
Eurographics Symposium on Parallel Graphics and Visualization (2015)
C. Dachsbacher, P. Navrátil (Editors)

Out-of-Core Framework for QEM-based Mesh Simplification

Hiromu Ozaki1,2, Fumihito Kyota1, Takashi Kanai2

1Silicon Studio Corporation, 2The University of Tokyo

Abstract
In mesh simplification, in-core based methods using Quadric Error Metric (QEM), which apply a sequence of
edge-collapse operations, can generate high-quality meshes while preserving shape features. However, these meth-
ods cannot be applied to huge meshes with more than 100 million faces, because they require considerable mem-
ory. On the other hand, the quality of simplified meshes by previous out-of-core algorithms tends to be insufficient.
In this paper, we propose an out-of-core framework to establish high-quality QEM-based simplification for huge
meshes. To simplify a huge mesh using limited memory, the mesh is first partitioned into a set of patches in the
out-of core framework using linear classifiers which are trained by clustered points based on the machine learn-
ing approach. Also, a scheme to guarantee the exact matching of boundary vertices between neighbor patches is
proposed even when each patch is simplified independently. Based on this scheme, out-of-core simplification is
established while generating a simplified mesh with almost the same quality as that of the in-core QEM-based
method. We apply the proposed method to multiple models including huge meshes and show the superiority of our
method over previous state-of-the-art methods in terms of the quality of simplified meshes.

1. Introduction

Due to the advance of technology in the field of computer
graphics, e.g. 3D-scanning devices such as range scanners,
there has been a great increase in the number of applica-
tions dealing with huge meshes. Out-of-core mesh simplifi-
cation algorithms have been developed to simplify the huge
mesh while keeping shape features. Most of these algorithms
simplify huge meshes by decomposing them into small sub-
meshes. In this case, the constraint for neighbor boundaries
tends to decrease the quality of the simplified meshes. In
other approaches, spatial data structures and quantization
can be utilized in an out-of-core manner. However, the qual-
ity of the simplified meshes is insufficient.

On the other hand, Garland and Heckbert proposed a fast
high quality edge collapse-based simplification algorithm
using Quadric Error Metric (QEM) [GH97]. The QEM eval-
uates the cost of the collapse operation for an edge by the
squared length from a new vertex position to a plane. Then
the edge with minimum cost is collapsed. For this reason,
the resulting mesh has considerably higher quality with min-
imum shape changes owing to the use of QEM. One draw-
back of this method is that the QEM-based simplification of
huge meshes requires a large amount of memory due to the
need to construct their graph connectivity.

Our purpose here is to simplify huge meshes without

losing their geometrical details and to archive at the same
level of quality as in-core QEM-based methods. To achieve
this, we consider partitioning an original mesh into a set of
smaller sub-meshes so that each sub-mesh can be simplified
individually. An output mesh is then constructed by merg-
ing simplified sub-meshes. With such a divide-and-conquer
scheme, it is of utmost importance for the boundary vertices
between simplified sub meshes to be exactly matched.

Our key idea is to add additional processes so as to guar-
antee the exact matching of boundaries based on the idea of
instant Level Of Detail [GDG11]. By applying this idea, our
method can, in principle, simplify huge meshes with more or
less the same quality as in-core algorithms within reasonable
computational time. One of the advantages of our method
is that the simplification process can be done independently
for each sub-mesh. Out-of-core algorithms are required for
mesh simplification itself and also for mesh partition. Here,
we propose an out-of-core mesh partition method based on
utilizing sampled points as a guide for partitioning a huge
mesh.

In later sections, we describe the details of our key idea in
Sec. 3 and a detailed overview of our method in Sec. 4.1.

c© The Eurographics Association 2015.

H.Ozaki, F.Kyota, T.Kanai / Out-of-Core Framework for QEM-based Mesh Simplification

2. Related Work

Mesh simplification and segmentation are now fundamen-
tal techniques in geometry processing. Numerous algorithms
have been proposed for these topics. Detailed surveys of
these subjects in Botsch et al.’s book [BKP∗10] and articles
[HLS07, SPR06, Lue01] were referenced for further under-
standing. Here, we will review only the researches on mesh
simplification and segmentation which handle huge meshes
and are closely related to our work.

Mesh Simplification. Garland and Heckbert proposed a
fast high-quality simplification algorithm by applying a se-
quence of edge collapse operations and by using Quadric
Error Metric (QEM) to optimize the vertex positions as min-
imizing shape changes [GH97]. Although this QEM-based
method provides high-quality simplification results, it tends
to consume considerable memory and is not suitable for
huge meshes. Later, memory-less simplifications were pro-
posed where QEMs are not explicitly stored in the main
memory [LT99, Hop99]. However, handling a huge mesh is
still a serious problem in terms of memory usage.

More recently, algorithms for parallel and distributed pro-
cessing have been proposed. Approaches based on total
or partial atomic operations have been proposed [GDG11,
SN13] for the parallel processing on GPUs efficiently. Other
possibilities are based on using vertex clustering [RB93,
Lin00, LS01, SG01, SW03, SG05] and RSimp [BP02]. In
these approaches, spatial data structures are used and ver-
tices in each cell of such a structure are put together, which
seem to be suitable for processing huge meshes. However,
the quality of simplified mesh tends to be lower than that of
the edge collapse based approaches.

To limit memory usage during simplification, Isenburg et
al. proposed mesh simplification via the file streaming pro-
cess [ILGS03, IL05]. In addition, a method to reduce mem-
ory usage has been proposed by spatially subdividing a huge
mesh into smaller sub-meshes [CMRS03]. While both meth-
ods are based on spatial subdivision, they are different in
terms of how data is treated: The former accelerates simpli-
fication using a special data structure for the streaming pro-
cess, and the latter temporarily stores subdivided sub-meshes
on a disk.

When a mesh is partitioned into sub-meshes, their bound-
aries must be handled carefully to simplify them in parallel
independently. The vertex clustering approaches described
above serve as one of the possible solutions for the boundary
issue. In addition, the use of a firewall [DC10] was proposed
to prevent propagation effects to neighbor regions in edge
collapse operations.

In contrast, our proposed method is a partition-based ap-
proach applicable for huge meshes and also provides the
same level of quality as in-core QEM-based methods.

Mesh Segmentation. Spectral analysis is one of the basic
tools for mesh segmentation. A Laplacian matrix based on
neighbor vertices can be used in the spectral analysis. Zhou
et al. [ZSGS04] proposed a method using such Laplacian
matrices taking into consideration geodesic distances. How-
ever, the construction of a Laplacian matrix consumes con-
siderable memory and is inappropriate for huge meshes.

Clustering-based approaches are more suitable for seg-
menting huge meshes. Julious et al. proposed an iterative
clustering method using quasi-developable patches that ap-
proximate each sub-mesh to a developable cone [JKS05]. An
important aspect in these approaches is how to evaluate the
distance between two elements. Liu and Zhang proposed a
method by using the K-means clustering and spectral anal-
ysis [LZ04]. For CAD applications, Xiao et al. proposed an
agglomerative hierarchical clustering algorithm [XLXG11].
Recently, the supervised learning approach using preliminar-
ily labeled meshes is applied to the semantic segmentation of
meshes [KHS10, BLVD11].

In contrast, our approach for the partition is based on ma-
chine learning and requires less memory than the approach
based on Laplacian matrices. Our approach also considers
geodesic distances by using clustered points on a mesh as
training data.

3. Minimum Decimation Domain and Out-Of-Core
Simplification

vj

e(i,j)

vi

(a) MDD

(1i) (2i)

(2j)(1j)

(b) Using MDD

Figure 1: (a) MDD (red region) is defined as 2-ring neigh-
bors of end vertices of an edge e(i, j) (red line). The yellow
region shows a 1-ring neighbor for e(i, j). A LME e(i, j)
has minimum QEM cost over neighbor edges (in blue) lo-
cally. (b) The same edges are always selected as LMEs
if MDDs are included in two neighbor patches. Also, the
boundary vertices of two neighbor patches are matched after
the decimation of LMEs. Red lines: LMEs, orange polygons:
MDDs.

In this section, we describe the main idea of our out-of-
core simplification method for huge meshes. First, we intro-
duce Local Minimum Edge (LME) in Instant Level Of De-

c© The Eurographics Association 2015.

H.Ozaki, F.Kyota, T.Kanai / Out-of-Core Framework for QEM-based Mesh Simplification

tail (ILOD) proposed by Grund et al. [GDG11]. We then de-
scribe the idea of Minimum Decimation Domain (MDD) in
Sec. 3.1. Finally, we explain how the MDD is applied to out-
of-core simplification in Sec. 3.2.

3.1. Defining Minimum Decimation Domain

In the ILOD approach, special edges referred to as LME are
introduced. An edge e(i, j) is defined as LME satisfying the
following equation, where i and j are the indices of vertices.

(Qi +Q j)(v̄i j) = min
k⊆Ωi
|(Qi +Qk)(v̄ik)|, (1)

= min
k⊆Ω j

|(Q j +Qk)(¯v jk)|, (2)

where Q denotes a Quadric Error Metric (QEM) [GH97],
v̄i j denotes an optimal position after e(i, j) is collapsed, and
Ωi is a set of 1-ring neighbor vertices around a vertex vi.
The cost of e(i, j) is defined as (Qi +Q j)(v̄i j) in ILOD. Eqs.
(1) and (2) indicate that e(i, j) has minimum cost among all
edges which have vi or v j as end points. Such LMEs never
have a shared vertex on a mesh, thus allowing collapsing
operations in parallel for multiple LMEs.

Another important property of LMEs is that they are
uniquely determined, that is, the same LMEs are selected
independently in terms of search methods and order of
searches. This property is the basis of independent simpli-
fication for each sub-mesh.

Now we consider a neighbor region needed for deciding a
LME. To compute the QEM cost for e(i, j), the logical sum
of two 1-ring vertices of vi and v j is required (a yellow region
in Fig. 1). By considering QEM costs for all edges around vi
and v j , a region of 2-ring neighbor vertices (a red region in
Fig. 1) is required to guarantee that e(i, j) can be a LME and
has the minimum QEM cost. We define such a red region as
MDD.

3.2. Using MDDs for Out-Of-Core Simplification

MDD has a significant advantage in the simplification of
huge meshes. By using MDD, partitioning a huge mesh into
a set of smaller sub-meshes (called patches) is reasonable for
simplification. As shown in Fig. 1b, let us suppose that two
neighbor patches ((1i) and (1j)) share an overlapped bound-
ary region (light blue regions), and that MDDs (orange re-
gions) are included in such a region. When all LMEs (red
lines) in MDDs of two patches are collapsed ((2i) and (2j)),
those boundaries become exactly matched. Each patch can
be then simplified independently while the boundaries of a
neighbor patch are matched.

However, the problems listed below have to be considered
when applying the idea of MDDs to the partition of a huge
mesh.

1. Partitioning a huge mesh in the out-of-core manner itself
is not a trivial task.

2. It is desirable that the faces of each patch are connec-
tive. If a patch has non-connective regions, the number
of neighbor patches tends to increase. Also, a very small
region may appear.

3. To collapse more LMEs all at once, each patch should
have as much overlapped regions between neighbor
patches as possible.

4. To execute simplification processes in parallel, each
patch should have more or less the same size, namely,
the number of faces in each patch should not differ con-
siderably.

One possible solution is to use spatial data structures e.g.
uniform grid. However, partitioning a huge mesh into a set
of blocks by using such data structure does not seem to be a
good choice for our purpose. If we use such data structure,
we cannot predict what patches are constructed; a sub-mesh
in a block may have separate pieces of faces or small number
of faces. In this case, the problems 2. and 3. described above
can arise.

4. Algorithm Details

In this section, we describe details of our method. We first
explain the overview of our algorithm in the next subsection.

4.1. Overview

Fig. 2 illustrates our method. Our method consists of
the following four phases; sampling, clustering, learn-
ing/partitioning, and simplification.

• In the sampling phase, points are evenly sampled on an
input mesh (Fig. 2(b), Sec. 4.3) so as to fit the main mem-
ory. Such sampled points are used instead of an original
mesh for the subsequent processes.

• In the clustering phase, sampled points are clustered so
that points in each cluster are not unevenly distributed
(Fig. 2(c), Sec. 4.3).

• In the learning/partitioning phase, an original huge mesh
is partitioned into a set of patches based on the learned
knowledge of the clustered points (Fig. 2(d), Sec. 4.4).

• In the simplification phase, two sub-phases; expansion
and decimation, are repeatedly processed (Fig. 2(e) and
2(f), Sec. 4.5), and finally the merging process is executed
only once (Fig. 2(g)).

Note that the process of clustering points are executed in
an in-core manner, while other processes are executed in an
out-of-core manner, as shown in the figure. To improve the
computational performance, each process is made to run in
parallel on a single, multicore CPU as much as possible. De-
tails of the above phases will be discussed in the subsequent
sections.

4.2. Input Meshes

An input mesh must have neighbor connectivity explicitly
such as an indexed face set for edge-collapse operations in

c© The Eurographics Association 2015.

H.Ozaki, F.Kyota, T.Kanai / Out-of-Core Framework for QEM-based Mesh Simplification

(a) Input: Huge Mesh

(b)

Cluster

Points

Output

Patches

Sample

Points

Learn

Clustered Points

Decimate

Patches

Merge

Patches

(c) (g) Output: Simplified Mesh

(d) (e) (f)

Simplification of Patches

Expand

Patches

In Core Process

Out of Core Process

Classify

Faces

Clustering

Points

Partition of Huge Mesh

Load

Classifier

Save

Classifier

Figure 2: Outline of our out-of-core simplification framework. Gray dotted rectangles show the type of processes. Upper row:
Out-of-core processes, Lower row: In-core processes. Green dotted rectangle: Partitioning huge mesh (Sec. 4.3-4.4), Red dotted
rectangle: Clustering points (Sec. 4.3), Yellow dotted rectangle: Simplification of huge mesh (Sec. 4.5).

the simplification phase. For a mesh which does not explic-
itly have the neighbor connectivity such as a polygon soup,
it has to be constructed after loading a mesh (or each sub-
mesh) from a disk into the main memory. However in other
phases, such neighbor connectivity is not required.

Most importantly, it is quite difficult to read a single file of
a huge mesh from a disk at one time due to the limited mem-
ory. Thus, a three-dimensional bounding box which covers a
mesh is spatially decomposed into blocks by using uniform
grids, and vertices and faces of a sub-mesh in each block are
separately stored on a disk. In the out-of-core phases such as
sampling, partitioning and simplification, a part of the mesh
in each block is then loaded into the main memory.

However, this decomposition does not consider any geo-
metric information of huge meshes as described in Sec. 3.2.
A simple decomposition scheme described above is there-
fore used only for loading a part of the mesh. Instead, an-
other partitioning method has to be considered for the sim-
plification.

A streaming mesh [ILGS03] is also available to load faces
of a huge mesh in all out-of-core phases, although we did not
use such a data structure because of implementation issues.

4.3. Clustering Points

Fig. 3 shows our framework of clustering sampled points
lying on a huge mesh.

In the first phase in Fig. 3(a), points are sampled so that
they are evenly distributed on a mesh by Parallel Poisson

Disk Sampling (PPDS) [BWWM10]. PPDS checks that no
two points are too close in terms of approximate geodesic
distance. Specifically, the geodesic distance between any
two neighbor points is not too close, is never less than a
certain distance, and is more or less the same all the time.
This sampling can be done by loading all parts of a mesh in
parallel as described in Sec. 4.2.

The number of sampling points has to be carefully deter-
mined so as to fit the main memory. Based on the results of
our experiments, the number of sampling points was set to
less than 10% of the number of vertices in the original mesh.
This is done by changing the sampling radius of PPDS.

Next, sampled points are clustered and the resulting clus-
tered points are used as training data for mesh partitioning.
Hence, this clustering directly affects the partition of a huge
mesh. It is desirable that the number of points in each clus-
ter is more or less equal, that is, the points in each cluster
are more or less evenly distributed. Also, the points in each
cluster should be adjacent on the mesh. It is not desirable
for the points in distant regions of the mesh are on the same
cluster as shown in Fig. 4a.

To address these issues, a Proximity Graph (PG) for sam-
pled points, in which two neighbor points are connected by
an edge, is first constructed as shown in Fig. 3b. In this con-
struction, the resources of PPDS are maximally reused; the
cell data structure of PPDS is used to find neighbor points,
and the approximate geodesic distance is also used to eval-
uate the length of an edge. By using this distance, the edge
between two neighbor points which are spatially close but

c© The Eurographics Association 2015.

H.Ozaki, F.Kyota, T.Kanai / Out-of-Core Framework for QEM-based Mesh Simplification

Initial Huge Mesh

(a) Point Sampling

(b) Proximity Graph

Update Centers

(c) Discrete Exponential

Maps (Fig.5)

(d) Update Clusters

(Fig.4)

Check Centers

dist(old,new) < Threshold

FCM

Partitioning via νSVM

(b)(a)

Figure 3: Our clustering framework. An initial huge mesh
described in Sec. 4.2 is used in the sampling phase. Each
process is explained in Sec. 4.3. Clustered points are used
in the partitioning phase as the training data of νSVM. (a)
Sampled points by PPDS and (b) Proximity Graph for Bunny
model.

belong to different surface regions will not be included in a
PG.

(a) KM (b) Ours (FCM+DEM)

Figure 4: Comparison of clustering results. (a) Clustering by
K-Means. In green circles, points on non-connective regions
are clustered in a group. (b) Clustering by Fuzzy C-Means
and by using approximate geodesic distances. Each cluster
is composed of points on a connective region.

To cluster sampled points which are nodes of a PG, the
geodesic distance between two arbitrary points must be cal-
culated. In this case, the edge length of a PG is not suffi-
cient for the approximation of the geodesic distance. Alter-

natively, the Discrete Exponential Map (DEM) [SGW06] is
used here for this computation.

In each cluster, a barycentric center of all points is com-
puted and its closest node point in R3 is found on a PG. A
DEM on a tangent plane centered at the closest node point is
then computed as shown in Fig. 5. Note that the geodesic dis-
tances between the same node points on two different DEMs
are not equal. By nature of the DEM computation, geomet-
ric errors of geodesic distances are larger the further away
are the node points on a DEM from its center. Due to these
errors, it is difficult to cluster sampled points using hard clus-
tering methods such as K-Means with DEM.

Figure 5: Computing DEM for cluster. From left to right:
In the l-th iterative loop, a DEM is computed with a center
point (in blue) of each cluster. Next, a center point is moved
to a new point (in red), and then it is proceeded to the (l+1)-
th loop.

To address the issue described above, Fuzzy C-Means
(FCM) method is adopted for the clustering, since geomet-
ric errors described above do not affect the clustering results
significantly. In FCM, points are clustered stochastically and
it is more suitable to our clustering method compared to
standard K-Means clustering. FCM implies that points are
scattered in a circular shape for recognition. FCM also tries
to equalize the size of these circles. Therefore, clustered
points tend to be as evenly distributed as possible. Fig. 4b
shows our clustering result.

4.4. Partitioning Mesh via Nu-Support Vector Machine

Now we describe how a huge mesh is partitioned into small
patches. Our intention here is to partition a huge mesh us-
ing little memory and also at minimum computational costs
by using clustered points. To resolve these demands, a nu-
Support Vector Machine (νSVM) [SSWB00] based scheme
is considered.

Basically, SVM is a method to classify unknown data into
two classes. If the one-vs.-one (OvO) reduction strategy is
adopted for the multi-class classification, C(C−1)/2 binary
classifiers of SVM are required to decide a class containing a
point. At the same time, classification is done by measuring
the margin distance from hyperplanes by Eq. (3). Therefore,
the total computation time for the partition strongly depends
on the number of SVs and classes.

y = ∑
k∈SVi j

αkykK(~xk,~x)−ρ, 0≤ i, j ≤C, (3)

c© The Eurographics Association 2015.

H.Ozaki, F.Kyota, T.Kanai / Out-of-Core Framework for QEM-based Mesh Simplification

where C is the number of classes,~x is a point to be classified,
K(,) is a kernel function of SVM, SVi j is a set of SVs for
planes that separate into two classes i and j, {~xk,yk} is a pair
of a SV and a class id (= -1 or 1), and α, ρ are parameters
computed by SVM.

(a) Linear (b) Polynominal (c) RBF

Figure 6: Partitioning results by using different νSVM ker-
nels. (a) Linear kernel. (b) Polynomial kernel. (c) RBF ker-
nel. There is little distinct differences among the three ker-
nels except around the intersection regions between linear
and polynomial kernels. However, there are waving bound-
ary shapes in the result for the RBF kernel.

Linear, polynomial, and RBF kernel are well-known ker-
nel functions of SVM. A kernel function has to be selected
depending on the data type and desired classification preci-
sion. As shown in Fig. 6, however, the linear kernel function
is enough to partition a mesh well with our method.

When a huge mesh is partitioned, the computations de-
scribed above are the primary factor which increases the to-
tal computation time. Now two approaches are employed to
speed up the classification. One approach is that the classifi-
cation computation by SVs with the linear kernel function is
replaced with a simple inside/outside judgment of a position
over a three-dimensional plane ~wT~x+h = 0 whose parame-
ters ~w and h are obtained by,

~w = ∑
k∈SVi j

αkyk~xk, (4)

h = yl−~w~xl , l ∈ SVi j. (5)

Note that this speed-up scheme is available only with a lin-
ear kernel. Another approach is that a DAG-SVM [PSTC00]
is adopted to reduce the computational complexity for the
classification from O(C2) to O(C).

Fig. 7 shows our framework of partitioning a huge mesh
via νSVM. Faces of an original mesh are first loaded from
a disk in an out-of-core manner as described in Sec. 4.2.
Such faces are next classified in parallel by νSVM. For the
classification of a face by νSVM, only its vertex positions

Figure 7: Our framework for partitioning huge mesh. Left:
Loading a part of a huge mesh from a disk (Sec. 4.2).
Middle: Classifying faces in a list by DAG-SVM classifier.
Right: Classified faces are saved to a disk as separate files
for patches.

are required. Here a barycenter of these vertices in a face is
used. After the classification, faces in each class are sepa-
rately stored on a disk.

4.5. Simplification Algorithm

The simplification phase is composed of three sub-phases,
expansion, decimation, and merging. Fig. 8 shows the
flowchart of the simplification phase for a huge mesh.

In the first sub-phase, the boundary of each patch is ex-
panded towards the outside of a patch so that the 2-ring
neighbors are included in the extended regions. To keep
MDDs for boundary vertices (Fig. 8a), DAG-SVM classi-
fiers constructed in Sec. 4.4 are used again to compute a
margin distance from the boundary. After the expansion, we
check that MDD is included in an expanded region. For a
classified point ~x, a margin distance ∆i j(~x) from a three-
dimensional plane to such a point is also computed at the
same time.

We consider here a parameter δ to determine whether ~x
is on the expanded region or not; if ∆i j(~x) < δ, ~x is on the
expanded region. A more largely expanded region is com-
puted for a larger δ. One issue is that the value of δ has to
be determined empirically so that the region is expanded to
more than 2-ring neighbor vertices. However, it is helpful to
determine δ so that the number of neighborhoods from~x to a
border vertex can be computed using the graph connectivity
of a patch. In practice, to check whether MDD is guaranteed
for border vertices or not, edges connecting border vertices
of the expanded region are traversed and 1 is added as the
cost of each 1-ring neighbor vertex. If all costs of vertices in
a region are less than 1, MDD is guaranteed. Otherwise, δ

is slightly increased and the expansion sub-phase is repeated
again.

The decimation sub-phase is the same process as that of
ILOD; for each expanded patch, a set of LMEs is computed
and edge collapse operations are executed for all LMEs (Fig.
8(b)). Both processes can be run in parallel on a CPU. Af-
ter edge collapse operations are finished, mesh connectiv-
ity information is updated and the total number of faces is

c© The Eurographics Association 2015.

H.Ozaki, F.Kyota, T.Kanai / Out-of-Core Framework for QEM-based Mesh Simplification

NO

(a)

(b)

(c)

Initial

Patches

(a) Expand Patches

MDD ∈

(b) Decimate Patches

#Total Faces < Target

(c) Merge Patches

Output Mesh

NO

YES

YES

Expanded

Region

Figure 8: Workflow of simplification process. Patches de-
scribed in Sec. 4.4 are used as input. (a) Expansion of
patches. (b) Decimation of patches. (c) Merging to a mesh.
(a) and (b) are executed for each patch individually.

checked. If the total number of faces reaches its target num-
ber, all patches are ready to be merged in the next sub-phase.
Otherwise, border vertices of a simplified patch is checked
whether MDD is still included. If all border vertices sat-
isfy MDDs, the decimation sub-phase can be executed again.
Otherwise, there is a need to go back to the expansion sub-
phase. These processes are repeated until the target number
of faces is reached. Note that our method cannot generate
exactly the same number of faces as the target number, since
the number of deleted edges (or faces) is determined from
the number of LMEs counted by the traverse of all patches
at once.

In the last sub-phase, all simplified patches are merged
into an output mesh (Fig. 8(c)). In this sub-phase, the faces of
expanded regions are deleted and several overlapped vertices
are integrated to a vertex at the end of the algorithm.

5. Results and Discussion

In this section, we discuss our experimental results to
demonstrate the advantages of the proposed simplification
algorithm for huge meshes. We implemented our algorithm
in C++. For the νSVM in the partitioning phase, we used
LIBSVM, a C++ SVM library by Chang et al. [CL11]. We
conducted all of our experiments on a PC with Intel Core i7-
3770 CPU, 16GB RAM and a 500GB SSD with 500MB/s

R/W. In our implementation, several processes are paral-
lelized by using a multi-core CPU. In the multi-core CPU
computation, we use one of four cores for loading data from
a disk to optimize the data-loading process. However, the
writing process to a disk cannot be parallelized because syn-
chronization is required.

The huge meshes used in our experiments were recon-
structed from points in the Digital Michelangelo Project
[LPC∗00] by using the out-of-core surface reconstruc-
tion algorithm [BKBH07]. These meshes are; David
(161,482,359 faces), St. Matthew (166,725,000 faces) and
Atlas (197,182,000 faces). In addition, we also used smaller
sized models from the Stanford 3D Scanning Repository
[Sta] to compare the quality of simplified meshes with other
methods. To measure the quality of simplified meshes, we
used a Hausdorff distance between two models (typically the
original model and its simplified model) divided by the di-
agonal length of the bounding box of a model. We used the
Metro software [CRS98] for those measurements.

Quality Comparison to Other Methods. Fig. 9 shows the
visual comparison of the simplification results for the Lucy
model and shows the computation time and the Root Mean
Square error (RMS) for each result. As for other methods,
we compared two methods in [nex] (NXS) and in [ILGS03]
(SM) using their own executables. Those executables, how-
ever, have upper limits on the number of faces. We then com-
pared the Lucy model (28,055,742 faces) with our method.
As seen from the figures, our method achieves higher accu-
racy than both NXS and SM obviously. There are a number
of flipped faces (black dots in Fig. 9(d)) on the simplified
mesh by SM, which dramatically worsen the visual quality.
In addition, our method achieved less computation time than
NXS. In contrast, the computation time of SM is faster than
our method for partitioning a mesh into four patches.

Computation Time and Memory Usage According the
Number of Clusters. In the second experiment, we discuss
the changes in computation time according to the number
of clusters. Fig. 10 illustrates a graph of computation times
of our method for the Atlas model, a reconstructed model
which has 197 million faces, at different number of clusters.
This graph shows the computation time for partition and ex-
pansion, simplification, and total time. It also shows the time
taken for the disk I/O process and computation on CPU. It
can be seen that the most time-consuming part is the sim-
plification phase. This is because the total number of faces
in the expansion phase increases according to the number of
patches. On the other hand, the costs for the partition and
expansion do not radically increase. This graph shows the
effect of the reduced computational complexity of partition
and expansion to O(C) as described in Sec. 4.4. In addition,
the cost of the disk I/O process does not increase with the
number of clusters, although the total number of loading files
does. This is because the disk I/O process and other compu-
tations are carried out in parallel with a multi-core CPU.

c© The Eurographics Association 2015.

H.Ozaki, F.Kyota, T.Kanai / Out-of-Core Framework for QEM-based Mesh Simplification

(a) Ours (1.4M) (b) SM (1.4M) (c) NXS (1.4M) (d) Close up view of face
Time: 262 sec. Time: 83 sec. Time: 793 sec.

RMS: 0.000797 RMS: 0.00104 RMS: 0.00193

Figure 9: Visual comparison of Lucy model with other methods. Color bar means the error distance from low (white) to high
(blue). (a) With our method, a model was partitioned into 4 patches. (d) shows the close-up view of faces in the simplified
meshes (upper: SM, bottom: our method). A simplified mesh by SM has many flipped triangles (shown in blue circles).

0

1000

2000

3000

4000

4 8 16 32 64

Part+Exp Simp Disk I/O CPU Total

Sec

Clusters

Figure 10: Computation time for Atlas model partitioned
into 4 to 64 clusters. A linear kernel is used for SVM clas-
sifiers. Note that the total computation time is equal to the
sum of Part. + Exp. (green) and Simp. (red), and also to the
sum of Disk I/O (blue) and CPU (orange).

We next discuss the memory needed with our method.
The simplification phase uses considerable memory, since
the construction of graph connectivity using a half-edge data
structure is required and this consumes considerable mem-
ory. In our experiments, the peak memory was approxi-
mately 10.7GB and 1.7GB when an Atlas model was simpli-
fied with the number of clusters being 4 and 64, respectively.
The peak memory in 64 clusters is significantly increased
than expected because more faces for each patch have to be
added in the expansion phase.

On the whole, the decision of the number of clusters is a

trade-off between the computation time and memory usage.
Fortunately, we can predict the peak memory used by the
number of clusters. To accelerate our method, the number of
clusters which consumes the most amount of memory in the
PC environment can be determined in advance. If we want to
make the whole process faster by making full use of the PC
memory, it is better to partition a mesh into as little patches
as possible.

Simplification of Huge Meshes. Fig. 11 shows the simplifi-
cation results of a David model, and Tab. 1 shows the compu-
tational time for three huge meshes. As shown in this table,
the computation time of each model is not proportional to the
number of faces. This is because the number of LMEs differs
according to the mesh. Nevertheless, each mesh, which has
over 100M faces, can be simplified within 2,500 seconds.

Model Orig. (#faces) Simp. (#faces) Time (sec.)
David 161,482,359 1,652,283 2,060
St. Matthew 166,725,000 1,737,906 2,151
Atlas 197,182,000 1,820,499 2,233

Table 1: Computation time and number of faces (reduced to
1%, Level 1) in simplification of huge meshes.

6. Conclusions and Future Work

In this paper, we have proposed a novel out-of-core frame-
work that can simplify huge meshes by using QEM-based

c© The Eurographics Association 2015.

H.Ozaki, F.Kyota, T.Kanai / Out-of-Core Framework for QEM-based Mesh Simplification

Original (161,482,359 faces) Level 1 (1,652,283 faces) Level 2 (246,407 faces) Level 3 (8,045 faces)

Figure 11: Simplification results for David model. The number of faces is reduced to approximately 1% (Level 1), 0.15% (Level
2) and 0.005% (Level 3) from that of the original model, respectively. The computational time for the simplification to Level 1
is shown in Tab.1.

mesh simplification. For simplifying the small sub-meshes,
the notion of MDD was introduced to enable independent
per-patch simplification while considering the boundary is-
sue. In the partitioning phase, a Fuzzy C-Means method
was used to cluster the sampled points and νSVM as well
as DAG-SVM were used in the partitioning phase. A huge
mesh can be then partitioned into a set of patches in the
out-of-core framework. In summary, it can be said that our
method can achieve the partition and simplification of huge
meshes with high quality simplified models as those gener-
ated by in-core QEM-based methods.

Our method is capable of parallel computation of per-
patch simplification process in principle. Faster computation
may be possible by using multiple CPUs. In this case, there
would be an additional task to effectively distribute each
patch to multiple processing units.

Our method has several limitations to be resolved as fu-
ture work. First, our partitioning method does not ensure that
each cluster (or patch) has the same number of points (or
faces). To partition a graph into a set of sub-graphs with each
graph having almost the same number of nodes, graph par-
titioning methods such as METIS [KK95] are applicable. In
this case, a graph has to be constructed from sampled points
while keeping the topology of the original mesh.

Secondly, the different number of LMEs between patches

has a significant effect on the computation time of the sim-
plification sub phase. Hence, the computational performance
could be further improved by parallel computation of per-
patch simplification if a mesh is partitioned into patches with
the same number of LMEs. To address this presumption, we
will investigate the relationship between mesh geometry and
the number of LMEs.

Acknowledgements

We would like to thank Tatsuya Yatagawa and Hideki Todo
for providing many valuable comments for this paper. We
would also like to thank Peter Lindstrom, Martin Isenburg,
and Federico Ponchio for providing their executables for the
evaluation of our research. Data used in this paper are cour-
tesy of the Digital Michelangelo Project and the Stanford 3D
Scanning Repository.

References
[BKBH07] BOLITHO M., KAZHDAN M., BURNS R., HOPPE

H.: Multilevel streaming for out-of-core surface reconstruction.
In Proc. Fifth Eurographics Symposium on Geometry Process-
ing (SGP ’07) (2007), Eurographics Association, Aire-la-Ville,
Switzerland, pp. 69–78. 7

[BKP∗10] BOTSCH M., KOBBELT L., PAULY M., ALLIEZ P.,
LEVY B.: Polygon Mesh Processing. AK Peters, 2010. 2

c© The Eurographics Association 2015.

H.Ozaki, F.Kyota, T.Kanai / Out-of-Core Framework for QEM-based Mesh Simplification

[BLVD11] BENHABILES H., LAVOUÉ G., VANDEBORRE J.-P.,
DAOUDI M.: Learning boundary edges for 3D-mesh segmenta-
tion. Computer Graphics Forum 30, 8 (2011), 2170–2182. 2

[BP02] BRODSKY D., PEDERSEN J. B.: Parallel model simpli-
fication of very large polygonal meshes. In Proc. International
Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA ’02) (2002), vol. 3, CSREA Press,
Athens, GA, pp. 1207–1215. 2

[BWWM10] BOWERS J., WANG R., WEI L.-Y., MALETZ D.:
Parallel poisson disk sampling with spectrum analysis on sur-
faces. ACM Transaction on Graphics 29, 6 (Dec. 2010), 166:1–
166:10. 4

[CL11] CHANG C.-C., LIN C.-J.: LIBSVM: A library for sup-
port vector machines. ACM Transactions on Intelligent Systems
and Technology 2, 3 (May 2011), 27:1–27:27. 7

[CMRS03] CIGNONI P., MONTANI C., ROCCHINI C.,
SCOPIGNO R.: External memory management and simpli-
fication of huge meshes. IEEE Transactions on Visualization
and Computer Graphics 9, 4 (Oct 2003), 525–537. 2

[CRS98] CIGNONI P., ROCCHINI C., SCOPIGNO R.: Metro:
Measuring error on simplified surfaces. Computer Graphics Fo-
rum 17, 2 (1998), 167–174. 7

[DC10] DU Z., CHIANG Y.-J.: Out-of-core simplification and
crack-free LOD volume rendering for irregular grids. Computer
Graphics Forum 29, 3 (2010), 873–882. 2

[GDG11] GRUND N., DERZAPF E., GUTHE M.: Instant level-of-
detail. In Proc. 16th International Fall Workshop Vision, Model-
ing and Visualisation (VMV 2011) (2011), Eurographics Associ-
ation, Aire-la-Ville, Switzerland, pp. 293–299. 1, 2, 3

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification
using quadric error metrics. In Proc. SIGGRAPH ’97 (1997),
ACM Press, New York, NY, pp. 209–216. 1, 2, 3

[HLS07] HORMANN K., LÉVY B., SHEFFER A.: Mesh param-
eterization: Theory and practice. In ACM SIGGRAPH 2007
Courses (2007), ACM Press, New York, NY. 2

[Hop99] HOPPE H.: New quadric metric for simplifiying meshes
with appearance attributes. In Proc. 10th IEEE Visualization (VIS
’99) (1999), IEEE CS Press, Los Alamitos, CA, pp. 59–66. 2

[IL05] ISENBURG M., LINDSTROM P.: Streaming meshes. In
Proc. 16th IEEE Visualization (VIS 2005) (2005), IEEE CS Press,
Los Alamitos, CA, pp. 231–238. 2

[ILGS03] ISENBURG M., LINDSTROM P., GUMHOLD S.,
SNOEYINK J.: Large mesh simplification using processing se-
quences. In Proc. 14th IEEE Visualization (VIS 2003) (2003),
IEEE CS Press, Los Alamitos, CA, pp. 465–472. 2, 4, 7

[JKS05] JULIUS D., KRAEVOY V., SHEFFER A.: D-charts:
Quasi-developable mesh segmentation. Computer Graphics Fo-
rum 24, 3 (2005), 581–590. 2

[KHS10] KALOGERAKIS E., HERTZMANN A., SINGH K.:
Learning 3D mesh segmentation and labeling. ACM Transaction
on Graphics 29, 4 (July 2010), 102:1–102:12. 2

[KK95] KARYPIS G., KUMAR V.: METIS – unstructured graph
partitioning and sparse matrix ordering system, version 2.0, 1995.
9

[Lin00] LINDSTROM P.: Out-of-core simplification of large
polygonal models. In Proc. SIGGRAPH ’00 (2000), ACM Press,
New York, NY, pp. 259–262. 2

[LPC∗00] LEVOY M., PULLI K., CURLESS B., RUSINKIEWICZ
S., KOLLER D., PEREIRA L., GINZTON M., ANDERSON S.,
DAVIS J., GINSBERG J., SHADE J., FULK D.: The digital
michelangelo project: 3D scanning of large statues. In Proc. SIG-
GRAPH ’00 (2000), ACM Press, New York, NY, pp. 131–144. 7

[LS01] LINDSTROM P., SILVA C. T.: A memory insensitive tech-
nique for large model simplification. In Proc. 12th IEEE Visual-
ization (VIS 2001) (2001), IEEE CS Press, Los Alamitos, CA,
pp. 121–126. 2

[LT99] LINDSTROM P., TURK G.: Evaluation of memoryless
simplification. IEEE Transactions on Visualization and Com-
puter Graphics 5, 2 (Apr. 1999), 98–115. 2

[Lue01] LUEBKE D. P.: A developer’s survey of polygonal sim-
plification algorithms. IEEE Computer Graphics and Applica-
tions 21, 3 (2001), 24–35. 2

[LZ04] LIU R., ZHANG H.: Segmentation of 3D meshes through
spectral clustering. In Proc. 12th Pacific Conference on Com-
puter Graphics and Applications (PG 2004) (2004), IEEE CS
Press, Los Alamitos, CA, pp. 298–305. 2

[nex] NEXUS. http://vcg.isti.cnr.it/nexus/
contacts.php. 7

[PSTC00] PLATT J. C., SHAWE-TAYLOR J., CRISTIANINI N.:
Large margin DAGs for multiclass classification. In Advances in
Neural Information Processing Systems 12 (2000), pp. 547–553.
6

[RB93] ROSSIGNAC J., BORREL P.: Multi-resolution 3D approx-
imations for rendering complex scenes. In Modeling in Computer
Graphics, Falcidieno B., Kunii T., (Eds.), IFIP Series on Com-
puter Graphics. Springer Berlin Heidelberg, 1993, pp. 455–465.
2

[SG01] SHAFFER E., GARLAND M.: Efficient adaptive simplifi-
cation of massive meshes. In Proc. 12th IEEE Visualization (VIS
2001) (2001), IEEE CS Press, Los Alamitos, CA, pp. 127–134.
2

[SG05] SHAFFER E., GARLAND M.: A multiresolution represen-
tation for massive meshes. IEEE Transactions on Visualization
and Computer Graphics 11, 2 (March 2005), 139–148. 2

[SGW06] SCHMIDT R., GRIMM C., WYVILL B.: Interactive de-
cal compositing with discrete exponential maps. ACM Transac-
tion on Graphics 25, 3 (July 2006), 605–613. 5

[SN13] SHONTZ S. M., NISTOR D. M.: Cpu-gpu algorithms for
triangular surface mesh simplification. In Proc. 21st Interna-
tional Meshing Roundtable (2013), Springer, Berlin, Germany,
pp. 475–492. 2

[SPR06] SHEFFER A., PRAUN E., ROSE K.: Mesh parameteri-
zation methods and their applications. Foundations and Trends
in Computer Graphics and Vision 2, 2 (Jan. 2006), 105–171. 2

[SSWB00] SCHÖLKOPF B., SMOLA A. J., WILLIAMSON R. C.,
BARTLETT P. L.: New support vector algorithms. Neural Com-
put. 12, 5 (May 2000), 1207–1245. 5

[Sta] The stanford 3D scanning repository. http://
graphics.stanford.edu/data/3Dscanrep/. 7

[SW03] SCHAEFER S., WARREN J.: Adaptive vertex clustering
using octrees. In Proc. 8th SIAM Geometric Design and Com-
puting (2003), Nashboro Press, Brentwood, TN, pp. 491–500. 2

[XLXG11] XIAO D., LIN H., XIAN C., GAO S.: CAD mesh
model segmentation by clustering. Computers & Graphics 35, 3
(2011), 685–691. 2

[ZSGS04] ZHOU K., SYNDER J., GUO B., SHUM H.-Y.: Iso-
charts: Stretch-driven mesh parameterization using spectral anal-
ysis. In Proc. Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing (SGP ’04) (2004), ACM Press, New York,
NY, pp. 45–54. 2

c© The Eurographics Association 2015.

http://vcg.isti.cnr.it/nexus/contacts.php
http://vcg.isti.cnr.it/nexus/contacts.php
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/

