
Copyright © 2012 by the Association for Computing Machinery, Inc. 
Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for commercial advantage and that copies bear this notice and the full citation on the 
first page. Copyrights for components of this work owned by others than ACM must be 
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on 
servers, or to redistribute to lists, requires prior specific permission and/or a fee. 
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail 
permissions@acm.org. 
Web3D 2012, Los Angeles, CA, August 4 – 5, 2012. 
© 2012 ACM 978-1-4503-1432-9/12/0008 $15.00 

Accessing HTTP Interfaces within X3D Script Nodes

Manuel Olbrich∗

Fraunhofer IGD

Abstract

X3D supports a variety of media types to be used in 3D scenes,
like images, videos or other X3D models. A scene can dynamically
load and replace this media during runtime, but since there is no
way to communicate directly with outside sources like a server, all
data sources need to be known in advance. This problem is usually
solved by using interfaces like SAI, which allow external applica-
tions to modify the current scene. But this solution makes it neces-
sary to set up all the communication via SAI and have the external
application communicate with a server. In this paper, we will show
how XMLHttpRequest, an object common in web browsers, can be
used to handle the communication from within the X3D Browser.
We will show how well this approach fits into the X3D environment
and how easy this can be implemented in an X3D Browser. After-
wards, some examples will show the benefits in real applications
and how easy this solution is to use.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Languages I.3.6 [Computer Graphics]: Methodology
and Techniques—Standards

Keywords: X3D, ECMAScript, XMLHttpRequest, REST, Ajax

1 Introduction

Changing media in a X3D scene is literally as easy as writing the
new url into the right field. This makes it easy for designers to
create interactive scenes, that use different textures and models ac-
cording to different user inputs. This works for scenarios, where
the media urls are known upfront. It fails when the data depends on
user inputs which must be interpreted by a server, or on data that
is not available when the scene was loaded. A related problem is
data generated by the user inside a X3D scene. There is no easy
interface to store this data outside the scene.

A common solution to this is to use an external application to do
the server communication. X3D supports this via SAI, which al-
lows applications to directly access and modify data in the X3D
browser. This SAI setup can easy get very complex, with listeners
for changed fields and the implementation of a server communica-
tion.

An other way to get around this problem involves Java-based
Script nodes, which can be allowed to bypass security and access
the hard drive and network. The downsides of this method are rel-
atively complex code in an additional programming language and
modifications to the Java settings.

Both solutions decrease the portability of the X3D applications,
since the target environment must be able to run the SAI-using ap-

∗e-mail: manuel.olbrich@igd.fraunhofer.de

plication, or offer the modification of java security settings. This is
complicated between different desktop operation systems, and next
to impossible in the growing mobile sector. Therefore a solution
that works from inside the X3D browser increases portability and
simplifies deployment of these applications.

The XMLHttpRequest object, which can be found in every major
web browser’s JavaScript implementation, allows websites to ac-
cess data on the server without loading a new website. This concept
is often called Ajax, and can be found in nearly all modern web ap-
plications. Also data from the current page, like user inputs, can
be communicated to a server without leaving that page, like a form
submit would. Figure 1 shows in the ”static” window the tradi-
tional approach where a page is requested and delivered to the web
browser. The ”Ajax” window starts with the same procedure, but
the delivered page contains JavaScript code, which uses the XML-
HttpRequest object to interact with the server without the need to
load a new page.

This allows interactions which where next to impossible with the
static approach, like offering suggestions while the user is entering
text in a search field. Other examples would be a live chat in a
webpage or collaborative editing.With these possibilities in a X3D
browser, dynamic scenes can directly communicate with a server.
This enables authors to build complex interactive scenes without
depending on complex and often incompatible X3D browser exten-
sions.

Native 3D support in web browsers with WebGL [Khronos We-
bGL Working Group 2011] opened the way for JavaScript based
runtimes like X3DOM [X3DOM 2011]. This approach has the ad-
vantage of delivering X3D content to the user without depending
on an installed X3D browser. With the X3D browser running in
the web browser’s JavaScript engine, native XMLHttpRequest sup-
port is available without any extra effort. Simple X3D applications
which need to communicate with web servers can already be im-
plemented in this environment and show the advantages of this ap-
proach.

2 Related Work

Combining the communication skills of XMLHttpRequest with
X3D [Web3D Consortium 2008] scenes is not a entirely new idea.
Other attempts exist, but they don’t integrate XMLHttpRequest
with the X3D browser, but use interfaces to communicate with a
web browser. The web browser is running a JavaScript file, which is
using the web browsers XMLHttpRequest implementation to com-
municate with the web and the previously mentioned interface to
communicate back to the X3D browser. In contrast, our implemen-
tation integrates XMLHttpRequest directly into the X3D browser
and makes it usable in Script nodes.

AjaX3D [Parisi 2006] controlled an X3D browser via its SAI
[Web3D Consortium 2010] interface from inside a web browser,
which natively provides the XMLHttpRequest object in its
JavaScript implementation. To make use of the browsers implemen-
tation, the communication logic has to be in the websites javascript,
which also needs to control and listen to the X3D scene. This ap-
proach has disadvantages, some of them are caused by the depen-
dency of a X3D running as an applet inside a web browser, which is
especially problematic for mobile or clustered setups. An other dis-

139



static ajax

server

Figure 1: Static page delivery vs dynamic pages which use Ajax
technology to communicate with the web server

advantage is the increased complexity of the setup, which decreases
portability of the applications.

Another pattern to achieve connectivity from inside X3D scenes
are Java-based Script nodes. By default, java applications running
in their virtual machine have no access to resources like hard disk
or network. Java security restrictions can be lowered or even dis-
abled, which can be used to enable access to disk and network. This
depends on the user for disabling the security, or a X3D browser
without security restrictions for the Java runtime.

Other approaches like the interfacing of an X3D scene via an HTTP
interface[Behr et al. 2004] can be used to access and change infor-
mation in the scene, but are not fitted for initializing communication
from within the scene, since there is no way of sending a message
to an http client without an request.

3 Introducing XMLHttpRequest

XMLHttpRequest is available in all major web browsers, like
Mozillas Firefox 1. It allows HTTP client operations from inside
a website, and is therefore one of the enabling technologies for the
Web2.0. Even if the name indicates XML as data encoding, the ob-
ject can be used for all kinds of data, like X3D or JSON. The XML-
HttpRequest specification is available at the W3C website [W3C
2010].

A great advantage of adapting this standardized object from the web
browser environment instead of creating an X3D specific one is the
extensive available documentation. Since the XMLHttpRequest ob-
ject is one of the key elements in most Web2.0 applications, many
tutorials and proven patterns are available on the web.

3.1 Implementation

XMLHttpRequest isn’t a native part of the ECMAScript language
[ECMA international 2008]. It is an standardized extension [W3C
2010], which provides access to to the browser’s HTTP client ca-
pabilities. Therefore it is not natively available in common EC-
MAScript engines like Google V82 or Mozillas SpiderMonkey3 and
needs to be implemented in the browser.

To make the XMLHttpRequest object available inside X3D Script
nodes, the object itself has to be added to the JavaScript engine.
The engines mentioned above provide extensive documentation on

1XHR in Firefox https://developer.mozilla.org/en/xmlhttprequest
2http://code.google.com/apis/v8
3https://developer.mozilla.org/en/SpiderMonkey

this topic. Writing code for network connections is often error-
prone and hard to debug, but since X3D browsers already need to
implement an HTTP client to fetch data, most of the functionality
is already available. An alternative is to use a proven library like
libcurl [Haxx 2010], which is already used in may applications. It
offers client implementations for HTTP, but also for other protocols
like FTP or SCP and includes SSL support.

3.2 Basic Usage

XMLHttpRequest can be used in nearly every part of JavaScript to
get data from a web server, or send data back. Asynchronous re-
quests with callback functions can be used to minimize interruption
to the user. The following example shows a simple request with
XMLHttpRequest.

xhr = new XMLHttpRequest();
xhr.open(’GET’,’http://localhost/test.txt’);
xhr.send();
print(xhr.responseText);

The XMLHttpRequest object is used to fetch the file test.txt
from the local webserver. The open() method prepares the re-
quest, and the send() method executes it. responseText con-
tains the response body. The XMLHttpRequest specification also
defines methods to access other information about the transaction,
like headers or status codes.

3.3 Types of Data

There is no real restriction in datatypes which can be used with
XMLHttpRequest, but usually text based formats are the most inter-
esting for the use in Script nodes. Especially easy to handle are
formats that can be directly interpreted by JavaScript, like XML or
JSON 4. Most of the webservice-APIs support at least one of them.
The following is an example of JSON:

{ "type":"Material ",
"diffuseColor":"0.1 0.1 0.9",
"transparency":0.5 }

The JSON segment above describes a JavaScript object with
3 attributes: type and diffuseColor are strings and
transparency is a number. This can be translated into an real
JavaScript object with JavaScripts JSON.parse() or eval().

3.4 Asynchronous mode

Communication with servers over the Internet takes time, and even
requests over a local network can easily take enough time to be
noticeable in a real-time 3D application. The asynchronous mode
of XMLHttpRequest can help in this case. By providing a callback
function with your request, your X3D browser can use the time to
render some frames until the response arrives.

3.5 HTTP, Servers and Services

With HTTP as the transmission protocol, web servers like Apache,
lighttpd5 or Microsoft’s ISS6 are the first type of data sources that
come to mind. They can be used to serve static data directly from
the server’s filesystem. The use of languages like PHP, Python, Perl
or (in the case of ISS) ASP can be used to deliver dynamic content
back to the client. That includes query results from databases, or
even data gathered by request to other servers.

4JavaScript Object Notation
5http://www.lighttpd.net
6Internet Information Server http://www.iss.net

140



In the same way data can be stored, using HTTP’s POST or PUT
requests or as parameters of a GET request. PUT or POST are de-
signed to carry the data in the request body, while the GET request
usually has no body.

3.5.1 WebDAV

WebDAV7 uses HTTP like a filesystem. The GET request, which
is also used to access webpages with a web browser, is used to read
files. Since the protocol is exactly the same, you can point your web
browser to a WebDAV resource to download or view a file. In addi-
tion to this, WebDAV uses the PUT and DELETE requests to write
and delete files. These can also be used with XMLHttpRequest to
store and manage information. Depending on the used file format,
this can also be used to exchange information between the X3D ap-
plication and an external application. The following example shows
the creation of new file named new.x3d with XMLHttpRequest.

xhr = new XMLHttpRequest();
xhr.open(’PUT’,’http://localhost/new.x3d’);
xhr.send("<X3D><Scene><Box/></Scene></X3D>");
print(xhr.status);

The structure is similar to the earlier example, but this time the re-
quest type is PUT and the send() method gets the request body
as a parameter. In case of WebDAV, this request body will be the
content of the new file. Another difference is in the print statement,
where this time the response status code is printed. In case of suc-
cess, it will be 200.

3.5.2 REST

REST (Representational State Transfer) [Fielding 2000] is an ar-
chitecture pattern which describes how to address resources in an
HTTP-based service. The perhaps most interesting constraint of
REST for X3D application is that it is designed to be stateless,
which enables authors to access data without a complicated session
setup. REST is used by many services that are based upon HTTP.
Especially web APIs for web applications adapt it to offer a struc-
tured interface to their services. Many mobile applications which
act as an interface to a web service use a so-called RESTful archi-
tecture to communicate with the application servers. Popular web
applications like Flickr, Twitter, Facebook8 or Reddit allow access
to the service with a RESTful API. These APIs usually use JSON
or XML to deliver text-based content and image formats like JPEG
or PNG for pictures. That means the requests and responses can
be implemented without much overhead in ECMAScript and API
calls which return images can directly be used as the URL for an
ImageTexture node.

APIs for public web services have often some restrictions to prevent
misuse of the API. The Flickr API 9 for example requires for some
requests types (usually those which provide high resolution data or
consume much time on the server) an identification key, which can
be obtained for free. This way the service providers can easily lock
a key if the application misbehaves. Other API functions that act
like a user (like uploading photos or posting status updates) need
the client to do user authentication with special API calls.

REST interfaces are also interesting with a 3D application as server.
[Schiefer et al. 2010] describes the addition of a REST interface to
OpenSG. Interfaces like this can be used to control a 3D applica-
tion with a (mobile) web browser. In the context of this paper, this
interface could be used to have a X3D application as an interface
which controls another X3D application. An HTTP interface for

7WebDAV http://webdav.org/specs/
8Facebook API https://developers.facebook.com/docs/reference/api/
9Flickr API http://www.flickr.com/services/api/

the InstantReality X3D browser is described in [Behr et al. 2004],
that can already be used to implement such setups.

3.5.3 CouchDB

Another example for a RESTful API is CouchDB [Apache Soft-
ware Foundation 2011]. It is a lightwight database management
system which is accessed via an RESTful HTTP API. Even the
management interface, called Futon, is an internal website which
uses the API calls to access and manipulate the databases. All data
inside a database is stored and accessed via JavaScript Object No-
tation (JSON), which is optimal for JavaScript based applications,
like dynamic websites or X3D scenes. CouchDB is a potent data
storage for X3D applications, especially if they involve some kind
of authoring or share live data with other applications. An example
will be provided later in section 4.2.

3.5.4 Special Purpose Server

Since HTTP is a widespread and easy to use transfer protocol, many
libraries which implement servers are available in most high-level
languages. This makes it quite easy to implement your own server
to use with the XMLHttpRequest object. Especially Python has
proved to be useful for this, because it is easy to implement HTTP
server functionality, and all the available libraries allow easy prepa-
ration of data, access to a wide range of devices and services. These
kind of servers can be used to access resources which are usually
out of reach for X3D applications.

3.6 Extending XMLHttpRequest for X3D

The XMLHttpRequest object on its own offers many uses in the
X3D Script nodes. Every field type in X3D has a string representa-
tion, which allows easy representation in XML or JSON, but some
of them are better represented in other forms. SFImages string
representation consists of some dimensional information followed
by the pixel data, but usually textures are stored in compressed im-
age formats rather than this representation. Since ImageTexture
nodes can use web resources, there is no problem for loading from
HTTP sources like WebDAV. Writing in compressed image formats
is not directly possible.

The easiest way around this problem is a conversion routine to
translate SFImage field data into image formats like PNG or
JPEG. This could be implemented separately from the involved ob-
jects, or either in the SFImage or XMLHttpReport objects.

For our reference implementation in the InstantReality framework
[InstantReality 2011], the XMLHttpRequest object received an ad-
ditional send() method which gets a second parameter to select
the target format mimetype. With this setup, sending compressed
SFImage data works almost like sending the uncompressed data.
This can be used to store images as files on WebDAV, or to up-
load them to web services that work with image data, like Flickr or
Facebook.

The implementation of this format conversion as a method of the
SFImage object could be beneficial because it can be used without
the XMLHttpRequest object. Also, this would be similar to the
HTML5 Canvas object10, which has methods to output its data as
PNG or JPEG.

10HTML5 - The canvas element http://www.w3.org/TR/html5/the-
canvas-element.html

141



Figure 2: Georeferenced images from the flickr web api presented
on a virtual globe

4 Applications

We have implemented the XMLHttpRequest in the current 2.0 re-
lease of the Instant Reality framework, and it has been used suc-
cessfully in different applications and examples. A simple Example
that shows how to read RSS is available in the example section at
instantreality.org. The following section shows different use cases
and if appropriate, some lines of code to show how it is used in the
X3D context.

4.1 Presenting geolocated Images from the web

This example takes georeferenced images from the image hosting
platform flickr and presents them on a virtual globe. The position-
ing of these images is realised with X3Ds Geospatial component.
With the XMLHttpRequest objekt, the api server is queried for im-
ages with GPS data around an previously selectet spot on the globe.

The following code is part of the Script node which is respon-
sible for the communication with the api server. The requests are
simplified for readability, but show the whole process from getting
a list of of images around the selected spot to retrieving the position
for each individual image.

xhr.open("http://flickr.com/?method=search&\
lat=49.8743&lon=8.6602&radius=3");

xhr.send();
picList=xhr.responseXML.photos;
for(var i in picList){
xhr.open("http://flickr.com/?method=\
geo.getLocation&photoid="+piclist[i].@id);

xhr.send();
var picPos = xhr.responseXML.location;
var pos = new SFVec3d(picPos.@lat,picPos.@long, 0.0);}

Over time, the application keeps looking for new images from the
selected area and adds them to the current set of images in the 3D
scene. Figure 2 shows the application displaying images around a
zoo. There is also an video attached to this submission which shows
the application in action.

4.2 Store Data in a DB or web API

As mentioned before, CouchDB is a database management system,
that uses HTTP for client connections and JSON as a data for-
mat. The combination between an XMLHttpRequest enabled X3D
browser and CouchDB is currently used in an collaborative system
and enables users in different locations to create annotations (spa-
tially bound notes with additional information, like text and media)
and share them with the other connected users.

The following example takes some simplified data for an annotation
and stores it into the database. Reading from the database is similar
to the example in section 3.2. Some more examples to the use of
CouchDB can be found in the tutorial on XMLHttpRequest11 in the
InstantReality framework.

var newAnnotation = ’{ "text":"Interesting spot", \
"position":"4 1 2", "orientation ":"0 1 0 1.234"}’;

xhr.open(’PUT’,’http://localhost:5984/annotations/a123’)
xhr.send(newAnnotation);

5 Conclusions

The XMLHttpRequest object has shown its possibilities in the rise
of the Web2.0. The adoption of this object into the X3D browser
doesn’t only allow Ajax operations from inside X3D worlds, but
also offers solutions for common problems like data storage. Data
created inside a X3D application can be written to a local or re-
mote server and reused in a different session or applications. Even
exchange and synchronization between different simultaneous ses-
sions is possible. The usability of this extension was shown with
several examples.

References

APACHE SOFTWARE FOUNDATION, 2011. The Apache CouchDB
Project. http://couchdb.apache.org/.

BEHR, J., DÄHNE, P., AND ROTH, M. 2004. Utilizing x3d for
immersive environments. In Web3D 2004 Symposium, Web3D
’04, 71–78.

ECMA INTERNATIONAL, 2008. Standard ecma-262 -
ecmascript language specification. http://www.ecma-
international.org/publications/standards/Ecma-262.htm.

FIELDING, R. T. 2000. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis.

HAXX, 2010. libcurl - the multiprotocol file transfer library.
http://curl.haxx.se/libcurl/.

INSTANTREALITY, 2011. Javascript - xmlhttprequest.
http://doc.instantreality.org/apidocs/scripting/javascript/class
XMLHttpRequest.html.

KHRONOS WEBGL WORKING GROUP, 2011. Webgl specifica-
tion. https://www.khronos.org/registry/webgl/specs/1.0/.

PARISI, T., 2006. Ajax3d: The open platform for
rich 3d web applications. (original site is offline.)
http://replay.waybackmachine.org/20090207131321/
http://ajax3d.org/whitepaper/.

SCHIEFER, A., BERNDT, R., ULLRICH, T., SETTGAST, V., AND
FELLNER, D. W. 2010. Service-oriented scene graph manipu-
lation. Web3D ’10, 55–62.

W3C, 2010. Xmlhttprequest - w3c candidate recommen-
dation 3 august 2010. http://www.w3.org/TR/2010/CR-
XMLHttpRequest-20100803/.

WEB3D CONSORTIUM, 2008. X3D. http://www.web3d.org/x3d/.

WEB3D CONSORTIUM, 2010. Scene access interface(sai).
http://web3d.org/x3d/specifications/ISO-IEC-19775-2.2-X3D-
SceneAccessInterface/.

X3DOM, 2011. X3DOM - a DOM-based HTML5/ X3D integra-
tion model. http://x3dom.org.

11http://doc.instantreality.org/tutorial/http-communication-in-
ecmascript-with-xmlhttprequest/

142


