
Adaptive Streaming and Rendering of Large Terrains

using Strip Masks

Joachim Pouderoux, Jean-Eudes Marvie

To cite this version:

Joachim Pouderoux, Jean-Eudes Marvie. Adaptive Streaming and Rendering of Large Terrains
using Strip Masks. Proceedings of ACM GRAPHITE 2005, 2005, New Zealand. pp.299-306,
2005. <hal-00308005>

HAL Id: hal-00308005

https://hal.archives-ouvertes.fr/hal-00308005

Submitted on 20 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00308005

Adaptive Streaming and Rendering

of Large Terrains using Strip Masks

Joachim Pouderoux∗ Jean-Eudes Marvie†

IPARLA Project (LaBRI - INRIA Futurs)

University of Bordeaux, France

Abstract

Terrain rendering is an important factor in the rendering of virtual
scenes. If they are large and detailed, digital terrains can represent a
huge amount of data and therefore of graphical primitives to render
in real-time. In this paper we present an efficient technique for out-
of-core rendering of pseudo-infinite terrains. The full terrain height
field is divided into regular tiles which are streamed and managed
adaptively. Each visible tile is then rendered using a precomputed
triangle strip patch selected in an adaptive way according to an im-
portance metric. Thanks to these two levels of adaptivity, our ap-
proach can be seen as a cross-platform technique to render terrains
on any kind of devices (from slow handheld to powerful desktop
PC) by only exploiting the device capacity to draw as much trian-
gles as possible for a target frame rate and memory space.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism;

Keywords: Terrain rendering, level of detail, streaming, adaptive
rendering, handhelds.

1 Introduction

Terrains are involved in a lot of modern computer based applica-
tions such as geographic information systems (GIS), video games,
flight simulators, etc. For the sake of realism it is necessary to
use large and accurate digital elevation models (DEM). DEM are
generally acquired using dual satellite images or synthetic aper-
ture radar. Those models are available through different providers
like the United States Geological Survey (USGS) or the Institut
Géographique National (IGN) in France. Older terrain models can
be reconstructed using contour lines extracted from scanned topo-
graphic maps [Pouderoux et al. 2004].

Rendering accurate terrains implies the manipulation of very large
data sets that may contain billions of samples (e.g. triangles, points,
voxels, etc.). Such a complexity introduces two main limitations ; it
might not be possible to store the entire data set in memory (RAM)
and/or to perform its rendering in real time on a given device. Most
of the existing approaches thus propose a simplification of a trian-
gulated model that represents the terrain surface. As we will see
in section 2, some solutions entirely rely on CPU whereas others
use both CPU and GPU (sometimes using programs). Among these

∗email: pouderou@labri.fr
†email: marvie@labri.fr

Figure 1: Streaming and adaptive rendering of large terrains. Left:
adaptive rendering of the entire Grand Canyon model on a work-
station at a target of 25fps, using 440K triangles. Right: adaptive
rendering of the Puget Sound terrain model on a PocketPC at a tar-
get of 7fps, using 3744 triangles and streamed through an USB2.0
connection.

solutions, some require the full data set to fit in memory whereas
others provide out-of-core or streaming techniques.

In our solution we want to cover a wide range of configurations (see
figure 1). We thus choose to stream the terrains data in order to sup-
port networked as well as local architectures. For this purpose we
use a regular tiling of the terrain in order to perform its streaming
as well as memory adaptation on the client side. Targeting net-
worked configurations implies performing interactive rendering on
different types of terminals, ranging from high-end workstations
to handhelds. We thus propose a multi-resolution representation
(named strip masks) for adaptive rendering of each visible tile (us-
ing CPU or GPU without programs). This representation, used to-
gether with a visual importance metric and an automatic polygon
budget allocator, allows to perform adaptive rendering on the client
side. Our solution, thanks to its streaming and adaptive aspects, is
thus widely portable and has been tested successfully on different
configurations.

2 Previous work

A lot of research and engineering work has been done in the last
decades in the terrain rendering domain. In this section we distin-
guish two families of methods. The first one brings together meth-
ods that have been designed for terrains models that fit in memory.
The second family gathers the algorithms designed for the render-
ing of very large terrain data which cannot be completely loaded
into memory (out-of-core techniques).

2.1 In memory techniques

Most of the following approaches are based on the management
of triangulated irregular networks (TINs). The mesh is refined in
real-time according different strategies. [Lindstrom et al. 1996] in-
troduce a real-time smooth and continuous level of details (LOD)
reduction using a mesh defined by right triangles recursively subdi-
vided according a user-specified image quality metric. In parallel to
Lindstrom, [Cohen-Or et al. 1996] propose a solution for ray tracing
height fields. [Roettger et al. 1998] then proposed a geomorphing
algorithm to reduce the vertex popping effect of the Lindstrom’s al-
gorithm. Hoppe introduced progressive meshes (PM) in [1996] and
later described its application to terrain rendering [Hoppe 1998].
Note that, even if it presents a high CPU cost, the PM solution
can be easily extended to perform streaming. In [Duchaineau et al.
1997], the authors describe their ROAMing method as a very ef-
ficient algorithm based on triangle diamonds managed with split
and merge operations performed using priority queues. Even if
the algorithm is widely used in games industry, its implementa-
tion is tedious according to [Blow 2000]. More recently, [Leven-
berg 2002] propose to reduce the CPU overhead of the previous
binary-triangle-tree-based level-of-detail algorithms by manipulat-
ing aggregate triangles instead of simple triangles. Since aggregate
triangles are used for more than one frame, they can be cached in
the video memory and thus provide a significant acceleration.

As said in [Losasso and Hoppe 2004], previous algorithms ”involve
random-access memory references and immediate mode render-
ing”. Moreover, they were designed before the spread of hardware
GPU and thus present high CPU costs. Nowadays GPU are able to
render millions of triangles per seconds and even more when using
triangle strips. Therefore, it is now interesting to design algorithms
that take advantage of these capabilities.

In a recent paper, Losasso and Hoppe [2004] apply the
clipmap [Tanner et al. 1998] concept to geometry for large ter-
rains rendering. Their GPU accelerated method is based on a set
of nested regular grids centered about the viewer. Geometry con-
tinuity is guaranteed by using transition regions between two grid
levels using the GPU vertex shader. They use a compression al-
gorithm to load the full terrain model in memory. However, this
still requires the full CPU power to compute vertex indices at every
frame. In a more recent paper, Asirvatham and Hoppe [2005] en-
hanced the approach by performing nearly all computations on the
GPU. Furthermore, even if the method is very efficient, it relies on
shaders, which is not practicable when targeting handheld devices.
Indeed, even if some recent mobile devices dispose of GPUs these
are not yet programmable. Finally, keeping in mind that we target
networked applications and computers of variable capacities, these
solutions are not practicable when targeting streaming and also ren-
dering of terrain models that do not fit in memory.

2.2 Out-of-core techniques

With this aim in view, some other approaches propose to per-
form either out-of-core rendering (local solution) or streaming (net-
worked solution) of the models.

[Pajarola 1998] extends the restricted quadtree triangulation of
Lindstrom [1996] with another vertex selection algorithm and a
more intuitive triangle strip construction method. This is combined
with dynamic scene management and progressive meshing to per-
form out-of-core rendering. More recently [Cignoni et al. 2003b;
Cignoni et al. 2003a] described a technique for out-of-core man-
agement and rendering of large textured terrains named batched dy-
namic adaptive meshes (BDAM). BDAM is based on a pair of bin-

trees of small TINs that are computed and optimized off-line. The
batched host-to-graphics communication model guarantees overall
geometric continuity, exploits programmable GPU, a compressed
out of core representation and a speculative prefetching for hiding
disk latency. These solutions are still unpracticable for our objec-
tives since they rely on low latencies between mass storage and
main memory. Furthermore, these solutions also present high CPU
costs.

Targeting content distribution on the Web, [Reddy et al. 1999] de-
scribe TerraVision II that is a geo-referenced VRML97 terrains
viewer. A quadtree hierarchy of terrain grids is computed off-line.
The approach is based on the VRML97 LOD node which induces
a lot of data redundancy and no care is taken to ensure continuity
between different grid levels. A more advanced solution proposed
by [Aubault 2003] relies on a wavelet encoding to perform terrain
streaming and multi-resolution rendering. Still, this very efficient
solution requires to fetch the entire model into server’s memory and
to perform costly computations on it.

3 Overview

Our solution can be decomposed in two main parts. The first one
consists in performing the streaming of terrain data as well as its
management on the client side. This part aims at preserving the
largest square area, centered on the viewpoint, that can fit in the
clients memory. The second part is dedicated to the adaptive render-
ing of this square area. Its purpose is to render a maximum number
of triangles and a highest quality of texture maps while preserving
a given frame rate.

In order to perform the terrain transmission and management we
used a classical tiling system [Pajarola 1998; Reddy et al. 1999;
Zhao et al. 2001; Larsen and Christensen 2003]. The database is
generated once by subdividing the full DEM and texture of the ter-
rain. The geometry of each tile is then encoded into a VRML file
whereas its photometry is encoded into a JPEG file or a progres-
sive texture map format we developed. Our adaptive tiling uses an
implicit data structure to perform tiles management. Encoding the
tiles into separated files allows easy downloading (through a sim-
ple file transfer protocol) and management of terrain data through a
simple 2D array.

The adaptive rendering of the square area is performed through the
use of multi-resolution tiles. Before each frame rendering a global
algorithm computes, for each tile, a visual importance (that is a
percentage) deduced from its height and distance from viewpoint.
This percentage is then used to share some polygon and texture
map global budgets (deduced from the analysis of previous frames)
among the visible tiles. The most important point, that tends to
preserve CPU load and to make an intensive use of triangle strips
rasterization, is the multi-resolution representation we use for each
tile. A tile can be rendered through a set of coarse to fine strip
masks. A strip mask is a precomputed triangle strip and therefore
describes a known number of triangles. It is thus immediate to se-
lect a given mask, according to a given polygon budget, in order
to perform the adaptive rendering of a tile. On one hand this per-
tile multi-resolution scheme is less geometrically optimal than local
LOD algorithms, but on the other it sends most of the CPU load to
the GPU. We finally propose simple and fast solutions for geomor-
phing between separated levels and for cracks reduction between
adjacent tiles.

The rest of this paper is organized as follow. In section 4 we present
our adaptive paging algorithm. Section 5 relates our adaptive ren-
dering solution. We finally discuss some results in section 6 before
we conclude in section 7.

4 Adaptive tiling

As said before we rely on a paging system to perform the progres-
sive fetching (or transmission) of data as well as the adaptation to
main memory (the client’s memory for remote sessions). With our
solution the database is made of a set of files, each one containing
the regular terrain elevations of a tile. A main file that contains a
description of the tiles grid (tile size, number of tiles, positioning,
etc.) is first fetched (or downloaded) and its information are then
used to manage the adaptive tiling. The solution we propose can
thus be used with a simple file transfer protocol (e.g. HTTP) if the
database is located on a remote server.

The tiles management algorithm we developed aims at maintaining
the largest square area (made of square bands of tiles we call belts)
around the viewpoint. This square of tiles assures that the user can
always look around at 360 degrees. Our tile management is thus
quite similar to a classical paging system for terrains. However,
the size of the square area is set according to the available main
memory which makes it adaptive to the machine that is used for
visualization. The amount of memory to be used for data storage is
tuned by a user parameter. This parameter represents the percentage
of available memory that can be used after the non adaptive part
of the environment is fetched. We usually set this parameter to
90% in order to keep a margin for further downloadings. Knowing
the amount of memory to be used, the square area is maintained
by tracking the viewpoint position and by fetching/removing tiles
to/from memory.

Algorithm 1 Asynchronous adaptive tiling.

if not currently loading then
dc = distance to the farthest complete belt contributing to the
complete square area
if used memory > memory limit then
dp = distance to the farthest (most often partial) belt not
contributing to the complete square area
if dp> dc then
remove all the tiles of the partial belt from memory

end if
else
ask for the fetching of the missing tiles of the belt dc+1

end if
else
initialize each received tile
end if

Algorithm 1, that is executed before each new frame generation
(see section 5), illustrates our method. The distance to a belt rep-
resents the smallest number of tiles that separates the current tile
(the one that contains the viewpoint) from the belt. For instance, in
figure 2a, the distance of the furthest complete belt (a belt for which
all tiles are fetched) is 2. In our solution fetching is asynchronous
and performed in parallel to the rendering. Fetching is always per-
formed by belt and started only if the last requested belt has been
completely fetched.

If viewpoint does not move the algorithm will fetch all the belts
that can fit into memory (see figure 2a), starting from the nearest
one. If the viewpoint passes over an adjacent tile the algorithm will
tend to maintain a square of belts centered on this new tile (that
becomes the current tile) by fetching missing tiles (see figure 2b).
In this example all the memory was consumed at the step depicted
by figure 2a. The algorithm will thus have to remove some far tiles
in order to free some memory for the fetching of new tiles. Note that
the algorithm implicitly handles the case where viewpoint jumps to
a new tile that is not adjacent to the current one.

In some other cases the memory might not be saturated when the
current tile changes (e.g. viewpoint moves before saturation). The
remaining tiles (that do not make a complete belt) are then kept in
memory (i.e. tiles are cached) for an eventual further use. Figure 2c
illustrates caching. To make this screen shot we first waited satura-
tion outside of terrain boundaries (point A) before we ran quickly
on the other side of terrain boundaries (point B). We can clearly see
the tiles that are cached and also the tiles that are being fetched to
construct a complete belt in order to enlarge the rendered area.

Figure 2: Tiles management and caching. a) A square area made of
three belts centered on the viewpoint. b) Square area preservation
on viewpoint move. c) To illustrate caching all the tiles stored in
memory are rendered. Only the black rectangular area is rendered
in normal usage.

Looking at the algorithm one can notice that, even if the memory
budget is reached, we never remove a complete belt if it contributes
to the square area. This constraints ensures the stability of the adap-
tive algorithm. However, the memory budget can be overspent.
This is why we always keep a security margin by setting the mem-
ory percentage lower than 100%.

Finally, many solutions can be chosen if the viewpoint position is
not over the terrain. A first solution could be to constrain user po-
sitions. In our case we chose to let the user fly everywhere and
thus out of terrain boundaries. In order to handle this case we force
the tile nearest to the viewpoint to be the current tile. This is an op-
tion that can be deactivated if, for instance, some terrains are placed
side by side. Note that when approaching or leaving the boundaries,
with activated option, the square area becomes a rectangular area.

5 Adaptive rendering

Recall that this step performs the rendering of every loaded tile
which are visible from the current point of view (i.e. that are in
the view frustum). In order to render adaptively the visible tiles, we
propose a multi-resolution data structure named strip masks (see
section 5.1). The rendering step is then performed as follows. We
first compute the visual importance of each tile according to its
roughness and its distance from viewpoint (see section 5.2). These
visual importances are then used to share a global polygon budget
(predicted to fit a given frame rate) between the visible tiles. Each
partial budget (local to a tile) is finally exploited to select the strip
mask to be used for the rendering of the tile (see section 5.3).

5.1 Strip mask data structure

A tile is an array of resolution (w×h) that stores elevation values of
the sampled terrain area. Our implementation manages tiles of any
size, but for the sake of simplicity we will only consider the specific
case of tile of size w = h = (2n+ 1). The memory representation
of a tile is a vertex buffer that embeds the 3D vertex coordinates
together with their properties like texture coordinates, normals or
colors.

The multi-resolution data structure we propose is a set of strip
masks of different resolutions (see figure 4). A strip mask is a regu-
lar triangulation of the tile surface at a given resolution. In practice,
a mask is a triangle strip defined by an index buffer that enumerates
the vertices to use related to a vertex buffer. The advantage of using
triangle strips comes from the fact that modern graphic hardware
(and also software graphic libraries) are optimized to render them
efficiently. Moreover, as a mask is often used for more than one
frame, we can also take benefit of display lists.

The main advantage of this data structure rely on the fact that all
the tiles are of same resolution (w×h). A single mask set can thus
be used for the multi-resolution modeling and rendering of every
tile. That is to say, each index buffer of the mask set is valid for
all the vertex buffers that encodes the different tiles that make up
the terrain. This minimizes the computation time and specially the
memory consumption. Moreover, we compute masks in a lazy way,
the first time they are needed, in order to distribute the computation
costs.

Level 0 Level 1 Level 2 Level 3 Level 4

Figure 4: A simple mask set for a grid of size 6×6. The red arrow
shows the order of description of the triangles in the triangle strip.
Note that levels 2 and 3 both contain 8 triangles. In that case, level 2
will be chosen for a budget between 8 and 17 triangles. Level 3 will
be used during a transition between level 2 and level 4 as explained
in section 5.3.

The multi-resolution is generated by creating a set of coarse to fine
masks. As said before, a strip mask is a regular triangulation. A
mask of level l is defined by connecting only the vertices with (i, j)
coordinates (within thew×h array) that are congruent modulo l+1.
A mask set is thus made of max(w,h)− 1 masks. An example of
such a mask set is shown in figure 4. This approach is very differ-
ent to previous ones that tend to optimize the triangulation locally
according to surface properties. These previous approaches provide
better decimation but consumes much more CPU resources. As the
hardware is now able to render many more triangles we adopted the
inverse approach. Indeed, we believe that it is preferable to ren-
der higher resolutions to produce similar qualities while preserving
CPU resources to perform other kind of treatments such as complex
simulations. Our data structure is conceived in this way so render-
ing a tile according to a polygon budget only consists in selecting
the right mask. This selection is made by choosing the first level
that fit the triangle budget, which is done in an O(1) complexity.

5.2 Tiles visual importance

The visual importance is a percentage attributed to each visible tile
according to some intrinsic and some view dependant properties.

The idea is to give a higher importance and therefore more geomet-
rical details to close and/or mountainous tiles than to far and/or flat
ones. As we will see in the next section, the visual importances are
then exploited to share a global polygon budget between each tile
in order to select the masks that will be used for their rendering.

Algorithm 2 Computation of tiles visual importances.

Θ = set of visible tiles in the frustum
for each tile t in Θ do
distt = distance from the camera to the center of the tile
max dist =max(distt ,max dist)
accumulate distt in sum dist
heightt = height of the tile
accumulate heightt in sum height

end for
for each tile t in Θ do
compute impt using equation (1)

end for

Algorithm 2 illustrates how we compute the visual importance of
tiles. In a first loop we compute, for each tile t, distt that is the dis-
tance from the center of the tile to the viewpoint and heightt which
is the height of the tile bounding box (note that one could also use
a more topographical measurement like the terrain ruggedness in-
dex (TRI) developed by Riley[Riley et al. 1999]). During this loop
we also store max dist, the maximum distt of all the visible tiles
which have been processed and we accumulate distt and heightt in
sum dist and sum height respectively. Finally, in a second loop,
each tile importance impt is calculated as a weighted sum of the
normalized distt and heightt values as follows, with α +β = 1.

impt = α ×
max dist−distt
sum dist

+β ×
heightt

sum height
(1)

The weights α and β are chosen empirically to accentuate or min-
imize the importance of tiles distance and height. To maintain a
tradeoff between the distance and the height of tiles we usually use
α = β = 0.5. Note that the obtained visual importance values impt
are normalized in a way that ∑t impt = 1.

Figure 3 illustrates some visual importances obtained by setting dif-
ferent values for (α,β). It also shows that setting α = β = 0.5
allows to preserve an accurate horizon while providing high resolu-
tions to near tiles.

5.3 Mask selection and rendering

Once the normalized importance values impt are computed, each
tile is registered, together with its visual importance, into a
rendering-table of the Magellan [Marvie 2004] renderer. The ren-
derer then uses these visual importance to share a global polygon
budget among the different tiles. This global budget is deduced, by
the renderer, from the analysis of previous frames in order to main-
tain a target frame rate. Budget sharing is performed by a greedy
algorithm with privilege to tiles of highest priority. Basically, if the
global budget for the current frame is τ triangles, the tile t will re-
ceive a drawing budget of impt × τ triangles. Each time a drawing
budget is allocated, the concerned tile selects the mask that present
the highest amount of triangle that is lower or equal to its triangle
budget. The tile then returns the amount of triangles that are not
used for its rendering. This rest is re-added (by the renderer) to the
global budget that is used for next tiles (of lower importance). For
more details about this budget allocator see [Marvie 2004, chap-
ter 5].

α = 1.0,β = 0.0 α = 0.0,β = 1.0 α = 0.5,β = 0.5 α = 0.5,β = 0.5

Figure 3: Visual importances on the Puget Sound model. Model elevations are exaggerated in order to see the relief better. Each tile is colored
using the following color scale: red is more important than green, and light than dark. Top: from left to right, pictures show the importances
using distance only, height only and both (α = β = 0.5). The last image shows the textured terrain. Bottom: The left picture depicts the visual
importances using α = β = 0.5 which is a good tradeoff. The right picture shows the texture-mapped result. Note how the far mountains are
preserved so the horizon is meaningful.

After all the tiles budgets are allocated, the renderer starts the ren-
dering of each tile. If the selected level is the same as the one of
previous frame the tile uses the display list that is already compiled.
Otherwise it compiles and renders a new display list with the newly
selected strip mask. Since our representation does not allow a con-
tinuous displacement of each vertex it cannot provide geomorphing.
Nevertheless, we tested a geomorphing like solution which consists
in rendering each intermediate level when switching from level k to
level k+ l, with | l |> 1. In this case we recompile a new display list
only when the level k+ l is reached. This solution is quite simple
and fast. However, it introduces several other artifacts when work-
ing on low resolution tiles and still consumes lot of AGP bandwidth,
and therefore some CPU load, to perform the rendering of succes-
sive levels. Consequently, we prefer to perform direct switches of
separated levels which introduce fewer visual artifacts and better
performances.

Each tile can be mapped with a 2D texture. In our implementation,
textures are managed as classical VRML97 textures extended with a
progressive file format described in [Marvie and Bouatouch 2003].
This file format encodes mipmap levels of a texture and allows a
progressive and adaptive transfer of them. This multi-resolution
representation is also used during the rendering in order to optimize
the GRAM occupation as well as the AGP transfers. For more de-
tails see [Marvie and Bouatouch 2003]. The important point with
this solution, that is a plug-in of the Magellan renderer, is that it
also takes benefits from the visual importance to update the mipmap
levels (for transmission and rendering). The visual importance we
compute for each tile is thus used to optimize the geometry together
with the quality of texture maps.

Finally, to give a more realistic effect, it is interesting to illuminate
the terrain using its normals. When light conditions are supposed
to be constant the most efficient strategy is to preprocess the illu-
mination of the terrain and to store it into the texture map. In other
cases, per-vertex normals have to be recomputed into the tile’s ver-
tex buffer at each mask level update. In order to save CPU we only
compute per-vertex normals once at the vertex buffer initialization
and for the finest mask level only. Even if this solution is not per-

fect, it only introduces few artifacts when switching masks of low
resolution and preserves CPU resources.

5.4 Cracks and surface continuity

When mask levels are too different between two adjacent tiles, T-
vertices becomes visible and gaps appear on tiles boundaries which
create a very unpleasant visual effect (see figure 5a). Classical ap-
proaches [Larsen and Christensen 2003; Losasso and Hoppe 2004]
consist in modifying the geometry of the tile’s border by introduc-
ing new vertices and edges. Such techniques are not compatible
with our premises based on pre-computed triangle strips to ensure
low CPU computation and autonomous tiles which means that a
tile doesn’t know the current mask level of its neighbors. Another
classical method called filleting, introduced by Sun 1 and also im-
plemented in the NASA’s World Wind remarkable earth viewer 2 is
to add a band of vertical triangles around the edges of each tile. This
band is stretched down to the lowest terrain elevation. Each side of
the band is textured by stretching the corresponding line/column of
texels. This scheme is fast but quite disgraceful to see for the user,
specially if a neighbor tile has not been loaded yet.

We propose another method which consists in drawing a planar
shadow under each tile (see figure 5c). The tile shadow is a rect-
angular polygon made of 2 triangles drawn under each tile and
texture-mapped with the same texture that the corresponding tile.
The shadow position is computed as a projection of the corners of
the tile regarding the current viewpoint as a classical planar shadow.
For more details on planar shadows, reader can refers to [Akenine-
Moller and Haines 2002, p. 250–254]. Even if this solution is not
perfect and fails in some particular cases (eg. for low angles) it is
fast, simple to implement and gives satisfying results most of time
(see figure 5b).

1http://java.sun.com/products/jfc/tsc/articles/jcanyon/
2http://worldwind.arc.nasa.gov

a. b.

c.

Figure 5: Crack artifacts. a) Cracks appear on tiles borders when
adjacent tiles have different levels. b) Using an underlying mapped
shadow plane, crack effects are attenuated. c) Two textured shad-
ows casted by the viewpoint and rendered to fill the cracks.

6 Results

We now present some experimental results obtained with our tech-
nique. In order to prove its adaptive and streaming capabilities we
performed some experimentations on different devices (handheld
and desktop PC) and terrain models.

6.1 Grand Canyon

We first propose an experimentation on the model of the Grand
Canyon in Arizona, USA, Initially used as an experimental model in
[Hoppe 1998], the data 3 , made of a DEM and a satellite imagery,
were obtained by the USGS and processed by Chad McCabe of the
Microsoft Geography Product Unit. The model is a 4097× 2049
grid with an inter-pixel spacing of 60 meters and a resolution of 10
meters for the elevations.

This model completely fit in the memory of the Pentium 4 (2.5GHz,
1GB of RAM, Quadro FX 500 128MB, AGP 8x) we used for the
test. The terrain data and the associated texture map are subdi-
vided into tiles of size (128× 128). The resulting database is en-
coded using 561 zipped VRML97 files and 561 JPEG files. It oc-
cupies 26.2MB on the disk. The average size of tile files (using the
VRML97 binary zipped format proposed in Magellan) is equal to
50KB and the one of the JPEG files is equal to 15KB.

For this test we used a local access to the disk and set the target
frame rate equal to 25. We performed a flyover during which we
recorded a set of measures that are presented by figure 6. The fly-
over is made of the four following time ranges:

[0s,13s] The viewpoint is placed in a corner of the terrain, looking
at its integrality and we wait for the data set to be entirely fetched.
We can see on the bottom plots that downloadings are distributed
over the 13s of convergence. We can also see the amount of loaded
tiles getting higher until all the tiles are loaded. Since the viewpoint
looks at the entire terrain the amount of rendered tiles follows the
amount of loaded tiles. The top plots show that the frame rate con-
verges quickly to the target frame rate as well as the adaptation of

3http://www.cc.gatech.edu/projects/large models

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60
 0

 250

 500

 750

 1000

F
p
s

K
ilo

 t
ri
a
n
g
le

s

Time (seconds)

FPS
Target FPS

Polygons

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60
 0

 20

 40

 60

 80

 100

 120

T
ile

s
 a

m
o
u
n
t

K
ilo

 b
y
te

s

Time (seconds)

Downloadings
Loaded tiles

Rendered tiles

Figure 6: Performance measures for the Grand Canyon flyover.
Top: evolution over time of the target frame rate, the obtained frame
rate (FPS) and the amount of triangles used for each frame render-
ing. Bottom: evolution over time of the downloadings (expressed in
Kilo bytes), the number of loaded tiles and the number of rendered
tiles.

number of rendered triangles. The fluctuations of the frame rate, af-
ter this one has converged, are due to the parallelism with the thread
that decodes the zipped and JPEG files and initializes the vertex ar-
rays. Nevertheless, we can see that the frame rate always tends to
fit the required frame rate.

[13s,19s] We waited a few seconds before starting the flyover. We
can see that the frame rate is smoother, which is due to the fact that
no more downloading is performed. We can also notice that it pro-
vides more CPU resources so the number of used triangles increases
(around 100K more triangles) quickly just after the downloadings
stops.

[19s,42s]We then start the flyover and cross the terrain in its length.
After 7 seconds (where we fly slowly) the amount of rendered tiles
decreases (thanks to frustum culling) to a very low value because
we reach the opposite border of the terrain. Top plots show that the
amount of rendered triangles increases massively during this period
and we can clearly see an inflexion point at 35 seconds. Before 35
seconds the augmentation of the triangles amount is due to the fact
that less tiles are processed which consumes less CPU resources
during the scene graph traversal (frustum culling, importance cal-
culus and budgets allocation). After 35 seconds the massive rise
comes from the fact that all the compiled display lists stay in the
GRAM so no more AGP transfer is performed apart from those of
masks updates. Indeed, the inflexion point appears around 235 ren-
dered tiles. Each tile requires 128× 128× 4× 5 = 512KB for the
encoding of its vertex array (texture coordinates, normals and ver-
tices) and 128×128×3 = 48KB for its texture map. Therefore, the
amount of occupied GRAM is (48+512)×235 = 128.51MB that
nearly corresponds to the 128MB of GRAM of which the graphics
hardware disposes. Finally, near 42 seconds, the frame rate goes
higher than 25fps which is due to the fact that border tiles contain a

number of triangles lower than the allocated budget.

[42s,50s]We finally do a u-turn followed by an elevation in order to
see a major part of the terrain from a high point of view. Top plots
show that the frame rate goes down to 12fps during a second (which
is the duration of the frame rate smoother we use to filter its signal)
before the system reacts to converge quickly to the target frame rate.
This massive slow down is due to the global budget estimator of the
Magellan renderer that computed a too important budget when the
viewpoint was on the border of the terrain just before the u-turn.

6.2 Puget Sound

Our second experimentation is performed on a data set that model
an area sampled near the Puget Sound region in the Washington
State, USA. The data set 3 processed by [Lindstrom and Pascucci
2001] was obtained from the USGS by the way of the University of
Washington. The model is made of 16385×16385 samples at 10m
spacing with 16bits elevation values at 0.1m resolution. The DEM
is available with an artificial texture map computed from the terrain
elevations.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160
 0

 250

 500

 750

 1000

F
p
s

K
ilo

 T
ri
a
n
g
le

s

Time (seconds)

FPS
Target FPS

Polygons

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100 120 140 160
 0

 20

 40

 60

 80

 100

 120

T
ile

s
 a

m
o
u
n
t,
 M

e
g
a
 b

y
te

s

K
ilo

 b
y
te

s

Time (seconds)

Downloadings
Loaded tiles

Rendered tiles
RAM used

Figure 7: Performance measures for the Puget Sound flyover. Top:
evolution over time of the target frame rate, the obtained frame
rate (FPS) and the amount of triangles used for each frame render-
ing. Bottom: evolution over time of the downloadings (expressed
in Kilo bytes), the number of loaded tiles and the number of ren-
dered tiles. We also added the amount of used main memory that is
correlated with the amount of tiles.

This time the model does not completely fit in the memory of the
Pentium 4 we used for the test. As for the previous model, the
terrain data and the associated texture map are subdivided into tiles
of size (128×128). The resulting database is encoded using 8192
files (VRML97 and JPEG ones). It occupies 60MB on the disk.

For this test we used the same parameters and the same configu-
ration as for the previous test. Figure 7 presents the recorded mea-
sures that were performed during a flyover ”roaming” the entire ter-
rain, going sometimes on its boundaries and sometimes high over

it in order to get an overview. Looking at the top plots we can ob-
serve variations similar to the ones of previous test. In the bottom
plots we added the amount of memory used during the flyover. We
can clearly see that this plot is directly correlated with the number
of loaded tiles. The results also show that we always keep a good
interactivity even when streaming new data.

6.3 Puget Sound on PocketPC

In order to further validate our solution we performed a vi-
sualization of the Puget Sound model on a PocketPC Toshiba
e800 (400MHz, Software OpenGL|ES implementation, display
320x240, see figure 1) connected to a server PC (the one used for
the previous tests) through an USB2.0 connection. The flyover goes
from one corner of the terrain to the opposite one, following the di-
agonal.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

 0 20 40 60 80 100 120 140 160
 0

 2000

 4000

 6000

 8000

 10000

 12000

F
p
s

T
ri
a
n
g
le

s

Time (seconds)

FPS
Target FPS

Polygons

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120 140 160
 0

 20

 40

 60

 80

 100

 120

T
ile

s
 a

m
o
u
n
t,
 M

e
g
a
 b

y
te

s

K
ilo

 b
y
te

s

Time (seconds)

Downloadings
Loaded tiles

Rendered tiles
RAM used

Figure 8: Performance measures for the Puget Sound flyover on a
PocketPC. Measures are similar to those that are depicted by fig-
ure 7.

Figure 8 shows the measures that were performed with a target
frame rate set to 7fps and 20MB of free memory. As we can see
on the top plots the system adapts quite well to fit the target frame
rate. However, we can notice some fluctuations when download-
ing in parallel (see bottom plots). These fluctuations are due to
the fact that all the treatments (decompression, rendering, etc.) are
performed by the CPU. It is thus extremely hard to obtain a fine
parallelism. We can also see that we reach a maximum of 10000
triangles per frame, when not streaming, which is quite good if we
recall that there is no GPU on the PocketPC and that the CPU only
performs calculus using integer arithmetic. Indeed, in our imple-
mentation, floating points are emulated by the software and we do
not even use fixed point values.

7 Conclusion

In this paper we have presented a solution that allows the stream-
ing and the real-time rendering of large textured digital terrains.
When most classical approaches make some computation to refine
the model exactly where it is needed, ours favors saving CPU and
memory consumption by transferring the load on the 3D graphic de-
vice. Around a tiling algorithm and a per tile multi-resolution data
structure, we designed an adaptive technique with regards to the de-
vice capacities. On the one hand, the dynamic tiling management
based on a memory adaptation allows a progressive downloading of
data (geometry and texture maps). This allows the user to navigate
immediately in the virtual environment. On the other hand, tiles are
rendered efficiently using a set of masks which are precomputed
triangle strips indices. Resolutions are chosen according to global
and local tile properties and to the graphic hardware capabilities in
order to guarantee a given frame rate. The presented results demon-
strate the robustness of the adaptation.

Future work will focus on the extension of our scheme in order to
use a multi-resolution data structure for the progressive and adap-
tive transmission of each tile as well. In that way, tiles levels could
be fetched only when needed. Moreover, this will allow a faster
fetching of visible tiles and offer the possibility to load farther tiles
at their lowest resolution. Another investigation will be lead to
avoid crack artifacts in a better way. We think this problem could
be solved by adding a new mask stack for transition regions.

References

AKENINE-MOLLER, T., AND HAINES, E. 2002. Real-Time Ren-
dering, 2nd ed. A.K. Peters Ltd.

ASIRVATHAM, A., AND HOPPE, H. 2005. GPU Gems II.
Addison-Wesley, ch. Terrain rendering using GPU-based geom-
etry clipmaps, 27–44.

AUBAULT, O. 2003. Visualisation Interactive de Scènes Vastes et
Complexes à travers un Réseau. PhD thesis, France Télécom
Recherche et Développement.

BLOW, J., 2000. Terrain rendering research for games. Course on
Games Research: The Science of Interactive Entertainment at
SIGGRAPH.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F.,
PONCHIO, F., AND SCOPIGNO, R. 2003. BDAM – batched
dynamic adaptive meshes for high performance terrain visual-
ization. Computer Graphics Forum 22, 3 (September), 505–514.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F.,
PONCHIO, F., AND SCOPIGNO, R. 2003. Interactive out-of-core
visualization of very large landscapes on commodity graphics
platforms. In International Conference on Virtual Storytelling,
O. Balet, G. Subsol, and P. Torguet, Eds., vol. 2897 of Lecture
Notes in Computer Science. November, 21–29.

COHEN-OR, D., RICH, E., LERNER, U., AND SHENKAR, V.
1996. A real-time photo-realistic visual flythrough. IEEE Trans-
actions on Visualization and Computer Graphics 2, 3 (sep), 255–
265.

DUCHAINEAU, M., WOLINSKY, M., SIGETI, D. E., MILLER,
M. C., ALDRICH, C., AND MINEEV-WEINSTEIN, M. B. 1997.
ROAMing terrain: Real-time Optimally Adapting Meshes. In
Proceedings of the conference on Visualization ’97, ACM Press,
81–88.

HOPPE, H. 1996. Progressive meshes. Proceedings of SIGGRAPH
96, 99–108.

HOPPE, H. 1998. Smooth view-dependent level-of-detail control
and its application to terrain rendering. In IEEE Visualization
’98, 35–42.

LARSEN, B. S., AND CHRISTENSEN, N. J. 2003. Real-time ter-
rain rendering using smooth hardware optimized level of detail.
InWSCG.

LEVENBERG, J. 2002. Fast view-dependent level-of-detail ren-
dering using cached geometry. In VIS ’02: Proceedings of the
conference on Visualization ’02, 259–266.

LINDSTROM, P., AND PASCUCCI, V. 2001. Visualization of large
terrains made easy. In VIS ’01: Proceedings of the conference
on Visualization ’01, IEEE Computer Society, 363–371.

LINDSTROM, P., KOLLER, D., RIBARSKY, W., HUGHES, L. F.,
FAUST, N., AND TURNER, G. 1996. Real-time, continuous
level of detail rendering of height fields. In Proceedings of SIG-
GRAPH 96, ACM SIGGRAPH / Addison Wesley, Computer
Graphics Proceedings, Annual Conference Series, 109–118.

LOSASSO, F., AND HOPPE, H. 2004. Geometry clipmaps: terrain
rendering using nested regular grids. ACM Trans. Graph. 23, 3,
769–776.

MARVIE, J.-E., AND BOUATOUCH, K. 2003. Remote rendering of
massively textured 3D scenes through progressive texture maps.
In The 3rd IASTED conference on Visualisation, Imaging and
Image Processing, vol. 2, 756–761.

MARVIE, J.-E. 2004. Visualisation Interactive d’Environnements
Virtuels Complexes à travers des Réseaux et sur des Machines à
Performances Variables. PhD thesis, INSA de Rennes, France.

PAJAROLA, R. 1998. Large scale terrain visualization using the
restricted quadtree triangulation. In Proceedings IEEE Visual-
ization’98, IEEE, 19–26.

POUDEROUX, J., GONZATO, J.-C., GUITTON, P., AND
GRANIER, X., 2004. AutoMNT - a software for reconstructing
3D-terrains from scanned maps, aug. ACM SIGGRAPH 2004
Sketches and Applications.

REDDY, M., LECLERC, Y., IVERSON, L., AND BLETTER, N.
1999. TerraVision II: Visualizing massive terrain databases in
VRML. IEEE Computer Graphics and Applications 19, 2 (mar-
apr), 30–38.

RILEY, S., DEGLORIA, S., AND ELLIOT, R. 1999. A terrain
ruggedness index that quantifies topographic heterogeneity. In-
termountain Journal of Sciences 5, 23–27.

ROETTGER, S., HEIDRICH, W., SLUSALLEK, P., AND SEIDEL,
H.-P. 1998. Real-Time Generation of Continuous Levels of
Detail for Height Fields. In Procceedings of WSCG ’98, 315–
322.

TANNER, C. C., MIGDAL, C. J., AND JONES, M. T. 1998. The
clipmap: a virtual mipmap. In SIGGRAPH ’98: Proceedings of
the 25th annual conference on Computer graphics and interac-

tive techniques, 151–158.

ZHAO, Y., ZHOU, J., SHI, J., AND PAN, Z. 2001. A fast al-
gorithm for large scale terrain walkthrough. In Proceedings of
International Conference on CAD and Graphics 2001.

