, this is particularly
of interest in 3D architectural projects. It is common that these
models have engineering descriptions beyond what can be rep-
resented in 3D such as construction materials, quantities, techni-
cal specifications, etc. This information is often stored directly
in common file formats such as IFC and be extracted and im-
ported into the 3D Repo system. The structure of document-
based NoSQL DBs mean that storing metadata is very straight-
forward as it can be stored and queried as key/value pairs na-
tively. Thus, scene nodes can be retrieved based solely on their
meta properties. A query would consist of obtaining a set of
metadata documents and returning their parents. The DB can
even be queried without any reference to 3D data. This allows
for statistical analysis using the Big data abilities of NoSQL.

Federation node. Analogously to a submodule in Git, federa-
tion provides a way of linking projects from the same or another
DB. This gives the users the ability to join specific revisions of
projects into the same 3D scene. This is of great utility to users
who may wish to swap variations on a single design quickly.
In addition, it allows them to continue working on a particular
model while others still access some previous reversion concur-
rently. The federation node shares the same common attributes
with other nodes as specified in §3.1. Additional fields specify
the DB and project along with the required branch and revision.
Typically, it will be a child of a transformation that aligns the
subproject with the rest of the scene.

Map node. The map node allows us to include any map tile
from the Google Static Maps API into the scene as a set of tex-
tured polygons. The center of the tiles corresponds to a spe-
cific latitude and longitude at Google zoom level. Around this
point, a set of tiles is generated such that there are width2

squares in total, where each tile has geometric world size of
worldTileSize in the scene. To support alignment with the
rest of the scene, the map tiles can rotate around the up vector,
i.e. the y-axis, by yrot radians.

5 AngularJS vs jQuery

In general, for complex scene graphs and X3DOM manipulation,
jQuery should have a distinct advantage over Angular, whereas for
simple UI design Angular tends to be much simpler to implement.

Therefore, to test the performance implications of using one or the
other, we perform the same set of three experiments in both libraries
and compare the differences in time it takes to render a single frame.
These experiments are based on manipulating a set of N2 spheres
laid out in a square grid. Typically, the size of an architectural 3D
model can approach many thousands of nodes, and therefore we
base the experiments on grid sizes ranging from a few to approxi-
mately 10,000 nodes as shown in Fig. 4.

A unique ID is assigned to each sphere representing its position in
the grid. In jQuery, the spheres are manipulated directly using the
ID with the query selector. In AngularJS, on the other hand, a direc-
tive is attached to each sphere element which is used to manipulate
it. These directives have a watch expression that monitors a boolean
flag in an array attached to a controller scope. This then enables the
manipulation of spheres based on their ID, too. The first method, in
most modern browsers, is implemented using a hashmap enabling
constant time access to an element by ID. Similarly, for the second
test the directive activates only when the switch is flipped. This
provides a one-to-one mapping between activation and elements in
the scene. Thus, both tests are agnostic to scene graph complexity,
as there is no graph traversal. The only factor is the mechanism of
manipulating scene elements, and therefore the results are equally
applicable to other scenes, e.g. buildings, cities, etc., regardless.

In order to eliminate time required to create the grid scene, two
ready-made X3D files were prepared beforehand. For jQuery, this
means an X3D file with ID fields on the HTML elements which
was then imported into X3DOM using its built-in <Include> tag.
This reads the file into the scene. For Angular, this means an X3D
file with directives attached to each element. As Angular is required
to parse and compile the file separately, we cannot use the X3DOM
loader directly. Instead, a two stage loading process has to be per-
formed using a new separate directive that combines ng-include
from Angular, and <Include> from X3DOM. The first stage
loads the file and adds the elements to the DOM. This then automat-
ically triggers X3DOM to start adding these elements to the scene.
Finally, Angular compiler attaches the directives to the elements in
DOM. Once ready, the following experiments were performed:

1. The first experiment consists of repeatedly changing the color of
a random subset of nodes in the grid. At each iteration, subset
using a random number generator is selected. The colors of any
previously changed spheres are reset, so that the new colors can
be set. As described previously, jQuery can access the DOM
elements directly via their IDs. In Angular, however, a boolean
in an array that is watched by a particular element directive in
the DOM is flipped. Thus, the performance was tested across
increasing sizes of the selected subset in the grid. This evaluated
the speed at which each system can manipulate DOM elements.

2. The second experiment consisted of switching on the rendering
of a particular sphere in a variable size grid. At each iteration,
a node is randomly selected and any previously selected node is
switched off. By only switching on a single node, the rendering
time of X3DOM can be kept constant. This, therefore, tests the
efficiency of each library’s ability to select a single node from a
pool of nodes by varying the size of the grid.

3. In the final experiment, the relative startup time of each library
was measured. For jQuery, it was the time that is required to add
the elements to DOM using X3DOM internals. This is the same
for both libraries, therefore dismissed. For Angular, however,
the overhead was the time it takes to compile the scene to add
directives, before the elements can be added.

Fig. 5 (a) shows the results of varying the number of changed nodes
for a fixed grid size. Initially, the performance of jQuery is higher
than that of Angular. However, after approximately 500 and more
nodes being switched, the performance advantage swaps. This

(c) Compile Time(b) Grid Size(a) Switching Nodes (logarithmic)
0 2000 4000 6000 8000 10000 12000

0

20

40

60

80

100

120
Javascript Angular

0 2000 4000 6000 8000 10000 12000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Compile

1 10 100 1000 10000
0

100

200

300

400

500

600

700

800

900
Javascript Angular

1000

A
n

gu
la

rJ
S

 C
om

p
il

e
T

im
e

(m
s)

M
il

li
se

co
n

d
s

p
er

 F
ra

m
e

M
il

li
se

co
n

d
s

p
er

 F
ra

m
e

Figure 5: Performance measurements. (a) Number of milliseconds to render each frame against the number of nodes switching on and off in
an iteration. Note that X-axis is logarithmic. (b) Number of milliseconds to render each frame for a single node out of a random selection
from a given grid size. (c) Overall compile time of AngularJS in milliseconds required to initialize a grid size in (b).

Figure 6: Office federated from the Architectural, Structural, and
MEP models provided by the buildingSMART alliance initiative.
Note that the second storey was hidden to reveal the interior.

shows that from that point onwards Angular performance increases
due to its internal functionality of watching switch variables, rather
than looping over an increasing number as in jQuery. However,
Fig. 5 (b) demonstrates that when rendering a fast scene, the An-
gular’s internal DOM manipulations mean that the performance
is severely rate-limited. This, coupled with the increasing com-
pile times shown in Fig. 5 (c) demonstrate that AngularJS is a poor
choice for manipulating X3DOM scenes.

6 Transmission Formats

X3DOM offers a selection of different sub-formats for delivery of
meshes with associated attributes such as vertices, normals, indices
and texture coordinates. The first is the XML encoding of X3D
where attribute arrays are presented as UTF-8 encoded floating
point arrays. The second is BinaryGeometry [Behr et al. 2012],
where each of the attributes is retrieved through a separate request
such that each response is the raw binary data to be uploaded to
GPU directly. The final is SRC [Limper et al. 2014] which com-
prises all binary attributes in a single request preceded by a JSON
header. Similar to SRC is Blast [Sutter et al. 2014], although this
was not evaluated as it is based on XML3D, not X3DOM. However,
due to the similarities, comparable results are likely to be obtained.

To test the different bandwidth requirements of each of the formats,
the same 3D model, shown in Fig. 6, was evaluated. This is an
unoptimized example IFC project by the buildingSMART alliance
and comprises an office building with Architectural, Structural and
Mechanical, Electrical and Plumbing (MEP) information present.
The total size of the downloaded data was measured both as un-

compressed and GZip compressed, just like in [Doboš et al. 2013]
and [Limper et al. 2013b]. However, our 3D model has 5,844 scene
components which is several orders of magnitude larger than in ei-
ther of the previous papers. This, in our opinion, demonstrated the
advantages and disadvantages of each of the encodings much better.

As shown in Tab. 1, the ASCII format is improved the most by com-
pression, since it is the least bit-packed. However, it is non-intuitive
that the compressed ASCII is the most bandwidth efficient. The
large difference in bandwidth comes from the number of requests
each format requires. In ASCII, there is only one request for each
sub-scene that is part of the federation. This single request con-
tains all the information required to reconstruct the scene and so no
further requests are required. In BinaryGeometry, each of the mesh
attributes is a separate request to an external resource, thus there are
multiple requests per object in the scene. In SRC, however, there
is only a single request per object. Furthermore, for each request
that is sent, the size of the response header of ∼500 B has to be
included, too. Once the scene reaches many thousands of nodes, as
the chosen example 3D model does, this becomes a large overhead.
In addition, for SRC, every request includes a header describing the
format of the binary data, compression on which does not have as
large effect as it does not ASCII.

Despite the increased bandwidth usage due to a large number of
requests, the advantages of such an implementation have to be con-
sidered. By splitting the scene, web browsers can utilize their native
parallelization abilities. Additionally, a scene can be lazily loaded,
as described in §7.3, according to visibility and spatial position.
Thus, a compromise would be reached by using the SRC format but
reducing the size of its header. One further disadvantage of Binary-
Geometry is that the number of requests is the number of attributes
multiplied by the number of shapes. In office federation, this over-
whelmed the browser which would shut down after too many re-
quests, remedied only by reducing the model that was being visu-
alized simultaneously, thus incrementing the requests slowly. This
highlights not only a performance degredation in BinaryGeometry,
but also a functional one.

Format Raw [MB] Gzip [MB] #Requests
ASCII 36.5 4.0 9
Bin Geometry 28.7 23.4 15,870
SRC 25.3 21.1 4,729

Table 1: Comparison of different data transmission formats for
their speed of delivery and bandwidth requirements.

7 Implementation

This section describes the two different variations on the system
implementation. The first is a cloud-hosted SaaS, while the second
is an enterprise on premise solution. Both are based on the same
architecture of the MEAN stack, i.e. a combination of MongoDB,
Express, AngularJS and node.js [Dickey 2014]. This was selected
as it provides scalability and fits well with the 3D Repo system
architecture on top of which this platform is built. The public facing
Web Server and REST API services in Fig. 2 are implemented in
node.js and JavaScript. This enables a seamless transition of the
same language between the client and the server. The Bouncer and
Compute Node services derive directly from 3D Repo Core C++ lib.

7.1 Security

Base architecture of the system provides security features that are
shared by both cloud-hosted and on premise flavors as follows.
Firstly, there are the layered firewalls depicted as public-key PK1
and PK2 interfaces in Fig. 2. PK1 faces the Internet directly. This
allows HTTP and HTTPS connections to pass through redirected
ports on the server. To connect via a Secure Shell (SSH), public-
key encryption on a non-standard port has to be used. This enables
access to the Intranet where the web services reside. Once inside,
the initial zone user is unable to query the DB directly and must
make requests through the Bouncer service with which other ser-
vices interact. In order to gain access to the second level behind
PK2, the user must create a tunnel through the first zone. Therefore,
to access the already password protected DB directly, the intruder
would have to obtain two different private keys. Yet, maintenance
of the services can continue with only the first key. Furthermore,
the servers communicate via Secured Socket Layers (SSL) provid-
ing a minimum of 128-bit encryption on data transmission. In order
to provide additional layer of security, the certificate is verified by a
Certificate Authority for the Web Server and the REST API equally.
The two flavors of the system provide user authentication in slightly
different ways. Both access the DB through the Bouncer service
that performs authentication and controls permissions to accounts
and projects. The REST API, however, logs onto the DB with a
single account, and controls permissions manually. This is neces-
sary due to limitations of MongoDB which only allows up to 100
concurrent connections simultaneously precluding the use of a con-
nection per user. In a cloud-based system, this is sufficient as users
will not have direct access to the DB hidden behind two firewalls.
In contrast, for an enterprise on premise solution, collection level
locking is added alongside the permissions already described. This
enables a small set of users to run Bouncer services directly from
their desktop 3D Repo GUI application rather than from the server.

7.2 REST API

This section defines a REST API that provides access to 3D assets.
In [Doboš et al. 2013], the API was based around a two-way encod-
ing as a combination of type and id variables. Depending on their
ordering, the API supported addressing of collections of resources,
single resources and even their individual attributes such that the
id was either the UID or SID depending on context, see §3.1. Al-
though novel, it was not necessarily user friendly. Therefore, we
build upon this by the inclusion of access control and security fea-
tures, and by significantly simplifying the respective calls.

All requests are pre-pended with /account/project for the
server to reject any calls to sub-functions if the user has not been
validated for the specific account and project. In the case of a public
project, all reads are allowed but writes are still restricted on a user
by user basis. In addition, calls to the API are followed by a file ex-

tension which represents the format that the data is to be returned in.
For instance, if /account.json is requested, the account infor-
mation in JSON format is returned. If, however, a .jpg extension
is used, then the avatar associated with the account is returned in-
stead. For 3D assets, the extensions .x3d.[src|bin|txt] are
used to request assets in X3D SRC, BinaryGeometry and XML re-
spectively. In the future, other formats will be added accordingly.
To enforce user permissions, all calls to the API are authenticated
via cookies. Further major enhancements where blue color denotes
variables are as follows:

/login [POST] Allows a user to log in via a POST request con-
taining a JSON wrapped username and password. If validated
the response contains a time-limited cookie to be used onwards.

/login [GET] Returns a HTTP status code OK (200) if logged
in, Unauthorized (401) otherwise.

/account/project [GET] Returns the whole project page.
/account/project/uid.ext [GET] Returns a specific as-

set with a Unique ID uid where ext specifies the file format.
/account/project/revision/branch/rid [GET]

Returns a scene by branch name or UID and revision ID rid.
/account/project/revision/branch/rid/sid

[GET] Returns an asset by branch name or UID, revision ID
rid and Shared asset ID sid.

7.3 Front-end

Based on the results of the experimentation in §5 and §6, the client
web application UI was written in Angular while all of the X3DOM
scene graph manipulation was achieved via jQuery. The Angular
controller switches the contents of the page dynamically by re-
questing JSON information from the server. As shown in Fig. 1,
this entails various tabs such as general project information, com-
ments, revisions, logs and settings. At the base of the system, there
is a X3DOM viewer which is loaded by Angular from a URL. This
makes the viewer embeddable on other web pages without the need
to rely on Angular as it is fully self-contained. A user profile page,
on the other hand, lists the available projects for the user as well
as settings to change their own account details including password.
Further examples are available in the supplemental materials.

Lazy fetching. The federation node, described in §4.2, combines
multiple projects into a single visualization. This is achieved when
transcoding the scene into X3DOM. The algorithm recurses over
the scene graph and outputs the equivalent X3D nodes as it pro-
gresses. To represent a federation, an <Inline> node is generated
which calls the REST API to return another X3D file of the subpro-
ject being federated. This use of a recursive inlining structure of-
fers several distinct advantages over producing a single monolithic
file. For every subproject, its bounding box is attached. This al-
lows X3DOM to optimize lazy loading of the federated scene. For
a project outside the view, or too small to see, X3DOM can cull and
therefore delay the loading of external resources. In addition, the
use of inlines optimizes the caching on the client side. Each call
to the REST API encapsulates the branch and revision IDs of the
scene, and so is cached accordingly. If the same revision is used
in another federation, then the X3D file is retrieved from the local
cache, rather than being queried from the REST API again. For a
single base project used across multiple revisions, this represents a
significant saving in bandwidth/cost for users and providers alike.

8 Applications

In order to demonstrate the feasibility of the proposed solution, pre-
sented here are a number of real-life use case studies that are sup-
ported by the 3drepo.io system.

3drepo.io

Figure 7: Left: Project OVE federated in 3drepo.io with over
23m triangles. Right: Zoom in on chest cavity showing internal
stairs and structures. Model courtesy of Arup Associates.

Online visualisation. Olympic Stadium Tranformation (OST)
project by Balfour Beatty is a £190m conversion to host Rugby
World Cup in 2015 and become the permanent home of West Ham
United in 2016. Currently, there are over 20 different companies
and subcontractors working on various aspects of the project. Un-
fortunately, no one software has been contractually specified, thus
different companies rely on different solutions throughout the build.
What is worse, structural difficulties in the roof design and tight
schedule make the task even more complex. Therefore, the abil-
ity to share and visualise the model directly in web browser even
on low end devices such as tablets is very useful. Fig. 1 shows the
federation of the main bowl with 2 separate roof sections. In order
to position the 3D model within the context of the surroundings,
employed are also the newly introduced map nodes. The heavily
optimized model consists of over 8m polygons and 450 shapes.

Systems federation. Project OVE by Arup Associates is a trial
testing the potential of BIM. This 170m tall building in the shape
of a human, a laser scan of one of the employees, is an example of
different architectural components working in synchrony. These in-
clude a full MEP model to represent the respiratory and circulatory
systems as well as steel structure in place of skeleton and cladding
for skin. The resulting 3D representation consists of multiple indi-
vidual sub-projects exported as FBX from Autodesk Revit. Fig. 7
shows the final heavily optimised federated model in our system.

Wayfinding user study. The aim of this user study is to evaluate
the signage before being physically built. By doing so, the design
team is able to test the usability and navigability of the station in
virtual space what significantly reduces the costs in comparison to
detecting and fixing errors post build. To devise this solution, the lo-
cation and orientation of the user’s camera is recorded every second.
Such recordings are double buffered per each 10s client-side before
being posted via REST API as JSON. Afterwards, the recordings
can be visualised within the same 3D model using glyphs to de-
note the position and orientation as demonstrated in Fig. 8. Apart
from signage, such information can be used to evaluate advertising
spaces and shop locations within the BIM environment. Although
this particular project is already built, our solution is now being
applied on live projects such as the MTR Admiralty Station in HK.

9 Conclusions

We have presented a novel web-based architecture for management
and visualisation of version controlled 3D assets. This was built
using AngularJS and X3DOM with a cloud-based repository pro-

Figure 8: Wayfinding visualisation in King’s Cross Station. Glyphs
represent recorded position and camera orientation with 1sec spac-
ing. Model courtesy of Network Rail.

vided by 3D Repo. Significant improvements have been made to
the database schema in order to devise a commercially viable solu-
tion with enhanced security features. These include the introduction
of users, groups and accounts into the system, two layer authenti-
cation process and new scene graph node types for meta attributes,
references and maps. The DB schema for attributes can be eas-
ily restricted to specific templated keys on insertion. In addition, a
new REST API was introduced which is simplified in comparison to
previous work. In order to support large-scale federated 3D models,
lazy fetching via X3D inline functionality was utilised client-side.
Several experiments compared the performance of scene graph ma-
nipulation with varying sizes using jQuery and AngularJS. The con-
clusion is that due to the very long parsing times in Angular, it be-
comes impractical with the increasing complexity of a 3D scene.
Furthermore, Angular suffers from a fixed overhead on a per-frame
manipulation regardless of the scene complexity when comparing
to jQuery. Nevertheless, once compiled and running, on very large
scenes Angular is able to outperform jQuery. What is more, to
compare the relative advantages of different encoding strategies for
X3DOM, formats such as XML, BinaryGeometry and SRC were
evaluated on a test scene with a large number of components. Even
though XML can be compressed well, it cannot reference individual
meshes. In contrast, SRC and BinaryGeometry come with a large
number of requests and additional overhead for response headers
and JSON format description in the case of SRC. This would be
the most preferred option, nevertheless. Finally, three industrial use
case studies demonstrated the feasibility of the proposed solution.

Future work. In its current implementation, the system provides
a read-only access to the contents of the repository. Therefore, in
the very near future, we will add the ability to upload and process
various types of 3D assets via web browsers in order to remove
the need for the 3D Repo GUI desktop application which currently
provides the write access. Although 3D Repo can already heavily
optimise scene graph structures, this still needs to be married with
X3DOM MultiPart on the client. The 3drepo.io portal is in beta
testing with select clients and will be opened to the public in July.

Acknowledgements

We would like to thank Maciej Gryka and Anke Pohl for their work
on AngularJS as well as Neil Thompson, Casey Rutland and Carl
Collins for access to the industrial projects featured in this paper.
This work has been funded by the Breakthrough Information Tech-
nology Exchange and the Innovate UK grants. 3D Repo is sup-
ported by the EIT ICT Labs and the Open Data Institute.

3drepo.io
3drepo.io

References

ADERHOLD, A., JUNG, Y., WILKOSINSKA, K., AND FELLNER,
D. W. 2013. Distributed 3d model optimization for the web
with the common implementation framework for online virtual
museums. In Proceedings Digital Heritage 2013, vol. 2.

AGENJO, J., EVANS, A., AND BLAT, J. 2013. Webglstudio: A
pipeline for webgl scene creation. In Proceedings of the 18th
International Conference on 3D Web Technology, Web3D ’13.

AUTODESK, INC. 2003. Building information modeling. White
paper, Autodesk Building Industry Solutions, San Rafael, CA.

BARNES, M., AND FINCH, E. L. 2008. Collada - digital asset
schema release 1.5.0. Tech spec, Khronos Group.

BEETZ, J., VAN BERLO, L., DE LAAT, R., AND VAN DEN HELM,
P. 2010. Bimserver.org–an open source ifc model server. In
Proceedings of the CIP W78 conference.

BEHR, J., AND STURM, T. 2015. MultiPart - Offline creation and
online API. Fraunhofer IGD.

BEHR, J., ESCHLER, P., JUNG, Y., AND ZÖLLNER, M. 2009.
X3dom: A dom-based html5/x3d integration model. In Proceed-
ings of the 14th International Conference on 3D Web Technol-
ogy, ACM, Web3D ’09.

BEHR, J., JUNG, Y., FRANKE, T., AND STURM, T. 2012. Using
images and explicit binary container for efficient and incremental
delivery of declarative 3d scenes on the web. In Proceedings
Web3D 2012: 17th Intl. Conference on 3D Web Technology.

BIM INDUSTRY WORKING GROUP. 2011. Government construc-
tion strategy. Policy paper, The UK Cabinet Office.

COUGHLIN, B. 2014. 3d for the modern web: Declarative 3d and
gltf. Tech. rep., GMU CS-752.

CYON RESEARCH. 2003. The building information model: A look
at graphisofts virtual building concept. White paper.

DI BENEDETTO, M., PONCHIO, F., GANOVELLI, F., AND
SCOPIGNO, R. 2010. Spidergl: A javascript 3d graphics library
for next-generation www. In Proceedings of the 15th Interna-
tional Conference on Web 3D Technology, ACM, Web3D ’10.

DICKEY, J. 2014. Write Modern Web Apps with the Mean Stack:
Mongo, Express, AngularJS, and Node.js (Develop and Design),
first ed. Peachpit Press. ISBN-10: 0133930157.

DOBOŠ, J., AND STEED, A. 2012. 3d revision control framework.
In Proceedings of the 17th International Conference on 3D Web
Technology, ACM, Web3D ’12.

DOBOŠ, J., SONS, K., RUBINSTEIN, D., SLUSALLEK, P., AND
STEED, A. 2013. Xml3drepo: a rest api for version controlled
3d assets on the web. In Proceedings of the 18th International
Conference on 3D Web Technology, ACM, Web3D ’13.

DOBOŠ, J. 2015. Management and Visualisation of Non-linear
History of Polygonal 3D Models. EngD thesis, UCL.

HEVERY, M., MINÁR, I., AND J ÍNA, V., 2009. Angularjs. Google.

HM GOVERNMENT. 2015. Digital built britain: Level 3 building
information modelling - strategic plan. Policy, The UK Depart-
ment for Business Innovation and Skills. URN BIS/15/155.

ISO 10303-242. 2014. Industrial automation systems and integra-
tion – Product data representation and exchange – Part 242: Ap-
plication protocol: Managed model-based 3D engineering. ISO.

ISO 16739. 2013. Industry foundation classes (ifc) for data shar-
ing in the construction and facility management industries. ISO,
buildingSMART International Ltd.

KLEIN, F., SONS, K., JOHN, S., RUBINSTEIN, D., SLUSALLEK,
P., AND BYELOZYOROV, S. 2012. Xflow: Declarative data
processing for the web. In Proceedings of the 17th International
Conference on 3D Web Technology, ACM, 37–45.

KUHFELD, R., 2010. Bentley’s integrated structural modeling
brings structural engineers into integrated project workflows.

LIMPER, M., JUNG, Y., BEHR, J., AND ALEXA, M. 2013. The
pop buffer: Rapid progressive clustering by geometry quantiza-
tion. Computer Graphics Forum (Pacific Graphics 2013) 32, 7.

LIMPER, M., WAGNER, S., STEIN, C., JUNG, Y., AND STORK,
A. 2013. Fast delivery of 3d web content: A case study. In
Proceedings of the 18th International Conference on 3D Web
Technology, Web3D ’13.

LIMPER, M., THÖNER, M., BEHR, J., AND FELLNER, D. W.
2014. Src - a streamable format for generalized web-based 3d
data transmission. In Proceedings of the Nineteenth Interna-
tional ACM Conference on 3D Web Technologies, Web3D ’14.

MAZAIRAC, W., AND BEETZ, J. 2012. Towards a framework for
a domain specific open query language for building information
models. In EG ICE.

MOUTON, C., PARFOURU, S., JEULIN, C., DUTERTRE, C., GOB-
LET, J.-L., PAVIOT, T., LAMOURI, S., LIMPER, M., STEIN,
C., BEHR, J., AND JUNG, Y. 2014. Enhancing the plant layout
design process using x3dom and a scalable web3d service ar-
chitecture. In Proceedings of the Nineteenth International ACM
Conference on 3D Web Technologies, Web3D ’14.

NEUMAN, C., YU, T., HARTMAN, S., AND RAEBURN, K. 2005.
The kerberos network authentication service (v5). RFC 4120.

OLBRICH, M. 2012. Accessing http interfaces within x3d script
nodes. In Proceedings of the 17th International Conference on
3D Web Technology, ACM, Web3D ’12.

ROBINET, F., AND COZZI, P. 2013. gltf - the runtime asset format
for webgl, opengl es, and opengl. Tech spec, Khronos Group.

SCHUBOTZ, R., AND HARTH, A. 2012. Towards networked linked
data-driven web3d applications. In Dec3D.

SCHULZE, T., GESSLER, A., KULLING, K., NADLINGER, D.,
KLEIN, J., SIBLY, M., AND GUBISCH, M., 2014. Assimp.

SERMERSHEIM, J. E. 2006. Lightweight directory access protocol
(ldap): The protocol. RFC 4511, Network Working Group.

SONS, K., KLEIN, F., RUBINSTEIN, D., BYELOZYOROV, S., AND
SLUSALLEK, P. 2010. Xml3d: Interactive 3d graphics for the
web. In Proceedings of the 15th International Conference on
Web 3D Technology, ACM, Web3D ’10.

SUTTER, J., SONS, K., AND SLUSALLEK, P. 2014. Blast: A
binary large structured transmission format for the web. In Pro-
ceedings of the Nineteenth International Conference on 3D Web
Technologies, ACM, Web3D ’14.

THE BRITISH STANDARDS INSTITUTION. 2013. Pas 1192 specifi-
cation for information management for the capital/delivery phase
of construction projects using building information modelling. .

WEB3D CONSORTIUM. 2013. Extensible 3d (X3D). Specification.

ZHANG, C., BEETZ, J., AND WEISE, M. 2014. Model view
checking: automated validation for ifc building models. ECPPM.

