
Image-Based Objects

TR98-028

July 1998�
Manuel M. Oliveira and Gary Bishop

Department of Computer Science

University of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175 �
UNC is an Equal Opportunity/A�rmative Action Institution.

Image-Based Objects

Manuel M. Oliveira and Gary Bishop
UNC Computer Science Technical Report TR98-028

Abstract

We present a compact, image-based representation for
three-dimensional objects with complex shapes that can be
rendered with correct perspective from arbitrary viewpoints
using a list priority algorithm. Objects are represented by six
layered depth images sharing a single center of projection.
They can be freely translated, rotated, and scaled, being used as
primitives to construct complex scenes. We also present a new
list priority algorithm for rendering such scenes, and a back
face culling strategy for a class of image-based objects.

We demonstrate these concepts by constructing image-
based representations from both synthetic and real objects, and
rendering them at interactive rates on a PC. Due to their
minimum storage requirements and rendering simplicity,
image-based objects can find potential uses in games, virtual
museums applications, and web catalogs.

1. Introduction

Image-based representations of objects are currently used

in computer games and virtual museum applications, and there
is some potential demand for web-based shop catalogs. An
ideal object representation for such applications should
preserve the original appearance of the objects, be able to be
manipulated interactively, and visualized from arbitrary
viewpoints. Also it should be compact enough to be sent
through a network, and rendered at reasonable frame rates
using non-specialized graphics hardware.

This paper presents a new compact image-based
representation for three-dimensional objects with complex
shapes that can be rendered with correct perspective from
arbitrary viewpoints using a list priority algorithm based on
McMillan and Bishop’s [9] occlusion compatible order. In our
approach, each object, called an Image-Based Object (IBO), is
represented by six layered depth images (LDIs) [15] that share
a single center of projection (COP). IBOs can be scaled, and
arbitrarily translated and rotated, and can be regarded as
primitives to construct more complex scenes. We also present a
new list priority algorithm for rendering dynamic scenes
composed of IBOs, given some spatial constraints among the
objects. We demonstrate these concepts by constructing image-
based representations from both synthetic and real objects, and
implementing a system prototype that can render IBOs at
interactive rates on a PC.

The remainder of this paper is organized in the following
way: section 2 surveys previous work in image-based object

 CB #3175 Sitterson Hall, Chapel Hill, NC, 27599-3175
oliveira@cs.unc.edu, gb@cs.unc.edu

representation. Section 3 describes the process of building and
rendering IBOs. Section 4 discusses how scenes can be
constructed from IBOs and presents a list priority algorithm for
rendering such scenes. Section 5 discusses some results, while
section 6 presents some conclusions and directions for future
work.

2. Previous and Related Work

Dally et al [3] use a sampling sphere around a target
object to take multiple views of it. Such images are stored in a
data structure called a delta-tree that divides the (θ, φ) space
into square regions. During rendering time, the four corners of
the region enclosing the desired viewpoint are used for
reconstruction [3]. Since the COPs of all reference images are
constrained to be on the sphere, it is not possible to completely
sample the surface of objects with arbitrary shapes. The
multiple views have different centers of projection and a z-
buffer is required to eliminate hidden surfaces.

Levoy and Hanrahan [8] and Gortler et al [5] represent
objects as collections of images obtained from rectangular grids
placed around the objects. At rendering time, the images in the
database are re-sampled to produce an interpolated view of the
object. This approach requires a large number of images, and
putting multiple such representations in the same scene is not
straightforward.

Pulli et al [13] use color images and dense range maps
to reconstruct sparse triangle meshes associated with real
objects. The color images are used as texture maps and applied
to the meshes. In order to reconstruct a new view of an object,
the meshes corresponding to the three closest original
viewpoints are blended on a per pixel basis and z-buffered in
software. The use of sparse triangle meshes introduces artifacts
at the object silhouettes that look polygonal.

Multiple-center-of-projection images [14] can
represent objects as sequences of one-dimensional images
acquired along a continuous path. Such a representation
provides connectivity information among adjacent samples,
and allows different parts of the object/scene to be sampled at
different resolutions. Since samples are acquired from different
COPs, visibility is determined using a z-buffer.

3. Rendering Objects using a List Priority Algorithm

McMillan and Bishop [9] presented a list priority solution
for the visibility problem in the context of their image warping
framework. Unfortunately, their algorithm cannot be used to
warp multiple images acquired from different COPs
simultaneously. An important observation, however, is that
their algorithm can still be used if all images share a common
COP. In this case, one only needs to specify the order in which

the images must be warped, which changes with the desired
viewpoint. Unfortunately, it is not possible to sample the whole
exterior surface of a three-dimensional object from a single
COP.

3.1. Building Image-Based Objects

One solution to this problem is to put the shared COP
inside the object. Although this is not directly realizable for
real objects, this idea gives us a good framework to think about
the problem. A similar result can be obtained by acquiring
multiple views of the object, and resampling them from a
single COP, as illustrated in figure 1. The depth values
associated with the pixels are used to project all samples back
to 3D. Once these samples have been registered, they are
reprojected into perpendicular image planes sharing the same
COP (figure 1b). Notice that, although a cubic arrangement is
shown in figure 1, any parallelepiped would work as well.
Also, the object does not need to be completely inside the
parallelepiped. The described arrangement is topologically
equivalent to a spherical image and, therefore, can be warped in
visibility preserving order. During the resampling process,
multiple non-redundant samples falling along the same ray are
preserved. Thus, each image-based object is represented by six
LDIs, which are stored as linear arrays for efficient warping.

Notice that, although our representation makes use of
LDIs, the two concepts are quite different. LDIs were
introduced to minimize disocclusion problems that occur when
warping depth images [15]. This is achieved by allowing a
view of the scene to contain multiple samples along each ray.
While LDIs can be warped in occlusion compatible ordering,
they are only effective if the desired view is in a certain
neighborhood of the LDI’s COP. An apparent similarity
between both concepts is the use of a cube when generating
LDIs from ray traced scenes. In this case, the purpose of such a
cube is to define the region of interest in which the viewer will
be allowed to move when exploring the scene [15]. In our
approach, the goal is to produce arbitrary views of a three-

dimensional object from a fixed set of six images warped in
occlusion compatible order. The parallelepiped (shown in
figure 1) is used for two reasons: first, to provide a surface
topologically equivalent to a sphere, for which an occlusion
compatible ordering is known to exist [10]. Secondly, it can be
decomposed into parameterized planar regions (faces of the
parallelepiped), for which a warper can be implemented
efficiently.

Given the resolutions (possibly different) of the planar
images associated with the faces of the parallelepiped, each
original sample is mapped to the closest pixel of the image
covering the corresponding region of space. The higher the
resolution the smaller the reprojection error. Alternatively, the
surfaces of the objects can be reconstructed and resampled
using a regular grid at the corresponding image planes. In all
examples shown in this paper, samples were mapped to the
center of the closest pixel they project to.

A sample is considered to be redundant if it is closer than a
pre-defined threshold in 3D (Euclidean distance) to another
sample from a different original image, and both have similar
colors. Redundant samples are eliminated during the
construction of the LDIs. The preprocessing time associated
with the construction of the six LDIs corresponding to the IBO
shown in figure 13 was about 5 seconds on a HP workstation,
after which the LDIs are saved in disk and are ready for future
use. In our current implementation, the choice of which
samples are preserved (among the redundant ones) is arbitrary.
A better solution seems to base such a decision on the angle
between the ray from the IBO COP to the sample, and the
sample normal. Such a normal can be approximated using the
neighborhood of the sample in the corresponding original
image [12], as part of this preprocessing.

3.2. List Priority Rendering

Since the IBO representation is topologically equivalent to
a sphere, each IBO can be warped using an adaptation of
McMillan and Bishop’s algorithm for spherical images. The
IBO COP is defined as the intersection of the two diagonals of
the parallelepiped. Given such a configuration, the following
properties can be observed:

• Although the six planar images share a common COP, they
are still independent from one another. Therefore, the
definition of sheets is independently established for each
image, using the regular sheet split procedure [10];

Figure 2. Epipolar Geometry of an IBO. (a) The segment containing
the desired COP and the IBO COP (center of the cube) intersects
opposite faces at e+ (positive epipole), and e- (negative epipole). (b)
Projected flow lines (arrows) defining an occlusion compatible
ordering to the whole object.

(a) (b)

e+
e-

e+

Figure 1. (a) Views of an object acquired from multiple COPs. (b)
The samples are registered and will be reprojected onto perpendicular
image planes (represented by the faces of the cube) sharing a single
COP.

(a)

(b)

• Since the IBO COP is at the intersection of the diagonals, the
positive and the negative epipoles fall within opposite faces;

• There is no redundancy among images, i.e., no sample is seen
in more than one face;

• The whole field of view is covered;

Figure 2 illustrates the epipolar geometry for a cubic
IBO. The line connecting the desired and the IBO COPs
intersects the cube at opposite faces1, and defines an occlusion
compatible order for warping the whole object. The face
containing the negative epipole (e-) (figure 2) must be warped
first, while the face containing the positive epipole (e+) must
be warped last. The arrows in figure 2b are the projected flow
lines representing the occlusion compatible order. Consider the
cube split into six pyramids with apices at the IBO COP, as
shown in the figure 3. Let’s call the faces containing the
positive and negative epipoles, F, and K, respectively. Notice
that this classification is relative to desired view position. The
other two pairs of opposite faces are called (A, A’), and (B, B’)
(figure 3). The following theorem defines orders in which the
six faces can be independently warped in visibility preserving
order. A proof of the theorem is presented in Appendix A.

Theorem: Let B’ be the base of pyramid PB’ that is intersected
by the segment connecting the positive epipole and its parallel
projection into K. Then, warping the faces of the cube in the
order (K, B, A, A’, B’, F), or (K, B, A’, A, B’, F) produce
correct visibility from the desired view position.

Since the set of rays emanating from the object COP
covers a solid angle of 4π steradians, some care should be
taken in order to guarantee that multiple samples along a ray
are always warped from back to front with respect to the
desired view. One way to define such an order is to compute
the smallest angle between the two vectors from both COPs to
the furthest sample along the ray in question. If the angle is less
than 90 degrees, the samples are warped from farthest to
closest (with respect to the IBO COP); otherwise, they are
warped from closest to farthest. Notice, however, that such a
procedure requires the knowledge of the ray direction
associated with the projection of the sample in the desired
image plane, which is only known after the actual warping. In

1 The cases in which the line intersects edges or vertices are treated
similarly.

order to avoid an extra warping step just to compute such a
direction, we approximate the desired ray using the desired
image plane normal. This way, the order in which samples are
warped is established by a dot product. Although this is only an
approximation, it works very well in practice.

In the case of objects whose representations are
topologically equivalent to spheres (genus zero) and present
good aspect ratio, the warping of the image containing the
negative epipole can be omitted (figure 15). This optimization
is analogous to back face culling used in polygonal computer
graphics. In practice, we observed speedups varying from 19%
to 22% due to the its utilization.

3.3. Transformations

Geometric transformations such as translation, rotation,
and scaling can be easily applied to IBOs. Since all six LDIs
are defined with respect to a single COP, translations are
obtained simply by translating the object COP. Rotations are
obtained by rotating the three vectors that define the pinhole
camera parameters [11] of each LDI around the desired axis.
The generalized disparity value associated with each sample is
computed as d/z, where d is the distance from the COP to the
image plane, and z is the z coordinate of the sample with
respect to a frame of reference whose XY-plane contains the
image plane. Therefore, to scale an object by a factor s is
equivalent to multipling the disparity of all its samples by 1/s.

4. Scenes from IBOs

Image-based objects can be combined to generate more
complex scenes. Given some constraints on the spatial
relationship among the objects, the whole scene can rendered
using an occlusion compatible order. Thus, if there are no inter-
penetrations between any pair of IBOs bounding spheres, then
for any desired view there is at least one serial order in which
the objects can be warped that produces correct visibility and
does not require depth comparison.

The algorithm presented here in 2D, for simplicity,
provides a way to obtain one such order. Given a set of objects,
compute a hypothetical COP for the scene (HCOP) as the
average of all objects COPs. If the derived HCOP does fall
inside any object’s bounding sphere, move it to avoid this

Figure 3. Faces of the parallelepiped are labeled with respect to the
desired viewpoint. F contains the positive epipole (e+), while K
contains the negative epipole (e-).

K
B

B'
F

A
A'

radial
projection

Figure 4. Epipolar geometry of a scene with respect to the desired
view. Small circles represent IBOs bounding spheres. HS
(hypothetical sphere), HCOP (hypothetical COP). Non-
overlapping radial projections.

he+

he-

object

HS

desired

HCOP

e+ e-

situation. Define HS, a hypothetical sphere (circle in 2D)
whose center is at HCOP. Given an arbitrary desired view,
compute he- and he+, the hypothetical negative and positive
epipoles on HS induced by the desired view. Next, radially
project all objects into HS (figure 4). At this point, there are
two possible configurations: (a) none of the radial projections
overlap, and (b) at least two projections overlap.

The case in which no projections overlap is shown in
figure 4. We radially scan one of the hemispheres from he-
towards he+ and every time we reach an object it is added to
the end of a list (originally empty). If the segment HCOP/he+
crosses an object, that object should appear last in the final list.
Then the other hemisphere can be processed the same way. The
order of the objects in the list is an order that produces correct
visibility from the desired COP. Each individual object is
warped using the order defined by the theorem presented in
section 3.2.

If at least two projections overlap (figure 5), group the
overlapping objects in clusters. The criterion for defining
clusters is transitive, i.e., if the projection of object A overlaps
the projection of object B, and the projection of object B
overlaps the projection of object C, then A, B, and C belong to
the same cluster.

We start scanning one of the HS hemispheres from he-
towards he+ and every time we reach an object that does not
belong to a cluster it is added to the end of a list (originally
empty). If the object belongs to a cluster, the algorithm is
recursively applied to the cluster itself, i.e., an HCCOP
(hypothetical cluster COP - see figure 5), an HCS (hypothetical
cluster sphere), and a pair of epipoles (hce- and hce+) are
defined for the cluster, and the projections of the objects into
HCS are computed, with sub-clusters possibly defined. Then,
one of the hemispheres of HCS is scanned from hce- towards
hce+. If an object of the cluster is found that does not belong to
a sub-cluster it is added to the end of the list, and removed from
the cluster. If, however, the object belongs to a sub-cluster, this
process is recursively reevaluated. As soon as the objects
belonging to the first hemisphere have been completely
examined, the next hemisphere can be processed in a similar
way. At the end, the constructed list defines an order that
produces correct visibility from the desired COP.

A cluster covers a whole angular range in HS. The order in
which its elements should be rendered is completely specified
by them and the desired COP. Therefore, when the angular

scanning reaches a cluster, only its elements need to be
considered, in the context of the desired COP.

4.1. Additional Remarks

When applying the algorithm to warp a series of objects, it
is strictly correct to warp only the parts of the objects that are
allowed by the (h)e- (h)e+ configurations, i.e., the parts that fall
in the "working" hemisphere. However:
1. If an object is crossed by the segment from the HCOP to e-

and the radial projection of the object into HS does not
overlap any other projection (figure 6a), the object can be
warped completely, although its parts fall in the both
hemispheres.

2. If the projections involving at least one object crossed by
segment from HCOP to e- overlap (figure 6b), keep
applying the algorithm to this cluster recursively, and this
situation will be reduced to case 1.

3. If at least one object is crossed by the segment from HCOP
to e+ (figure 6c), wait until the other hemisphere also
reaches this cluster before deciding its order and warping
its components.

4.2. Further Considerations

The notion of planes dividing the space into two half
spaces, one of which contains the desired COP, is a general
concept from which the algorithm described in section 4 is a
special case. Such a notion has been explored by
Schumacher’s list priority algorithm [16], as well as by BSP
trees [4]. The main difference between these two approaches
and ours is the fact that they make use of a preprocessing stage
and are constrained to static scenes (dynamic BSP trees [17]
provide some extra flexibility but do not completely eliminate
the need to update the tree structure). In the presented
algorithm, the rendering primitives are IBOs. This implies a
much coarser granularity and, therefore, a smaller number of
comparisons to decide the final order. On the other hand, the
comparisons are computationally more expensive than the ones
used when traversing a BSP tree. One advantage of our
approach is the ability to handle dynamic scenes, since no
preprocessing is involved. Its main disadvantage is it does not
support object interpenetration. In the BSP tree case, polygon
interpenetrations are eliminated during the pre-processing
phase.

cluster

desired
view

object

HCCOP

HCS
he+

he-HCOP

hce+ hce-

Figure 5. Recursive application of the algorithm to solve visibility
inside a cluster of overlapping projections.

Figure 6. (a) Object crossed by the segment connecting HCOP and
the negative epipole. (b) Two objects with overlapping projections
crossed by the segment HCOP-e-. (c) Two overlapping objects
crossed by the segment HCOP-e+.

e+

e-
HCOP

(a)

e-

e+

HCOP

(b)

e-
e+

HCOP

(c)

Our current implementation of the algorithm is obtained by
computing the projections of the objects’ bounding spheres
onto a plane perpendicular to the view plane, and using the
procedure described. The use of bounding spheres allows for a
2D implementation to be applied to 3D scenes. For the cases in
which two projections overlap on the plane, the ambiguity is
solved by computing the projections of the conflicting objects
onto planes perpendicular to the original one. If the conflict
persists, for each pair of conflicting objects we compute the
plane orthogonal to the vector connecting the centers of the two
objects and tangent to one of the bounding spheres. The
coefficients a, b, and c of the plane are the coefficients of the
orthogonal vector. d is obtained by plugging in the coordinates
of the vector scaled by the radius of the first sphere. The sign of
the desired view position with respect to the computed plane is
then used to order the conflicting objects.

The check for radial projection overlapping is
implemented conservatively. For each object we compute a
vector v, orthogonal to the vector from HCOP to the center of
the object’s bounding sphere. v’s length equals the radius r of
the object’s bounding sphere (figure 7a). Then, we compute
vectors p1 and p2 (with tails at HCOP), by translating v and –v
by r/2 towards HCOP (figure 7b). Finally, compute the angles
between p1, and p2 and the vector from HCOP to he- (figure
7b). The angular range comprising each object is used to check
for overlappings.

4.3. An Approximation Algorithm

 Given the restriction that spherical bounding boxes of
objects do not interpenetrate, an approximation algorithm can
be used to produce correct visibility in almost all cases. A
priority list is constructed simply by sorting the objects
according to the decreasing distance from the desired COP to
the center of each bounding sphere. Despite its simplicity, this
heuristic works very well in practice. Figure 8 illustrates this
point for two views of the same scene produced with an
interactive tool used to verify the heuristic. The numbers
associated with the circles are distances from the desired COP
to their corresponding centers. The heuristic breaks for
configurations involving spheres at highly different scales and
tangent to each other. Figure 9a depicts such a configuration.
Notice that this is a conservative heuristic, and the rendering of

the actual objects in the specified order can be correct even for
such configurations (figure 9b).

4.4. Adding Geometric Objects to a Scene

If there are no interpenetrations involving IBOs or
geometric models bounding speheres, then for any desired view
there is at least one serial order obtained by interleaving the
rendering of IBOs and geometric models that produces correct
visibility and does not require depth comparison to be
established. Such a situation is similar to the one involving
only image-based objects.

Given such an order, both IBOs and geometric models can
be safely rendered to the same buffer. Geometric models
should be rendered using a z-buffer to solve visibility among
the polygons that constitute each model (i.e., the z-buffer can
be reset after the rendering of each geometric model).

5. Results

We built a system prototype in C++ that implements the
algorithms described for construction and rendering of IBOs. In
our system, IBOs can be built using 4 different approaches:
images with depth obtained from 3D Studio MAX, images with
depth obtained from the OpenGL depth buffer [18], images
acquired with a laser range finder, and a modified ray tracer [7]
that keeps all intersections along a ray. In all examples shown
(figures 10, 11, 13, and 14), visibility was solved using our
occlusion compatible order algorithm, and no anti-aliasing
technique has been used.

HCOP v

he-

p1

p2

(a) (b)

Figure 7. Using angular range to check for radial projection
overlapping. (a) v is the vector orthogonal to the segment connecting
the center of the two circles. (b) The vectors p1 and p2 are used to
compute a conservative angular range for the object bounding sphere.
Angular ranges are used to check for overlapping projections.

Figure 8. The use of an approximation algorithm to define a priority
list. The numbers represent the distances from the desired COP to
the center of the spheres. Objects are sorted by decreasing distance.

Figure 9. (a) The configuration that breaks the heuristic: two spheres
at extremely different scales and very close to each other. Although
closest, the smallest sphere is hidden by the biggest one. (b) This
order can still produce correct results depending on the actual
geometry of the objects.

(a) (b)

The old clock shown in figure 10 was generated from 6
synthetic images rendered with 3D Studio MAX. Notice that,
in this case, the registration process is extremely easy because
we have exact camera calibration. The generalized disparitity
values were obtained using a plug-in. Its final representation is
composed of 6 150x150 LDIs, with a total of 230,102 samples.
This is equivalent to a regular depth image with 480x480
pixels. The Venus statue in figure 11 was generated from 4
images rendered with 3D Studio MAX, resulting in 6 150x150

.

LDIs with a total of 220,324 samples. This is equivalent to a
regular depth image with 470x470 pixels. Notice how this
extremely complex shape is faithfully reconstructed from a
relatively small number of samples.

Figure 12. Reflected intensities of a real object obtained with a laser
range finder. From top to bottom, left to right: 0, 90, 180, and 270
degrees, respectively. Background color represents zero intensity.

Figure 13. Views of an IBO constructed from the four range images
shown in figure 12. The visibility problem is correctly solved, but
some artifacts due to differences in shading in the original images,
and to areas not sampled by the scanner can be noticed.

Figure 10. Views of an IBO constructed from 6 images and rendered
using 2x2 splats.

Figure 11. Views of an IBO constructed from 4 images of a highly
specular Venus statue. The left image rendered with points, while
right one was rendered using 3x3 splats.

Figure 14. Scene rendered using the approximation algorithm
described: Venus with an old clock (2x2 splats).

Figure 15. Close-ups of the old clock rendered as point clouds to
illustrate back face culling (front and opposite side culled).

An Acuity Research AccuRange4000 time-of-flight laser
range finder was used to create IBOs from real objects. It
outputs intensity reflected gray scale images, and range maps.
The samples are acquired on a spherical grid (θ,φ) and need to
be converted to Euclidean coordinates.

Figure 12 shows four views of an object acquired using a
rotational platform. Each image subtends 30 degrees in both
vertical and horizontal field-of-view, and is 240x240 pixels in
size. Specularity is a problem common to all laser range
scanners [2] and, in order to reduce its effect, the specular
helmet was sanded. However, specular highlights are still
visible in the lateral views (figure 12). Another major sources
of error during range acquisition are the discontinuities
involving the boundaries of the object and the background. In
those regions, laser range finders usually receive two returns
and average them, producing wrong measurements. In order to
avoid this problem, a planar specular reflector oriented
approximately 30 degrees with respect to the vertical was used
as background. This way, as some portion of the laser beam
missed the object, it was reflected away from the sensor. The
background color in figure 12 corresponds to regions where no
light (zero intensity) returned to the sensor, and illustrates the
effectiveness of our solution. However, wrong measurements
are still caused by discontinuities along the surface of the
object (for instance, see discontinuities between the face and
the helmet), as well as inaccuracies of the device. In all such
cases, the error appears as noisy data (outliers).

Since the reference images were acquired from virtually
different COPs (the scanner COP was kept still and the
platform was manually rotated), the images needed to be
registered. The approach used for registration is very simple: a
white pin was scanned at the center of the rotational platform.
From the range data, the (x,z) coordinates of the pin with
respect to the scanner were recovered (our system can provide
the 3D coordinates associated to any pixel of a range image).
The samples were then rotated around the vertical axis passing
through (x,z). This simple procedure led to good initial
positioning that required little user intervention to achieve
satisfactory (although not perfect) registration.

The shading in the intensity images tends to cause seams
in the reconstructed model. The surfaces facing the scanner
appear brighter than the ones seen by the laser beam at grazing
angles. When samples from all reference images are put
together, seams become very noticeable. Such distracting
effects were reduced (but again not completely eliminated)
with the use of a 3D painting tool that is part of our system.

Figure 13 shows some views of the IBO reconstructed
from the range images presented in figure 12, and rendered
using 2x2 splats. A total of 112,865 valid samples were stored
in 4 150x150 and 2 100x100 LDIs, and are equivalent to a
regular depth image with 336x336 pixels. Despite its small
size, all major features of the original object are preserved.

The original images contain no information about the top,
nor the bottom of the object. However, if views from these
areas are not going to be explored, it is possible to take
advantage of back face culling by not warping the face that
contains the negative epipole, as discussed in section 3.2.

Figure 14 shows a scene demonstrating the potential of
using IBOs to construct complex scenes. The visibility between
the two objects was solved using the approximation list priority
algorithm described. Notice that the two objects do not
interpenetrate (although their bounding spheres do), showing
how conservative the algorithm is. For applications that can
constrain objects’ spatial relationships, this algorithm can be an
attractive alternative. The accompanying video tape illustrates
the use of the algorithm in a dynamic scene.

We measured the frame rates associated with rendering of
IBOs on a Pentium II PC running at 400MHz. Resampling was
performed using 2x2 splats. During the measurements, all
objects were completely inside the user’s field of view. Table 1
summarizes the results for the IBOs shown in figures 10, 11
and 13.

Table 1. Average frame rates for rendering IBOs on a PC

Description old clock Venus Helmet
Frames/sec. 7.13 6.26 8.29

6. Conclusions and Future Work

We presented a new compact, image-based representation
for three-dimensional objects with complex shapes that can be
visualized from arbitrary viewpoints using an extension of
McMillan and Bishop’s visibility algorithm. We demonstrated
that even very complex shapes can be faithfully reconstructed
from a relatively small number of samples. We showed that
IBOs can be rendered at interactive rates on a PC. We also
described how such objects can be translated, rotated, and
scaled to produce more complex scenes that can possibly
contain polygonal objects. For such scenes, we presented a new
list priority algorithm for non-interpenetrating objects, whose
rendering primitives are the objects themselves. Since no
preprocessing is involved, the algorithm can be used for
dynamic scenes. A much simpler approximation algorithm was
also presented. We showed how back face culling can be
applied to IBOs, leading to a 16.6% expected speedup for
objects whose samples are evenly distributed among the faces.

We demonstrated these concepts implementing a prototype
for building and warping image-based objects and scenes. We
implemented different approaches for object construction: from
images for which their corresponding depth buffers are
available, from data acquired using a laser range finder, and
from a modified ray tracer

The use of better acquisition strategies (for instance, based
on Cyberware scanners) can provide registered seamless color
images to greatly improve the appearance of IBOs constructed
from real objects. The use of variable splat sizes and anti-
aliasing techniques can also improve the final appearance of
IBOs in general.

An interesting problem is how to guarantee consistent
illumination in a scene composed of multiple IBOs. In this
work, objects were rendered using their original shading during
acquisition time. Reconstruction of normal approximations
from point clouds [1] [6] and from polygonal meshes [12] is a

relatively straightforward task. If specular effects are factored
out (e.g., acquiring images with ambient light only),
conventional shading models can be applied to IBOs. Casting
shadows, however, would require more elaborated solutions.

A possible way to speedup the rendering of IBO scenes is
to use levels of detail for rendering distant objects. The authors
have successfully implemented a mipmap version of an image
warper by filtering both color and disparity values on the fly.
Its adaptation to layered depth images seems to be relatively
straightforward.

The recent interest in web-based applications such as
virtual museums and shopping catalogs, puts some importance
on the user’s ability to interact with compact three-dimensional
object representations whose rendering requires no specialized
graphics hardware. For these applications, and also for the
game industry, the image-based object approach presented in
this paper seems to be an attractive alternative.

Acknowledgements

We would like to thank Nick England, Anselmo Lastra, and the
UNC IBR group for their assistance and support. Special thanks to
Lars Nyland for his enthusiasm and help with the laser experiments.
Discussions with David McAllister resulted in the approximation
algorithm. The old clock model was provided by Amazing 3D
Graphics, and the Venus model was provided by REM Infográfica.

This work was sponsored by CNPq/Brazil – Process #
200054/95. Additional support provided by DARPA under order #
E278 and NFS under grant # MIP-961. Intel generously donated
equipment used in this research.

References

 [1] Amenta, N., et al.. A New Voronoi-Based Surface Reconstruction
Algorithm. Proc. SIGGRAPH 98 (Orlando, FL, July 19-24, 1998). In
Computer Graphics Proceedings. Annual Conference Series, 1998, ACM
SIGGRAPH, pp. 415-422.

 [2] Arman, F., Aggarwal, J. Model-Based Object Recognition in Dense Range
Images – A Review. ACM Computing Surveys, Vol. 25, No. 1, March 1993.
pp. 5-44.

[3] Dally, W., et al. The Delta Tree: An Object-Centered Approach to Image-
Based Rendering. MIT AI Lab Technical Memo 1604.

[4] Fuchs, H. et al. On Visible Surface Generation by A Priori Tree Structures.
Proc. SIGGRAPH 80. In Computer Graphics Proceedings. Annual
Conference Series, 1980, ACM SIGGRAPH, pp. 124-133.

[5] Gortler, S., et al.. The Lumigraph. Proc. SIGGRAPH 96 (New Orleans, LA,
August 4-9, 1996). In Computer Graphics Proceedings. Annual Conference
Series, 1996, ACM SIGGRAPH, pp. 43-54.

[6] Hoppe, H., et al.. Surface Reconstruction from Unorganized Points. Proc.
SIGGRAPH 92 (Chicago, IL, July 26-31, 1992). In Computer Graphics
Proceedings. Annual Conference Series, 1992, ACM SIGGRAPH, pp. 71-
78.

[7] Kolb, C. Rayshad User’s Guide and Reference Manual. Draft 0.4, January
10, 1992.

 [8] Levoy, M., Hanrahan, P. Light Field Rendering. Proc. SIGGRAPH 96
(New Orleans, LA, August 4-9, 1996). In Computer Graphics Proceedings.
Annual Conference Series, 1996, ACM SIGGRAPH, pp. 31-42.

[9] McMillan, L., Bishop, G. Plenoptic Modeling: An Image-Based Rendering
System. Proc. SIGGRAPH 95 (Loas Angeles, CA, August 6-11, 1995). In
Computer Graphics Proceedings. Annual Conference Series, 1995, ACM
SIGGRAPH, pp. 39-46.

[10] McMillan, L. Computing Visibility Without Depth.UNC Computer
Science Technical Report TR95-047, University of North Carolina, October
1995.

[11] McMillan, L., Bishop, G. Shape as a Perturbation to Projective Mapping.
UNC Computer Science Technical Report TR95-046, University of North
Carolina, April 1995.

[12] Oliveira, M., Bishop, G. Dynamic Shading in Image-Based Rendering,
UNC Computer Science Technical Report TR98-023, University of North
Carolina, May, 1998. http://www.cs.unc.edu/~oliveira/TR98-023.pdf

[13] Pulli, K., et al. View-Based Rendering: Visualizing Real Objects from
Scanned Range and Color Data. Proceedings of the 8th Eurographics
Workshop on Rendering. St. Ettiene, France, June 1997.

[14] Rademacher, P., Bishop, G. Multiple-Center-of-Projection Images. Proc.
SIGGRAPH 98 (Orlando, FL, July 19-24, 1998). In Computer Graphics
Proceedings. Annual Conference Series, 1998, ACM SIGGRAPH, pp. 199-
206.

[15] Shade, J., et al. Layered Depth Images. Proc. SIGGRAPH 98 (Orlando,
FL, July 19-24, 1998). In Computer Graphics Proceedings. Annual
Conference Series, 1998, ACM SIGGRAPH, pp. 231-242.

[16] Sutherland, I. et al. A Characterization of Ten Hidden-Surface Algorithms.
Computing Surveys, Vol. 6, No. 1, March 1974.

[17] Torres, E.. Optimization of the Binary Space Partition Algorithm (BSP)
for the Visualization of Dynamic Scenes. Proc. EUROGRAPHICS’90
(Montreux, Switzerland, September 4-7, 1990), pp. 507-518.

[18] Woo, M., et al. OpenGL Programming Guide. 2nd edition. Addison
Wesley, 1997.

Appendix A

Theorem: Let B’ be the base of pyramid PB’ intersected by the
segment connecting the positive epipole and its parallel projection into
K. Then, warping the faces of the cube in the order (K, B, A, A’, B’,
F), or (K, B, A’, A, B’, F) produce correct visibility from the desired
view position.

Proof: Consider the four planes that split the cube into pyramids
(figure 3). The pyramid containing K is the only one that is always
separated from the half space, defined by each of the four planes, that
contains the desired view position. Thus, its samples are the only ones
that cannot occlude samples from any of the other five pyramids.
Therefore, K must be warped first. On the other hand, the pyramid
containing F is the only one that always falls into the same half space,
defined by each of the four planes, that contains the desired view
position. Thus, its samples are the only ones that can potentially
occlude samples from all the other five pyramids. Therefore, F must
be warped last.

After removing the pyramids containing K, and F, only two
of the four planes are necessary to divide the space into four disjoint
subspaces, such that the pyramids containing A, A’, B, and B’ all fall
into different subspaces. The pyramid containing B is the only one that
is always separated from the half space, defined by each of the two
planes, that contains the desired view position. Thus, its samples
cannot occlude samples from any of the other three pyramids.
Therefore, B should be warped second. On the other hand, the
pyramid containing B’ is the only one that always falls into the same
half space, defined by each of the two planes, that contains the desired
view position. Its samples can potentially occlude samples from
pyramids containing A and A’. Therefore, B’ must be warped fifth.

Two opposite pyramids not containing the epipoles cannot
occlude each other, since there is a plane passing through the desired
COP and the apices of the pyramids that separates them into different
half spaces (actually, there are infinite many such planes). Thus, two
opposite pyramids project into distinct portions of the desired view
plane, and therefore cannot occlude each other. Thus, it is safe to warp
either A third and A’ fourth, or A’ third and A fourth.

Notice that, at first glance, it seems that A, A’, B, and B’ can
be warped in any order, given that K is warped first, and F is warped
last. However, this is true only when the positive epipole falls exactly
at the center of face F.

