
ar
X

iv
:1

10
9.

09
71

v1
 [

cs
.C

R
]

 5
 S

ep
 2

01
1

X-Vine: Secure and Pseudonymous Routing Using Social
Networks

Prateek Mittal
Dept. of ECE

University of Illinois
mittal2@illinois.edu

Matthew Caesar
Dept. of CS

University of Illinois
caesar@cs.illinois.edu

Nikita Borisov
Dept. of ECE

University of Illinois
nikita@illinois.edu

ABSTRACT
Distributed hash tables suffer from several security and pri-
vacy vulnerabilities, including the problem of Sybil attacks.
Existing social network-based solutions to mitigate the Sybil
attacks in DHT routing have a high state requirement and
do not provide an adequate level of privacy. For instance,
such techniques require a user to reveal their social network
contacts. We design X-Vine, a protection mechanism for
distributed hash tables that operates entirely by communi-
cating over social network links. As with traditional peer-to-
peer systems, X-Vine provides robustness, scalability, and a
platform for innovation. The use of social network links for
communication helps protect participant privacy and adds
a new dimension of trust absent from previous designs. X-
Vine is resilient to denial of service via Sybil attacks, and in
fact is the first Sybil defense that requires only a logarithmic
amount of state per node, making it suitable for large-scale
and dynamic settings. X-Vine also helps protect the privacy
of users social network contacts and keeps their IP addresses
hidden from those outside of their social circle, providing
a basis for pseudonymous communication. We first evalu-
ate our design with analysis and simulations, using several
real world large-scale social networking topologies. We show
that the constraints of X-Vine allow the insertion of only a
logarithmic number of Sybil identities per attack edge; we
show this mitigates the impact of malicious attacks while
not affecting the performance of honest nodes. Moreover,
our algorithms are efficient, maintain low stretch, and avoid
hot spots in the network. We validate our design with a
PlanetLab implementation and a Facebook plugin.

1. INTRODUCTION
Peer-to-peer (P2P) networks have, in a short time, rev-

olutionized communication on the Internet. One key fea-
ture of P2P networks is their ability to scale to millions of
users without requiring any centralized infrastructure sup-
port. The best scalability and performance is offered by
multi-hop distributed hash tables (DHTs), which offer a
structured approach to organizing peers [33,48,52,55]. Multi-
hop DHTs are the subject of much research and are also used
in several mainstream systems [2,7,23].

Securing DHTs has always been a challenging task [14,53,
59], especially in the face of a Sybil attack [20], where one
node can pretend to have multiple identities and thus inter-
fere with routing operations. Traditional solutions to this
attack require participants to obtain certificates [14], prove
possession of a unique IP address [39, 42], or perform some
computation [11]. This creates a barrier to participation,

limiting the growth of the P2P user base, and at the same
time does not fully address the problem of Sybil attacks.

To address this, recent research proposes to use social net-
work trust relationships to mitigate Sybil attacks [19,64,65].
However, these systems share some key shortcomings:

High control overhead: These systems rely on flooding or
large numbers of repeated lookups to maintain state. For
example, Whanau [30] is the state-of-art design that secures
routing in DHTs, but it is built upon a one-hop DHT rout-
ing mechanism, and has high overheads: state and control
overhead increases with O(

√
n log n), where n is the number

of participants in the social network. As networked systems
become increasingly deployed at scale (e.g., in the wide area,
across service providers), in high-churn environments (e.g.,
developing regions, wireless, mobile social networks [36]),
and for applications with stronger demands on correctness
and availability (e.g., online storage, content voting, reputa-
tion systems) the problem of high overhead in existing works
stands to become increasingly serious; multi-hop DHT rout-
ing mechanisms are going to be necessary.

Lack of privacy: These systems require a user to reveal social
contact information (friend lists). Some of these schemes re-
quire global distribution of this contact information. This is
unfortunate, as social contacts are considered to be private
information: leading real-world systems like Facebook [3]
and LiveJournal [4] provide users with a functionality to
limit access to this information. Forcing users to reveal
this private information could greatly hinder the adoption
of these technologies.

A second privacy concern, common to both traditional
DHTs and ones that use social networking information, is
that users must communicate directly with random peers,
revealing their IP addresses. This provides an opportunity
for the attacker to perform traffic analysis and compromise
user privacy [9,31]. Prior work [38,61]has demonstrated that
a colluding adversary can associate a DHT lookup with its
lookup initiator, and thus infer the activities of a user. A
pseudonymous routing mechanism can defend against such
attacks, and would be especially beneficial for privacy sen-
sitive DHT applications [17,39].

To address these shortcomings, we propose X-Vine, a pro-
tection mechanism for large-scale distributed systems that
leverages social network trust relationships. X-Vine has sev-
eral unique properties. X-Vine protects privacy of social re-
lationships, by ensuring that a user’s relationship informa-
tion is revealed only to the user’s immediate friends. At the
same time, X-Vine also protects correctness of DHT routing,
by mitigating Sybil attacks while requiring only logarithmic

1

http://arxiv.org/abs/1109.0971v1

state and control overhead. To the best of our knowledge,
X-Vine is the first system to provide both properties, which
may serve to make it a useful building block in construct-
ing the next generation of social network based distributed
systems. Finally, X-Vine also provides a basis for pseudony-
mous communication; a user’s IP address is revealed only to
his/her trusted social network contacts.

X-Vine achieves these properties by incorporating social
network trust relationships in the DHT design. Unlike tra-
ditional DHTs, which route directly between overlay partic-
ipants (e.g., [30]), X-Vine embeds the DHT directly into the
social fabric, allowing communication through the DHT to
leverage trust relationships implied by social network links.
This is done by using mechanisms similar to network layer
DHTs like VRR [12]. We leverage this structure for two
purposes. First, communication in X-Vine is carried out
entirely across social-network links.The use of social net-
work links enables pseudonymous communication; while the
recipient may know the opaque identifier (pseudonym) for
the source, the IP address of the source is revealed only to
his/her friends. Second, recent work has shown that social
networks can be used to detect Sybil attacks by identify-
ing a bottleneck cut that connects the Sybil identities to
the rest of the network [19, 64, 65]. X-Vine enables com-
parable Sybil resilience by bounding the number of DHT
relationships that can traverse a particular edge. With this
multi-hop approach, we can limit the number of Sybil iden-
tities per attack edge (attack edges illustrated in Figure 1)
to logarithmic in the size of the network with logarithmic
control and routing state, a dramatic reduction from previ-
ous Sybil defense approaches. This allows X-Vine to scale
to large user bases and high-churn environments.

We evaluate X-Vine both analytically and experimentally
using large scale real-world social network topologies. Since
recent work [58, 62] has advocated the use of interaction
networks as a more secure realization of social trust, we
also demonstrate the performance of X-Vine on interaction
graphs. From our evaluation, we find that X-Vine is able
to route using 10–15 hops (comparable to other DHTs) in
topologies with 100 000 nodes while using onlyO(log n) rout-
ing state. In particular, we show that the overhead of X-Vine
is two orders of magnitude smaller than Whanau. With re-
spect to Sybil resistance, we found that honest nodes are
able to securely route to each other with probability greater
than 0.98 as long as the number of attack edges is g ∈
o(n/(log n)). Using an implementation on PlanetLab, we
estimate the median lookup latency in a 100 000 node topol-
ogy to be less than 1.2 seconds. Even when 20% of the nodes
fail simultaneously, the lookups still succeed with a proba-
bility greater than 95%. Finally, we also implement a plugin
for DHT designers that can enable them to easily integrate
social network contacts with a DHT by leveraging existing
online social networks like Facebook.

Our proposed techniques can be applied in a wide variety
of scenarios that leverage DHTs:

• Large scale P2P networks like Vuze/Kad/Overnet are
popularly used for file sharing and content distribu-
tion. However, these networks are vulnerable to at-
tacks on the routing protocol [60] and do not protect
the privacy of the user [38]. X-Vine protects against
attacks that target the DHT mechanisms and provides
a basis for pseudonymous communication. Moreover,
X-Vine is also robust to the high churn prevalent in

these networks.

• Applications like Coral [23], Adeona [50], and Van-
ish [25] are built on top of DHTs. The security prop-
erties of these applications can often be compromised
by exploiting vulnerabilities in the DHT. As an exam-
ple, the security of Vanish was recently compromised
by a low-cost Sybil attack on the Vuze network [63].
Our proposed techniques protect these applications by
bounding the number of Sybil identities in the DHT.

• Decentralized P2P anonymous communication systems
like Tarzan [24], Salsa [42] and ShadowWalker [39] as-
sume an external Sybil defense mechanism. X-Vine is
particularly suitable for designing Sybil-resilient P2P
anonymous communication systems, since it provides
secure as well as pseudonymous routing.

• Freenet [17] is a widely used censorship resistant over-
lay network, but its routing algorithm has been shown
to be extremely vulnerable in presence of even a few
malicious nodes [21]. X-Vine can enable peers to resist
censorship by securely and pseudonymously retrieving
data objects from the Freenet network.

• Membership concealing overlay networks (MCONs) [57]
hide the identities of the peers participating in a net-
work (different from pseudonymity). Our proposed
techniques can provide a substrate for designing fully
decentralized membership concealing networks.

Roadmap: The rest of the paper describes and evaluates
X-Vine. We start by giving a high-level overview of the prob-
lem we address and our approach (Section 2), followed by
a detailed description of our routing algorithm (Section 3)
and its security mechanisms (Section 4). We then describe
our experimental results (Section 5). Finally, we summa-
rize related work (Section 6), discuss X-Vine’s limitations
(Section 7), and conclude (Section 8).

2. X-VINE OVERVIEW

2.1 Design Goals
We start by defining the goals for our design.

1. Secure routing: if an honest node X performs a lookup
for an identifier ID, then the lookup mechanism must return
the global successor of ID (present in the routing tables of
honest nodes).
2. Pseudonymous communication: an adversary should not

be able to determine the IP address corresponding to a user.
3. Privacy of user relationships: an adversary should not be

able to infer a user’s social contacts.
4. Low control overhead: the control overhead of the system

should be small to enable a scalable design. This excludes
flooding-based and single-hop mechanisms.
5. Low latency: the length of the path used to route to

an arbitrary identifier should be small, in order to minimize
lookup latency.
6. Churn resilience: even when a significant fraction of

nodes fail simultaneously, lookup queries should still suc-
ceed.
7. Fully decentralized design: we target a fully decentralized

architecture without any central points of trust/failure.

2

Figure 1: Illustration of honest nodes, Sybil nodes,
and attack edges between them.

We note that requirements 2, 3 and 4 distinguish us from
prior work—state-of-the-art approaches do not provide pseudony-
mous routing, do not preserve privacy of user relationships,
and have high control overhead.

2.2 Threat Model and Assumptions
We assume that a fraction of real users are compromised

and colluding. Recent work [19,64,65] has leveraged the in-
sight that it is costly for an attacker to establish many trust
relationships. Following this reasoning, we assume that the
number of attack edges, denoted by g, is bounded. Similar to
prior work, we assume that the attack edges are not specially
chosen. We also assume that the set of colluding compro-
mised nodes is a Byzantine adversary, and can deviate from
the protocol in arbitrary ways by launching active attacks on
the routing protocol. In particular, the set of compromised
nodes can launch a Sybil attack by trying to insert multiple
fake identities in the system. The key assumption we make
about the adversary is that Sybil identities are distributed
randomly in the DHT identifier space. We note that this as-
sumption is a limitation of the X-Vine protocol, as discussed
in Section 7. An exploration of defenses against adversaries
who concentrate their nodes in a particular region of the
overlay is beyond the scope of this paper.

2.3 Solution Overview
We start by describing our algorithm in the context of

an abstract, static network. Suppose we have a graph G,
where nodes correspond to users of the social network, and
edges correspond to social relationships between them. Our
approach runs a DHT-based routing scheme over the graph
that embeds path information in the network. We first de-
scribe how routing is performed, and then describe how the
path information it creates can be used to mitigate Sybil
attackers.

Pseudonymous routing in the social network: We
construct a DHT on top of the social network, using mech-
anisms similar to network layer DHTs [12]. Each node in
the network selects a random numeric identifier, and main-
tains paths (trails) to its neighbors in the identifier space in
a DHT-like fashion. To join the network, a node performs
a discovery process to determine a path to its successors in
the DHT. Then, the node embeds trails in the network that
point back to the joining node’s identifier. To route mes-
sages, packets are forwarded along these trails. By main-
taining trails to each of the node’s successors, a node can
forward a message to any point in the namespace. Users that

are directly connected by a social network link simply com-
municate via the IP layer. All communication performed by
a node is done only with its friends, and this communica-
tion is done in a manner that does not reveal the node’s local
topology, preventing leakage of friendship list information to
non-friends. Routing over social links also enables a user to
communicate pseudonymous with respect to non-friends.

Protecting against Sybils: The scheme described above
does not mitigate the Sybil attack, as a malicious node can
repeatedly join with different identifiers, and thereby “take
over” a large portion of the identifier space. Malicious nodes
can in fact pretend that there is an entire network of Sybil
nodes behind themselves (Figure 1). To protect against the
Sybil attack, we constrain the number of paths between hon-
est nodes and malicious nodes. Since Sybil nodes by their
very nature are likely to be behind a small “cut”in the graph,
by constraining the number of paths that may be set up, we
can constrain the impact that a Sybil node can have on the
entire network. In particular, honest nodes rate-limit the
number of paths that are allowed to be constructed over their
adjacent links, thereby limiting the ability of Sybil nodes to
join the routing scheme, and hence participate in the net-
work. When a joining node attempts to establish a trail over
an edge that has reached its limit, the node adjacent to the
full link sends the joining node a message indicating failure
of the join request. This limits Sybil nodes from construct-
ing very many paths into the network. Since Sybil nodes
cannot construct many trails, they cannot place many iden-
tifiers into the DHT. Hence, an honest node can send traffic
to another honest node by forwarding traffic over the DHT,
as trails are unlikely to traverse Sybil-generated regions of
the network.

3. X-VINE PROTOCOL
The key feature of our design is that all DHT communi-

cation happens over social network links.1 By ensuring that
all communication takes place over social network links, we
can leverage the trust relationships in the social network
topology to enforce security properties. A trivial security
property of our design is that an adversary needs to be con-
nected to honest users via a series of social network links to
communicate with them. Moreover, the IP address of the
nodes only needs to be revealed to their contacts, enhanc-
ing privacy for users. Most importantly, our design is able
to effectively resist Sybil attacks even when the number of
attack edges is large.

3.1 Routing Over Social Networks
Figure 2 illustrates the design of X-Vine. Our design uses

a VRR-like [12] protocol to construct and maintain state at
the overlay layer. Here, we first describe the state main-
tained by each node, and then describe how that state is
constructed and maintained over time.

State maintained by each node: X-Vine constructs a
social overlay on top of the social network, where a node
has direct links to friends, but also maintains “overlay links”
to remote nodes. These remote nodes (overlay endpoints)
are selected in a manner similar to Chord [55]: each node

1Applications such as Vuze may optionally choose to ben-
efit only from X-Vine’s Sybil resilience, and can forgo
pseudonymity by directly transferring files between overlay
nodes after the lookup operation.

3

Figure 2: Overview of X-Vine.

is assigned an identifier from a ring namespace, and forms
overlay links to nodes that are successors (immediately ad-
jacent in the namespace), and (optionally) fingers (spaced
exponentially around the ring). Unlike Chord however, a
node is not allowed to directly send packets to its overlay
neighbor: for security reasons, nodes only receive packets
from their social network links. Hence, to forward a packet
from a node to one of its overlay endpoints, the packet will
have to traverse a path in the social network graph. To
achieve this, corresponding to each of its overlay endpoints,
a node maintains a trail through the social network. Each
node along the trail locally stores a record consisting of four
fields: the identifiers of the two endpoints of the trail, and
the IP addresses of the next and previous hops along the
trail. Using this information, a node can send a packet to its
endpoints, by handing the packet off to the first node along
the trail, which looks up the next hop along the trail using
its trail records, and so on. Furthermore, using a Chord-
like routing algorithm, a node can route to any other node
in the namespace, by (upon reaching an endpoint) selecting
the next overlay hop that maximizes namespace progress to
the destination (without overshooting). As an optimization,
instead of waiting until the endpoint is reached to determine
the next overlay hop, intermediate nodes along the path may
“shortcut” by scanning all their trail records, and choosing
the endpoint that maximizes progress in the namespace (see
Algorithm 1 in Appendix B). If the intermediate node dis-
covers an endpoint that makes more namespace progress to
the destination than the current next overlay hop, the inter-
mediate node may choose to forward the packet towards this
new endpoint, to speed its progress (while explicitly main-
taining the next overlay hop in the packet is not strictly
necessary for routing, we do so to simplify parts of our de-
sign described later).

State construction and maintenance: Since nodes can
route, we can perform other DHT operations by simply per-
forming routing atop this structure. For example, we can
execute a Chord-like join: upon arriving at the network,
a node can route a join request towards its own identifier,
and the node that receives it can return back the identifiers
which should be the joining node’s successors. However,
there are two key changes we need to make. First, when a
node initially arrives, it does not yet have any trail state and
hence cannot forward packets. To address this, the joining
node randomly selects one of its friends in the social net-
work to act as a bootstrap node. The joining node sends

its join request using the bootstrap node as a proxy. Sec-
ond, the joining node also needs to build trails to each of
its endpoints (e.g., its successors). To do this, for each end-
point, it sends a trail construction request to the identifier of
that endpoint. As the request is routed, each intermediate
node along the path locally stores a record corresponding
to the trail. Finally, when these steps are completed, the
joining node can route to any node in the network (by for-
warding packets through its endpoints), and it can receive
packets from any node in the network (by accepting packets
through its endpoints). To maintain this state, we need to
achieve two things. First, we would like to correctly main-
tain the set of records along each trail in the presence of
churn, so each node can reach the trail endpoint. This is
done in a manner similar to AODV [45]: each node along the
path locally probes its neighbors and removes trail records
(sending teardown messages upstream if necessary) corre-
sponding to failed trails. Second, we would like to make
sure each trail points to the corresponding globally correct
successor/finger. To do this, we leverage the stabilization
mechanisms from Chord and VRR [12,55].

3.2 Balancing Routing State
Temporal correlation: while the scheme above is correct,
it performs poorly in practice. The reason for this is due
to temporal correlation—since trails are constructed using
other trails, social network links that are initially chosen to
be part of a trail become increasingly likely to be part of later
trails. Because of this, nodes that join the network early
tend to accumulate more state over time. To illustrate this
problem, we describe an example. Suppose a node X has d
friends a1, a2, .., ad. Suppose also that there is a trail from X
to Y for which the next hop is node ad. Next, suppose node
X is an intermediate node in a new overlay path that is being
setup from node a1 (which is also the previous hop). With
probability 2/d, the next hop of the overlay path will be ad.
Similarly, in the future, the probability of ad being chosen
as the next hop in an overlay path increases to 3/(d+1), and
then to 4/(d+2), and so on. This example illustrates that a
social network link that was initially chosen as part of a trail
has an increasing chance of being chosen in trails that are
set up in the future. Consequently nodes that join the social
network early tend to be part of many trails. This is not
desirable from both a security perspective or a performance
perspective.

Stabilization algorithms: To address the problem of
temporal correlation, we propose two modifications to the
core X-Vine algorithms: The first algorithm leverages the
social connections of new users to reduce the path lengths
of existing trails. When a new node joins the system, its
social contacts that are already part of the X-Vine system
consider all trails in their routing tables that have a path
length greater than a threshold thr1 (set to the upper quar-
tile of trail path path lengths). Corresponding to each such
trail, the social contacts check if modifying the trail via the
new node would reduce the path length, and if so, a tear-
down message is sent to the old trail and another trail via the
new node is setup. The threshold on the path length helps
to avoid needless communication for trails that are already
short, and are thus unlikely to benefit much from new edges
in the social graph topology. The second algorithm helps to
load balance the routing state at nodes, and also leads to a
reduction in the path lengths of trails. This algorithm is run

4

Figure 3: Example: backtracking.

by all nodes whose routing state is greater than a threshold
thr2. Such nodes consider all trails in their routing tables
whose path length is greater than a threshold thr1 (similar
to the previous algorithm), and send messages to the overlay
end points to check if alternate trails can be established, and
if their path length is shorter than the current path length.
If a shorter alternate trail exists, then it replaces the existing
trail. This helps reduce the routing state size at congested
nodes, while simultaneously reducing the trail path lengths.

3.3 Bounding State With Local Policies
We have seen that the shortcut-based routing protocol de-

scribed in Section 3.1 faces the problem of temporal correla-
tion, leading to unbounded growth in routing state. To com-
plement our stabilization algorithms, we propose a mecha-
nism by which nodes can set a hard bound on their routing
state size using local routing policies. These policies can
be set to account for heterogeneity across nodes, users’ de-
sired degree of participation in the network, and to limit the
worst-case state overhead at any particular node. Our ar-
chitecture allows users to set two types of policies pertaining
to state maintained at their local node:Bounding routes per
link: If the number of trails traversing an adjacent social
network link reaches a threshold bl, then the user’s node re-
fuses to set up any more trails traversing that link. Bounding
routes per node: If the number of trails traversing the user’s
node reaches a threshold value bn, then the node refuses to
set up any more trails via itself. Due to these routing poli-
cies, it is possible that a request to set up a trail may be
unable to make forward progress in the overlay namespace.
To address this, we introduce a technique called backtracking
that explores alternate social network paths in case an inter-
mediate node refuses to process a path setup request. To do
this, each node maintains a failed setup list, containing a list
of trails that have failed to set up. When a node attempts to
set up a trail via a next hop, and receives a rejection message
indicating that the next hop is full, the node inserts an entry
into its failed setup list. Each record in the list contains the
identifier of the destination overlay endpoint that the packet
was traversing towards, and the identifier of the next hop in
the social network that rejected the path setup. When for-
warding a message to a particular destination endpoint, a
node removes from consideration next hops contained in the
failed setup list corresponding to that endpoint (see Algo-
rithm 2 in Appendix B). The failed setup list is periodically
garbage collected by discarding entries after a timeout.

For example (Figure 3), suppose node A wishes to estab-
lish a path to E, and determines B is the best next overlay
hop. A places E into the next overlay hop field in the mes-
sage, and forwards the message to B. Similarly, B forwards
the message to C. Suppose D is congested (has more than
bn paths traversing it). In this case, C sends the path setup
message to D, but D responds back with a rejection mes-
sage. C then stores the entry (E,D) in its failed setup list,
to indicate that establishing a path viaD to reach E was un-

successful. C then attempts to select an alternate next hop
that makes progress in the namespace (either a route to the
current next overlay hop, or a “shortcut” route that makes
more progress than the current next overlay hop). If C does
not have such a route, it sends a rejection message back to
B, which inserts the entry (E,C) in its failed setup list. This
process repeats until a path is discovered, or a time-to-live
(TTL) contained in the packet is exceeded. When the TTL
is exceeded, the path setup fails, and the source node must
attempt to rejoin to establish the path.

4. SECURING X-VINE
The previous section described our approach to perform

routing atop the social network. In this section, we describe
how to extend and tune the design in the previous section
to improve its resilience to attack. We start by providing an
overview of attacks on our design(Section 4.1), and then pro-
pose extensions to improve resilience to them (Section 4.2).

4.1 Attacks on the Routing Protocol
We investigate defenses to the following attacks on DHTs:
Sybil attack [20]: The attacker can insert a large num-

ber of Sybil identities in the DHT, and set up paths with
their successors and predecessors. The attack results in hon-
est nodes’ routing tables being populated by malicious Sybil
identities. This increases the probability that lookup queries
will traverse some malicious nodes, which can then drop or
misroute the lookup queries. Observe that to minimize re-
sources, it suffices for Sybil identities to maintain paths with
only nodes in the predecessor list, since paths to the nodes
in the successor list will result in a shortcut to the honest
successor nodes.

Attacks on routing table maintenance: In addition
to the Sybil attack, the adversary could also manipulate the
routing table maintenance protocols to increase the prob-
ability of malicious nodes being present in honest nodes’
routing tables. Intercepting trails: During churn, malicious

nodes can become part of a large number of trail paths be-
tween nodes, in order to attract lookup traffic (for example,
by refusing to send trail teardown messages). Attacking trail

construction: The attacker could prevent honest nodes from
finding a trail path to their correct successor. This could
be done by dropping or misrouting the trail setup messages.
Attacks on message integrity: Malicious nodes that forward

control traffic could modify the content of the messages, to
disrupt trail setup (for example, by creating routing loops).
Forgery attacks: The malicious nodes could spoof source

identifiers in messages sent to honest nodes (for example, to
give the appearance that the message came from the honest
node’s friends).

Attacks on lookups: Once the attacker is able to inter-
cept a lookup query, it can either drop the packet or misroute
it. Such attacks can prevent the honest nodes from either
discovering their correct successor in the ring, or discover-
ing a malicious successor list set respectively. By advertis-
ing malicious nodes as the successors of an honest joining
node, a significant fraction of the honest joining node’s traf-
fic would traverse malicious nodes. Note that attacks on
both overlay construction and overlay routing are captured
by this attack, since in a DHT, both bootstrap and routing
are accomplished by the same operation: a lookup.

5

4.2 Proposed Defenses
We note that it is imperative to secure both the routing

table maintenance and lookup forwarding. If the routing ta-
ble maintenance protocol were insecure, then the adversary
could manipulate the routing table entries of honest nodes
to point to malicious nodes, and routing to honest nodes
would not be successful. However, even if the routing table
maintenance mechanisms are secure, the adversary still has
the opportunity to drop lookup packets or misroute them.

Mitigating the Sybil attack: To limit the impact of
the Sybil attack, we propose that nodes implement a rout-
ing policy that bounds the number of trails that traverse a
social network edge. We denote the bound parameter as bl.
Since the attacker has limited attack edges, this bounds the
number of overlay paths between the honest subgraph and
the Sybil subgraph regardless of the attacker strategy. Thus,
we limit the number of Sybil identities that are part of the
honest node’s routing table. The key challenge in this ap-
proach is to determine the bound bl that enables most honest
nodes to set up trails with each other while hindering the
ability of Sybil nodes to join the DHT. Our analytic and
experimental results suggest that a bound of bl ∈ Θ(log n)
works quite well. Similar to Yu et al. [64], we assume that
the bound bl is a system wide constant known to all hon-
est nodes. Honest nodes are able to set up trails with each
other even though there is a bound on the number of trails
per social network link because of the fast-mixing nature of
the social network. On the other hand, a Sybil attack gives
rise to a sparse cut in the social network topology, and we
use this sparse cut to limit the impact of the Sybil identities.
The number of overlay paths between the honest and Sybil
subgraphs is bounded to g · bl. The adversary could choose
to allocate each overlay path to a different Sybil identity,
resulting in g · bl Sybil identities in the DHT (in the routing
tables of honest nodes). We can further limit the number
of Sybil identities in the routing tables of honest nodes by
ensuring that the adversary must allocate at least a thresh-
old t number of overlay paths per Sybil identity. This would
bound the number of Sybil identities in honest nodes routing
tables to g · bl/t. Note that the number of overlay paths be-
tween the honest and Sybil regions does not change. We pro-
pose the following mechanism to ensure that the adversary
sets up trails with at least a threshold t overlay neighbors.
Nodes periodically probe their overlay neighbors to check if
each successor in their routing table has set up a trail with
at least t other nodes in the overlay neighborhood. Note
that the check is performed by directly querying the overlay
neighbors. The threshold t is set to t < 2 · num successors
to account for malicious overlay nodes returning incorrect
replies. If the adversary does not allocate t trails per Sybil
identity (set up with its successors and predecessors), the
honest nodes can detect this via probing and can teardown
the trails to the malicious Sybil identity. Note that the ad-
versary cannot game the probing mechanism unless it has
a large number of Sybil identities in the overlay neighbor-
hood of a node. Since the Sybil identities are distributed at
random in the overlay namespace, this is unlikely to hap-
pen unless the adversary has a large number of attack edges
(g ∈ Ω(n/(log n))).

Securing routing table maintenance: We provide the
following defenses to attacks on routing table maintenance:

Trail interception attacks: Observe that our mechanism to
defend against Sybil attacks, i.e., bounding the number of

trails that traverse a social network link, also defends against
malicious nodes that attempt to be a part of a large number
of trails. Specifically, the adversary has a quota of g ·bl trails
between honest nodes and itself, and it can choose to utilize
this quota either by inserting Sybil identities in the DHT
or by being part of trails between two honest nodes. Either
way, the effect of this attack is limited by the bound bl.

Trail construction attacks: Suppose that a node X is try-
ing to set up a trail with its overlay neighbor Y. To circum-
vent the scenario where a malicious intermediate node M
simply drops X’s path set up request to Y, we propose that
upon path setup the end point Y sends an acknowledgment
along the reverse path back to X. If after a timeout, the
node X does not receive an acknowledgment from Y, then
it can retry sending the trail set up request over a different
route. Again, the fast-mixing nature of the social network
topology guarantees that two nodes are very likely to have
multiple paths between each other.

Message integrity and forgery attacks: To provide mes-
sage integrity is the use of self-certifying identifiers [8,13,34].
Nodes can append their public keys to the message and pro-
duce a digital signature of the message along with the ap-
pended public key. The self-certifying nature of identifiers
ensures that the public key for a specified node identifier
cannot be forged; this enables us to provide both message
integrity as well as authentication.

Securing the lookup protocol: Even if the routing
table maintenance protocol is secure, the adversary can still
drop or misroute lookup requests that traverse itself. We
secure the lookup protocol using redundant routing, similar
to Castro et al. [14]. Instead of a single lookup, a node can
choose to perform r lookups for the destination (where r is
the redundancy parameter) using r diverse trusted links in
the social network topology. Redundant routing increases
the probability that at least one lookup will traverse only
honest nodes and find the correct successor. If the lookup
is performed during route table maintenance, the correct
successor can be identified since it will be impossible to set
up a trail to an incorrect one; if the lookup is searching for a
particular node or data item, then self-certifying techniques
can be used to identify incorrect responses.

4.3 Privacy Protection
All communication in X-Vine happens over social network

links; while a user’s IP address is revealed to his/her social
contacts, it is not exposed to random peers in the network.
Therefore as long as a user’s social contacts are trusted,
he/she can communicate pseudonymously. Moreover, ob-
serve that X-Vine’s mechanisms do not require a user to
expose his/her social contacts. This is in sharp contrast to
prior work [30], wherein this information is revealed as part
of protocol operations to everyone in the network. Note that
in the absence of a mapping from a DHT ID to an IP address,
the adversary cannot perform traffic analysis to infer social
contacts. The only source of information leakage is when
the adversary can map DHT IDs of two users to their re-
spective IP addresses (for example, by virtue of being their
trusted contacts); in this case the adversary can perform
traffic analysis attacks to infer whether the two users have
a trust relationship or not. In X-Vine, the privacy risk is
with respect to social contacts, rather than random peers in
the network. Note that in this paper, we are only concerned
with overlay level adversaries; adversaries which operate at

6

the ISP level, or have external sources of information [43]
are outside the scope of our threat model.

5. EXPERIMENTS AND ANALYSIS
We evaluate X-Vine with theoretical analysis, experiments

using real-world social network topologies, and a prototype
implementation. We measure routing state size, lookup path
lengths, security against Sybil attacks, resilience against churn,
and lookup latency. We also developed a Facebook applica-
tion to facilitate the use of our design.

Simulation environment: We constructed an in-house
event-driven simulator. As done in [12], we bootstrap X-
Vine by selecting a random node in the social network as
the first node, and the social network neighbors of that node
then become candidates to join the X-Vine network. Next,
one of these neighbors is selected to join, with a probability
proportional to the number of trust relationships it has with
nodes that are already a part of the X-Vine network. This
process is then repeated. Note that some nodes may not
be successful in joining because of the bound on number of
trails per link (as discussed in detail later).

Data sets: Recent work has proposed the use of interac-
tion graphs [58,62] as a better indicator of real world trust
than friendship graphs. Hence we consider both traditional
social network graph topologies as well as interaction graph
topologies in our evaluation. The datasets that we use have
been summarized in Table 1.

Facebook friendship graph from the New Orleans regional
network [58]: The original dataset consists of 60 290 nodes
and 772 843 edges. We processed the dataset in a manner
similar to the evaluation done in SybilLimit [64] and Sybil-
Infer [19], by imposing a lower bound of 3 and an upper
bound of 100 on the node degree (see [19,64] for details) 2.
After processing, we are left with 50 150 nodes and 661 850
edges.

Facebook wall post interaction graph from the New Orleans
regional network [58]: The original dataset consists of 60 290
users. After processing, we are left with 29 140 users and
161 969 edges. Note that links in this dataset are directed,
and we consider an edge between users only if there were
interactions in both directions.

Facebook interaction graph from a moderate-sized regional 3

network [62]: The dataset consists of millions of nodes and
edges, but our experiments are memory limited and do not
scale to millions of nodes. Instead, we first truncate the
dataset by considering only a four hop neighborhood from a
seed node. After processing, we are left with 103 840 nodes
and 961 418 edges.

Synthetic scale-free graphs: Social networks exhibit a scale-
free node degree topology [49]. Our network synthesis algo-
rithm replicates this structure through preferential attach-
ment, following the methodology of Nagaraja [41]. The use
of synthetic scale free topologies enables us evaluate X-Vine
while varying the number of nodes in the network.

2Recent work by Mohaisen et al. [40] shows that social net-
works may not be as fast mixing as previously believed.
However, we note that their results do not directly apply
to X-Vine since they did not consider node degree bounds
in their analysis. X-Vine excludes users having few friends
from participating in the routing protocol, though such users
could use their trusted friends to lookup keys.
3Because of privacy reasons, the name of the regional net-
work has been left anonymous by the authors of [62].

Table 1: Topologies
Dataset Nodes Edges Mean

Degree

New Orleans Facebook
Friendship graph

50 150 661 850 26.39

New Orleans Facebook
Interaction graph

29 140 161 969 11.11

Anonymous Facebook
Interaction graph

103 840 961 418 18.51

Overhead: Figure 4 plots the routing table size for dif-
ferent successor list sizes. We can see the temporal corre-
lation effect here, as the distribution of state shows super-
exponential growth. Temporal correlation is highly undesir-
able both from a performance and a security standpoint. If
the few nodes with very large state become unavailable due
to churn, the network could get destabilized. Moreover, if
one of these nodes is malicious, it could easily intercept a
large number of lookups and drop them. To address this, we
enable the routing policy that bounds the number of paths
traversing nodes and links. Based on our analytic model in
Appendix A, we propose the following bound on the num-
ber of paths per link: bl = α · 2 · num successors · log(n),
where α is a small fixed constant. The bound per link en-
sures that if a node has degree d, then its routing table size
will never exceed d · bl ∈ O(log n). We can see that the
routing state does not undergo an exponential increase as
in previous plots. Moreover, routing state increases with
node degrees, which is desirable. Based on these routing
table sizes, we can estimate the communication overhead of
X-Vine by computing the cost of sending heartbeat traffic
for all records in the routing table. Considering the rout-
ing table size to be 125 records, UDP ping size to be 40
bytes, and a heartbeat interval of 1 s, the estimated mean
communication overhead is only 4.8KBps.

Comparison with Whanau [30]: Routing state in Whanau
depends on the number of objects stored in the DHT. Rout-
ing tables in Whanau are of size Θ(

√
no log no), where no is

the number of objects in the DHT. If there are too many
objects stored in the DHT, Whanau resorts to maintaining
information about all the nodes and edges in the social net-
work (increasing state/overhead to Θ(n)). If there are too
few objects in the DHT, Whanau resorts to flooding to find
objects [30]. We note that such properties make Whanau
unsuitable for many common applications. Even if we con-
sider the case where each node in the DHT stores only tens
of objects, the average routing table size in Whanau for the
103 840 node anonymous interaction graph is about 20 000
records—an increase of more than two orders of magnitude
as compared with X-Vine. If we consider a heartbeat in-
terval of 1 second in Whanau (in order to accurately main-
tain object states for common DHT applications), the re-
sulting communication overhead is about 800KBps. This
difference increases further with an increase in the number
of objects in the DHT or the size of the network. For in-
stance, we scaled up our experiments to a larger 613 164 node
anonymous interaction graph topology using a machine with
128GB RAM, and found that the average routing state in X-
Vine using a successor list size of 10 was only 195 records, as
compared with more than 50 000 records in Whanau. (Note
that routing state in X-Vine is independent of the number
of objects in the DHT.)

7

 1

 10

 100

 1000

 10000

 100000

 0 10000 20000

R
ou

tin
g

ta
bl

e
si

ze

Node index

succ=1
succ=5

succ=10

(a)

 1

 10

 100

 1000

 10000

 100000

 0 20000 40000

R
ou

tin
g

ta
bl

e
si

ze

Node index

succ=1
succ=5

succ=10

(b)

 1

 10

 100

 1000

 10000

 100000

 0 25000 50000 75000 100000

R
ou

tin
g

ta
bl

e
si

ze

Node index

succ=1
succ=5

succ=10

(c)

Figure 4: Routing state, with no bounds on state: (a) New Orleans Interaction graph, (b) New Orleans
Friendship graph, and the (c) Anonymous Interaction graph. Due to temporal correlation, some nodes
exhibit high state requirements.

 1

 10

 100

 1000

 10000

 100000

 0 10000 20000

R
ou

tin
g

ta
bl

e
si

ze

Node index

succ=1
succ=5

succ=10
Degree

(a)

 1

 10

 100

 1000

 10000

 100000

 0 20000 40000

R
ou

tin
g

ta
bl

e
si

ze

Node index

succ=1
succ=5

succ=10
Degree

(b)

 1

 10

 100

 1000

 10000

 100000

 0 25000 50000 75000 100000

R
ou

tin
g

ta
bl

e
si

ze

Node index

succ=1
succ=5

succ=10
Degree

(c)

Figure 5: Routing state, with node and edge bounds: (a) New Orleans Interaction graph, (b) New Orleans
Friendship graph, and (c) Anonymous Interaction graph. Bounding state significantly reduces state require-
ments. Using a successor list of size 5, the average routing state for the three topologies is 67, 81, and 76
records respectively. X-Vine requires orders of magnitude less state than Whanau [30].

False Positive Analysis: Next, we consider the impact of
link/node path bounds on honest node’s ability to join the
DHT. We found that most honest nodes were able to join
the DHT due to the fast mixing nature of honest social net-
works. In fact, for all our experimental scenarios, the false-
positive rate was less than 0.5%, which is comparable to the
state-of-the-art systems [19, 64]. By tuning the parameter
bl, it is possible to trade off the false-positive rate for Sybil
resilience: bl will reduce the false-positive rate at the cost of
increasing the number of Sybil identities in the system. For
the remainder of the paper, we shall use α = 1, β = 5.

Path Length Analysis: Table 2 depicts the mean lookup
path lengths for the real world datasets with varying succes-
sor list sizes and varying redundancy parameter. We first
observe that lookup performance improves with increasing
successor list sizes. For example, in the New Orleans inter-
action graph, the mean lookup path length decreases from
97.9 to 15.4 when the successor list size increases from 1 to
20 (using r = 1). Further improvements in performance can
be realized by performing redundant lookups as described
in Section 4 and caching the lookup with the smallest path
length. We can see that in the same dataset, mean lookup
path length decreases from 15.4 to 10.3 when the redundancy
parameter is increased from r = 1 to r = 5 (using successor
list of size 20). Further increases in redundancy show dimin-
ishing returns. Observe that when the successor list size
is at least 10, and the redundancy parameter is at least 10,
then the mean lookup path lengths for all datasets are less

than 15 hops. Increasing the successor list size to 20 (and
keeping r = 10) reduces this value to less than 11.5 for all
datasets.

Security under Sybil Attack: Recall that if the adver-
sary has g attack edges, then the number of trails between
the honest and the Sybil subgraph is bounded by g · bl (re-
gardless of the attacker strategy). Our attack methodology
is as follows: we randomly select a set of compromised nodes
until the adversary has the desired number of attack edges.
The compromised nodes then launch a Sybil attack, and set
up trails between Sybil identities and their overlay neigh-
bors. If the trail set up request starting from a Sybil node
gets shortcutted back to the Sybil identities, the request is
backtracked. This ensures that the adversary uses only a
single attack edge per trail. Node identifiers of Sybil identi-
ties are chosen at random with the adversarial goal of inter-
cepting as many lookups as possible. All lookups traversing
compromised/Sybil nodes are considered unsuccessful.

Figure 6 plots the probability of a secure lookup as a func-
tion of number of attack edges, redundancy parameter, and
size of successor list. We find that the probability of se-
cure lookup increases as the redundancy parameter is in-
creased. This is because as the number of redundant lookups
increases, there is a greater chance that a lookup will tra-
verse only honest nodes and return the correct result. We
also find that the probability of secure lookup also increases
when the size of the successor list increases. This is because
increasing successor list size reduces the mean lookup path

8

Table 2: Mean Lookup Path Length
Succ New Orleans interaction graph New Orleans friendship graph Anonymous interaction graph

r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10

1 97.9 57.7 51.7 103.6 57.5 48.1 166.7 96.3 81.0

5 30.0 18.2 16.8 34.8 19.3 16.7 48.9 25.5 21.7

10 20.2 13.0 12.16 23.1 13.7 12.1 29.9 16.9 14.8

20 15.4 10.3 9.6 17.0 10.7 9.45 21.0 12.8 11.3

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 500 1000 1500 2000

P
ro

ba
bi

lit
y

of
 S

ec
ur

e
Lo

ok
up

Attack Edges

r=2, succ=10
r=5, succ=10
r=2, succ=20
r=5, succ=20

(a)

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1000 2000 3000 4000 5000
P

ro
ba

bi
lit

y
of

 S
ec

ur
e

Lo
ok

up

Attack Edges

r=2, succ=10
r=5, succ=10
r=2, succ=20
r=5, succ=20

(b)

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 2000 4000 6000 8000 10000

P
ro

ba
bi

lit
y

of
 S

ec
ur

e
Lo

ok
up

Attack Edges

r=2, succ=10
r=5, succ=10
r=2, succ=20
r=5, succ=20

(c)

Figure 6: Probability of secure lookup as a function of number of attack edges for (a) New Orleans interaction
graph, (b) New Orleans friendship graph, and (c) Anonymous Interaction graph.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 1000 10000

C
D

F

Latency (ms)

X-Vine
Chord

Figure 8: Lookup latency

length, reducing the probability that an adversary can in-
tercept the lookup query. As long as g ∈ o(n/(log n)), the
probability of secure lookup can be made arbitrarily high by
increasing the redundancy parameter and the successor list
size. Finally, reducing bl would further limit the impact of
Sybil identities, at the cost of increased false positives.

Churn Analysis: Next, we evaluate the performance of
X-Vine under churn. We are interested in the static re-
silience of X-Vine, i.e., the probability of lookup success af-
ter a fraction of the nodes in the system fail simultaneously.
To account for churn, we modified the lookup algorithm to
backtrack whenever it cannot make forward progress in the
overlay namespace. Figure 7 depicts the mean probability
of lookup success as a function of the fraction of nodes that
fail simultaneously, averaged over 100 000 lookups. Similar
to the analysis of lookup security, we can see that an increase
in either the redundancy parameter or the successor list size
result in improved resilience against churn. We can also see
that as the fraction of failed nodes increases, the probability
of lookup success decreases, but is still greater than 0.95 for
all scenarios using r = 4 and succ = 20.

PlanetLab Implementation: To validate our design and
evaluate lookup latency in real-world environments, we im-
plemented the X-Vine lookup protocol in C++ as a single-
threaded program using 3 000 LOC. We used libasync [5, 6]
and Tame [28] to implement non-blocking socket functional-
ity (UDP) in an event-based fashion. We ran our implemen-
tation over 100 randomly selected nodes in the PlanetLab

network. We used a synthetic scale free graph as the so-
cial network topology. The duration of the experiment was
set to 1 hour, and nodes performed lookups every 1 sec-
ond. Figure 8 depicts the CDF of observed one-way lookup
latencies. We can see that the median lookup latency was
only 400ms (as compared to 200ms in Chord), for the mean
lookup path length of 5 hops (not shown in the Figure). Us-
ing these values, we can estimate the median lookup latency
for mean lookup path lengths of 10 hops and 15 hops (that
were observed in our experiments over real world social net-
work topologies in Table 2) to be about 800ms and 1200ms
respectively. We see some outliers in Figure 8 due to the
presence of a few slow/unresponsive nodes in PlanetLab. For
this experiment, we mapped vertices in the social network
topology to random PlanetLab nodes (possibly in different
geographic locations). Thus, our analysis is conservative; ac-
counting for locality of social network contacts would likely
improve the lookup performance.

Facebook Application: To bootstrap a X-Vine node,
its user needs to input the IP addresses of his/her friends.
Since this can be a cumbersome for a user, we implemented a
Facebook application (available at http://apps.facebook.
com/x--vine) that automates this process and improves the
usability of our design. The work flow of the application is
as follows: (i) When a user visits the Facebook application
URL, Facebook checks the credentials of the user, the user
authorizes the application, and then the request gets redi-
rected to the application hosting server. (ii) The application
server authenticates itself, and is then able to query Face-
book for user information. The application server records
the user information along with the user IP address. (iii)
The application server then queries Facebook for a list of
user’s friends, and returns their previously recorded IP ad-
dresses (if available) to the user.

This list of IP addresses could then be used by the DHT
software to bootstrap its operations. Our implementation
demonstrates that a user’s social contacts can be integrated
into the DHT protocol using only a few hundred lines of glue
code. Keeping in spirit with our fully decentralized design
goal, in future, our application could be implemented on a
decentralized platform like Diaspora [1] such that the app

9

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 2 4 6 8 10 12 14 16 18 20

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss
fu

l l
oo

ku
p

Percentage of failed nodes

succ=10, r=1
succ=10, r=4
succ=20, r=1
succ=20, r=4

(a)

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 2 4 6 8 10 12 14 16 18 20

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss
fu

l l
oo

ku
p

Percentage of failed nodes

succ=10, r=1
succ=10, r=4
succ=20, r=1
succ=20, r=4

(b)

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10 12 14 16 18 20

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss
fu

l l
oo

ku
p

Percentage of failed nodes

succ=10, r=1
succ=10, r=4
succ=20, r=1
succ=20, r=4

(c)

Figure 7: Lookup resilience against churn: (a) New Orleans Interaction graph, (b) New Orleans Friendship
graph, and (c) Anonymous Interaction graph.

server is not a central point of trust or failure.

6. RELATED WORK
X-Vine provides multi-hop social network routing, loga-

rithmic state Sybil defense, protects privacy of friendship in-
formation, and enables pseudonymous communication. Our
work is the first to provide these properties. However, X-
Vine builds upon foundational work in several areas:

Sybil defense: Sybil defenses must fundamentally im-
pose a cost on participation in the network [20]. One ap-
proach, advocated by Castro et al. [14], requires users to
provide identity credentials and/or payment to a central-
ized authority, who then issues certificates allowing users
to participate. This authority, of course, becomes a central
point of trust. Decentralized approaches instead allow nodes
to directly verify some resource expenditure by other nodes,
such as CPU computation, or the possession of a unique IP
address [11, 51]. All these solutions face a tradeoff between
creating too high a barrier for participation by honest users
and making it too easy for malicious users to create Sybil
identities. More recent work has recognized that it is expen-
sive for a malicious adversary to establish trust relationships
with honest users and thus social network topologies can be
used to detect and mitigate social Sybil attacks. The design
of X-Vine is based upon the same principle.

SybilGuard [65] and SybilLimit [64] are decentralized sys-
tems for Sybil defense. These systems use special random
walks called random routes for Sybil defense. In SybilLimit,
as long as the number of attack edges is less than a threshold

(g = o
(

n

log n

)

), then with high probability, a short random

walk of O(log n) steps is likely to stay within the set of hon-
est nodes. Nodes in SybilLimit perform

√
e short random

walks (where e is the number of edges amongst the honest
nodes) and keep track of their last edges (tails). By the
birthday paradox, two honest nodes will share a common
tail with high probability. Each node allows only a certain
number of random routes to traverse it, thereby limiting the
number of Sybil identities that are validated by the honest
nodes.

SybilInfer [19] provides an algorithm for labeling nodes
in a social network as honest users or Sybils controlled by
an adversary. It takes as an input a social graph G, and
generates a set of traces using short random walks. Using
a mathematical model of an honest social network, it per-
forms Bayesian inference to output a set of dishonest nodes.
The Bayesian inference approach can even be used to assign
probabilities to nodes of being honest or dishonest. These
systems are standalone Sybil defenses and do not provide a

DHT functionality.
Whanau [30] is the state of art Sybil resilient DHT [18,29]

where nodes can communicate with only one intermediate
hop. Each node performs

√
e random walks to sample nodes

for construction of their routing tables ; the Sybil resistant
property of short random walks ensures that a high fraction
of the sampled nodes are honest . By querying routing table
entries, nodes can construct their successor lists. As com-
pared to X-Vine, Whanau provides its properties at the cost
of maintaining

√
no log no state at each node (where no is

the number of objects). The large state requirements mean
that the system has difficulty maintaining accurate state in
face of object churn. Whanau also requires the entire social
graph to be public, presenting significant privacy concerns.
In contrast, X-Vine builds upon network-layer DHTs, em-
bedding the DHT directly into the social network fabric.
This enables X-Vine to provide good security while achiev-
ing improved scalability and privacy of social relationships.
Moreover, X-Vine provides support for pseudonymous com-
munication.

The concept of a bottleneck cut between a fast-mixing
social network and Sybil nodes has been used in a number
of other systems, such as SumUp [56], a protocol for online
content rating that is resilient to Sybil attacks; Ostra [37],
a system to prevent unwanted communication from nodes;
and Kaleidoscope [54], a system for censorship resistance.

Security and privacy in DHTs: Other work deals with
the issue of secure routing when a fraction of nodes in the
DHT are compromised [14,27,42,53,59]. Sit and Morris [53],
as well as Wallach [59] discuss security issues in DHTs. Cas-
tro [14] proposed the use of redundant routing to improve
the lookup security. Nambiar and Wright [42] showed that
redundant lookups in Chord may traverse a few common
nodes, and thus a few malicious nodes could subvert all of
the redundant lookups. They designed the Salsa DHT in
which redundant lookups are unlikely to traverse common
nodes. Kapadia and Triandopoulos [27] propose to make re-
dundant routes diverse by making use of the observation that
to perform a lookup for A, it suffices to lookup the nodes
which have A as its finger, and then query them. Unlike
X-Vine these systems are not concerned with the problem
of Sybil attacks. Another line of research deals with the
privacy of the DHT lookup. Borisov [10] as well as Ciac-
cio [16] proposed to incorporate anonymity into the lookup,
but their algorithms do not consider active attacks. More
recently, anonymous and secure lookups were considered in
the designs of Salsa [42], NISAN [44], and Torsk [35]. How-
ever, recent work [38, 61] showed vulnerabilities in all the
three designs. X-Vine improves the privacy of a user by en-

10

abling pseudonymous communication; the IP address of a
user is revealed only to a user’s trusted friends.

Social networks and routing: The benefits of using
social network links for overlay routing has been recognized
in a large body of academic work as well as deployed systems.

Hybrid routing using social network links: Systems in this
class maintain traditional peer-to-peer structures but also
make use of social network connections. Sprout [32] pro-
posed augmenting the finger tables in traditional DHTs,
such as Chord, with social network links. The authors showed
that the added connections could improve the security of
the routing mechanism. However, Sprout does not defend
against Sybil attacks, and is not concerned with user pri-
vacy. OneSwarm [26] is a deployed peer-to-peer communi-
cation system for improving user privacy where routing is
performed by combining trusted and untrusted peer rela-
tionships. Tribler [47] increases download speed in BitTor-
rent by discovering and downloading file chunks stored at
peers. Similarly, Maze [15] leverages a social network to dis-
cover peers and cooperatively download files. These three
systems leverage flooding to provide any-to-any reachabil-
ity, and thus cannot scale to large networks. The hybrid
systems are not resilient to Sybil attacks. Moreover, they
allow direct contacts over untrusted links, exposing users’
IP addresses.

Routing only using social network links: All communication
in this class of systems is over social network links. This
enables participants in the network to be hidden from each
other, providing a high degree of privacy. Such a network
is commonly known as a darknet. WASTE [22] is a de-
ployed decentralized chat, instant messaging, and file shar-
ing protocol, and is widely considered to be the first darknet.
WASTE does not attempt to scale beyond small networks,
and its suggested size is limited to 50 users. Turtle [46] is
a deployed decentralized anonymous peer-to-peer communi-
cation protocol. Nodes in Turtle do not maintain any state
information other than their trusted friend links and use
controlled flooding to search for data items. Flooding meth-
ods create significant overhead as network size increases.
Freenet [17] is a deployed decentralized censorship-resistant
distributed storage system. Version 0.7 of Freenet nodes can
be configured to run in darknet or opennet mode; the latter
allows connections from untrusted nodes, and is expected
to be used by less privacy-sensitive users. Freenet’s rout-
ing algorithm is heuristic and does not guarantee that data
will be found at all; it has also been shown to be extremely
vulnerable even against a few malicious nodes [21]. Mem-
bership concealing overlay networks (MCONs) (formalized
by Vasserman et al. [57]), hide the real-world identities of
the participants through the use of overlay and DHT-based
routing. However, their design makes use of a trusted cen-
tralized server and also requires flooding when a new user
joins the network. In addition to these limitations, none of
the above systems are resilient to Sybil attacks.

7. LIMITATIONS
We now discuss some limitations of our design. First,

X-Vine requires a user’s social contacts to be part of the
overlay; the DHT needs to be bootstrapped from a single
contiguous trust network. Next, X-Vine assumes that Sybil
identities are distributed randomly in the DHT identifier
space. We emphasize that this assumption is shared by prior

systems [18], and that defending multi-hop DHTs against
targeted clustering attacks is currently an open problem. In
future work, we will investigate the possibility of adapting
the cuckoo hashing mechanism [29] proposed by Lesniewski-
Laas (for one-hop DHTs) in the context of securing multi-
hop DHTs. X-Vine also does not defend against attackers
who target users by compromising nodes close to them in the
social network topology. Finally, applications using X-Vine
experience higher than usual latencies since all communica-
tions are pseudonymous and traverse multiple social network
links.

8. CONCLUSIONS
We describe X-Vine, a protection mechanism for DHTs

that operates entirely by communicating over social net-
work links. X-Vine requires O(log n) state, two orders of
magnitude less in practical settings as compared with exist-
ing techniques, making it particularly suitable for large-scale
and dynamic environments. X-Vine also enhances privacy
by not revealing social relationship information and by pro-
viding a basis for pseudonymous communication.

9. REFERENCES
[1] Diaspora. wwww.joindiaspora.com/.

[2] eMule. http://www.emule-project.net/.

[3] Facebook. www.facebook.com.

[4] Livejournal. www.livejournal.com.

[5] Sfslite. http://www.okws.org/doku.php?id=sfslite.

[6] Using libasync.
http://pdos.csail.mit.edu/6.824-2004/async/.

[7] The Vuze Network. http://www.vuze.com/.

[8] D. G. Andersen, H. Balakrishnan, N. Feamster,
T. Koponen, D. Moon, and S. Shenker. Accountable
Internet protocol. In SIGCOMM, 2008.

[9] K. Bauer, D. Mccoy, D. Grunwald, and D. Sicker.
Bitstalker: Accurately and efficiently monitoring
bittorent traffic. In Proceedings of the International
Workshop on Information Forensics and Security,
2009.

[10] N. Borisov. Anonymous routing in structured
peer-to-peer overlays. PhD thesis, UC Berkeley, 2005.

[11] N. Borisov. Computational puzzles as sybil defenses.
In IEEE P2P, 2006.

[12] M. Caesar, M. Castro, E. Nightingale, A. Rowstron,
and G. O’Shea. Virtual Ring Routing: Network
routing inspired by DHTs. In SIGCOMM, 2006.

[13] M. Caesar, T. Condie, J. Kannan,
K. Lakshminarayanan, and I. Stoica. ROFL: Routing
on Flat Labels. In SIGCOMM, September 2006.

[14] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and
D. S. Wallach. Secure routing for structured
peer-to-peer overlay networks. In OSDI, 2002.

[15] H. Chen, X. Li, and J. Han. Maze: a social
peer-to-peer network. In In of CEC-East, 2004.

[16] G. Ciaccio. Improving sender anonymity in a
structured overlay with imprecise routing. In PETS,
June 2006.

[17] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A distributed anonymous information storage
and retrieval system. In DPET, July 2000.

11

[18] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and
R. Anderson. Sybil-resistant DHT routing. In
ESORICS, Milan, Italy, September 2005.

[19] G. Danezis and P. Mittal. SybilInfer: Detecting sybil
nodes using social networks. In NDSS, 2009.

[20] J. Douceur. The Sybil Attack. In IPTPS, March 2002.

[21] N. S. Evans, C. GauthierDickey, and C. Grothoff.
Routing in the dark: Pitch black. ACSAC, 2007.

[22] J. Frankel. http://waste.sourceforge.net.

[23] M. J. Freedman, E. Freudenthal, and D. Mazières.
Democratizing content publication with Coral. In
NSDI, 2004.

[24] M. J. Freedman and R. Morris. Tarzan: a peer-to-peer
anonymizing network layer. In CCS, 2002.

[25] R. Geambasu, T. Kohno, A. A. Levy, and H. M. Levy.
Vanish: increasing data privacy with self-destructing
data. In USENIX Security, 2009.

[26] T. Isdal, M. Piatek, A. Krishnamurthy, and
T. Anderson. Privacy-preserving p2p data sharing
with oneswarm. In SIGCOMM, 2010.

[27] A. Kapadia and N. Triandopoulos. Halo:
High-assurance locate for distributed hash tables. In
NDSS, 2008.

[28] M. Krohn, E. Kohler, and M. F. Kaashoek. Events
can make sense. In USENIX ATC, 2007.

[29] C. Lesniewski-Laas. A Sybil-proof one-hop DHT. In
SocialNets, pages 19–24, 2008.

[30] C. Lesniewski-Laas and M. F. Kaashoek.
Whanaungatanga: A Sybil-proof distributed hash
table. In NSDI, 2010.

[31] M. Liberatore, B. N. Levine, and C. Shields.
Strengthening forensic investigations of child
pornography on p2p networks. In CONEXT, 2010.

[32] S. Marti, P. Ganesan, and H. Garcia-Molina.
SPROUT: P2P routing with social networks. In
P2P&DB, 2004.

[33] P. Maymounkov and D. Mazières. Kademlia: A
peer-to-peer information system based on the xor
metric. In IPTPS, 2002.

[34] D. Mazieres. Self-certifying file system. PhD thesis,
MIT, 2000. Supervisor-Kaashoek, M. Frans.

[35] J. McLachlan, A. Tran, N. Hopper, and Y. Kim.
Scalable onion routing with Torsk. In CCS, 2009.

[36] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu,
M. Musolesi, S. B. Eisenman, X. Zheng, and A. T.
Campbell. Sensing meets mobile social networks: the
design, implementation and evaluation of the cenceme
application. In SenSys, 2008.

[37] A. Mislove, A. Post, P. Druschel, and K. P. Gummadi.
Ostra: leveraging trust to thwart unwanted
communication. In NSDI, pages 15–30, 2008.

[38] P. Mittal and N. Borisov. Information leaks in
structured peer-to-peer anonymous communication
systems. In CCS, 2008.

[39] P. Mittal and N. Borisov. Shadowwalker: peer-to-peer
anonymous communication using redundant
structured topologies. In CCS, 2009.

[40] A. Mohaisen, A. Yun, and Y. Kim. Measuring the
mixing time of social graphs. In IMC, 2010.

[41] S. Nagaraja. Anonymity in the wild: Mixes on
unstructured networks. In PET, pages 254–271, 2007.

[42] A. Nambiar and M. Wright. Salsa: a structured
approach to large-scale anonymity. In CCS, pages
17–26, New York, NY, USA, 2006. ACM.

[43] A. Narayanan and V. Shmatikov. De-anonymizing
social networks. In IEEE S & P, 2009.

[44] A. Panchenko, S. Richter, and A. Rache. NISAN:
network information service for anonymization
networks. In CCS, 2009.

[45] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc
on-demand distance vector (AODV) routing, 2003.

[46] B. Popescu, B. Crispo, and A. S. Tanenbaum. Safe
and private data sharing with Turtle: Friends team-up
and beat the system. In 12’th Cambridge International
Workshop on Security Protocols, April 2004.

[47] J. Pouwelse, P. Garbacki, J. Wang, A. Bakker,
J. Yang, A. Iosup, D. Epema, M. Reinders, M. van
Steen, and H. Sips. Tribler: A social-based
peer-to-peer system. Technical report, Delft University
of Technology, Feb 2006.

[48] S. Ratnasamy, P. Francis, M. Handley, and R. Karp.
A scalable content-addressable network. In
SIGCOMM, August 2001.

[49] M. Ripeanu, A. Iamnitchi, and I. Foster. Mapping the
Gnutella network. IEEE Internet Computing, 2002.

[50] T. Ristenpart, G. Maganis, A. Krishnamurthy, and
T. Kohno. Privacy-preserving location tracking of lost
or stolen devices: cryptographic techniques and
replacing trusted third parties with DHTs. In
USENIX Security, 2008.

[51] H. Rowaihy, W. Enck, P. McDaniel, and T. L. Porta.
Limiting sybil attacks in structured p2p networks. In
INFOCOM, 2007.

[52] A. Rowstron and P. Druschel. Pastry: scalable,
decentralized object location and routing for
large-scale peer-to-peer systems. In ACM Middleware,
November 2001.

[53] E. Sit and R. Morris. Security considerations for
peer-to-peer distributed hash tables. In IPTPS, 2002.

[54] Y. Sovran, J. Li, and L. Subramanian. Unblocking the
internet: Social networks foil censors. Technical
report, NYU, 2008.

[55] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: a scalable peer-to-peer
lookup service for Internet applications. In
SIGCOMM, 2001.

[56] N. Tran, B. Min, J. Li, and L. Subramanian.
Sybil-resilient online content voting. In NSDI, pages
15–28, 2009.

[57] E. Vasserman, R. Jansen, J. Tyra, N. Hopper, and
Y. Kim. Membership-concealing overlay networks. In
CCS, pages 390–399, 2009.

[58] B. Viswanath, A. Mislove, M. Cha, and K. P.
Gummadi. On the evolution of user interaction in
Facebook. In WOSN, 2009.

[59] D. Wallach. A survey of peer-to-peer security issues.
In International Symposium on Software Security,
Tokyo, Japan, 2002.

[60] P. Wang, J. Tyra, E. Chan-Tin, T. Malchow, D. F.
Kune, N. Hopper, and Y. Kim. Attacking the Kad
network. In SecureComm, 2008.

[61] Q. Wang, P. Mittal, and N. Borisov. In search of an

12

anonymous and secure lookup: attacks on structured
peer-to-peer anonymous communication systems. In
CCS, 2010.

[62] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and
B. Y. Zhao. User interactions in social networks and
their implications. In EuroSys, pages 205–218, 2009.

[63] S. Wolchok, O. S. Hofmann, N. Heninger, E. W.
Felten, J. A. Halderman, C. J. Rossbach, B. Waters,
and E. Witchel. Defeating vanish with low-cost sybil
attacks against large DHTs. In NDSS, 2010.

[64] H. Yu, P. Gibbons, M. Kaminsky, and F. Xiao.
SybilLimit: A near-optimal social network defense
against sybil attacks. In IEEE Security and Privacy,
2008.

[65] H. Yu, M. Kaminsky, P. Gibbons, and A. Flaxman.
SybilGuard: Defending against Sybil attacks via social
networks. In SIGCOMM, 2006.

APPENDIX

A. MATHEMATICAL ANALYSIS OF X-VINE:
As a first step in formally modeling X-Vine security, we

develop an analytic model for routing in X-Vine. The model
enhances our understanding of the relationship between op-
erational parameters of X-Vine, and can serve as a stepping
stone for a complete formal model to analyze X-Vine’s se-
curity against Sybil identities.

Let there be N nodes in the system with node identifiers
ranging from 0..N − 1. Let L(0, w) be the expected lookup
path length between the node with identifier 0 and w. Let
us suppose that node maintain trails with a single successor.
Without loss of generality, the average lookup path length
can be computed as follows:

E(L) =

∑w=N−1
w=0 L(0, w)

N
(1)

In the simplest case, L(0, 0) = 0. Let us first compute
L(0, 1). Note that node 0 and node 1 have a trail between
them because they are overlay neighbors. Let d be the aver-
age node degree in the underlying topology. We assume that
the length of the trail between overlay neighbors is close to
their shortest path in the social network topology (approxi-
mately logd(N)). The lookup will proceed from node 0 along
the trail to node 1. Thus we have that:

L(0, 1) = Expected trail length (2a)

L(0, 1) = logd(N) (2b)

Notice that there cannot be any shortcutting in the in-
termediate nodes on the trail path from node 0 to node 1
because we have assumed the trail to be the shortest path
in the social network topology. Let us now compute L(0, 2).
There are two possible scenarios. In the first case, there may
be a trail with an end point at node 2 going through node
0. In this case, the packet is routed along the trail to node
2. Again, there cannot be any shortcutting along this trail
because it is the shortest path. The mean path length in
this case is logd N

2
. In the second case, the packet will be

routed towards overlay node 1 (successor of node 0). Thus
we have that:

Figure 9: X-Vine lookup

L(0, 2) = P (trail) ·
logd N

2

+ (1− P (trail)) · (1 + l((logd N)− 1, 1, 2)) (3a)

where l(x, y, z) is defined as the expected path length
when z is the destination identifier, y is the next overlay
hop in the lookup, and x is the physical distance along a
trail between the current node and y (Figure 9). This means
that l((logd N) − 1, 1, 2) is the expected path length when
the destination identifier is 2, the next overlay hop is 1, and
the next overlay hop is logd N hops away from the current
node.

Note that each node maintains a trail to its successor,
and the mean length of the trails is logd(N). This means
that the average routing state maintained by a node in the
system is logd(N). Since each routing table entry specifies
two end points for a trail, the probability that a node has a
trail with a particular end point going through it is

2 logd N

N
.

Thus:

L(0, 2) =
2 logd N

N
·
logd N

2

+

(

1−
2 logd N

N

)

· (1 + l((logdN)− 1, 1, 2)) (3b)

We now need to compute l(x, 1, 2). Similar to our com-
putation of L(0, 2), again, there are three possible scenarios.
In the first case, the current node (say A) is a friend of node
2. Then the path length is 1. In the second case, there is a
trail with an end point at node 2 going through node A. In

this case, the mean path length is logd(N)
2

. In the third case,
the packet continues along the current trail to node 1.

l(x, 1, 2) =
2 logd N

N
·

(

logd N

2

)

+

(

1−
2 logd N

N

)

· (1 + l(x− 1, 1, 2)) (4)

Here, the boundary conditions for terminating the recur-
sion are as follows:

l(x, 1, 1) = x if 0 ≤ x ≤ logd N (5a)

l(x, z, z) = x if 0 ≤ x ≤ logd N, 1 ≤ z ≤ N − 1 (5b)

l(0, y, z) = L(y, z) = L(0, (z − y)) if 1 ≤ y ≤ z ≤ N − 1 (5c)

Let us now compute L(0, w). Consider the following two
scenarios. In the first case, let the closest preceding node in
node 0’s routing table be node i (shortcut to i 6= 1). Now
node i may either be a friend of node 0, in which case, the

13

path length is 1 + L(i, w), or node i may be the end point
of a trail going through node 0, in which case, the path

length is 1+ l
(

logd N

2
− 1, i, w

)

. In the second case, there is

no shortcutting, and the lookup proceeds towards the next
overlay hop node 1. Thus, we have that:

L(0, w) =
w
∑

i=2

P (shortcut to i) · P (shortcut via friend)

· (1 + L(i, w)) +
w
∑

i=2

P (shortcut to i)·

P (shortcut via trail) ·

(

1 + l

(

logd N

2
− 1, i, w

))

+ P (no shortcut) · (1 + l((logd N) − 1, 1, w)) (6)

Let us now compute the probability of shortcutting to a
node i. The probability of shortcutting to node w is sim-
ply d+2 logd N

N
. The probability of shortcutting to node w−1

can be computed as P (no shortcut to w)·P (shortcut to w−
1| no shortcut to w). This is equal to

(

1− d+2 logd N

N

)

· d+2 logd N

N−1
.

Similarly, we can compute the probability of shortcutting to
node i as:

P (shortcut to i) = P (no shortcut to w..i+1)·

d+ 2 logd N

N − (w − i)
(7a)

P (no shortcut to w..j) = P (no shortcut from w..j+1)·
(

1−
d+ 2 logd N

N − (w − j)

)

(7b)

Now, given that the lookup shortcuts towards overlay
hop node i, it may do so because of a friendship entry
in the routing table, or a trail in the routing table. The
probability that the shortcut happened via a friend entry,
P (shortcut via friend) = d

d+2 logd(N)
. The probability that

the shortcut happened because of a X-Vine entry is

P (shortcut via trail) =
2 logd(N)

d+2 logd(N)
. Thus, we can rewrite

equation (6) as

L(0, w) =
w
∑

i=2

P (shortcut to i) ·
d

d+ 2 logd N
· (1 + L(i, w))

+
w
∑

i=2

P (shortcut to i) ·
2 logd N

d+ 2 logd N
·

(

1 + l

(

logd N

2
− 1, i, w

))

+ P (no shortcutting) · (1 + l((logd N) − 1, 1, w)) (8)

Similar to the above analysis, we can compute l(x, i, w) as
follows:

l(x, j, w) =

j+1
∑

i=2

P (shortcut to i) ·
d

d+ 2 logd N
· (1 + L(i, w))

+

j+1
∑

i=2

P (shortcut to i)·
2 logd N

d+ 2 logd(N)
·

(

1 + l

(

logd N

2
− 1, i, w

))

+ P (no shortcutting) · (1 + l(x− 1, j,w)) (9)

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000

M
ea

n
Lo

ok
up

 P
at

h
Le

ng
th

Number of Nodes

Analysis, s=1
Simulation, s=1
Analysis, s=20

Simulation, s=20

Figure 10: Validation of Analytic Model using d = 10

The boundary conditions for the termination of recursion
are the same as in equation (5).

Validation of analytic model: Figure 10 plots the mean lookup
path length as a function of number of nodes for a synthetic
scale-free topology with average degree d = 10 using a re-
dundancy parameter of r = 1. We can see that the results of
simulation are a very close match with our analytic model,
increasing confidence in our results. We note that our an-
alytic model has implications for modeling network layer
DHTs like VRR.

14

B. PSEUDOCODE

Algorithm 1 Fwd lookup(identifier myid, message M): De-
termines next hop for a lookup message.

bestroute=0
foreach element E in RoutingTable

if distance(E.endpoint,M.dest)<
distance(bestroute,M.dest)

bestroute=E
endfor
return bestroute

Algorithm 2 Fwd trailsetup(identifier myid, message M):
Determines next hop for trail path setup message.

bestroutes=∅
/* select all routes that make progress */
foreach element E in RoutingTable

if distance(E.endpoint,M.dest)<distance(myid,M.dest)
bestroutes.insert(E)

endfor
/* of these, discard (a) backtracked routes, (b) routes that
have reached bounds, (c) routes that don’t make names-
pace progress compared to M.nextovlhop*/
foreach element E in bestroutes

if failed set.contains(E.endpoint,E.nexthop) or
(E.nexthop.numtrails > bn) or
(numtrailsto(E.nexthop) > bl) or
(distance(E.endpoint,M.dest) <

distance(M.nextovlhop,M.dest)
bestroutes.remove(E)

endfor
/* if no remaining options, backtrack */
if bestroutes == ∅

send reject to(M.prevhop)
return

/* of remaining routes, select route with maximum names-
pace progress */
routetouse=0
foreach element E in bestroutes

if distance(E.endpoint,M.dest)<
distance(routetouse,M.dest)

routetouse=E
endfor
return routetouse

15

