
E�icient Compression for Server-Side G-Bu�er Streaming in
Web Applications

Sascha Räsch
Fraunhofer IGD, Germany

Maximilian Herz
TU Darmstadt

Johannes Behr
Fraunhofer IGD, Germany

Arjan Kuijper
Fraunhofer IGD, Germany

Figure 1: The multiple steps on the GPU for decoding a compressed G-Bu�er. In (a), (b) and (c) the normal, depth and object
id bu�er is reconstructed, respectively. (d) are the bu�ers in low resolution, (e) are the sharp features and (f) are the decoded
bu�ers. The �nal shaded image is shown in (g).

ABSTRACT
Remote rendering methods enable devices with low computing
power like smart phones or tablets to visualize massive data. By
transmitting G-Bu�ers , Depth-Image-Based Rendering (DIBR) meth-
ods can be used to compensate the artefacts caused by the latency.
However, the drawback is that a G-Bu�er has at least twice as much
data as an image.

We present a method for compressing G-Bu�ers which provides
an e�cient decoding suitable for web applications. Depending on
the computing power of the device, software methods, which run
on the CPU, may not be fast enough for an interactive experience.
Therefore, we developed a decoding which runs entirely on the
GPU. As we use only standard WebGL for our implementation, our
compression is suitable for every modern browser.

CCS CONCEPTS
• Computing methodologies → Image-based rendering; Image
compression;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Web3D ’17, Brisbane, QLD, Australia
© 2017 ACM. 978-1-4503-4955-0/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3055624.3075952

KEYWORDS
G-bu�er, Streaming, Compression, Remote Rendering, Depth-Image-
Based Rendering (DIBR), Mobile Devices, WebGL

ACM Reference format:
Sascha Räsch, Maximilian Herz, Johannes Behr, and Arjan Kuijper. 2017.
E�cient Compression for Server-Side G-Bu�er Streaming in Web Appli-
cations. In Proceedings of Web3D ’17, Brisbane, QLD, Australia, June 05-07,
2017, 7 pages.
DOI: http://dx.doi.org/10.1145/3055624.3075952

1 INTRODUCTION
Modern Server-Side rendering concepts vary from streaming 3D
model data to bitmap image streams according to Shi and Hsu (2015).
Depending on the client’s computing capabilities, the size of the 3D
content, the bandwidth and the available resources on the server,
a di�erent approach is appropriate. Streaming 3D data to client
devices is the costliest technique and is only practical for powerful
clients. On the other hand, bitmap streams like NVIDIA (2017) are
suitable for small devices such as smart phones or tablets. Behr
et al. (2015) proposed a Visual Computing as a Service infrastructure
which automatically determines which of both streaming methods
�ts best to the current situation.

However, the general drawback of bitmap streams is the latency
between the user input and the update o� the display. Moreover,
the number of frames per second (FPS) is always limited by the

Web3D ’17, June 05-07, 2017, Brisbane, QLD, Australia S. Räsch et. al.

bandwidth. This is especially bad for virtual reality applications, as
they require a high framerate according to Zielinski et al. (2015).

Streaming Geometry Bu�ers (G-Bu�ers) instead of just bitmaps
solves both problems. G-Bu�ers contain additional information,
e.g., the per-pixel depth, normal and the ID of the respective 3D
object. By combining them with a depth bu�er, the frame data is
transformed into a 2.5 D representation. This enables for Depth-
Image-Based Rendering (DIBR) methods, which are able to extrap-
olate new frames based on the already received data (see Xi et al.
(2013)). Therefore, the framerate of the client device is decoupled
from the actual received FPS and thus is not limited by the band-
width anymore. Moreover, generating extrapolated frames can also
be used to hide the latency artefacts.

In general, G-Bu�ers enable the client application to perform
certain tasks without requesting new data from the server. For
example, the normal and depth bu�er can be used for shading
and lighting. Thus, material and lighting settings can be changed
without getting updates from the server. We use the object ID bu�er
to handle the selection and highlighting of objects.

However, the drawback of G-Bu�ers is their size. A single uncom-
pressed G-Bu�er of dimension 512 × 512 is already about 2.88 MB.
With a framerate of just 8 FPS, we would require a bandwidth of
185 MBit/s. Therefore, an e�cient compression is an indispensable
requirement.

We propose a compression method for streaming G-Bu�er data
suitable for web client applications. Depending on the computing
power of the device, common software decompression approaches,
which run on the CPU, may not be fast enough. Therefore, we
provide a decoding which runs entirely on the GPU of the device
and thus no software decompression is necessary. As we use only
standard WebGL technology, the decoding is viable on any standard
web browser.

2 BACKGROUND AND RELATEDWORK
2.1 G-Bu�er
G-Bu�ers have originally been introduces by Saito and Takahashi
(1990). They motivated the G-Bu�er technique with decoupling
the geometric process from the physical and arti�cial process. The
physical and the arti�cial process are the steps performed in the
screenspace shading.

Altenhofen et al. (2015) proposed a concept similar to G-Bu�ers
called Rich Pixels (Rixels). Each pixel has additional attributes like
position data and physical quantities resulting from physical sim-
ulations. New Rixels are requested only if the viewport changes.
Except for discarding the background pixels, no further steps have
been applied to compress the Rixels data.

Doellner et al. (2012) presented an approach where G-Bu�er cube
maps are streamed to the client. The G-Bu�er consists of an object
id, a normal and depth bu�er. In contrast to our de�nition, they
add an additional bu�er for storing color information. The bu�ers
have been compressed using the PNG and JPEG image formats.

Kerzner and Salvi (2014) proposed a lossy compression to provide
anti-aliasing and high visibility sampling rates to enable for fast
deferred rendering. They exploit groups of primitives which de�ne

a surface with little to no curvature. This allows to locally reuse
shaded samples and thus reduce the overall shading rate.

2.1.1 Depth Bu�er Compression. A depth bu�er compression
technique based on a combination of color and depth values has
been developed by Förster et al. (2015). The correlation between
the RGB and depth values is exploited to reduce the overall size
of the encoded depth values. The decompression is based on an
optimization problem which does not qualify for a fast web imple-
mentation.

G-Bu�ers and multipass rendering are standard techniques in
game industry and have been optimized for many years. However,
these optimization are not suitable for client server streaming.

A short survey over existing methods is presented by Hasselgren
and Akenine-Möller (2006). They also introduced a new compres-
sion approach by extending a prediction method based on plane
equations de�ned on small tiles.

Gautier et al. (2012) proposed a depth compression where the
depth bu�er is sampled in a regular grid pattern. Using an edge
detection algorithm, additional samples are added to preserve sharp
features. The decompression is performed by solving a PDE. Our
compression (see Section 3) is based on this approach, but extended
for arbitrary bu�ers and optimized for GPU decoding web applica-
tions.

2.1.2 Normal Compression. An analysis by Meyer et al. (2010) of
e�cient normal encodings pointed out that the octahedron normal
vectors are the best choice from a practical and theoretical point of
view. An interesting alternative has been proposed by Keinert et al.
(2015). They sample the unit sphere, the space of all normal vectors,
using Spherical Fibonacci points. The decoding can be implemented
in shader programs. However, one drawback is the loss of continuity.
After mapping the normals into the Spherical Fibonacci point space,
only discrete index values remain. Thus lossy compression methods
cannot be applied to the encoded data.

2.2 Web Technologies
WebSocket is a modern protocol for two-way communication be-
tween a web client and a server. For a formal de�nition of the
protocol see Fette (2011). It is generally available on all modern web
browsers and can be used to stream arbitrary data. The RFC 7692
extension (see Yoshino (2015)) has been proposed to compress the
WebSocket data streams. Compressions like zlib de�ate are applied
on a per-message basis.

WebRTC is used for real-time audio and video streaming with-
out depending on additional plugins. For a detailed description
of WebRTC we refer the reader to Johnston and Burnett (2012).
However, it is not available on all web browsers, e.g., Microsoft
Internet Explorer. A single G-Bu�er is composed of multiple bu�ers
which cannot be encoded with the same compression. Thus, using
WebRTC requires sending the bu�ers in asynchronous streams. Yet,
previous experiments indicated that asynchronous streams can lead
to heavy synchronization artifacts.

WebGL (see Marrin (2011)) is a JavaScript API for accessing the
device’s graphics hardware. The corresponding shading language
GLSL enables implementing fast decoding algorithms by directly

E�icient Compression for Server-Side G-Bu�er Streaming in Web Applications Web3D ’17, June 05-07, 2017, Brisbane, QLD, Australia

using the shading units of the device. Version 1.0 of WebGL is
generally available on all modern web browsers.

3 G-BUFFER COMPRESSION
In this section, we describe our new approach for compressing
G-Bu�er streams. Our G-Bu�ers are composed of three bu�ers,
i.e., the object ID, the depth and the normal bu�er as depicted in
Figure 2.

(a) Object ID (b) Depth (c) Normal

Figure 2: Our de�nition of G-Bu�ers is composed of three
di�erent bu�ers, i.e., the id, depth and normal bu�er.

A bu�er can be distinguished according the continuity of the
contained data. For example, the object ID bu�er contains discrete
information, whereas the depth and normal bu�er are continuous
for smooth surfaces. However, the intersection between di�erent
objects introduces discontinuities.

We decompose each bu�er into patches of pixels which are
either smooth if the bu�er is continuous or constant if the bu�er
is discontinuous. For example, the ID bu�er is discrete and thus
discontinuous and has constant patches. On the other hand, the
depth and normal bu�er have patches which are not constant, but
smooth. The question if the patches are smooth or constant is
directly linked to the question if a bu�er can be encoded lossy or
lossless. An overview of the bu�er properties is outlined in Table 1.
A bu�er is continuous if and only if it has smooth patches. We

Bu�er Compression Patches Continuous
ID Lossless Constant No
Depth Lossy Smooth Yes
Normal Lossy Smooth Yes

Table 1: The three sub-bu�ers which de�ne our G-Bu�er . A
discontinuous bu�er has constant patches and must be en-
coded lossless. Continuous bu�ers on the other hand, have
smooth patches and thus can be encoded using lossy meth-
ods.

represent the patches by sampling them in a regular pattern. The
values are reconstructed by interpolating between the samples. As
shown in Figure 3, it is necessary to add additional samples to
preserve sharp features and thus reducing artefacts.

3.1 Compression
We propose a compression method which is based on sub-sampling
the original bu�er. We have two di�erent cases for creating a sample,
i.e., a regular and an edge sample.:

(a) (b) (c)

Figure 3: Figure (a) shows a continuous bu�er illustrated as
1D surface. (b) shows a reconstructed surface by applying
linear interpolation to the regular samples. However, sharp
features are faded out. By adding additional sample points
to cover them, the sharp features are preserved in (c).

Regular sample. A regular sample is created based on a regular
grid-pattern, i.e., a pixel at position i, j is sampled if i and j are both
divisible by some step size parameter s ∈ {2, 3, 4, . . .}. Thus, for a
bu�er with size w,h, we have w ·h

s2 samples, e.g., with a step size of
s := 16, only 0.39% of the original pixels remain after the regular
sampling.

Edge sample. Additional to the regular samples, we add further
samples for covering the edges. That is, we add a sample for a pixel
i, j if the function IsEdge returns true for some pixel i, j. IsEdge is
a bu�er speci�c edge �lter function as de�ned in 3.1.1.

In Figure 4, we apply our sampling scheme to a discrete and a
continuous bu�er. First, we determine the edges using an edge �lter
to identify the patches 1, 2 and 3. Afterwards, regular and edge
samples are created.

(a)

Patch 1 Patch 2

Patch 3

(b) (c)

(d)

Patch 1 Patch 2

Patch 3

(e) (f)

Figure 4: In (a) and (d), we have a discrete and a continuous
bu�er, respectively. We apply an edge �lter to identify the
di�erent patches in (b) and (e). Finally, in (c) and (f), we sam-
ple each patch and add additional samples for covering the
edges.

Web3D ’17, June 05-07, 2017, Brisbane, QLD, Australia S. Räsch et. al.

In order to e�ciently encode the samples, we split them into
two packages. We encode the regular samples as texture of size
w
s ×

h
s . The edge samples, which are not covered by the regular

grid, are stored explicitly. That is, for each edge sample i, j with
sample value pi j we store (i, j,pi j). We use 16 bit per coordinate
and thus spend additional 32 bit for the position per edge sample.

3.1.1 Edge Filter. Let w,h ∈ {3, 4, . . .} be the width and height
of the bu�er and pi j ∈ V for 0 ≤ i < w, 0 ≤ j < h be the values of
the bu�er, where V := {0, 1, . . . ,N } and V := [−1, 1] for discrete
and smooth bu�ers, respectively.

For discrete bu�ers, e.g., the object ID bu�er, the edge �lter at
pixel i, j is de�ned as:

IsEdge(i, j) :=


true if pi j , pi+1, j or pi j , pi−1, j
true if pi j , pi, j+1 or pi j , pi, j−1
false else

(1)

Thus, for discrete bu�ers, edges mark neighboring pixels with dif-
ferent values.

For smooth bu�ers, we check for the curvature, i.e., the second
discrete derivative. If the curvature is 0, the neighboring pixels are
linear to each other, which they are not if the curvature is non-zero.
The more the curvature di�ers from 0, the more signi�cant are the
artifacts introduced by applying linear interpolation between the
sample points.

We denote the curvature in direction X and Y for a value at pixel
i, j as cXi j and cYi j and de�ne them formally as:

cXi j := (pi+1, j − pi j) − (pi, j − pi−1, j) = pi−1, j − 2pi j + pi+1, j (2)

cYi j := (pi, j+1 − pi j) − (pi, j − pi, j−1) = pi, j−1 − 2pi j + pi, j+1 (3)

An edge is detected if the curvature exceeds a certain threshold
ε ≥ 0. The smooth edge �lter is then de�ned as:

IsEdge(i, j) :=

{
true if max(|cXi j |, |c

Y
i j |) > ε

false else
(4)

The larger we choose ε , the more aggressive is our lossy compres-
sion.

We have to slightly modify the edge �lter for bu�ers with more
than one component like the normal bu�er. Let IsEdgek (i, j) be the
edge �lter as de�ned above for the k-th component of the bu�er.
Then we de�ne the combined edge �lter as:

IsEdge(i, j) := (∃k) IsEdgek (i, j) (5)

Thus, we have an edge if the curvature of any of the components
exceeds the threshold.

3.2 Streaming
We use WebSockets to stream the compressed G-Bu�ers as binary
frames to the client device. The binary layout of a single frame
is depicted in Figure 5. The frame header consists of the width
and height of the G-Bu�er and the body is divided into the data
for the regular and irregular samples. The regular sample data is
encoded as three distinct textures for the regular ID, depth and
normal sample data, respectively. The irregular samples are packed
into three arrays which are consecutively combined into a single
binary chunk.

Header Width[w], Height[h]: uint32

Regular
Samples

Depth Sample Rate: uint8

ID Sample Rate: uint8

Normal Sample Rate: uint8

Samples

ID Samples: uint32*

Depth Samples: uint32*

Normal Samples: uint16*

Irregular
Samples

#ID Samples: uint32

#Depth Samples: uint32

#Normal Samples: uint32

Samples

Irregular
ID
Samples

x, y: uint16

ID: uint32

Irregular
Depth
Samples

x, y: uint16

Depth: uint32

Irregular
Normal
Sample

x,y : uint16

u,v: uint8

× #ID Samples

× #Depth Samples

× #Normal Samples

× (w*h)/(ID Sample Rate)²

× (w*h)/(Depth Sample Rate)²

× (w*h)/(Normal Sample Rate)²

Figure 5: The binary structure of a single frame streamed to
the client. The header consists of the width and height of
the streamed G-Bu�er. The body is divided into the regular
and irregular samples. The regular samples are encoded as
three textures of reduced size for the ID, depth and normal
bu�er. The irregular samples for all three bu�ers are packed
together into a single binary chunk. Each irregular sample
consists of a x ,y position plus the actual value.

3.3 Decompression
We upload each chunk of regular samples as a single WebGL texture
into the GPU memory and the irregular sample data is loaded as
single WebGL bu�er.

To decompress the G-Bu�er , we need three draw calls as illus-
trated in Figure 6. In the �rst two drawcalls, we render the regular

Regular Samples

Edge Samples

Combined Samples Decoded Buffer

Render

Render
Reconstruction

Figure 6: The �ow diagram of decompressing a single bu�er.
First, the regular and edge samples are rendered into a com-
bined bu�er texture. The bu�er texture is then used for the
actual decoding in a second step. The decoding step can also
be performed as part of the deferred shading.

and the irregular samples into a combined texture bu�er. Rendering
the regular samples is just a simple texture lookup and each set

E�icient Compression for Server-Side G-Bu�er Streaming in Web Applications Web3D ’17, June 05-07, 2017, Brisbane, QLD, Australia

of irregular samples is rendered as POINTS using vertex attribute
bu�ers.

(a) (b)

Figure 7: (a) and (b) show the reconstruction process for
continuous and discrete bu�ers, respectively. For the con-
tinuous case (a), the value is interpolated between the four
red dots. The red dot values are either encountered sample
points, or reconstructed values along the edges of the cell.
In the discrete case (b), we just follow the iteration along
the blue line until we encounter a sample.

In the last step, we use the combined sample texture bu�er as input
for our reconstruction step. As illustrated in Figure 7, we use linear
interpolation between the samples for continuous bu�ers and a
simple iteration rule for the discrete case.

For the discrete case, we simply iterate to the left until we either
encounter another sample or reach the edge of the current grid cell.
If we didn’t hit any sample, we iterate up to the next regular grid
sample. The result is the �rst encountered sample.

For continuous bu�ers, we iterate into the four directions +X ,
−X , +Y , −Y . Again, we stop if we either encounter a sample or
reach the edge of the current grid cell. If we reached the edge, but
didn’t encounter any sample, we perform a linear interpolation
along the edge. Finally, the result is a linear interpolation between
the four reconstructed/encountered samples.

4 RESULTS
We created three di�erent test cases for evaluating our compression
method. Each test case is de�ned by one model and a series of
camera operations like, rotate, move or zooming. In Table 2, we
outline the properties of the model and the duration for the test
cases. The Harley test case illustrates a bike with a rather low

Model Num. Vertices Num. Triangles Duration
Harley 341 K 285 K 67 s
Ferry 2.4 M 1.4 M 75 s
Powerplant 15.4 M 12.7 M 87.5 s

Table 2: The three di�erent test cases used for our experi-
ments with their respective properties.

complexity of 285 thousand triangles. The Ferry test case shows a
model of a complex ferry with cabins and corridors with a moderate
size of 1.4 million triangles. The Powerplant model has the highest

complexity and visualizes the UNC power plant model 1 with about
15.4 million triangles. Screenshots for each test case are depicted
in Figure 8.

(a) 16 s (b) 36 s (c) 46 s

(d) 28 s (e) 40 s (f) 61 s

(g) 30 s (h) 39 s (i) 78 s

Figure 8: Screenshots from the three di�erent test cases.

In our test cases, the object IDs and the depth values are encoded
with 32 bit precision. For the normal data, we use only 16 bit by
applying an octahedron encoding.

4.1 Tra�c
In this Subsection, we analyze the generated tra�c by transmitting
8 frames per second with a G-Bu�er resolution of 512 × 512. As
the raw uncompressed size of a single frame is about 2.88 MB, we
would require a bandwidth of 185 MBit/s.

We compare our compression approach with the permessage-
de�ate compression extension for WebSockets, which is supported
by modern web browsers like Firefox or Chrome. However, to
perform the per frame decompression on the client, the device must
have moderate computing power.

Therefore, we also analyze a combined method, where the size of
our compressed frames is further reduced by applying the WebSocket
de�ate compression. In the following discussion, we call our com-
pression technique Sampling Compression.

In Figure 9, we show the average compression of all three test
cases with each of the three methods. The average compression for
our Sampling Compression method ranges between 18 % and 23

1http://gamma.cs.unc.edu/POWERPLANT/index.html

Web3D ’17, June 05-07, 2017, Brisbane, QLD, Australia S. Räsch et. al.

0.0%

12.5%

25.0%

Harley Ferry Powerplant

%
 o

f
o
ri

g
.
R

a
w

 D
a
ta

Compression Ratio Sampling Compression

zlib

zlib + Sampling Compression

Figure 9: The average compression ratio in percentage for
the di�erent test cases and compression methods. The com-
pression ratio indicates the size of the compressed data rel-
ative to the original uncompressed data size. Thus, less is
better.

%. Thus, our method performs better than common hardware sup-
ported lossy texture compression formats like DXT2, DXT3, DXT4
and DXT5 which compress with 25 %. However, DXT compressions
cannot be applied to the object ID bu�er or the depth bu�er. The
WebSocket permessage-de�ate compression extension slightly out-
performs our approach and ranges between 18 % and 22 %. When
combining our Sampling Compression with the WebSocket com-
pression, we achieve the best compression ratios which are between
8 % and 11 %.

In Figure 10, we analyze the needed bandwidth in MBit/s overtime.
The required bandwidth of our compression method has high peaks
at second 36, 40 and 39 for the Harley, Ferry and Powerplant test
case, respectively. The corresponding screenshots are depicted in
Figure 8b, 8e and 8h. In all three screenshots, we have detailed small
structures which causes a lot of edges in the compression. Thus,
a lot of samples have to be stored which expand the size of the
compressed frames. On the other hand, if we have large smooth
surfaces as in Figure 8c, we only store a few edge samples and thus
have small frames.

In second 61 and 78 in the Ferry and the Powerplant test case we
outperform permessage-de�ate. In both cases, the screen is covered
by the 3D scene, but the image consists mainly of smooth surfaces.
Again, just a few samples are required to encode the structure.
However, due to slight numerical errors, the pixels are not perfectly
linear. As de�ate is lossless, it cannot eliminate these numerical
artifacts and performs less e�ective.

5 CONCLUSION AND FUTUREWORK
In this paper, we have presented a compression for G-Bu�ers which
can be applied for remote rendering using DIBR methods in web
applications. Our compression method uses only standard web
technology like WebGL and thus can be used on any client device.
Our proposed compression provides a decompression which can be
performed entirely on the hardware of the client. This is essential
for devices like smartphones or tablets with low computing power.

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

M
B

it
/s

Time (s)

Harley Sampling Compression

zlib

zlib + Sampling Compression

(a)

-10

10

30

50

70

90

110

0 10 20 30 40 50 60 70 80

M
B

it
/s

Time (s)

Ferry Sampling Compression

zlib

zlib + Sampling Compression

(b)

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90

M
B

it
/s

Time (s)

Powerplant Sampling Compression

zlib

zlib + Sampling Compression

(c)

Figure 10: The MBit/s over time while moving and rotating
the camera for a period of 67, 75 and 89 seconds for themod-
els Harley, Ferry and Powerplant, respectively. We have a
constant framerate of 8 fps and each G-Bu�er has a resolu-
tion of 512 × 512. The tra�c for the uncompressed data is
constant and is about 185 MBit/s.

Based on our results, we have an average compression between
19% and 23% relative to the original uncompressed data. Moreover,
for capable devices, we presented a combination of our method with
the browser built in WebSocket permessage-de�ate compression

E�icient Compression for Server-Side G-Bu�er Streaming in Web Applications Web3D ’17, June 05-07, 2017, Brisbane, QLD, Australia

extension, where we achieved even better average compression
ratios between 9% and 11%.

A major concern for future work is to further improve the com-
pression of the G-Bu�ers . As we stated before, the regular sampled
data is only about 0.39% of the original data for frames of size
512 × 512. For larger resolutions, the percentage is even smaller.
Thus, the majority of the transmitted data are the samples to cover
the edges. We encoded these samples by storing their i, j bu�er po-
sitions. Thus, half of the edge sample data are just the coordinates
of the edge samples. As the edge data is often similar to a line strip,
future research should analyze the potential advantages by using
lines instead of points. This could reduce the overall amount of
position data, but demands an e�cient server side line detection
algorithm which is executed every frame. Moreover, the overall
number of edge samples can be reduced if linear interpolation is
used for the detected line segments.

Another direction for future research is to focus more on the
application in the context of DIBR. One could develop a heuristic
to determine the required accuracy for the next frame, depending
on the previously send frames and the current camera movements.
By reducing the accuracy, less edge samples are generated and thus
less data is transmitted.

REFERENCES
Christian Altenhofen, Andreas Dietrich, André Stork, and Dieter Fellner. 2015. Rixels:

Towards Secure Interactive 3D Graphics in Engineering Clouds. The IPSI BgD
Transactions on Internet Research (2015), 31.

Johannes Behr, Christophe Mouton, Samuel Parfouru, Julien Champeau, Clotilde
Jeulin, Maik Thöner, Christian Stein, Michael Schmitt, Max Limper, Miguel de
Sousa, Tobias Alexander Franke, and Gerrit Voss. 2015. webVis/Instant3DHub:
Visual Computing As a Service Infrastructure to Deliver Adaptive, Secure and
Scalable User Centric Data Visualisation. In Proceedings of the 20th International
Conference on 3D Web Technology (Web3D ’15). ACM, New York, NY, USA, 39–47.
DOI:http://dx.doi.org/10.1145/2775292.2775299

Juergen Doellner, Benjamin Hagedorn, and Jan Klimke. 2012. Server-based Rendering
of Large 3D Scenes for Mobile Devices Using G-bu�er Cube Maps. In Proceedings
of the 17th International Conference on 3D Web Technology (Web3D ’12). ACM, New
York, NY, USA, 97–100. DOI:http://dx.doi.org/10.1145/2338714.2338729

Ian Fette. 2011. The websocket protocol. (2011).
E. C. Förster, T. Löwe, S. Wenger, and M. Magnor. 2015. RGB-guided depth map

compression via Compressed Sensing and Sparse Coding. In 2015 Picture Coding
Symposium (PCS). 1–4. DOI:http://dx.doi.org/10.1109/PCS.2015.7170035

J. Gautier, O. Le Meur, and C. Guillemot. 2012. E�cient depth map compression based
on lossless edge coding and di�usion. In 2012 Picture Coding Symposium. 81–84.
DOI:http://dx.doi.org/10.1109/PCS.2012.6213291

Jon Hasselgren and Tomas Akenine-Möller. 2006. E�cient depth bu�er compression.
In Graphics Hardware. 103–110.

Alan B. Johnston and Daniel C. Burnett. 2012. WebRTC: APIs and RTCWEB Protocols of
the HTML5 Real-Time Web. Digital Codex LLC, USA.

Benjamin Keinert, Matthias Innmann, Michael Sänger, and Marc Stamminger. 2015.
Spherical Fibonacci Mapping. ACM Trans. Graph. 34, 6, Article 193 (Oct. 2015),
7 pages. DOI:http://dx.doi.org/10.1145/2816795.2818131

Ethan Kerzner and Marco Salvi. 2014. Streaming g-bu�er compression for multi-
sample anti-aliasing. In Proceedings of High Performance Graphics. Eurographics
Association, 1–7.

Chris Marrin. 2011. Webgl speci�cation. Khronos WebGL Working Group (2011).
Quirin Meyer, Jochen Süßmuth, Gerd Sußner, Marc Stamminger, and Günther Greiner.

2010. On Floating-point Normal Vectors. In Proceedings of the 21st Eurographics Con-
ference on Rendering (EGSR’10). Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 1405–1409. DOI:http://dx.doi.org/10.1111/j.1467-8659.2010.01737.x

NVIDIA. 2017. Nvidia grid: Stream applications and games on demand. http://www.
nvidia.com/object/nvidia-grid.html. (2017).

Takafumi Saito and Tokiichiro Takahashi. 1990. Comprehensible Rendering of 3-D
Shapes. SIGGRAPH Comput. Graph. 24, 4 (Sept. 1990), 197–206. DOI:http://dx.doi.
org/10.1145/97880.97901

Shu Shi and Cheng-Hsin Hsu. 2015. A Survey of Interactive Remote Rendering Systems.
ACM Comput. Surv. 47, 4, Article 57 (May 2015), 29 pages. DOI:http://dx.doi.org/

10.1145/2719921
Ming Xi, Liang-Hao Wang, Qing-Qing Yang, Dong-Xiao Li, and Ming Zhang. 2013.

Depth-image-based rendering with spatial and temporal texture synthesis for
3DTV. EURASIP Journal on Image and Video Processing 2013, 1 (2013), 9. DOI:
http://dx.doi.org/10.1186/1687-5281-2013-9

Takeshi Yoshino. 2015. Compression Extensions for WebSocket. Technical Report.
D. J. Zielinski, H. M. Rao, M. A. Sommer, and R. Kopper. 2015. Exploring the e�ects

of image persistence in low frame rate virtual environments. In 2015 IEEE Virtual
Reality (VR). 19–26. DOI:http://dx.doi.org/10.1109/VR.2015.7223319

http://dx.doi.org/10.1145/2775292.2775299
http://dx.doi.org/10.1145/2338714.2338729
http://dx.doi.org/10.1109/PCS.2015.7170035
http://dx.doi.org/10.1109/PCS.2012.6213291
http://dx.doi.org/10.1145/2816795.2818131
http://dx.doi.org/10.1111/j.1467-8659.2010.01737.x
http://www.nvidia.com/object/nvidia-grid.html
http://www.nvidia.com/object/nvidia-grid.html
http://dx.doi.org/10.1145/97880.97901
http://dx.doi.org/10.1145/97880.97901
http://dx.doi.org/10.1145/2719921
http://dx.doi.org/10.1145/2719921
http://dx.doi.org/10.1186/1687-5281-2013-9
http://dx.doi.org/10.1109/VR.2015.7223319

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 G-Buffer
	2.2 Web Technologies

	3 G-Buffer Compression
	3.1 Compression
	3.2 Streaming
	3.3 Decompression

	4 Results
	4.1 Traffic

	5 Conclusion and Future Work
	References

