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Abstract We present an approach to integrate multiple ren-
dering back-ends under a common application layer for dis-
tributed systems. The primary goal was to find a practical
and nonintrusive way to use potentially very different ren-
derers in heterogeneous computing environments without
impairing their strengths and without burdening the back-
ends or the application with details of the cluster environ-
ment. Our approach is based on a mediator layer that handles
multithreading, clustering, and the synchronization between
the application’s and the back-end’s scene. We analyze the
proposed approach with an implementation for a state-of-
the-art distributed VR/AR system. In particular, we present
two case studies and an example application.
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1 Introduction

Frameworks for distributed virtual and augmented reality
applications typically have to support a wide range of use
cases. Examples include visualization of large CAD mod-
els, game-like virtual environments, and photorealistic ren-
dering. In addition, they have to support a variety of target
platforms, ranging from CAVEs to mobile devices (Fig. 1).
For optimal performance, such systems need highly special-
ized, potentially quite different, rendering back-ends. At the
same time, it makes sense to use the same scene descrip-
tion and application layer for all scenarios, mainly to ease
application development with existing tool chains.

In this paper, we describe a pragmatic and practice-
proven approach to using different rendering back-ends with
a common application layer in distributed systems. Key
to the approach is a mediator layer between application
layer and rendering back-ends. The mediators are based
on OpenSG [13], an open source scene graph library with
sophisticated support for clustering and multithreading. In
contrast to related approaches, we focus on the needs of dis-
tributed virtual reality frameworks. In particular, we address
the following two issues.

The first issue is that the back-ends can be based on ex-
tremely different architectures and paradigms. Furthermore,
they often come packaged as closed source, third party li-
braries that define their own API and scene description. This
makes it difficult to abstract these rendering back-ends with
a single imperative interface and just implement this inter-
face for each back-end.

The second issue is that we support stereoscopic render-
ing and rendering in a cluster (e.g., for multiprojector en-
vironments). We want to use these features with different
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Fig. 1 Some use cases. Top left: application running on touch table
and large tiled display wall. Bottom left: streaming from desktop to
web page, viewed in browser on a tablet. Right: stereoscopic rendering
on tiled display wall

rendering back-ends, even if the back-ends themselves do
not support them. It seems reasonable to implement these
features in a layer on top of the rendering back-ends. On the
other hand, the application layer should be mostly agnostic
to which hardware-configuration the application runs on.

We exemplarily describe our approach with the In-
stantReality framework [8], which we have extended with
various specialized rendering back-ends. However, the ideas
and design principles we describe are applicable to similar
systems.

2 Related work

Many approaches to using different rendering back-ends
with a common application layer have been described. Also,
a lot of literature exists on rendering in clusters. But sur-
prisingly few publications deal with the combined problem
of how to efficiently support different rendering back-ends
for systems that are distributed in heterogeneous computer
networks.

For an overview of cluster-based rendering, we refer to
the recent survey of Staadt et al. [16]. In addition to these
rendering-centric approaches, there are systems whose pri-
mary concern is to distribute arbitrary computing tasks in
a cluster. They contain the problem we address in this pa-
per as a subproblem, but the top-level architecture usually
just defers it to black-box rendering nodes. PaTraCo [9] and
FlowVR [1] are recent examples. The PAC-C3D architec-
tural model for collaborative virtual environments [7] works
at a slightly finer granularity and uses Representations that
have to be implemented for each rendering back-end.

Approaches for exchangeable rendering back-ends range
from low-level abstractions of imperative graphics APIs to

rather high-level abstractions that work with a common un-
derstanding of a “scene.”

OpenGL [20] is probably the most popular imperative
graphics API. However, the API strongly reflects the under-
lying rasterization pipeline, and to our knowledge it is not
used beyond the rasterization world.

Some ray tracing frameworks take the scene abstraction
to the extreme and rely on scenes that basically just have to
provide an “intersect” method. For example Pharr et al. [12]
do this with PBRT. While this works well for ray tracing,
other back-ends may require scenes that expose more inter-
nal structure in order to process them efficiently.

Many scene graphs occupy a middle ground as far as
scene abstraction is concerned and also allow custom ren-
derers as plug-ins (e.g., [6, 13]). The typical mechanisms
are custom traversals and extensible nodes (via callbacks),
usually a combination of both. Döllner and Hinrichs’ Vir-
tual Rendering System [6], used for example by Steinicke
et al. [17], stands out because it was specifically designed
to work well with different back-ends and regards adapter
components as part of the core architecture. (Döllner and
Hinrichs [6] also contains a survey of previous approaches,
which we will not reiterate here.)

A recent approach that is very closely related to our work
is Rubinstein et al. [14] and their Real-time Scene Graph
(RTSG). It allows the application to attach different render-
ing back-ends and provides an efficient way of propagating
changes via callbacks. Another closely related approach is
the Scene Graph Adapter by Berthelot et al. [4], an archi-
tecture for mixing different scene graphs in one application
at runtime, without an offline conversion step. The approach
consists of two standardized wrapper interfaces (Format and
Renderer) that have to be implemented for each 3D format
and renderer. A central Scene Graph Adapter instance then
mediates between several wrapper instances of these wrap-
pers by mapping nodes and calls.

The most important aspect that sets our work apart from
related approaches is our “fat” mediator layer based on
OpenSG [13]. In fact, OpenSG can be regarded as the front-
end toward the application layer, providing a common inter-
face for the mediator and the back-end.

Compared to approaches based on imperative APIs [20]
our approach provides a higher abstraction of the render-
ing back-end behind a declarative interface (a stripped-down
scene graph). The loose coupling allows more generic back-
ends; the scene graph adaption allows each back-end to work
with a suitable scene representation for high performance.

Approaches that treat the scene as a black box (or at least
a very opaque box) [12] have the complementary problem:
They cannot query enough information to efficiently map a
scene. In contrast, our scene-graph-based approach allows
an efficient mapping of the scene.

Approaches based on scene graphs that use custom call-
backs during traversal [6, 13] are usually quite close to a
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sweet spot as far as scene abstraction is concerned. How-
ever, purely relying on this approach leaves the concerns of
multithreading and clustering to the application layer or the
rendering back-end. Another issue not sufficiently addressed
by the traversal approach is that the adapter has no efficient
way of detecting and propagating changes (without a full
traversal). RTSG [14] solves this problem via callbacks, we
use a mechanism based on OpenSG’s ChangeLists. We also
provide a cleaner separation of application layer, mediator
layer, and back-end. The Scene Graph Adapter [4] leaves the
multithreading and clustering issues unattended and focuses
solely on scene mapping. We use an adapter that is simi-
lar in spirit in our mediators, but we base it on a low-level
OpenSG scene. This results in a cleaner interface and takes
the burden of multithreading and clustering off the shoul-
ders of application and back-end. The downside is that we
have to pay the memory overhead of the OpenSG scene as
an intermediate representation.

3 Our approach

In this section, we first lay down the most important require-
ments that guided our design, then we give an overview of
the architecture itself, and finally we briefly discuss two par-
ticularly interesting aspects of our approach in more depth:
how we handle incremental changes and clustering support.
Since the focus of this paper is on a practice-oriented discus-
sion, we kept the description of the architecture relatively
short and put more emphasis on the case studies in Sect. 4.
Details of the system architecture appear elsewhere [15].
Furthermore, our approach is based on OpenSG and we as-
sume a basic familiarity with concepts like Fields, FieldCon-
tainers, Aspects, and ChangeLists [13, 18].

3.1 Requirements

From our experiences with past projects and the objectives
of current projects, we have derived the following require-
ments for the extended system.

Extensibility and generality. The system should be able to
integrate new rendering back-ends relatively painlessly. It
should also be general enough to handle back-ends coming
from very different application areas and following different
design paradigms.

Nonintrusiveness. Neither the application layer nor the
rendering back-end should need any changes or extensions
in order to work together. (Back-ends may extend the appli-
cation layer to expose specialized functionality, as described
below, but basic functionality should be possible without
touching both.) This is important because we want to sup-
port commercial libraries as back-ends that usually come
with an unalterable interface.

Clustering and stereo. The system should provide (at least
basic) support for rendering in a computer-cluster (tile-
based and cooperative) and stereoscopic rendering, even if
a back-end itself does not support it.

Rendering performance. Of course, the system should al-
low each renderer to play out its strengths—after all, that is
why we want multiple, specialized rendering back-ends. In-
tegrating a back-end into the system should hamper its ren-
dering performance as little as possible.

Efficient incremental updates. Not only the raw rendering
performance is important, but also how updates are propa-
gated from the application layer to the rendering back-end
(and sometimes the other way around). The system should
provide an efficient (in terms of runtime and usability) solu-
tion to this problem.

Ability to extend application layer. While the system
should rely as much as possible on a common low-level
abstraction of a scene, sometimes it is practical to expose
attributes that are specific to a certain back-end in the ap-
plication layer. An example are extended material attributes
for a ray tracer. The system should provide a mechanism to
pass on such data.

Mixed (hybrid) rendering. The system should provide (at
least basic) support for mixing different renderers during the
generation of one image. For example, it should be possible
to render large static geometry with a back-end optimized
for that purpose and to render dynamic 3D GUI elements in
the same scene with another back-end.

3.2 Basic design

Figure 2 shows a schematic overview of our architec-
ture. The application layer (in our concrete case an X3D-
browser [2]) manages the high-level application logic and

Fig. 2 Schematic overview of our architecture
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mirrors the state of the X3D scene in a low-level OpenSG
scene graph. The OpenSG layer (and all layers below) are
only concerned with the current state of components (trans-
forms, materials, geometries, etc.) and not with procedures
that change this state (animation, physics, I/O, etc.).

The mediator layer is the main subject of this paper. It has
to be implemented for each rendering back-end (although
parts can be reused as shown in Sect. 4.1). It usually consists
of a specialized OpenSG-Viewport, a scene adapter, and a
context. With the Viewport the mediator can hook itself into
OpenSG’s rendering infrastructure. The scene adapter trans-
lates the OpenSG scene into the renderers internal repre-
sentation and keeps it up-to-date. The context manages in-
stances of the back-end and allows multiple Viewports to
share these instances.

Note that there is no direct dependency from the applica-
tion/OpenSG layer into the mediator layer (only via the de-
fault OpenSG-Viewport interface) and no dependency of the
mediator into the application layer (only into the OpenSG
layer, a mediator potentially works with all OpenSG appli-
cations). Also, the mediator depends on the back-end, but
not the other way around. This takes care of our require-
ments of extensibility and generality and nonintrusiveness.
Since the back-end is fed with its own scene representation
and simply asked to fill a Viewport, it usually can maintain
a near-optimal rendering performance. Relying on View-
ports also enables a simple (but usually sufficient) way to
do mixed (hybrid) rendering. Viewports can be layered on
top of each other in order to combine the images of different
back-ends using z-buffering and alpha-blending. The ability
to extend the application layer is granted by OpenSG’s at-
tachment mechanism [13], which allows attaching arbitrary
data to nodes. The application layer only needs to pack data
for extensions into attachments, which are then interpreted
by mediators that understand the extension and ignored by
others. How the system meets the requirements efficient in-
cremental updates and clustering and stereo is particularly
interesting and described in Sects. 3.2.3 and 3.2.4.

3.2.1 Viewport

Each mediator exposes a specialized OpenSG-Viewport
which internally maps to the underlying renderer. So, every
time OpenSG (on behalf of the application) wants a View-
port to be rendered, the back-end is invoked. The target is
usually an OpenGL back buffer, but it can also be another
render target. For example, one can implement a Viewport
that renders an image to disk or streams a video to a website.

The back-ends are invoked exclusively through this spe-
cialized Viewport class. If the application wants to use a cer-
tain back-end, it just creates the corresponding Viewport and
attaches it to a OpenSG-Window. The Viewport then creates
the infrastructure necessary to convert the scene and instan-
tiates the underlying renderer.

3.2.2 Scene conversion

The OpenSG scene in Fig. 2 is a stripped-down scene graph
with only a few node types. We intentionally did not strictly
define which nodes a mediator has to understand, unknown
nodes can simply be ignored by the scene adapter. Node
types that are supported by all our renderers are Transform,
Geometry, two basic Materials, Lights, Camera, and Back-
ground. This seems to be the minimal set a renderer needs
to produce meaningful pictures.

The scene adapter is responsible for mapping the OpenSG
scene to a representation the back-end can use. This is usu-
ally where the bulk of work has to be done when implement-
ing a new mediator layer. In some cases, the renderer may
be able to use the OpenSG scene directly, or at least parts of
it (e.g., an OpenGL-based deferred renderer), but usually a
conversion of the scene will be necessary. In this case, the
adapter will usually traverse the whole OpenSG scene graph
once during initialization and build a shadow scene by con-
verting objects such as geometries, materials, and lights into
suitable representations. Note that this does not have to be
(and usually is not) a one-to-one mapping, the case stud-
ies in Sect. 4 contain examples. However, the handling of
incremental updates (described in the following section) re-
quires to quickly identify representatives that need updating
as a result of a change. Therefore, usually several maps are
build during the initial conversion, which serve as a scene
dictionary.

3.2.3 Handling changes

OpenSG automatically keeps track of all changes that are
made to the attributes of an object (the Fields of a FieldCon-
tainer) in so-called ChangeLists [18]. A ChangleList’s pri-
mary purpose is to allow synchronization between threads
and over the network in OpenSG’s multi-buffered thread-
ing model. A side effect of this mechanism is that at each
render-call on the Viewport, we have a ChangeList available
that contains all changes made to the scene in this frame.
Syncing the OpenSG scene with the back-end scene is now
almost trivial: In each call to render, the Viewport invokes
the scene adapter’s sync method, which parses through the
current ChangeList and updates the representatives for all
relevant changes. ChangeLists also contain entries for newly
created and deleted objects, so these events can be handled
as well.

This approach has several advantages over registered lis-
teners. First of all, we process a changed field only once.
If, for example, a transform is changed three times in one
frame, only one update propagates to the back-end, namely
the last. Second, the mechanism works well in multithreaded
and clustered environments in conjunction with OpenSG’s
Aspect concept. It is possible for the back-end to access
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Fig. 3 Static structure of the Optix mediator. Namespace-tags refer to the layers in Fig. 2: osg = OpenSG layer, med = mediator layer,
obe = Optix back-end. Some helper classes and the coverage renderer (Sect. 4.3) were omitted for a more compact representation

a consistent OpenSG-state for the current scene, while the
application already updates the OpenSG scene for the next
frame. Similarly, it is absolutely irrelevant for the media-
tor whether the ChangeList came from the same machine
or over the network. This way the mediator is completely
agnostic toward the clustering setup it is running in.

3.2.4 Multithreading, clustering, and stereo

Multithreading and clustering have been mentioned before,
and our mediator design allows us again to use large parts of
what OpenSG has to offer here. The details and inner work-
ings of OpenSG’s multithreading and clustering concept are
described by Voß et al. [18], we will only describe how our
approach integrates into this framework.

In our system, the application layer exists only once on a
single host, but the OpenSG scene may be mirrored on mul-
tiple machines (Fig. 2). The copies of the scene are kept in
sync by ChangeLists sent over the network. As already men-
tioned, the fact that the mediators only work on the OpenSG
scene and ChangeLists allows them to function properly in
clustered or multithreaded setups without knowing anything
about the application layer or the cluster environment. Ren-
dering in a cluster is managed by the ClusterWindow class,
which can be envisioned as a virtual window that exists on
a remote host; or, in the case of tiled rendering and load bal-
ancing, multiple hosts. Since a mediator only interacts with
OpenSG via instances of its specialized Viewport class, one
just has to add the specialized Viewports to a ClusterWin-
dow like ordinary OpenSG Viewports to use them in any
OpenSG-compatible cluster setup.

Using a Viewport as the primary interface of the mediator
allows us to elegantly implement stereo rendering. This is
done by simply using two Viewports, one for each eye (lay-
ered on top of each other, side-by-side, or even on different
machines). In order to prevent wasting resources in such a
setup, the Viewports usually share the underlying converted

scenes and other resources via reference counted contexts.
Since Viewports can be deactivated and activated on-the-fly,
layered Viewports can also be used to quickly switch from
one back-end to another. For example, one can use rasteri-
zation for navigation and then seamlessly switch to ray trac-
ing once a interesting viewpoint has been reached. Also, the
possibility to selectively use different back-ends on different
machines opens up interesting new possibilities. For exam-
ple, one could use a fast, low-quality renderer an a touch-
table or mobile device to navigate through a scene, while
a powerful cluster renders the same scene on a large tiled
display wall using load balancing with a progressive, photo-
realistic algorithm like path tracing.

4 Case studies

In this section, we discuss two case studies: an Optix-based
ray tracing back-end and a visibility guided renderer for very
large data sets. We also describe a concrete example appli-
cation that uses these two mediators.

4.1 Optix back-end

Optix [11] is a ray tracing engine based on CUDA [10]. One
interesting aspect of our Optix mediator is that the same me-
diator supports three renderers: a simple Whitted-style real-
time ray tracer, an interactive progressive path tracer, and a
special coverage renderer (described in Sect. 4.3). Figure 3
shows the static structure of our Optix mediator. The render-
ers differ mainly in some CUDA programs (e.g., camera and
material programs), while most other parts (e.g., intersection
programs, most of the scene adapters) are identical. There-
fore, we implemented the key components of the mediator
layer, OptixScene, and OptixViewport as “fat” base classes
that contain most of the functionality and specialized them
where needed.
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Fig. 4 The scene adapter maps the OpenSG scene to an Optix scene.
In order to optimize for ray tracing, this is not a one-to-one mapping:
GeometryGroups that provide Acceleration structures are introduced,

Tranforms are collapsed, static geometry is placed under one common
Acceleration. The figure also illustrates sharing of Materials and Ge-
ometries (instancing)

Fig. 5 Snooping on ChangeLists is our way to propagate incremen-
tal changes. When the application changes a Field, a corresponding
entry is created (or updated) in the current ChangeList. When the me-
diator syncs the back-end (usually before rendering), it parses through
the ChangeList and carries out the necessary updates on the back-end

scene. ObjectMap maps the FieldContainer IDs in the ChangeList to
objects in the back-end scene. Because of OpenSG’s Aspect mecha-
nism, this sync is thread-safe and works between cluster nodes. In this
particular example (Optix back-end), lights are not part of the back-end
scene graph and managed in a separate LightList

The most interesting component of most mediators is the
scene adapter; this is also the case here (OptixScene). One
important point is that we do not really mirror the OpenSG
scene as an Optix scene. The OpenSG scene graph is usu-
ally quite deep (as it mirrors the X3D/VRML-graph of the
application layer), and we collapse it into a flat graph that
has at most one transform above each geometry instance
(Fig. 4). A mapping from the original transforms to the col-
lapsed ones is established, so we can quickly find the rep-
resentatives that need updating for a given ChangeList en-
try (Fig. 5). We assume geometry instances below the same
transform node do not move independently and combine
them into the same acceleration structure. Geometry that has
been explicitly flagged as static is combined into one large

static geometry chunk. Geometry can also be flagged as ani-
mated, in which case a special acceleration structure is used
that can be quickly updated, but has slightly lower render-
ing performance. These optimizations are necessary to re-
tain good ray tracing performance while still allowing fast
updates for frequently occurring changes (changing trans-
forms, lights, animated meshes, etc.). Changes on the graph
structure become more expensive with this mapping, but we
assume these occur relatively seldom. As the build times for
the acceleration structures can be quite high, they can be
cached on disk, so one does not have to pay the costs every
time a scene is loaded. Geometry data is written directly into
CUDA-buffers, as are image textures, in order to prevent un-
necessary duplication of large data.
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Fig. 6 Cooperative path tracing with dynamic load balancing (local
host with two supporting machines). The colored overlay in the middle
image shows the parts offloaded to the two supporting machines; the
two images to the right show their viewports

Fig. 7 Path tracing in a stereo setup (anaglyph with one client and two
servers, one for each eye)

Area lights are another interesting aspect of this mediator.
They are a simple example of how a mediator can freely in-
terpret the scene in order to play out the strengths of its back-
end without exposing extensions in the application layer. In-
stead of exposing a specialized node in the application layer,
area lights are simply geometries with a non-zero emission
component in their material. The mediator detects these ge-
ometries and converts them into area lights for the ray trac-
ers.

Figures 6 and 7 show the Optix back-end in cluster setups
(cooperative and stereo). It is important to note that the back-
end is not aware of the fact that it is working in a cluster or
stereo setup, it just fills its viewport.

4.2 VGR back-end

We have successfully integrated 3D Interactive’s Inter-
views3D platform [5] into our system, a visibility guided
renderer (VGR) for large datasets. Besides the default ren-
derer, the VGR mediator also supports a coverage renderer
(Sect. 4.3).

In contrast to Optix, VGR is a very closed package that
gives you much less freedom. Optix is a relatively low-level
API (often advertised as OpenGL for ray tracing) and con-
stitutes a framework on top of which you have to implement
your rendering algorithms. VGR, on the other hand, has a
closed renderer and a very strictly defined scene authoring
interface centered around a scene database. This allows the

Fig. 8 Boeing 777 CAD model rendered with the VGR back-end. The
model consists of over 300 million polygons and is rendered at 100 Hz
on a GeForce GTX 470 (with progressive rendering enabled)

library to play out its strengths in regard to out-of-core ren-
dering of huge data. The scene adapter for this mediator
converts the OpenSG scene into such a database. Here, we
had to compromise and provide two options. The first option
converts the OpenSG scene and keeps it intact and in mem-
ory. This is the default. This option is best for interactive use,
since the application layer is kept intact and everything that
relies on the OpenSG scene still works (navigation, picking,
animation). The downside is that it hampers VGR’s out-of-
core abilities, because the whole OpenSG scene is kept in
memory. Therefore, we also provide the option to use a (pos-
sibly preconverted) database that does not need the OpenSG
scene in memory. This is most useful for visualizing very
large static scenes without much interaction (the Change-
List mechanism will only work on elements that are present
in the OpenSG layer). For some applications, however, this
may not be a problem. An example is the web-based visual-
ization application described in the following section, where
all the interaction takes place on the client-side.

With VGR, mixed rendering became very important, be-
cause the VGR renderer is quite limited when it comes to
(3D-)GUI-elements. A lot of our applications need to dis-
play huge models efficiently, but also need the possibility to
combine them with dynamic annotations and markers. Here,
the Viewport interface of mediator and the thoughtful de-
sign of the VGR system helped us a lot. Even though the
system is closed (it even creates its own OpenGL context in-
ternally), VGR’s output is basically a rendered frame buffer
(color + z-buffer), which can be combined with other frame
buffers (stemming from other Viewports, rendered by other
back-ends).

Figure 8 shows a Boeing 777 CAD model rendered
in real-time with the VGR back-end. Again, the back-end
knows nothing about the clustering setup.

4.3 Application: visualizing large CAD-models in the web
browser

In this section, we describe a concrete application built on
our system architecture and the mediators explained above.
It is a distributed visualization application for large models.
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Fig. 9 Schematic data flow between browser, culling server, and asset
server

The front-end is simply a WebGL-enabled web browser,
rendering a HTML5-page with X3DOM [3]. However, cur-
rent web-technology is not capable of handling large mod-
els efficiently. (“Large models” here means large for web
applications, in the order of tens or hundreds of millions of
polygons.) Therefore, we use a novel out-of-core approach
to minimize the workload in the browser. The key idea is to
use an asynchronous, remote culling service. Figure 9 shows
the basic data flow. The browser (actually the X3DOM run-
time) sends its current view frustum to the culling service,
which determines the objects with the largest screen cov-
erage and sends back a list of IDs for these objects. The
browser then only fetches these “most important” objects
from the asset server. This keeps memory consumption and
rendering time manageable on weak devices, which would
otherwise not be able to render such complex models. On the
other hand, the approach consumes less bandwidth between
culling-service and browser than full server-side rendering
with video streams. This allows us to maintain high qual-
ity and interactivity even in weaker networks, where video
streaming does not work well.

The culling service is an InstantReality instance running
a special rendering back-end. This back-end does not render
a traditional image, but calculates which objects have which
coverage in the final rendering (including occlusion). From
this information the sorted list of object-IDs is generated,
which allows the browser to prioritize important objects.
We have implemented the culling service as an Optix-based
back-end (as a ray tracer) and as an VGR-based back-end
(as a rasterizer). Both cases use a minimalistic scene adapter
that basically only converts geometry and establishes a map-
ping of IDs to objects. The geometry conversion is shared

Fig. 10 The browser application with Optix back-end. Left: the culling
service identifies large objects (in terms of screen coverage). Right: the
web application running on an iPad only loads and renders the most
important objects. The full powerplant model has 14 million triangles,
of which the web-application only renders 1.8. Note that the left im-
age is only a debug visualization, the culling service does not have to
generate an image

Fig. 11 The browser application with VGR back-end. Left: culling
service. Right: client-side WebGL-rendering. The image shows the
cockpit of a Boeing 777 CAD model. The full model has over 350
million polygons, the web application renders 4.2 million

with the other renderers in the Optix/VGR mediator. Mate-
rial information (apart from transparency) is not necessary.

Figure 10 shows the Optix-based implementation, Fig-
ure 11 the VGR-based implementation. In both cases the
navigation is smooth in the browser.1 We believe this show
case nicely demonstrates how the freedom obtained by our
approach for flexible rendering back-ends can be used to
build innovative distributed applications.

5 Discussion

Apart from the points discussed in the case studies, we have
made the following observations:

Scene adapter. Converting a stripped-down OpenSG scene
into the back-ends preferred representation works very well
in general. The mediator design allows us to easily extend
OpenSG’s well-designed and practice-proven support for in-
cremental updates, multithreading, and clustering to back-
ends that never were designed to work with OpenSG or in

1http://www.youtube.com/watch?v=zIHV3yC3IYo,
http://www.youtube.com/watch?v=h0SUWqJfQsE.
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cluster setups. The fact that a scene adapter can (and usu-
ally will) change the structure of the scene graph can make
it hard to track which changes imply updates to which rep-
resentatives, but that is the price one has to pay if one wants
to feed the back-end with an optimized representation.

Conversion speed. Another issue related to the scene
adapter is that the conversion of the scene can be slow if
complex operations are necessary (e.g., changing a texture
format or converting surface patches into triangles). Per-
forming parts of the conversion only once and caching the
result can alleviate this problem. The cached acceleration
structures and pre-converted databases described in Sect. 4
are examples of this approach.

Viewport interface. The fact that a rendering back-end
only shows a specialized Viewport to OpenSG and the ap-
plication layer is a mixed blessing. On the one hand, it is a
very slim interface that allows us to plug in the back-ends at
the most important places. On the other hand, it can be limit-
ing for advanced use cases, because it fails to separate three
concerns: what to render (scene, camera) and how to render
it (the back-end), and where to render it to (render target).
For example, a Viewport that streams to a website cannot
be freely combined with each back-end, but would have to
be implemented multiple times. Of course, there can still be
code-reuse, but a design with clear separation of concerns,
as sketched in Sect. 6, would be preferable.

Memory consumption. Building the mediators on OpenSG
scenes seems like a waste of memory at first sight. In the
worst case, the scene can be represented three times: in the
application layer, the OpenSG layer, and in the mediator or
back-end. While this can be a problem sometimes (e.g., in
the VGR-case), most of the time memory consumption is
not excessive and acceptable. The reason is that the scene
adapter usually does not duplicate large data (e.g., vertex
buffers and images) in main-memory, but translates them di-
rectly into the back-ends representation (e.g., CUDA-buffers
and OpenGL textures)—an operation that has to occur any-
way. Also, the application layer can usually directly use
OpenSG data structures, which removes the duplication be-
tween application layer and OpenSG layer. (Although this
is currently not done in InstantReality.) This leaves only
the OpenSG scene as the central scene representation. Even
this copy can be eliminated by feeding the mediator directly
from the application layer. We provide this option for the
VGR back-end, but it should be the exception, because it
circumvents our original design and loses two of its strong
points: interactive, thread-safe updates, and clustering sup-
port provided by OpenSG’s ChangeList mechanism.

6 Outlook

We are currently extending the approach described in this
paper. The new system will be based on OpenSG 2.0 (our
current implementation uses 1.8). The most important ex-
tensions are:

General clustering. In the future, we want to use OpenSG
more as general data management layer, not only as a scene
graph. The goal is to be able to build more general clus-
tered applications. Currently, the whole scene graph (and
a few associated things like viewports) is simply mirrored
on each cluster node in a client-server cluster [16]. Moving
away from the rendering-centric scene graph and Cluster-
Window concepts would allow a directed distribution of ar-
bitrary data in a cluster with more specialized cluster nodes
while keeping the benefits of OpenSG’s sophisticated syn-
chronization mechanism.

Not only rendering. OpenSG as a general data manage-
ment layer would also make it easier to extend our mediator
approach to semantics other than rendering. For example an
application scene (interaction), a physics scene (simulation),
and a graphics scene (rendering) could coexist and could be
kept in sync almost automatically. And these components
could even be moved on different cluster nodes without ma-
jor changes to the application.

Decouple viewport from back-end. To gain more flexibil-
ity, we plan to break the tight coupling of a mediator and its
specialized Viewport. We want to use OpenSG 2.0’s Stage
concept [19] to plug in mediator layers (at least for render-
ing). There will be only one specialized Viewport to which
different Stages (i.e., different back-ends) can be attached.
The Viewport defines what is to be rendered, the Stage how
it should be rendered.

7 Conclusion

We have described a pragmatic, practice-proven approach to
using different rendering back-ends with a common applica-
tion layer in distributed systems. The approach is based on a
mediator layer that can be plugged into the OpenSG infras-
tructure. This design allows us to naturally extend OpenSG’s
multithreading and clustering capabilities to use cases that
the original OpenSG system cannot handle: different, pos-
sibly distributed rendering back-ends. We have focused on
the practical aspects of our approach and described a con-
crete implementation for a commercial VR/AR system. In
particular, we have presented two case studies with several
rendering back-end and an example application.
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A weakness of our approach is the high memory con-
sumption in some cases. Another issue that we want to ad-
dress with future work is support for a more general (less
rendering-centric) clustering approach.
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