
Copyright © 2010 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
Web3D 2010, Los Angeles, California, July 24 – 25, 2010.
© 2010 ACM 978-1-4503-0209-8/10/0007 $10.00

Service-Oriented Scene Graph Manipulation

Andreas Schiefer∗

René Berndt†

CGV, TU Graz

Torsten Ullrich‡

Volker Settgast§

Fraunhofer Austria

Dieter W. Fellner

Fraunhofer IGD & TU Darmstadt

Abstract

In this paper we present a software architecture for the integration
of a RESTful web service interface in OpenSG applications. The
proposed architecture can be integrated into any OpenSG applica-
tion with minimal changes to the sources. Extending a scene graph
application with a web service interface offers many new possi-
bilities. Without much effort it is possible to review and control
the scene and its components using a web browser. New ways
of (browser based) user interactions can be added on all kinds of
web enabled devices. As an example we present the integration of
“SweetHome3D” into an existing virtual reality setup.

CR Categories: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities; H.5.3 [Information Interfaces and Presentation]:
Group and Organization Interfaces—Web-based interaction; I.3.2
[Computer Graphics]: Graphics Systems—Distributed/network
graphics

Keywords: web services, scene graph systems

1 Introduction

The intention to combine a web service with a scene graph system
is to address the following problems:

Modeling Visualization Cycle Most virtual environments offer
only limited modeling capabilities. As “standard” modeling
software (Maya, 3D Max, etc.) is seldom adapted to virtual
reality (VR), many VR systems are just viewers. In this case,
the modeling-visualization-cycle is interrupted; i.e. a human
modeler has to switch frequently between modeling environ-
ment and VR visualization. Especially during presentations
where customers inspect 3D models in VR and want to ap-
ply model changes (customization), an interrupted modeling
visualization cycle is not feasible.

VR Correlated UX Due to differences in VR systems (High-
resolution projection walls, CAVE environments, etc.), the
user interaction and user experience (UX) implement differ-
ent paradigms. The interaction capabilities may vary from
desktop-based mouse and keyboard interaction to multi-touch
or 3D gestures. These shifting hardware situations result in a
substantial adaption and implementation effort.

∗e-mail: a.schiefer@cgv.tugraz.at
†e-mail:r.berndt@cgv.tugraz.at
‡e-mail:torsten.ullrich@fraunhofer.at
§e-mail:volker.settgast@fraunhofer.at

The proposed solution to the previously described problems is a
flexible software architecture. It strictly realizes the model-view-
controller pattern. As a consequence the software development pro-
cess can be parallelized. Furthermore it is easily adaptable to new
user interfaces and requirements.

2 Web Services

Web services provide an implementation for a service-oriented ar-
chitecture (SOA) [Josuttis 2007]. The main characteristic of this
software design principle is a loose coupling of services. These
services communicate by exchanging messages. This provides a
great flexibility in term that two applications need only to agree on
the message format and are independent from the actual application
code.

The following definition of a web service was introduced by the
World Wide Web Consortium (W3C) [Booth et al. 2004]:

A web service is a software system designed to sup-
port interoperable machine-to-machine interaction over
a network. . . .

Web services offer a number of advantages over other machine-to-
machine middleware systems like Open Network Computing Re-
mote Procedure Call (ONC RPC) [Srinivasan 1995], Distributed
Component Object Model (DCOM) [Brown and Kindel 1998],
Common Object Request Broker Architecture (CORBA) [Object
Management Group], Remote Method Invocation (RMI) [Sun Mi-
crosystems Inc. 2004], etc:

Platform support Web services use the world wide web for com-
munication. Every platform got already built-in support for
the web. Web services can be consumed by web browsers.
Since most platforms already include a web server even host-
ing web services can be done without additional efforts. Other
module communication systems are only supported by a small
number of platforms (e.g. DCOM is available only for the
Windows platforms) or do not ship with the platform and need
to be installed separately (e.g. CORBA).

Language support Almost every programming language provides
support for internet protocols and XML processing (C++,
Java, C#, JavaScript, Python, Ruby, etc.). Although also other
middleware systems (e.g. CORBA) claim to be language in-
dependent one will find only support for C, C++, and Java.

Internet The major drawback of systems like DCOM and CORBA
is that communication across the internet is nearly impossi-
ble. These middleware system use binary formats which are
blocked by most firewalls. Even in the same department it
can be a painful task to configure the network to successfully
communicate using DCOM/CORBA.

Currently, two principles to implement web services exist:

SOAP The Simple Object Access Protocol (SOAP) [Gudgin et al.
2003] is a protocol for exchanging structured messages with
a web service. The structure of this messages is usually
described through the Web Services Description Language

55

(WSDL) [Christensen et al. 2001]. Both SOAP and WSDL
are XML-based language.

REST Representational State Transfer (REST) was first intro-
duced by Dr. Roy Fielding in his Ph.D. thesis [Fielding 2000].
The basic principles behind REST are

1. identification of resources using URI

2. manipulation of resources using standard HTTP opera-
tions (GET, POST, PUT, DELETE)

3. self-descriptive messages (e.g. Plain Old XML (POX),
JavaScript Object Notation (JSON) [Crockford 2006],
etc).

3 Scene Graph Systems

Typically a scene graph is a hierarchical collection of nodes ex-
pressing logical and spatial relations of 3D objects. Each node may
have arbitrary children but only one parent node. The first node of
the hierarchy is called root node from which all of the nodes in the
scene can be accessed by traversing through the graph. Nodes are
typically parts of the geometry of the scene. Other functionality
like transformations and groups can also be expressed by nodes.

Effects on a node also affect the node’s children. Spatial relations
between objects can be expressed this way. If for example a chair
node is added as child of a room node, the transformations applied
to the room node will also affect the chair.

With a scene graph it is possible to apply high level optimization
like visibility culling. This is hardly possible using a low level API
because a typical state machine renderer is not aware of the whole
scene. A visibility test for a node is typically performed by in-
tersecting the node with the planes of the view frustum. Often a
bounding volume hierarchy is used for fast visibility tests. Bound-
ing volumes of low complexity for example a sphere or a box are
fast to compare. The bounding volume of a node is defined by the
bounding volumes of the nodes children. If a visibility test for a
node fails, also its children will not be visible and the whole sub
graph does not need to be send to the graphics hardware.

In many scene graphs it is possible to reuse geometry in multiple lo-
cations. This is called instancing. In the same way other resources
of the scene may be reused like materials, shaders and transforma-
tions. This helps to reduce memory consumption.

3.1 OpenSG

OpenSG1 is an open source C++ scene graph system for high qual-
ity real time 3D graphics [Reiners et al. 2002]. After the Fahrenheit
scene graph project of Microsoft and SGI was not continued in 1999
among others OpenSG was born. It was initially designed and im-
plemented by Dirk Reiners, Gerrit Voss and Johannes Behr at IGD
Fraunhofer in Darmstadt. OpenSG is based on the cross platform
graphics API OpenGL. It is available under the GNU Lesser Gen-
eral Public License (LGPL) and runs on Windows, Linux and Mac
OS.

The plan is to develop a scene graph system that serves as a general
basis for a wide variety of applications. OpenSG 2.0 is currently the
latest version with many improvements in usability and supported
features.

Performance From the beginning it was designed to make optimal
use of the graphics hardware. To obtain optimal performance
OpenSG provides optimization algorithms. For example it

1http://www.opensg.org

provides functions to transform a model consisting of trian-
gle to connected triangle stripes, a material sorting optimizer
which minimizes the number of state changes for rendering
the scene. Also many high level optimizations are included in
the OpenSG renderer like visibility culling. The processing of
scene parts which are behind the viewer or occluded by other
parts can be skipped by OpenSG to speed up the rendering of
large scenes.

Multi-Threading and Clustering OpenSG allows to have multi-
ple threads accessing and manipulating the scene graph in an
efficient way [Voß et al. 2002]. Data structures are organized
in multi-thread safe buffers called aspects. Each thread can be
assigned to its own aspect meaning it can have its own copy
of the buffer. To reduce memory overhead the copy is created
only on demand. Remote aspects are copies of the buffers
which are send over the network. They are used to synchro-
nize the scene graph within a cluster of multiple machines. In
this way the rendering of complex geometry can be handled
interactively. Also virtual environments consisting of many
screens and machines like tiled displays and CAVEs are im-
plemented with remote aspects.

Dynamically Extensible Not only by making the source code
available but also by using highly dynamic and flexible struc-
tures OpenSG can easily be extended or adapted to specific
needs. Custom render nodes can be added to extend the render
capabilities. Reflective interfaces allow to integrate arbitrary
types of custom data to the whole system. New application-
specific data which is not known by the system at compile
time can however be used in the internal loaders and writers
and synchronized to a cluster.

4 Web Services and Scene Graphs

Integrating a web service into an OpenSG application allows to ac-
cess and modify the contents of the scene graph during runtime
without recompilation of the application. These features offer many
new possibilities in interacting with the OpenSG application and the
scene graph, some of them are discussed in detail later in this paper.
A system overview is sketched in Figure 1.

The main features of our web service are querying the contents of
the scene graph, adding and deleting of nodes and changing proper-
ties of nodes. Referencing of node data – to use it in multiple nodes
– is also supported by the web service API. It is also possible to
download the whole scene or sub graphs of it as a single file from
the web service in various file formats.

4.1 RESTful web service API

The API to access the web service is designed in terms of the Rep-
resentational State Transfer (REST) architectural style as described
in [Fielding 2000]. Reasons for choosing the REST style for the
web service API include the simplicity of REST and that the hier-
archical nature of a scene graph fits nicely to the resource oriented
URL style of RESTful web services. Also, the four HTTP meth-
ods GET, POST, PUT, DELETE used to access the RESTful web
service map very well to the most common operations on the scene
graph: reading, creating, updating and deleting of nodes and values.

For implementing the web service, the GNU library libmicrohttpd2

is used. As the data interchange and resource representation format
the JavaScript Object Notation (JSON)3 is used by our web service.

2http://www.gnu.org/software/libmicrohttpd/
3http://www.json.org

56

Web Service

Thread-Pool

Read-Write Lock
rootNode

Handle_request(…)

start(rootNode,...)

stop()

apply_changes()
Internet

Main loop

Figure 1: The integration of a service-oriented architecture via a web service in the scene graph system OpenSG offers many possibilities.
Three method calls are sufficient to export a scene graph of an arbitrary OpenSG application. This minimally invasive change of the
application transforms closed visualization into an open service-oriented platform.

It is a lightweight, human readable and easy to parse data inter-
change format based on a subset of the JavaScript programming
language.

There are three types of representations that are returned by the web
service: FieldContainer, List and Data.

Data Data resources contain the value of primitive OpenSG data-
types like integers, floats, vectors or matrices as a string. Ad-
ditionally the data-type itself is also specified as the name
of its OpenSG class. In the following example the field
travMask from the FieldContainer example below is
represented:

{
"content": "Data",
"type": "UInt32",
"value": "4294967295"

}

List Lists are ordered collections of resources that are acces-
sible by index. The List representation contains the type
of its items and a list of locations to the item resources.
The following example shows the JSON representation of the
children field, again from the FieldContainer exam-
ple below:

{
"content": "List",
"type": "NodePtr",
"items": [

"/scene/root/children/0",
"/scene/root/children/1"

]
}

FieldContainer FieldContainers are resources that itself

contain locations of other resources which are accessi-
ble by name. Every FieldContainer has an unique
id and a type, which is the name of its OpenSG class.
All sub-resources of the FieldContainer are accessible
through the fields attribute of the JSON object, which
contains a mapping from the field name to the location
of the corresponding resource. Here is an example of a
FieldContainer that represents an OpenSG Node object
located at the root of the scene graph – it contains locations
to both the travMask and the children resources of the
above examples:

{
"content": "FieldContainer",
"id": 292,
"type": "Node",
"fields": {

"attachments": "/scene/root/attachments",
"travMask": "/scene/root/travMask",
"core": "/scene/root/core",
"children": "/scene/root/children"

}
}

All OpenSG data-structures accessible in the scene graph can be
represented with this three basic types. For accessing the resources,
the four HTTP methods GET, POST, PUT and DELETE are used.
To support AJAX web applications on different domains to access
the web service, the method OPTIONS is also partially supported.
Web browsers use this method to authenticate cross site requests
and web services must respond to OPTIONS requests as described
by the W3C Cross-Origin Resource Sharing working draft4 to allow
the cross site requests.

4http://www.w3.org/TR/cors/

57

The semantics of the different HTTP methods when accessing re-
sources of the web service are now described in detail.

4.1.1 GET

GET requests are used to get the representation of a resource. All
valid URLs of the web service can be called with the GET method
and return one of the three representation types presented above. A
GET request does not change any data in the scene graph.

If a GET request is made with just the URL to the resource, one of
the JSON representations is returned depending on the type of the
specified resource. Additionally, a filetype URL query with a
file extension can be specified to download the resource - including
sub-resources - in the specified file format. This applies only to
FieldContainer resources with the type Node, for all other
resources the query is ignored.

If the called URL is not found in the scene graph, an error message
with the HTTP status code 404 - Location not found is
returned by the web service, otherwise the response has the status
code 200 - OK.

Examples for GET requests:

GET /scene/root/core Get the JSON representation of the core of
the root node

GET /scene/root?filetype=osb Download the root node (and all
its children) as OpenSG-Binary file

4.1.2 POST

The POST method is used to either appending new nodes to re-
sources of type List or to update the value of a Data resource.
According to the HTTP/1.1 specification [Fielding et al. 1999], the
POST method is the only non-idempotent method. In other words,
only for the POST method it is allowed that multiple identical re-
quests lead to different results (as when appending to a list).

Updating of Data resources is also handled with the POST method
because POST can handle big amounts of upload data which may
occur when updating textures or vertex arrays.

For appending a new node to a List resource, the type of the new
node must be specified with the type URL query. If the specified
type is a OpenSG node, a Group core is automatically added to
prevent nodes without a core. On the other hand if the specified type
is a OpenSG node-core, then an empty node is created and a core of
the specified type is added. The response to such a request contains
a JSON string with the location of the new node and additionally a
HTTP header field Location with the full URL to the new node.

When updating a Data resource, the new value of the resource
must be specified in the entity body of the HTTP request as a JSON
string. After a successful update, the JSON representation of the
updated resource is returned - the same as a GET to the resource,
but with the updated value.

In case a new node is successfully added to a List resource, the
response has the status code 201 - Created. If a Data re-
source is successfully changed, the status code of the response is
200 - OK. There are multiple possible errors that can occur us-
ing this method. A 400 - Bad request status code is returned
if the type URL query for appending a new node is missing or the
given type is unknown, or if the entity body of the request is not a
valid JSON string when updating a Data resource. For unknown
resources – when the URL is not found in the scene graph – the sta-
tus code 404 - Location not found is returned. Finally,

if the called URL does not point to a List or Data resource, the
response has the status code 405 - Method not allowed.

Examples for POST requests:

POST /scene/root/children?type=Geometry Appends a new
node with a Geometry core to the children of the root node.

POST /scene/root/children/1/core/matrix With "1 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1" as the entity body, sets the
matrix of the second child’s core to the identity matrix.

4.1.3 PUT

Similar to POST, a PUT request can be used to create new re-
sources. But instead of appending a resource to a list PUT replaces
an already existing resource or inserts the new resource at a specific
index in the list.

To replace an existing FieldContainer resource with a new
one, the PUT request either needs a type URL query with
the type of the new FieldContainer to create - similar to
POST - or a location URL query with the location of another
FieldContainer. In the latter case, the specified location gets
referenced from the location of the PUT request. This allows for
example to instance geometry or to share a single material between
multiple geometries.

If the request is successfully processed, the response has the sta-
tus code 200 - OK. As with the POST method, there are multiple
error cases for which different error codes are returned. The status
code 400 - Bad request is used if the required type respec-
tively location URL query is either not existing or the specified
value is not valid. Also the 400 - Bad request status code
is returned if the index specified in the URL is not valid when in-
serting a new resource in a List resource. Like the other meth-
ods, a PUT request returns the 404 - Location not found
status code if the called URL is not found in the scene graph. If
the called URL does not point to a FieldContainer resource
or an item of a List resource, the status code 405 - Method
not allowed is returned by the web service. Some OpenSG
containers do not support inserting items at a specific index, in that
case a response with the status code 500 - Internal Server
Error is returned.

Examples for PUT requests:

PUT /scene/root/core?type=Geometry Replaces the core of the
root node with a new Geometry core.

PUT /scene/root/children/0/core?location=/scene/root/core
Sets the core of the first child to the root’s core. Both nodes
share the same core after this request.

PUT /scene/root/core/properties/8?type=GeoVec2fProperty
Creates a new GeoVec2fProperty and assigns it to the
ninth item in the root’s core properties.

4.1.4 DELETE

The last method used by our web service, DELETE, is used to
delete items from a List resource. If the DELETE request is made
to the URL of the List resource itself, all items of that List are
deleted. But if the request is made to one of the items in a List
resource, only that item is removed from the List.

If the item is successfully deleted the response has the status code
200 - OK. In case the called URL is not found in the scene graph
a response with the 404 - Location not found status code
is returned. Because DELETE is only allowed for List resources

58

or for items of a List resource, the status code 405 - Method
not allowed is returned if the URL points to any other type of
resource.

Examples for DELETE requests:

DELETE /scene/root/children/0 Removes the first child of the
root node.

DELETE /scene/root/children Deletes all children from the root
node of the scene graph.

4.2 Integration overview

Our web service is designed to be easily integrable into every
OpenSG application with only a few changes to the source code.
The public interface of the OSGWebservice class consists only
of three methods, which is everything needed to get the web service
running in an existing OpenSG application. The three methods are
now presented in detail.

bool start(FieldContainerMTRecPtr root,
UInt32 aspect,
UInt32 port);

This method is used to start the web service. The parameter root
specifies which resources are exported through the web service.
The FieldContainer specified as the root parameter is ac-
cessible through the web service at the location /scene. Typi-
cally this is the root node of the scene graph, but it may also be an
OpenSG Viewport or any other FieldContainer. In case it
is an OpenSG Viewport, additional properties of the OpenSG ap-
plication are accessible through the web service besides the scene
graph, like the camera of the specified Viewport.

OpenSG provides so called aspects for multi-threaded operations
on the scene graph. Threads can operate independently on differ-
ent aspects of the scene graph without interfering each other. At
some point, the aspects can be synchronized and every thread then
sees the changes of the other threads. The aspect parameter de-
fines the aspect on which the web service operates. This parameter
should be set to some unused aspect which is then exclusively used
for the changes through the web service.

Finally the port parameter specifies the port on which the web
service listens for incoming HTTP connections. The default value
for this parameter is 8080.

void apply_changes();

This method should be called at regular intervals to sync the
changes made through the web service into the application’s main
thread. Changes are also synced in the other direction, from the
main thread into the web service, by this method. So it is impor-
tant to call this method regularly to keep the application and the
web service in sync. Typically this method will be called during
the render function of the application every frame.

void stop();

Finally, this method can be used to stop the web service.

4.3 Threading issues

Depending on an user defined setting, the web service may use mul-
tiple threads to handle incoming HTTP requests. All of the threads
work on a single OpenSG aspect (specified when starting the web
service), so they need to synchronize their access to this aspect. To
synchronize the threads, access to the aspect of the web service is
protected by a Read-Write lock. Multiple threads can simultaneous

read, but if one thread writes to the aspect no other thread can ac-
cess the aspect. Every subsequent access to the aspect waits until
the current write operation finishes. But even with this synchroniza-
tion in place it is possible that threads overwrite each others changes
to the aspect before the changes get synchronized to the main appli-
cation. Therefore, to ensure reliability, currently only one writing
change is allowed for every call to apply changes(). Requests
that only read data are not affected by this limitation.

4.4 Extensibility

Currently the web service provides access to an OpenSG applica-
tion’s scene graph. But users of the web service, the application
programmers, may also want to provide additional functionality for
their application through the web service. To satisfy their needs, an
additional API is designed, which allows application programmers
to map function calls of their application to user defined URLs ac-
cessible through the web service. The application programmer just
needs to register a callback function at the web service with a spe-
cific user defined URL. The web service stores the function pointer
to the provided callback function and the URL, and every time the
URL gets accessed through the web service, the stored function gets
called.

For example the application programmer can map his func-
tion string buildHouse(string input) to the
URL /actions/build house. Whenever the URL
/actions/build house is accessed through the web service,
the function string buildHouse(string input) gets
called by the web service. All input from the HTTP request is
passed to the function as a string and the return value from the
function is used as the response to the HTTP request.

Using this mechanism application programmers can easily extend
the functionality of the web service specifically for their applica-
tion’s needs.

5 Advantages of Web-Based Linking

The presented approach offers a variety of possibilities. First of all,
the approach realizes a simple integration of the scene graph system
OpenSG into already existing applications. While it is still possible
to realize an integration via dynamic or static linking, a web-based
linking via web services enables a simple integration across differ-
ent languages. As HTTP requests are the common denominator of
web-services, they are understood by almost all programming lan-
guages. Therefore, the integration of an OpenSG-based visualiza-
tion into e.g. a Java application is no problem anymore. It offers the
possibility to use the right tool respectively programming language
of the job.

Furthermore, the web-based integration of OpenSG offers new and
simple interaction possibilities. As the camera, a part of the via
web-service exported scene graph, can be edited and modified via
web browsers new human-computer interactions are possible. For
example, a CAVE environment can be controlled and explored via a
smart-phone. With adopted, specialized applications this has been
possible before, but with our approach it can be realized much eas-
ier: a few lines of code start the web-server, the web server takes
the root node of the scene graph and automatically exports it.

6 An Example Application

To demonstrate and test our web service we have implemented
a plug-in to the open-source interior design application Sweet-

59

Figure 2: A plug-in to the interior design application Sweet-
Home3D transfers all changes made to the 2D house plan through
our web service to an OpenSG application which displays a 3D
representation of the house plan on a big tiled display.

Home3D5 (see Figure 3). The Java application SweetHome3D runs
on a variety of platforms. It’s main features are the ability to draw
a 2D house plan and to place furniture on that plan. 3D geome-
try is generated from those plans and there is a 3D preview of the
house plan included in the user interface. A plug-in API is available
to access all data that defines the house plan like position and size
of walls, materials, details of placed furniture, etc. From this data
the geometry for a 3D representation is calculated by the plug-in
– which is very similar to what the renderer included in Sweet-
Home3D does for displaying the 3D preview.

With a menu entry our plug-in can be connected to an OpenSG
application through our web service. Once connected, our plug-
in transfers all changes made in SweetHome3D in real time to the
OpenSG application, where it adds the geometry of the 3D repre-
sentation of the 2D house plan to the scene graph (see Fig. 2, 4).

Figure 3: The Sweet Home 3D software connected to the OpenSG
application via the web service plugin.

Except for starting the web service and exporting a root node
in which the SweetHome3D plug-in creates the house geometry
through the web service the OpenSG application does not need any
additional code for the integration to work.

5http://www.sweethome3d.eu

All of the features of SweetHome3D are transferred correctly: The
geometry, the colors and the materials with textures as well as the
imported geometry representing the interior are displayed in the
same way as they are planed in SweetHome3D. Additionally the
graphical representation can be much improved over the simple 3D
preview of SweetHome3D. The 3D preview does not have advanced
features like shadows, etc. which can easily be included in the
OpenSG application displaying the 3D representation of the house
plan.

The advantage over the included 3D preview is the flexibility of
OpenSG. The OpenSG application can display the 3D representa-
tion of the house plan in a virtual environment like a CAVE or on a
big tiled display. At the same time the model can still be modified
in its semantically enriched form of the SweetHome3D editor.

7 Comparison & Conclusion

Web-based Architectures Currently there is an ongoing discus-
sion “REST vs. SOAP” in the SOA world. A comprehensive com-
parison between RESTful vs. ”Big” Web services can be found
in [Pautasso et al. 2008].

As described in [Weerawarana et al. 2005], REST services and
SOAP services should not be treated as different implementations
alternatives for the same solution:

. . . As a rule of thumb, REST is preferable in prob-
lem domains that are query intense or that require ex-
change of large grain chunks of data. SOA in general
and Web service technology . . . in particular is prefer-
able in areas that require asynchrony and various quali-
ties of services . . .

Distributed Graphics Bacu et al. describe a render cluster us-
ing the Chromium6 software [Bacu et al. 2008]. A scene graph is
rendered on multiple clients by transferring the low level OpenGL
commands over the network. For transferring the render results
back to the server a video streaming format is used. Using the
Chromium software it is possible to distribute OpenGL based ap-
plications without code modifications but in general the amount
of data transfered over the network is much greater than using
OpenSG. And especially for a CAVE setup a customized applica-
tion is essential.

Integrated Approaches Zhang and Gračanin propose a frame-
work using web services to combine multiple input providers into
one 3D portal application [Zhang and Gracanin 2008].

Web services in combination with a 3D city visualization are de-
scribed by Hagedorn and Döllner [Hagedorn and Döllner 2007].
The service provides high quality rendered images independent of
the client devices graphics capacities. Their frame work is spe-
cialized on using high-level geoinformation services without cluster
support.

A similar combination of web service and scene graph is described
by Behr et al. [Behr et al. 2004] for the instant reality framework7.
It also uses OpenSG as rendering back end and X3D for the scene
description. A difference to our approach is the use of SOAP in-
stead of REST. The flexible instant reality frame work offers a great
render performance and can also be used in a CAVE environment.
But it is not possible to integrate it into existing applications on the
C++ level.

6http://chromium.sourceforge.net
7http://www.instant-reality.org

60

Conclusion In this paper we present an integrated approach of a
web-based scene graph application interface. In contrast to previ-
ous work our solution is

multi-threaded All components of our system are multi-threaded.
The scene graph system OpenSG supports multiple threads
and the web service can handle requests in parallel.

multi-user capable The implemented synchronization mecha-
nism ensures a consistent scene graph, even if multiple users
send several HTTP requests at once.

platform independent OpenSG as well as the web service imple-
mentation (libmicrohttpd) are platform independent; i.e. all
major platforms (MS Windows, Linux, Mac OSX) are sup-
ported.

minimally invasive Any OpenSG application can be upgraded to a
web-based service-oriented application by adding a few lines
of code. Due to the clean design of OpenSG only the web
server’s start-up method and its synchronization routine have
to be inserted into the existing application. Therefore, the
number of changes to an existing application normally in-
volves less than ten lines of code. This minimally invasive
modification transforms an OpenSG application into a web
server.

adaptable / accessible On the client side only minimal adaptions
are needed. The effort required to build a client to a REST-
ful service – the technique used to transform OpenSG into a
service-oriented architecture – is very small as developers can
begin testing such services from an ordinary web browser.
Due to web support on all platforms and in all languages
(Java, C/C++, . . .), the integration of an OpenSG-based visu-
alization is no problem anymore. Wrapper and interface code
to overcome differences in language and communication is
not needed.

All things considered, the presented solution enriches web-based
interaction and visualization. The combination of OpenSG and a
web server has a beneficial effect on service-oriented scene graph
systems, on the integration of immersive visualization environ-
ments into existing applications, and on (browser-based or web-
based) user interfaces in virtual/mixed reality.

Figure 4: The SweetHome3D output is transferred with our web
service to an OpenSG CAVE application which lets the user walk
through a 3D representation of the house plan.

References

BACU, V., MURESAN, L., AND GORGAN, D. 2008. Cluster
Based Modeling and Remote Visualization of Virtual Geograph-

ical Space. Proceedings of the 2008 10th International Sympo-
sium on Symbolic and Numeric Algorithms for Scientific Com-
puting 10, 416–421.

BEHR, J., DÄHNE, P., AND ROTH, M. 2004. Utilizing X3D for
immersive environments. Proceedings of the ninth international
conference on 3D Web technology 9, 71–78.

BOOTH, D., HAAS, H., MCCABE, F., NEWCOMER, E., CHAM-
PION, M., FERRIS, C., AND ORCHARD, D. 2004. Web Ser-
vices Architecture. World Wide Web Consortium 20040211, 1–
98.

BROWN, N., AND KINDEL, C., 1998. Distributed Component Ob-
ject Model Protocol – DCOM/1.0.

CHRISTENSEN, E., CURBERA, F., MEREDITH, G., AND WEER-
AWARANA, S. 2001. Web service definition language (wsdl).
Tech. Rep. NOTE-wsdl-20010315, World Wide Web Consor-
tium, March.

CROCKFORD, D., 2006. Rfc4627: Javascript object notation.

FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MASIN-
TER, L., LEACH, P., AND BERNERS-LEE, T., 1999. Hypertext
Transfer Protocol – HTTP/1.1. RFC Editor.

FIELDING, R. T. 2000. Architectural Styles and the Design of
Network-based Software Architectures. Univeristy of California,
Irvine.

GUDGIN, M., HADLEY, M., MENDELSOHN, N., MOREAU, J.-J.,
AND NIELSEN, H. F., 2003. Soap version 1.2 part 1: Messaging
framework. W3C Recommendation, June.

HAGEDORN, B., AND DÖLLNER, J. 2007. High-level web service
for 3D building information visualization and analysis. Proceed-
ings of the 15th annual ACM international symposium on Ad-
vances in geographic information systems 15, 8:1–8.

JOSUTTIS, N. M. 2007. SOA in Practice: The Art of Distributed
System Design. O’Reilly, Beijing.

OBJECT MANAGEMENT GROUP. Common Object Request Broker
Architecture: Core Specification.

PAUTASSO, C., ZIMMERMANN, O., AND LEYMANN, F. 2008.
Restful web services vs. ”big”’ web services: making the right
architectural decision. Proceeding of the 17th international con-
ference on World Wide Web 17, 805–814.

REINERS, D., VOSS, G., AND BEHR, J. 2002. OpenSG: Basic
concepts. Proceedings of OpenSG Symposium 2002 1, 1–7.

SRINIVASAN, R., 1995. Remote Procedure Call Protocol Specifi-
cation Version 2.

SUN MICROSYSTEMS INC., 2004. Java Remote Method Invo-
cation Specification. http://java.sun.com/j2se/1.5/pdf/rmi-spec-
1.5.0.pdf.

VOSS, G., BEHR, J., REINERS, D., AND ROTH, M. 2002. A
multi-thread safe foundation for scene graphs and its extension
to clusters. Proceedings of the Fourth Eurographics Workshop
on Parallel Graphics and Visualization 4, 33–37.

WEERAWARANA, S., CURBERA, F., LEYMANN, F., STOREY, T.,
AND FERGUSON, D. 2005. Web Services Platform Architec-
ture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More. Prentice Hall PTR, march.

ZHANG, X., AND GRACANIN, D. 2008. Streaming web services
for 3D portal applications. Proceedings of the 13th international
symposium on 3D web technology 13, 23–26.

61

62

