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ABSTRACT

POST: A Decentralized Platform for Reliable Collaborative
Applications

by

Alan E. Mislove

Traditional collaborative applications, such as email and newsgroups, are among

the most successful and widely distributed applications. However, such services are

almost exclusively based on centralized servers, which inherently limits their scalabil-

ity and fault tolerance. This thesis presents the design of POST, a platform for such

collaborative applications which is completely decentralized and is based on the Pas-

try peer-to-peer overlay. To show that POST is sufficient to support even the most

demanding applications, this thesis also presents ePOST, an email service built on

POST. ePOST is in use as the primary email system for actual users, demonstrating

an email system which is inherently more scalable and potentially more fault tolerant

than existing systems. The success of POST shows that peer-to-peer technology is

mature enough to support reliable applications, and that other traditionally client-

server applications can be improved through the use of peer-to-peer technologies.
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Chapter 1

Introduction

Traditional email and news services, as well as newer collaborative applications

like instant messaging, bulletin boards, shared calendars and whiteboards, are among

the most successful and widely used distributed applications. Today, such services are

implemented in the client-server model, with messages stored on and routed through

dedicated servers, each hosting a set of user accounts. This partial centralization

limits availability, since a failure or attack on a server denies service to the users it

supports. Also, substantial infrastructure, maintenance, and administration costs are

required to scale these services to large numbers of users. This is true in particular for

the semantically richer and more complex messaging systems like Microsoft Exchange

and Lotus Notes [47, 48].

The use of a decentralized approach, such as a peer-to-peer (p2p) based solution,

seems like a natural fit for the above problems. For example, p2p overlays remove

all single points of failure by distributing the services across all member nodes, pro-

viding the potential for a more highly available system. Additionally, p2p systems

scale logarithmically with the number of participating users, removing the scalability

bottleneck, which is one of the major problems with current collaborative systems.

However, it is not yet known whether p2p systems are mature enough to support
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mission-critical applications, or ones which users rely on for their daily work. Cur-

rent deployed p2p systems provide services such as file-sharing [35, 21], web server

shielding [19], or a general purpose distributed hash table (DHT) [27], and while these

applications demonstrate the benefits of p2p technology, none of them are relied upon

by users for their daily work.

This thesis presents POST, a p2p system which can support mission-critical ap-

plications. POST offers a resilient, decentralized infrastructure that leverages the

resources of users’ desktop workstations to provide collaborative services. POST pro-

vides three basic, efficient services to applications: secure persistent single-copy stor-

age, metadata based on single-writer logs, and event notification. As is demonstrated

later in the thesis, a wide range of collaborative applications can be constructed on

top of POST using just these services.

POST itself is built upon a structured p2p overlay network, lending it with scala-

bility, resilience and self-organization. Users contribute resources to the POST system

(CPU, disk space, network bandwidth), and in return, they are able to utilize its ser-

vices. POST assumes that participating nodes can suffer Byzantine failures. Stronger

failure assumptions, like simple crash failures, may be unrealistic even within a sin-

gle organization, because a single compromised node may be able to disrupt critical

messaging services or disclose confidential messages.

In this thesis, we present the design of the POST infrastructure, and show how it
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can be used to support a variety of collaborative applications. In order to demonstrate

the flexibility POST provides, we also detail the design of an email system, ePOST,

which is built on top of POST. We chose email as an initial benchmark application

because it is well understood, because users’ expectations of availability, privacy, and

durability place challenging demands on the underlying infrastructure. Finally, we

evaluate POST and ePOST, using both simulations and the results of a deployment.

The ePOST system was deployed with in the Computer Science department at Rice

University to a real user base and experimental results were collected.

1.1 Contributions

Specifically, the contributions of this thesis are

• An extension to existing peer-to-peer overlays, called scoped rings which is nec-

essary to deploy mission-critical decentralized applications.

• The design of POST, a decentralized platform for collaborative applications

which is sufficient to support even the most demanding collaborative applica-

tions.

• The design of ePOST, an email system based on POST, showing that POST

can easily handle complex applications.
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• An evaluation of POST and ePOST based on simulations and a deployment of

ePOST with real users relying on the system.

The remainder of this thesis is organized as follows. Chapter 2 provides back-

ground on peer-to-peer overlays and applications. Chapter 3 describes the scoping

over overlays which was necessary to deploy POST. Chapter 4 presents the design of

POST in detail and describes how POST meets the requirements of mission-critical

applications. Chapter 5 details the design of ePOST, and Chapter 6 presents the

results of an initial deployment of ePOST. Chapter 7 discusses related work and

Chapter 8 concludes.



Chapter 2

Background

In this chapter, we discuss current email systems and protocols, which ePOST

replaces, as well as p2p overlays, which we use to build POST and ePOST.

2.1 Email Systems

Email was first developed as messaging system on top of the ARPAnet. The Sim-

ple Mail Transfer Protocol (SMTP) for transmitting email between mail servers was

formalized in 1982 as RFC 821 [37]. SMTP provides a simple, lightweight protocol for

message transmission, but it does not directly support sender verification or encryp-

tion. This lack of security has lead to an explosion of bulk unsolicited commercial

email, or spam [2], as senders of such email are easily able to forge the headers of their

emails. Extensions to SMTP [28] were developed after email’s popularity soared, but

none of these extensions are used consistently and there is debate to this day over

what is the best way to secure SMTP [42, 43].

Protocols for accessing and managing email were developed as email gained in

popularity. The first of such protocols, the Post Office Protocol (POP3) was formal-

ized in 1988 [32], and provides a simple way of downloading newly arrived email. A

semantically richer protocol, the Internet Message Access Protocol (IMAP) was cre-

ated in 1994 [13], and is today the de-facto standard for client-program-based email



6

message access.

Web-based email or webmail is an alternative method of email access which

has recently gained in popularity. Webmail providers, including Hotmail [25] and

Google [22], typically present the user with a set of web pages containing their email,

which allows the user to access their email by using just a web browser.

2.2 Peer-to-Peer (p2p) Overlays

POST relies on Pastry, a structured overlay network, as well as two basic services

built upon Pastry: PAST, a distributed storage system and Scribe, a group communi-

cation system. POST could easily be layered above similar systems like Chord/CFS,

or Tapestry/OceanStore [45, 15, 29, 49] which are compatible with the key-based

routing (KBR) API [16].

2.2.1 Pastry

Pastry [39] is a structured p2p overlay network designed to be self-organizing,

highly scalable, and fault tolerant. In Pastry, every node and every object is assigned

a unique identifier randomly chosen from a 160-bit id space, referred to as a nodeId

and key, respectively. Given a message and a key, Pastry can route the message to

the live node whose nodeId is numerically closest to the key in less than log2bN hops,

where N is the number of nodes in the network and b is a configuration parameter

which is usually 4. Eventual delivery is guaranteed unless bl/2c nodes with adjacent
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nodeIds fail simultaneously, where l is a configuration parameter with typical value

12.

2.2.2 PAST

PAST [40] is a storage system built on top of a structured overlay and can be

viewed as a distributed hash table (DHT). Each stored item in PAST is given a 160

bit key (hereafter referred to as the handle), and replicas of an object are stored at

the k live nodes whose nodeIds are the numerically closest to the object’s handle.

PAST maintains the invariant that the object is replicated on k nodes, regardless of

node addition or failure.

Since nodeId assignment is random, these k nodes are unlikely to suffer correlated

failures. PAST relies on Pastry’s secure routing [7] to ensure that k replicas are stored

on the correct nodes, despite the presence of malicious nodes who may attempt to

prevent this. Throughout this thesis, we assume that at most k − 1 nodes are faulty

in any replica set. Section 4.6 discusses the basis for this assumption.

PAST is used in POST to store three types of data: content-hash blocks, certificate

blocks, and public-key blocks.

Content Hash Blocks

Content-hash blocks are stored using the cryptographic hash of the block’s con-

tents as the handle and are immutable after being created. Content-hash blocks can



8

be authenticated by obtaining a single replica and verifying that its contents match

the handle; because they are immutable after creation, any violation of this can be

easily detected when the hash of the block does not match its handle.

Certificate Blocks

Certificate blocks are signed by a trusted third party and bind a public key to

a name (for instance, an email address). Certificate blocks are stored using the

cryptographic hash of the name as the handle and are also immutable after creation.

Certificate blocks, as with content-hash blocks, can be verified easily based on the

digital signature of the third-party trusted authority who initially signed them.

Public-Key Blocks

Public-key blocks contain monotonically increasing timestamps, are signed with

a private key, and are stored using corresponding public key as the handle, allowing

for block mutation after creation. Public key blocks, however, require more elaborate

mechanisms to support mutation. First, to prevent an impostor from trying to post

a forged update, the nodes maintaining the block must verify that the signature on

the update matches the already-known public key. Likewise, to prevent an attacker

from trying to roll the block back to an earlier valid state, the nodes maintaining the

block verify that the timestamps are advancing forward. Finally, to prevent a man-

in-the-middle attack or a malicious replica node when fetching a block, the object
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requester must obtain all k replicas, verify their signatures, and discard any with

older timestamps. So long as at least one of the k nodes returns the desired block,

the requester will get the most recent version of the object.

2.2.3 Scribe

Scribe [9] is a highly scalable group communication system built on top of Pastry.

Each Scribe group has a 160 bit groupId which serves as the address of the group.

The nodes subscribed to each group form a multicast tree, consisting of the union of

Pastry routes from all group members to the node with nodeId numerically closest

to the groupId. Since membership maintenance is distributed throughout the tree,

Scribe can handle highly dynamic groups. Scribe also supports an anycast primitive,

which allows any node in the overlay to efficiently locate a nearby member of a given

group in a decentralized fashion.

Scribe takes advantage of proximity-based neighbor selection in Pastry to provide

trees which are efficient in terms of network proximity. Since Pastry routes from close

nodes are likely to converge soon, Scribe trees will send a small number of copies of

each message to each organization with high probability.
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Scoped Overlays

Structured peer-to-peer (p2p) overlay networks provide a self-organizing, decen-

tralized substrate for distributed applications and support powerful abstractions such

as distributed hash tables (DHTs) and group communication [24, 38, 39, 45, 49, 30].

Most of these systems use randomized object keys and node identifiers, which yields

good load balancing and robustness to failures. However, in such overlays, applica-

tions cannot ensure that a key is stored in the inserter’s own organization, a property

known as content locality. Likewise, one cannot ensure that a routing path stays en-

tirely within an organization when possible, a property known as path locality. In an

open system where participating organizations have conflicting interests, this lack of

control can raise concerns about autonomy and accountability [24]. This is particu-

larly a problem when deploying mission-critical services, as organizations may desire

that organizational data always remain within the organization.

Moreover, participants in a conventional overlay must agree on a set of protocols

and parameter settings like the routing base, the size of the neighbor set, failure detec-

tion intervals, and replication strategy. Optimal settings for these parameters depend

on factors like the expected churn rate, node failure probabilities, and failure corre-

lation probability. These factors may not be uniform across different organizations
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and may be difficult to assess or estimate in a Internet-wide system. The choice of

parameters also depends on the required availability and durability of data, which is

likely to differ between participating organizations. Yet, conventional overlays require

global agreement on protocols and parameter settings among all participants.

In POST, the p2p overlay is divided into a hierarchy of overlay instances with

separate identifier spaces. The hierarchy reflects administrative and organizational

domains, and naturally respects connectivity constraints. This technique leaves par-

ticipating organizations in control over local resources, choice of protocols and param-

eters, and provides content and path locality. Each organization can run a different

overlay protocol and use parameter settings appropriate for the organization’s net-

work characteristics and requirements. This generalizes existing protocols with a

single id space, thus leveraging prior work on all aspects of structured p2p overlays,

including secure routing [7].

3.1 Design

A multi-ring protocol stitches together the rings and implements global routing

and lookup. To applications, the entire hierarchy appears as a single instance of a

structured overlay network that spans multiple organizations and networks. The rings

can use any structured overlay protocol that supports the key-based routing (KBR)

API defined in Dabek et al. [16].

Figure 3.1 shows how our multi-ring protocol is layered above the KBR API of the
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overlay protocols that implement the individual rings. Shown at the right is a node

that acts as a gateway between the rings, and is therefore two instances of the same

node in the different rings. The instances of structured overlays that run in each ring

are completely independent. In fact, different protocols can run in the different rings,

as long as they support the KBR API.

Ring A Ring B

Chord Chord

KBR API KBR API

Multiring Multiring

Pastry

KBR API

Multiring

AppApp App

Figure 3.1 Diagram of application layers.

3.2 Ring structure

The system forms a tree of rings. Typically, the tree consists of just two layers,

namely a global ring as the root and organizational rings at the lower level. Each ring

has a globally unique ringId, which is known to all members of the ring. The global

ring has a well-known ringId consisting of all zeroes. It is assumed that all members

of a given ring are fully connected in the underlying physical network, i.e., they are

not separated by firewalls or NAT boxes.

All nodes in the entire system join the global ring, unless they are connected

behind a firewall or a NAT. In addition, each node joins a ring consisting of all the

nodes that belong to a given organization. A node is permitted to route messages
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and perform other operations only in rings in which it is a member.

The global ring is used primarily to route inter-organizational queries and to enable

global lookup of keys, while application keys are stored in the organizational rings.

Each organizational ring defines a set of nodes that use a common set of protocols

and parameter settings; they enjoy content and path locality for keys that they insert

into the overlay. In addition, a organizational ring may also define a set of nodes that

are connected to the Internet through a firewall or NAT box.

An example configuration is shown in Figure 3.2, where nodes shown in gray are

instances of the same node in multiple rings and nodes in black are only in a single

ring due to a firewall. The nodes connected by lines are actually instances of the same

node, running in different rings. Ring A7 consists of nodes in an organization that

are fully connected to the Internet. Thus, each node is also a member of the global

ring. Ring 77 represents a set of nodes behind a firewall. Here, only two nodes can

join the global ring, namely the firewall gateway nodes.

Ring A7

Global Ring

Ring 77

Figure 3.2 Example of a ring structure.
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3.3 Gateway nodes

A node that is a member of more than one ring is a gateway node. Such a node

supports multiple virtual overlay nodes, one in each ring, but uses the same nodeId

in each ring. Gateway nodes can forward messages between rings, as described in

the next section. In Figure 3.2 above, all of the nodes in ring A7 are gateway nodes

between the global ring and ring A7. To maximize load balance and fault tolerance,

all nodes are expected to serve as gateway nodes, unless connectivity limitations

(firewalls and NAT boxes) prevent it.

Gateway nodes announce themselves to other members of the rings in which they

participate by subscribing to a group in each of the rings. The group identifiers of

these groups are the ringIds of the associated rings. In Figure 3.2 for instance, a node

M that is a member of both the global ring and A7, joins the Scribe groups:

Scribe group A700...0 in the global ring

Scribe group 0000...0 in ringId A7

3.4 Routing

Next, we describe how messages are routed in the system. We assume that each

message carries, in addition to a target key, the ringId of the ring in which the key is

stored. In the subsequent section, we will show how to obtain these ringIds.

Recall that each node knows the ringIds of all rings in which it is a member. If
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the target ringId of a message equals one of these ringIds, the node simply forwards

the message to the corresponding ring. From that point on, the message is routed

according to the structured overlay protocol within that target ring.

Otherwise, the node needs to locate a gateway node to the target ring, which is

accomplished via anycast. If the node is a member of the global ring, it then forwards

the message via anycast in the global ring to the group that corresponds to the desired

ringId. The message will be delivered to a gateway node for the target ring that is

close in the physical network, among all such gateway nodes. This gateway node then

forwards the data into the target ring, and routing proceeds as before.

If the node is not a member of the global ring, then it forwards the message

into the global ring via a gateway node by anycasting to the group whose identifier

corresponds to the ringId of the global ring. Routing then proceeds as described

above.

As an optimization, it is possible for nodes to cache the IP addresses of gateway

nodes they have previously obtained. Should the cached information prove stale, a

new gateway node can be located via anycast. This optimization drastically reduces

the need for anycast messages during routing.

3.5 Global lookup

In the previous discussion, we assumed that messages carry both a key and the

ringId of the ring in which the key is stored. In practice, however, applications often
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wish to look up a key without knowledge of where the key is stored. For instance,

keys are often derived from the hash of a textual name provided by a human user. In

this case, the ring in which the key is stored may be unknown.

The following mechanism is designed to enable the global lookup of keys. When

a key is inserted into a organizational ring and that key should be visible at global

scope, a special indirection record is inserted into the global ring that associates the

key with the ringId(s) of the organizational ring(s) where (replicas of) the key is(are)

stored. The ringId(s) of a key can now be looked up in the global ring. Note that

indirection records are the only data that should be stored in the global ring. Only

legitimate indirection records are accepted by members of the global ring to prevent

space-filling attacks.

3.6 Multi-level ring hierarchies

We believe that a two-level ring hierarchy is sufficient in the majority of cases.

Nevertheless, there may be situations where more levels of hierarchy are useful. For

instance, a world-wide organization with multiple campuses may wish to create multi-

ple rings for each of its locations in order to achieve more fine-grained content locality.

In these cases, it may be advantageous to group these machines into subrings of the

organization’s ring, further scoping content and path locality.

In order to provide for such extensions, the ring hierarchy described above can be

naturally extended. To do so, we view ringIds as a sequence of digits in a configurable
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base b, and each level of ring hierarchy will append an extra digit onto the parent

ring’s ringId. Thus, organizations which own a given ringId can dynamically create

new rings by appending digits to their ringId.

The routing algorithm can be generalized to work in a multi-level hierarchy as

follows. When routing to a remote ring R, the node first checks to see if it is a

member of R. If so, it simply routes the message in R using the normal overlay

routing.

If the node is not a member of R, it must forward the message to a gateway. If

the node is a member of multiple rings, it must choose one of these rings in which

to forward the message. This is done by comparing the shared prefix length of each

local ringId and R and picking the ring with the longest shared prefix. In the case of

multiple ringIds with the longest prefix, the node should pick the shortest one in total

length. This process guarantees that the node picks the local ring which is “closest”

to the destination ring R.

Once the node has chosen in which local ring L to send the message, it the must

determine if it should route the message up (towards the global ring), or down. This

is an easy computation, as it is dependent only upon the length of the shared prefix of

L and R. If R has L as a prefix, the node should route the message downwards since

R is “below” this ring. Thus, the node should forward the message via an anycast

to the Scribe group rooted at substring(R, length(L) + 1). The gateway node which
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receives the message can then use the routing algorithm again in the other ring.

(1) route(dst, msg) {
(2) if (local == dst) {
(3) route normally(msg)
(4) } else {
(5) len = length(local)
(6)
(7) if (dst.hasPrefix(local))
(8) forward(substring(dst, len+1), msg)
(9) else
(10) forward(substring(local, len-1), msg)
(11) }
(12) }

Figure 3.3 Pseudocode for routing between rings.

If R does not have L as a prefix, the node should route the message upwards,

towards the global ring. This is done by routing the message to the parent ring,

or to a ring with ringId substring(L, length(L) − 1). Clearly, messages are routed

efficiently by forwarding the message until a ring is found whose id is a prefix of the

destination ring, and then routing the message downwards towards the destination

ring.

The pseudo-code for routing a message msg to the ringId dst at a node in ringId

local is shown in Figure 3.3. Figure 3.4, below, shows an example a node in ring

D1A8 routing to a location in the ring 63. In the figure, gray nodes are gateways,

which exist in multiple rings and route between them and the numbers 1-5 denote

the steps in routing.
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Figure 3.4 Diagram of a the routing process with multiple levels of hierarchy.



Chapter 4

POST Design

POST provides three generic services: (i) a shared, secure single-copy message

store, (ii) metadata based on single-writer logs, and (iii) event notification. These

services can be combined to implement a variety of collaborative applications, like

email, news, instant messaging, shared calendars and whiteboards.

In a typical pattern of use, users create messages that are inserted in encrypted

form into the secure store. To send a message to another user or group, the event

notification service is used to provide the recipient(s) with the necessary information

to locate and decrypt the message. The recipients may then modify their personal,

application-specific metadata to incorporate the message into their view (e.g., into a

private mail folder, a shared bulletin board, or a calendar view).

POST assumes the existence of a certificate authority. This authority signs iden-

tity certificates binding a user’s unique name (e.g., her email address) to her public

key. The same authority issues the nodeId certificates required for secure routing in

Pastry [7]. Users can access the system from any participating node, but it is assumed

that the user trusts her local node, hereafter referred to as the trusted node, with her

private key.

Figure 4 shows psuedocode detailing the POST API which is presented to ap-
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plications. The store and fetch methods comprise the single-copy message store.

Similarly, the readTopEntry, readPreviousEntry, and writeEntry methods pro-

vide the metadata service, and the notify method comprises the event notification

service.

The most complicated of these APIs is the metadata service, and we describe it in

more detail here. Each of the user’s logs is given a name unique to the user, denoted

below by LogName. Applications can scan through a log in reverse order by first calling

readTopEntry, followed by successive invocations of readPreviousEntry. Similarly,

applications can write to the log by simply calling writeLog with the desired target

log’s name.

// these two methods provide the single-copy message store

Handle store(Object)

Object fetch(Handle)

// and these methods provide metadata service

LogEntry readTopEntry(LogName)

LogEntry readPreviousEntry(LogEntry)

void writeEntry(LogName, LogEntry)

// lastly, this method provides the notification service

void notify(User, Message)

Table 4.1 POST API

4.1 User accounts

Each user in the POST system possesses an account, which is associated with an

identity certificate. The certificate is stored as a certificate block, using the secure
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hash of the user’s name as the handle. Also associated with each account is a user

identity block, which contains a description of the user, the contact address of the

user’s current trusted node, and any references to public metadata associated with

the account. The identity block is stored as a public-key block, and signed with the

user’s private key. Finally, each user account has an associated Scribe group used for

event notification, with a groupId equal to the cryptographic hash of the user’s public

key.

The immutable identity certificate, combined with the mutable public-key block,

provides a secure means for a trusted authority to bind names to keys, while giving

users the ability to change their personal contact data without requiring subsequent

interactions with the certificate authority. The Scribe group allows anybody waiting

for news from that user, or anybody wishing to notify the user that new data is

available, to have a common rendezvous point.

4.2 Single-copy store

POST stores potentially sensitive user data on nodes throughout the network.

While we could require application-layer cryptography, such as S/MIME or PGP for

email, we wish to provide an expectation of privacy comparable to maintaining data

purely on a local disk. POST uses a technique called convergent encryption [17], which

allows a message to be disclosed to selected recipients, while ensuring that copies of

a given plaintext message inserted by different users or different applications map to
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the same ciphertext, thus requiring only a single copy of the message to be stored.

When an application wishes to store message X, POST first computes the cryp-

tographic Hash(X ), uses this hash as a key to encrypt X using an efficient symmetric

cipher, and then stores the resulting ciphertext with the handle

Hash
(

EncryptHash(X ) (X )
)

which is the secure hash of the ciphertext. To decrypt the message, a user must know

the hash of the plaintext.

Convergent encryption reduces the storage requirements when multiple copies of

the same content tend to be inserted into the store independently. This happens

commonly in cooperative applications, for example, when a give popular document

is sent as an email attachment or posted on bulletin boards by different users.

In certain scenarios, however, it may be undesirable to use convergent encryption,

as is discussed in Section 4.6.2. In these cases, the use of convergent encryption is

completely optional and the single-copy store can be set to use a more traditional

encryption function, such as AES with randomly generated keys. The single-copy

property of the store is lost though, as inserts of the same data by different users will

no longer produce the same ciphertext. If this can be tolerated by the users of the

system, the rest of POST still works as expected.
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4.3 Event notification

The notification service is used to alert users and groups of users to certain events,

such as the availability of a message, a change in the state of a user, or a change in

the state of a shared object.

For instance, after a new message was inserted into POST as part of an email or

newsgroup, the intended receiver(s) must be alerted to the availability of the message

and provided with the appropriate decryption key. Commonly, this type of notifica-

tion requires obtaining the contact address from the recipient’s identity block. (This

may require a lookup of the recipient’s certificate block, if the certificate is not already

cached by the sender). Then, a notification message is sent to the recipient’s contact

address, containing the secure hash of the message’s ciphertext and its decryption

key, encrypted with the recipient’s public key and signed by the sender.

In practice, the notification can be more complicated if the sender and the recipient

are not on-line at the same time. To handle this case, the sender may delegate the

responsibility of delivering the notification message to a set of k random nodes. When

a user A wishes to send a notification message to a user B whose trusted node is off-

line, A first sends a notification request message to the k nodes numerically closest

to a random Pastry key C. This message is encrypted for B, and separately contains

A’s signature indicating the message is valid. The k nodes are then responsible for

delivering the notification message (contained within the notification request message)
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to B. Each of these nodes stores the message and then subscribes to the Scribe group

rooted at the hash of B’s public key. Additionally, the nodes periodically check the

recipient’s identity block for an updated contact address, and ping the address.

Whenever user B is on-line, his trusted node periodically publishes a message to

the Scribe group rooted at the hash of his public key, notifying any subscribers of his

presence and current contact address. This presence message may contain additional

application-specific data about the state of the user. Upon receipt of this message,

subscribers deliver the notification by sending it to the contact address. Since, by

assumption, at most k− 1 of these nodes can be faulty, the notification is guaranteed

to be delivered. POST relies on Scribe only for timely delivery – if Scribe messages

are lost due to failures, the notification will eventually be delivered due to periodic

pings and checks of the recipient’s identity block.

To guarantee confidentiality, each notification message is encrypted using a sym-

metric cipher such as AES with a unique session key, and the session key itself is then

encrypted using the recipient’s public key. Thus, only the recipient can decrypt the

session key (i.e., with his private key) in order to decrypt the remainder of the mes-

sage. Each notification message is also signed with the sender’s private key, allowing

the recipient to verify its authenticity. Finally, each notification message also includes

a timestamp to prevent the message from being replayed by malicious users. Note

that, unlike most traditional user messaging infrastructures, everything in POST is



26

digitally signed and encrypted, by default, from the ground up. This proves useful

when implementing secure higher-level services like email, instant messaging, and so

forth.

4.4 Metadata

POST provides single-writer logs that allow applications to maintain metadata.

Typically, a log encodes a view of a specific user or group of users and refers to stored

messages. For instance, a log may represent updates to a user’s private email folder,

or the history of a public newsgroup. An email or news application would then use

a log consisting of insert, update, and delete records to keep track of the state of the

folder or newsgroup.

In general, logs can be used to track the state of a chatroom, a newsgroup, a

shared calendar, or an arbitrary data structure. POST represents logs using self-

authenticating blocks. This is similar to, and was inspired by, the logs used in the

Ivy p2p filesystem [33].

The log head is stored as a public-key block and contains the location of the most

recent log record. Handles for log heads may be stored in the user’s identity block,

in a log record, or in a message. Each log record is stored as a content-hash block

and contains application-specific metadata and the handle of the next recent record

in the log. Applications optionally encrypt the contents of log records depending on

the intended set of readers.
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In the original implementation used in Ivy, the log head and each log record are

stored at a different set of nodes. To allow for more efficient log traversal, POST

aggregates together clusters of M consecutive log records in a single PAST object.

Partially filled clusters are buffered in the log head object itself, and are actually

pushed out a single objects once they are full. This reduces the number of keys in

PAST by a factor of M , which is a significant savings in terms of overhead.

Other optimization are provided to reduce the overhead of log traversals, including

caching of log records at clients and the use of snapshots. Like Ivy, POST applications

may periodically insert snapshots of their metadata into the store. In this case, log

traversals always terminate at the most recent snapshot.

Single-writer logs are the only mechanism used to maintain mutable state in

POST. Their use avoids the cost and complexity of a general Byzantine fault-tolerant

replicated state machine. As we will show, POST’s restricted mechanism for mu-

table state is flexible and efficient enough for a variety of collaborative applications

including email, instant messaging, shared calendars and bulletin boards.

4.5 Garbage collection

In order to make a DHT practical for use in a mission-critical application, we found

it necessary to introduce a mechanism for removing objects from the DHT. While the

rapid growth in hard disk size may make storing all inserted data ad infinitum pos-

sible in terms of storage overhead, the extra maintenance overhead quickly becomes
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overwhelming. This maintenance overhead includes ensuring that there always are k

live replicas of each stored object, and re-replicating each object as necessary.

The obvious solution in this case is to simply add a delete operation to PAST

which will remove the object associated with the given key. However, this is not a

realistic solution for a number of reasons. First, a delete method is unsafe under

most circumstances when arbitrary nodes must be able to delete any object in the

DHT. In this scenario, a single compromised node could issue delete commands for

all objects in the DHT, removing the all of the data. Second, even if the assumption

is made that all nodes are trusted, multiple users may be interested in a given object.

A complicated system such as a reference-counting scheme is necessary in order to

make sure that an object is only deleted once all users are no longer interested.

As an alternative solution, POST is based on a lease-based version of PAST. Each

object inserted into the DHT is given a lifetime by the inserting node. Once the

expiration time for a given object has passed, the replica nodes have completed their

storage contract and are free to delete the object. Clients are also allowed to extend

the lifetime of existing objects; the users must periodically do this to all data which

the user is still interested in. The modified PAST API is shown in Table 4.5.

void put(Key, Object, Expiration)

Object get(Key)

void refresh(Key, Expiration)

Table 4.2 Modified PAST API
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Other slight modifications are necessary to PAST in order to fully implement

this feature. Specifically, the replication protocol must now exchange tuples (key,

expiration). When a node is told to fetch a key which it already stored with a

different lifetime, it simply extends the lifetime of the stored key if the new lifetime

is longer.

Additionally, it is unrealistic to assume more than a loose synchronization be-

tween the clocks at each storage node. Therefore, expired objects are not deleted

immediately; instead, they are kept for an additional grace period TG. During this

time, the objects are still available for queries, but they are no longer advertised to

other nodes during maintenance. Thus, nodes that have already deleted their objects

do not attempt to recover them.

4.6 POST Security

POST must be designed to face a variety of threats, ranging from nodes that

simply fail to operate to attackers determined to read or modify sensitive informa-

tion. POST must likewise be robust against freeloading behavior, including users

consuming more resources than they contribute, and to application-specific resource

consumption issues, such as the space consumed by spam.
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4.6.1 Threat model

Our threat model for POST consists of attacks from both within and outside

of POST. Internal attacks can be broken down into two classes: freeloading and

malicious behavior. Freeloading, discussed below in Section 4.6.5, consists of either

selfish behavior or simple denial of service. Malicious behavior, however, can consist

of nodes attempting to read confidential data, modify existing data, or delete data

from the ePOST system. How POST handles these attacks is described below in the

following sections.

Additionally, we have not made specific efforts to make POST immune to traffic

analysis attacks. For example, nodes may be able to learn whether or not two users are

sending messages back and forth, although they are not able to discover the content

of these messages. Additionally, attackers may be able to determine if a given user

is reading a certain ciphertext by overhearing a DHT request. However, we do not

believe that these traffic analysis attacks are a large threat, as they require a local

attacker and current collaborative systems are just as vulnerable.

4.6.2 Data privacy

While convergent encryption provides the benefit of a single-copy store, it is known

to be vulnerable to known plaintext attacks. An attacker who is able to guess that

plaintext of a message can verify its existence in the store, and may or may not be able
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to determine whether any given node has requested that particular message. This may

be a particular concern for short messages, messages that are highly structured, or

generally any messages with low entropy. To partially address these concerns, POST

uses traditional cryptographic techniques (such as simple AES encryption with a

random key), to protect data that is never intended to be shared, such as the logs

and other metadata maintained for every user of the system.

4.6.3 Data integrity

The single-writer property and the content-hash chaining [31] of the logs make it

computationally infeasible for a malicious user or storage node to insert a new log

record or to modify an existing log record without the change being detected. This is

due to the choice of a collision-resistant secure hash function for the log entries and

the use of signatures based on public key encryption in the log heads.

To prevent version rollback attacks by malicious storage nodes, public-key blocks

contain version timestamps. When reading a public-key block (e.g., a log-head) from

the store, it is necessary to read all k replicas of the log, and use the authentic replica

with the most recent timestamp. When reading content-hash blocks or certificate

blocks, it is sufficient to use any authentic replica.
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4.6.4 Data durability

Of great concern is the durability of stored messages. For a message to become

unavailable, every member of the message’s replica nodes must independently fail

before the object can be re-replicated. The use of local rings allows more local repli-

cation, increasing an administrator’s control over the replica nodes and also reducing

the latency for fetching a given document.

Organizations that run a local ring should ensure that nodes are spread over

different buildings, if not different locations. Furthermore, correlated failures may be

caused by viruses, worms, or other attacks that take advantage of most organization’s

monoculture approach to systems administration. In addition to using a variety

of host platforms, administrators can run the POST daemon with reduced system

privileges under its own user id, partially isolating the POST daemon and its file

store from other issues that may effect any given system. Likewise, if the POST

daemon itself were compromised, its effect on the rest of the system could be more

easily contained.

In order to provide data durability even in the face of a massively correlated failure,

POST employs the distributed data-backup system Glacier [23]. Glacier provides data

durability by erasure encoding objects and efficiently storing and maintaining object

fragments. Glacier has been shown to provide 99.9999% durability even under an

60% correlated failure with modest overhead in both bandwidth and storage. Glacier
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is discussed in more detail in Chapter 6.

4.6.5 Denial of service

A variety of denial of service (DoS) attacks may be attempted against p2p net-

works. A common DoS strategy might be to control enough nodes to effectively

partition the overlay network, or even to control all of the outgoing routes from a

given node. Likewise, DoS attacks may be aimed at controlling all of the replicas of

a given document, allowing the attacker to effectively censor any desired document.

Pastry’s secure routing mechanism provide an effective defense against DoS attacks,

both from within and outside the overlay [7]. When using secure routing, an attacker

would need to control over 25% of the overlay nodes to mount an effective DoS attack.

4.6.6 Freeloading

Freeloading is a similarly pressing concern in p2p networks. Nodes within the

network may wish to consume more remote storage than they provide to the network.

Likewise, nodes may wish to fetch objects more often than they serve objects to other

nodes. If bandwidth or storage are a scarce resource, users will have an incentive to

modify their POST software to behave selfishly. Nodes can generally be coerced into

behaving correctly when other nodes observe their behavior and, if they determine

a node to be a freeloader, will refuse to give it service [34, 12]. Such mechanisms

can guarantee that it is rational for nodes to behave correctly. On the other hand,
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when nodes stop servicing their peers because, for whatever reason, they would find

it undesirable, this can have a negative effect on the integrity and durability of the

system.

POST, in its present form, does not include any mechanisms which make it im-

mediately compatible with existing incentives-based systems [34, 12]. Instead, our

current focus is taking advantage of the local ring, which resides within a single ad-

ministrative domain. By scoping the rings in this manner, abuses of the POST ring

can be detected and corrected completely within a single organization. For example,

organizations can periodically monitor the POST ring and if malicious behavior is

detected, they able to revoke the user’s access since the admission policy is specific

to the organization. If the network were simply one large global ring, it would be

non-trivial to track down an abuser or freeloader, much less correct the malicious

behavior.



Chapter 5

ePOST Design

In this chapter, we describe the design of a serverless email system, ePOST, on

top of the POST infrastructure. The goal is to show how POST can support a secure,

scalable and highly resilient email system that leverages the resources of participating

desktop computers.

While a system like ePOST promises increased resilience, greater scalability and

lower cost, it remains an open question whether these advantages will be sufficient

to completely displace the existing, server-based email infrastructure. Nevertheless,

we chose to pursue ePOST for several reasons. First, ePOST is designed so that

it can be deployed incrementally, thus allowing individual organizations to adopt it

while still relying on existing standards and infrastructure for communication across

organizations. Second, unlike most existing p2p applications, email is mission-critical

and demands high reliability, security, and availability. Thus, it is a challenging driver

for the development of POST and, more generally, the underlying p2p infrastructure.

Each ePOST user is expected to run a daemon program on his desktop computer

that implements ePOST, and contributes some CPU, network bandwidth and disk

storage to the system. The daemon also acts as a SMTP and IMAP server, thus al-

lowing the user to utilize conventional email client programs. The daemon is assumed
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to be trusted by the user and holds the user’s private key. No other participating

nodes in the system are assumed to be trusted by the user. An outline of the hierarchy

used in ePOST is shown in Figure 5.1.

ePOST

POST

ScribePAST

Pastry

POP3 SMTPIMAP

Email Client

Figure 5.1 ePOST Stack

5.1 Email storage

In ePOST, email messages received from an email client program are parsed and

the MIME components of the message (message body and any attachments) are

stored as separate objects in POST’s single-copy store. Thus, frequently circulated

attachments are stored in the system only once.

The message components are first inserted into POST by the sender’s ePOST

daemon; then, a notification message is sent to the recipient. Sending a message

or attachment to a large number of recipients requires very little additional storage

overhead beyond sending to a single recipient, as the data is only inserted once.
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Additionally, if messages are forwarded or sent by different users, the original message

data does not need to be stored again; the message reference is reused.

The convergent encryption used in POST is known to be less secure when en-

crypting short messages and highly structured content (e.g., text), as it is vulnerable

to known plaintext attacks (see Section 4.6.2). To avoid a loss of confidentiality,

small message bodies inserted by ePOST are inserted into the store using a normal

encryption function with a random key, as is discussed in Section 4.2. This measure

defeats the single-copy storage, but this is not a concern given the small average size

of message bodies.

5.2 Email delivery

The delivery of new email is accomplished using POST’s notification service. A

sender first constructs a notification message containing basic header information,

such as the names of the sender and recipients, a timestamp, and a reference to the

body and attachments of the message. The sender then requests the local POST

service to deliver this notification to each of the recipients. This message is signed

by the sender and encrypted using the receiver’s public key in the usual fashion,

combining RSA public key cryptography with a fast symmetric cipher like AES.

If the recipient of an email is in a different ring than the sender, the recipient has

the option of referencing the received email body and attachments in the ring of their

originator, or to fetch and insert copies into his own local ring. The latter approach



38

leads to higher availability and greater confidence in message durability, due to the

greater replication and confidence in the recipient’s local ring. Therefore, our ePOST

implementation replicates all incoming mail in the recipient’s local ring by default.

5.3 Email folders

Each mail folder is represented by an encrypted POST log. Each log entry repre-

sents a change to the state of the associated folder, such as the addition or deletion

of a message. Furthermore, since the log can only be written by its owner and its

content are encrypted, ePOST preserves the expected privacy and integrity semantics

of current email systems with storage on trusted servers.

Next, we describe a log record representing an insertion of a email message into a

user’s folder, such as her inbox. Other types of log records are analogous. An email

insertion record contains the content of the message’s MIME header, the message’s

handle and its decryption key, and a signature of all this information, taken from

the sender’s original notification message. All of this data is then encrypted with a

unique session key, using a low-cost symmetric cipher like AES. As these insertion

records need only be legible to the original sender, the session key is encrypted with

a master key, also using the cheap symmetric cipher. This symmetric master key is

maintained with the same care as the user’s private key. This allows the owner of the

folder, and none other, to read messages in the inbox and verify their authenticity

without performing expensive public key operations. The exact messages are shown
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EncryptedEmail = EncryptHash(X ) (X )

MessageHeader = (A, B, T,Hash (EncryptedEmail) ,Hash (X ))

Notification = Encrypt
KB

(

MessageHeader , Sign
KA

(MessageHeader)
)

Figure 5.2 Messages transmitted sending an email.

in Figure 5.2.

5.4 Incremental Deployment

In this section, we discuss integration issues in the specific context of ePOST. To

allow an organization to adopt ePOST as its email infrastructure, ePOST must be

able to interoperate with the existing, server-based email infrastructure. We describe

here how ePOST is deployed in a single organization and interoperate with email

services in the general Internet.

For inbound email, the organization’s DNS server provides MX records referring

to a set of trusted POST nodes within the local organization. These nodes act as

incoming SMTP mail gateways, accepting messages, inserting them into POST, and

notifying the recipient’s node. Suitable headers are generated such that the receiver

is aware the message may have been transmitted on the Internet unencrypted. If

no identity block can be found for the recipient in the local ring, then the email

“bounces” as in server-based systems.

Sending email to the outside world first requires determining that the desired email
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address is not already available inside ePOST. At that point, there may be a gateway

service that can provide the appropriate certificate material to generate a standard

cryptographic email in S/MIME or PGP format. This encryption is performed in

the sending user’s trusted local node, before the data goes onto the network. If the

recipient does not support secure email, then the email must ultimately be transmitted

in the clear, so the ePOST proxy server can speak regular SMTP to the recipient’s

mail server.

The inbound proxy nodes need to be trusted to the extent that they receive

plaintext email messages for local users. Typically, the desktop workstations of an

organization’s system administrators can be used for this purpose. These administra-

tors own root passwords that allows them to access incoming email in conventional,

server-based systems. Thus, ePOST provides the same privacy for incoming email

from non-POST senders as existing systems, and provides stronger confidentially for

email transmitted within ePOST.

5.5 Management

If ePOST is to replace existing reliable email systems, there must be a viable

management strategy for organizations to adopt when deploying ePOST. The man-

agement tasks in ePOST can be broken down into three categories: software distri-

bution, storage, and access. In the paragraphs below, we discuss these tasks in detail

and show how they can be minimized in the context of ePOST.



41

5.5.1 Software

The first management task incurred with ePOST is maintaining the proxy software

which runs on users desktops. This software will need to be kept running and up-

to-date as bugs are fixed and features are added. Organizations can do this in a

straightforward manner by including the proxy as part of their standard machine

images. The ePOST proxy can be configured as a service which runs and is restarted

if it fails. Including the software in the images also allows the software to be pre-

configured for the organization. Additionally, upgrades can be handled by signing

updated code and having users’ proxies periodically check and download authentic

updates.

To allow administrators to efficiently monitor the ePOST software, a monitoring

application can easily be built. Such an application can run in the background and

periodically check the status of all of the member nodes. Any error conditions or

unusual behavior can be forwarded to an administrator who is able to take the ap-

propriate action. In fact, we built such a monitoring application on top of our ePOST

implementation (described in Chapter 6) to aid us in monitoring and debugging.

5.5.2 Storage

In a distributed storage system such as ePOST, certain management overhead is

necessary to monitor the storage pool. For example, administrators need to ensure
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that space-filling attacks are not taking place and that nodes which are running out of

disk space are promptly serviced. Such monitoring can easily be done automatically

using the monitoring tool described in the above section. Machines which are close to

their disk space limit can be forwarded to the administrators, who can then service

the machines.

5.5.3 Access

Controlling access to ePOST can be broken down into two related tasks: trust

and naming. Trust is based on organization-provided certificates, as each user must

obtain a certificate to participate in the system. This is no different from current

email systems, where each user is required to obtain an account on an email server,

and it can be accomplished in a similar manner. For example, in our experimen-

tal deployment, we have simply provided a web page where users can sign up and

download certificates. In more realistic settings, however, the process could require

approval by various administrators before the new certificate is produced.

Naming in ePOST can also be accomplished in a manner similar to current sys-

tems. Organizations only need to ensure that each email address is only bound to one

public key, meaning that each email address is only give to one user. This is easy to

accomplish, since each user must obtain a certificate from their organization anyway.

Similar to current systems, the organization can simply keep a list of all assigned

email addresses and reject any applications for names which already exist.
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In summary, the overhead of managing a ePOST system is comparable to current

systems. Administrators are required to set up mechanisms for access and trust, as

well as monitor the running software and storage systems. However, in the case of

ePOST, the overhead has the potential to be lower, since the self-organizing prop-

erties of the underlying peer-to-peer substrate can mask the effect of node failures.

Additionally, the organic scalability granted to ePOST from the overlay has the po-

tential to significantly reduce the overhead associated with scaling an existing email

server to more users.

5.6 Discussion

By default, ePOST provides strong confidentiality, authentication and message

integrity. The system is able to tolerate up to k − 1 faulty nodes with Byzantine

faults in any replica set of k POST nodes without loss of data or service, where k

is the degree of message replication. It relies on Pastry’s secure routing facilities [7],

data replication, and cryptographic techniques to achieve robustness under a wide

range of attacks, including denial-of-service, and Byzantine failures.

5.6.1 Feasibility

More analysis and experimentation will be necessary to determine appropriate

assumptions about the fraction of faulty nodes in various environments, and appro-

priate levels of replication. However, results of a prior study on p2p filesystems in
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corporate environments indicate that modest levels of replication can yield very high

availability [6]. At the same time, our own results indicate that even relatively high

degrees of replication (e.g., k = 10) are possible within the disk space budget provided

by ordinary desktop computers. Furthermore, the use of Glacier [23] allows for less

replication, since full-object replication is only necessary for efficient short-term avail-

ability. If the data is lost due to a correlated failure, it can simply be reconstituted

from the Glacier fragments.

Since ePOST inserts all incoming messages into the local ring, only the node

failure probability and failure independence within a user’s local ring determines the

durability of the messages that the user references. Therefore, a user’s organization

can take appropriate steps to ensure failure independence and determine a degree

of replication commensurate with the expected node failure probability within the

organization, as discussed in Section 4.6.

5.6.2 Mailing Lists

Mailing lists are supported in POST by maintaining the list as an additional log

and storing the log head reference at the list maintainer’s user identity block. Only

the maintainer is allowed to modify the membership. When delivering a message, the

sender notices the list and expands the recipient list appropriately.
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5.6.3 Spam

Spam can be seen as an additional form of freeloading. Spam may potentially

originate from within ePOST or may be injected by a mail gateway. If spam were

to originate purely within ePOST, then the spam messages would need to be stored

and maintained in the sender’s local ring. Only notifications would be transmitted

to the recipient, saving the recipient the bandwidth cost of downloading an entire

spam message. This makes it easier to track the origin of a spam message and to

punish the origin. Likewise, because all of the message copies are within a single local

ring, it becomes easier to delete the spam after it has been detected. ePOST gives

the recipient the option to make a local copy of a message, but this would clearly

not be done for spam. Furthermore, if an incentive-based storage mechanism is being

used [34], then one of the major goals of anti-spam researchers, to push the costs of

spam back onto the spammers, can be achieved in a straightforward manner.

If spam originates from a mail gateway, it gets mixed in with other messages in the

local ring. Lately, spammers have been customizing their messages for every recipi-

ent, meaning that techniques like convergent encryption will be unlikely to collapse

multiple spam messages to a single POST object. To deal with spam coming through

the gateway, ePOST offers no new mechanisms, but ePOST does not preclude the

full variety of spam filtering techniques already in use.

Additional spam prevention techniques are possible when using ePOST. For ex-
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ample, users can easily share a ’Junk’ folder containing all of their received spam,

which can be used by a Bayesian filter as a training set. However, such collaborative

spam filtering systems open the door for additional security problems, such as users

maliciously marking non-spam as spam in hopes of polluting the spam archive. For

these reasons and others, the design of a collaborative spam filter is part of our future

work.



Chapter 6

Evaluation

In this section, we present results of our deployment of POST and ePOST within

the Computer Science department at Rice University. We implemented a version

of POST and ePOST on top of FreePastry [20], an open-source implementation of

Pastry, PAST and Scribe, and the POST and ePOST code will be released with

FreePastry 1.4.

6.1 Deployment Setup

Our initial deployment of ePOST began in January of 2004 with very few users.

As confidence in the system grew, we expanded our userbase and incorporated new

features. The results presented in this section reflect only the latest statistics from

the deployment - data from before these results does not reflect the same setup, so it

is omitted for clarity.

6.1.1 Timeline

Each POST node in the system ran a Pastry node, with PAST, Scribe, POST,

and ePOST services, as well as IMAP, POP3, and SMTP servers for the local user.

We started the experiment on September 19, 2004, and the results presented below

cover data until November 12, 2004, a span of 53 days. The ring consisted of on

average 26 nodes, running various versions of Linux and Windows.
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Also, the ring was restarted a few times throughout the deployment in order

to fix bugs and add additional features. These restart events occurred three times

throughout the trace, on October 6, 2004; October 7, 2004; and November 6, 2004.

Additionally, the ring was taken down for maintenance from October 14, 2004 through

October 18, 2004. All of these events are shown on Figure 6.1 below, which contains

graph of the number of live machines in the POST ring over the 53 day trace.
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Figure 6.1 Number of participating machines

As is stated before in this paper, the target environment of POST and ePOST is

a large organization. Correspondingly, we expect that such an environment will have

a much lower churn rate than that of many of the common p2p file-sharing utilities.

The churn rate for our POST and ePOST deployment is shown in Figure 6.2, as the

number of join and leave events per hour. As can be seen, the network was relatively

stable, but there were a few times where a significant portion of the ring was under

churn. Even under fairly heavy churn, the network managed to recover and continue

operation and while we don’t expect this to happen frequently, POST should be able
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to degrade gracefully.
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Figure 6.2 Amount of churn in the ePOST ring.

6.1.2 PAST

The results presented reflect two different parameters for the ePOST ring. From

September 19, 2004 until October 14, 2004, the ring was run with a very aggressive

garbage collection lease of just 4 days, which was done in order to simulate multiple

rounds of object lifetimes. The ring was then taken down through October 18, 2004,

when it was restarted with a more realistic garbage collection lease of 30 days. Addi-

tionally, the number of primary PAST replicas was 4 in the former deployment, and

3 in the latter - this was reduced once we gained confidence in Glacier for durability.

PAST requires that a periodic protocol be run to ensure that k replicas exist

for every object. Due to our expected low rate of churn, we have liberally set the

protocol frequency is set to every 10 minutes. As an optimization, we use Bloom

filters to exchange lists of keys which guarantees eventual consistency. Additionally,
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in order to provide for easy upgrades and disaster recovery, data was stored on-disk

in a GZipped XML format. This represented an approximately 30% increase over the

storage requirements for a simple byte stream, and this overhead is reflected in these

results.

ePOST uses Glacier in order to provide durable storage. Glacier is configured

to provide 99.9999% reliability under a 60% correlated failure, resulting in an ap-

proximately 10-fold increase in the storage overhead. Additionally, since the ePOST

workload mainly consists of small objects (such as email headers and bodies), Glacier

is configured to aggregate such small objects into larger aggregates, which reduces the

overhead. These aggregates hold, on average, around 25 objects and are pushed out

minimally every 12 hours.

6.1.3 ePOST

In our deployment, 4 machines served as SMTP gateways, accepting normal SMTP

traffic for ePOST users. Additionally, we provided 6 other “seed” machines which

participated in the ePOST ring but were not proxies for any user. The ePOST ring

was used by 4 active users, who used ePOST as their primary method of accessing

email. The ring was also used by 12 passive users, who forwarded their mail into

ePOST and had a running proxy, but did not use ePOST as their primary email

system.

Throughout the deployment, the ePOST ring delivered 31,094 individual email
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messages, which translates to 1.8 messages per user per hour. The sizes of the emails

were highly bimodal - the vast majority of the messages were under 10 KB, while

a very small number of messages ranged up to 5 MB in size. Figure 6.3 shows a

histogram of the distribution of email sizes.
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Figure 6.3 Histogram of email sizes

6.2 Data Storage

In this section, we present results concerning the storage load on the member nodes

in the ePOST ring. Figure 6.4 shows a graph of the total data stored in the ePOST

ring, including the overhead from the replication in both PAST and Glacier. This

graph shows the storage increasing slowly during the first phase of the experiment,

until 375 hours, and then increasing at a faster rate once the ring is restarted at 450

hours. This difference is the effect of garbage collection: during the former time-

span, objects were leased for only 4 days, so deleted objects were quickly collected.

However, in the later time-span, the lease was granted for 30 days, which postpones
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the effect of garbage collection for 30 days, or longer than the results are shown for.

The rapid increases and drops at 20 hours and 200 hours correspond to bugs in

the code which were detected and corrected. Also, the significant drop in the storage

requirements at 450 hours is from changing PAST to maintain 3 primary replicas

instead of 4, resulting in a 25% savings.
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Figure 6.4 Total data stored in the ring, including PAST and Glacier.

At the end of the experiment, with 26 machines participating in the ring, the

average amount of storage required on each node was 303 MB. This is a very modest

amount of storage for a commodity desktop, even as this increases it should increase

at a rate much slower than the increase in overall hard drive capacity. Furthermore,

once garbage collection resumes in the ring, the rate of increase will slow as deleted

objects begin to be collected.

Figure 6.5 shows the same graph as Figure 6.4, but includes separate plots for

each of the machines, showing a variance in storage requirements of about one order

of magnitude. While machines are storing similar amounts of data, the imbalance
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in the amount of storage is caused by random deviations in the nodeIds assigned to

the machines. Figure 6.6 shows a plot of the nodeId assignment, which clearly shows

the cause of the variance in storage requirements. As more machines are added this

imbalance should decrease, as the variance between identifiers will drop.

 0

 100

 200

 300

 400

 500

 600

 0  200  400  600  800  1000  1200

D
at

a 
S

to
re

d 
(M

B
)

Time (h)

Figure 6.5 Total data stored on each machine, including PAST and Glacier.

Figure 6.6 Distribution of nodeIds in experimental ring.

Reducing the variance in the storage requirements can also be done by making

each node run logN virtual nodes, instead of just one node [45]. Figure 6.7 shows the

storage requirements for each physical node as the number of virtual nodes grows. As

can be seen from the graph, the variance in storage requirements drops as the number
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of virtual nodes increases. However, using more virtual nodes increases the overlay

maintenance traffic overhead, so this must be taken into account when deciding on

an appropriate number of virtual nodes.
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Figure 6.7 Storage requirements if virtual nodes are used.

6.3 Message Traffic

Next, we take a look at message traffic generated by ePOST. Messages exchanged

in Pastry are sent using standard Java serialization, the overhead from which is in-

cluded in the results below. First, Figure 6.8 shows the cumulative number of mes-

sages sent by the various components of ePOST, and Figure 6.9 shows the cumulative

number of bytes sent. Unsurprisingly, Glacier was responsible for the majority (62%)

of the data sent, however, it did this efficiently, as it only sent 32% of the messages.

For comparison, PAST sent only 13% of the bytes, but did this with 20% of the

messages.

Overall, the ePOST ring sent a total of 8.5 million messages containing 48GB of
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Figure 6.8 Cumulative number of messages sent by ePOST components.
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Figure 6.9 Cumulative number of bytes sent by ePOST components.

data over the 53 day trace. This works out to an average of 5 messages per node

per minute, or 30 KB per node per minute. This is completely acceptable amount

of bandwidth, especially when considering that the majority of this bandwidth is

internal to an organization.

6.4 Single-Copy Store

As mentioned in Section 4.2, ePOST uses PAST to provide a single-copy store

to applications. During our experiment, we found that the single-copy store was
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able to reduce the storage load by 6.1%. While this amount is not significant when

considering the replication required by both PAST and Glacier, we believe that as

the system grows, the percentage of overlapping content will also increase.

To test this hypothesis, we collected statistics of the email contained within the

email folders of 30 IMAP users in our department. The 30 users volunteered for this

study and included students, administrative and research staff, and professors. We

recorded the average size, number of attachments, and the number of times a message

body or an attachment with the same content appeared in several folders.

The folders contained approximately 300,000 email messages, totally 3.8 GB. Us-

ing the POST single-copy message store, this total would be reduced to 3.2 GB of

unique data, representing a savings of 15.5%. Thus, we observed that increasing

the number of observed users from 16 to 30 gave a 254% increase in the effect of the

single-copy store. Moreover, in business environments, users already tend to exchange

large attachments more than is likely reflected in our academic department workload.

6.5 User-Perceivable Performance

Even though we have demonstrated that ePOST is efficient in terms of bandwidth

and storage, arguably the most important metric is the ePOST performance which

a user perceives - if ePOST is significantly slower than current centralized systems,

many users will not use it. We break the user-perceivable performance metrics into

three classes: email delivery time, speed of folder operations, and availability.
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6.5.1 Email Delivery Time

We calculate the delivery time of an email as the time between when the message

is received by an ePOST SMTP server and the time when the recipient’s proxy has

added the message to the Inbox. In our implementation of ePOST, we did not add

the optimization to directly deliver messages to online users. Thus, every email is

first handed off to a random set of nodes who then join the recipient’s group and

eventually deliver the message. The periodic joining of groups by the random nodes

is done once per minute, and the periodic publishing to one’s group is also done once

per minute. Hence, we expect an average duration of 1 to 2 minutes for delivery time

with these settings.

Figure 6.10 below shows a histogram of the delivery times for emails during our

experiment. In our deployment, over half of the emails were delivered in under 82

seconds and 67% were delivered within 2 minutes. Additionally, since the recipient’s

proxy may be offline, a number of emails were necessarily postponed until the recip-

ient’s proxy came back online. However, in the common case when the recipient was

online, the average delivery time was just 66 seconds.

6.5.2 Folder Operations

The duration of folder operations is dominated by the underlying DHT operations

- for example, writing to a folder incurs one DHT insert in the common case. In this
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Figure 6.10 Histogram of the delivery time for emails with online recipient.

section, we present the performance of DHT read and write operations. In order to

deal with Byzantine failures, POST declares an insert of data into the DHT successful

once a majority of the replicas have responded successfully.

As is expected, we found that folder writes were more expensive than reads. Specif-

ically, we found that folder reads took, on average, 1.4 seconds to complete. However,

this is heavily dominated by a few large object reads - disregarding the longest 5% of

these reads lowers the average to just 554 ms. Additionally, caching in PAST has sig-

nificant benefits here: we found that 75% of the client fetch requests were completed

in under 200 ms and were therefore likely cache hits.

We found that folder writes took an average of 2.0 seconds to complete. However,

we saw the same behavior here as we did with folder reads - a few large writes

dominated the average. In the case of the writes, removing the longest 5% of the

writes results in an average write time of 1.2 seconds. Comparing these results to

conventional servers is nontrivial, as they are dependent on a large number of factors
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such as machine speed, load, and mailbox size. However, the consensus is that from

the end user’s standpoint, ePOST is faster at folder manipulation operations than

our Computer Science department’s mail server.

The variance of folder writes is slightly higher than expected, mainly due to two

implementation details. In POST, log entries are collapsed into groups of 50 entries,

which are pushed out together once the group of entries is filled. Additionally, in

ePOST, folder snapshots are inserted every 500 entries, which significantly increases

the cost of inserting the 500th entry, as snapshots of large folders are typically large.

Both of these features cause every 50th and 500th log entry insertion to be much longer

than average, which skews the latency distribution. A CDF of the folder write time

is shown below in Figure 6.11. In general, we are still investigating mechanisms to

reduce the variance in folder inserts. However, the variance in ePOST is predictable

and does not increase as the system scales, unlike centralized systems where the

variance increases as the load on the server grows.
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6.5.3 Availability

The last user-perceivable performance metric we discuss is the availability of

ePOST. This metric, however, is the hardest to quantify as it is highly dependent on

the characteristics of the deployment as well as the external events which occur during

the deployment. For our experimental deployment, reporting availability figures is

not particularly useful, as we rebooted the ring a few times to upgrade node software

and we also took down the ring for a few days for a major software upgrade. In gen-

eral, though, we found the overall availability to be high - only one unplanned ring

failure occurred (and it was a direct result of a bug introduced in a software upgrade).

Per node availability was relatively high, too, which is reflected in Figure 6.1.

6.6 Discussion

From our experimental deployment, we have shown that both the storage and

bandwidth requirements of ePOST are practical. Without any garbage collection,

the storage load on the entire network works out to be 7 MB per user per day, and we

believe that garbage collection should reduce this figure significantly. The bandwidth

required for ePOST works out to be approximately 500 bytes per node per second,

a completely feasible number for our targeted environment of a large organizational

LAN.

Throughout our testing and deployment, we encountered a number of challenges
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and failures, and were forced to modify our Pastry and ePOST implementation to

be robust against such failures. For example, we experienced a number of correlated

failures including power failures, code bugs, and router misconfigurations. In fact,

one computer misconfiguration caused the ePOST to become partitioned, a failure

which ePOST handled without any data loss. We also experienced problems which

were less correlated, such as Java Virtual Machine (JVM) bugs and OS-level machine

hangs. ePOST (and Pastry where necessary) has benefited from this experience and

are now more robust to such Byzantine failures.

We intend to further verify the scalability and practicability of ePOST by expand-

ing our user base both within and outside of Rice. We initially plan to start other

ePOST rings at the other institutions, as well as attract more internal Rice users.



Chapter 7

Related Work

In this Chapter, we discuss related work in both collaborative applications and

peer-to-peer systems and applications.

7.1 Collaborative Applications

Electronic mail (email) was the first major decentralized collaborative applica-

tion. It was designed as an extension to the SENDMSG program to allow users to

send messages to users on other machines connected to the ARPAnet. Email was

initially sent using an extension to the File Transfer Protocol (FTP) [4]. However,

the popularity of email necessitated a new protocol for email transmission, which was

introduced in 1982 as the Simple Mail Transfer Protocol (SMTP) [37] and is still

in use today. Additionally, other early architectures were built for the delivery of

email messages, most notably the Grapevine system [5]. However, the management

overhead of systems like Grapevine limits their scalability.

Current email protocols, including SMTP [37], POP3 [32], and IMAP [13], are

tailored towards an infrastructure based on dedicated servers. These protocols are

based on email, and do not provide the more generic support for collaborative appli-

cations that POST offers. Lotus Notes [47] and Microsoft Exchange [48] provide a

general, secure messaging infrastructure based on the client-server model, providing
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the ability to transfer email, personal contacts, calendars, and tasks. POST aims to

provide similar functionality based on a serverless, decentralized and cooperative p2p

architecture.

However, two major problems have become apparent with current email systems:

scalability and security.

7.1.1 Scalability

There has been much work to allow email services to scale more effectively through

the use of cluster-based servers. The most notable of such approaches include the Por-

cupine System [41] as well as Hotmail’s [25] and Google’s [22] mail services. Porcupine

provides email services to a single organization by using a cluster of workstations to

handle up to a billion messages per day, while webmail solutions use highly admin-

istered private clusters of machines. While these systems achieve massive scalability,

they come at a high cost with respect to both equipment and maintenance overhead.

ePOST instead utilizes a completely decentralized, self-scaling architecture. ePOST

therefore eliminates the need to purchase dedicated powerful mail servers or clusters

of mail servers. Additionally, ePOST has the potential to reduce the management

overhead, as it can take advantage of the self-organizing properties of the peer-to-peer

overlay.
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7.1.2 Security

Security has become a major problem for email as it has gained in popularity. The

protocol for sending email, SMTP, has no verification built-in, which has lead to an

explosion of bulk unsolicited commercial email (or spam) and, more recently, forged

emails known as phishing scams [1]. Spam has quickly become the major problem

for both email users and providers - AOL, for example, reports that up to 80% of its

inbound email is spam [3].

Extensions to email, such as PGP [50] and GPG [46], provide secure, verifiable

email but are not widely used. Other approaches to securing email from spoofing

involve reverse DNS tricks [43, 42] but such proposals are only just now being finalized

and implemented. ePOST has the advantage that encryption and verification are

built-in from the beginning, removing most of these vulnerabilities.

7.2 Peer-to-Peer Applications

Peer-to-peer systems were first used as the basis for file-sharing and were based

on unstructured overlays such as Gnutella [21]. A number of structured peer-to-peer

overlays were created shortly after these unstructured systems were introduced [45,

38, 39, 49]. Applications designed for structured overlays range from basic distributed

hash tables (DHTs) [15, 40, 29] and end-system multicast [9] to multimedia content

distribution [8] and Usenet-style news services [44].
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The use of a single-writer, self-authenticating log in POST was inspired by the

use of similar logs in the Ivy decentralized filesystem [33]. The signed loghead is the

root of a Merkle hash tree [31], which allows the log to be stored on untrusted nodes,

while ensuring that the authenticity of each log entry can be verified locally. This

allows POST to avoid more complex Byzantine state machine protocols [10].

Another proposed serverless email system [26] shares many of the goals of ePOST.

Unlike POST, it focuses on email service only, and unlike ePOST, it is not compatible

with the existing the email infrastructure. Providing emails services on top of a p2p

storage system has also been explored in the OceanStore project [14]. The use of

single-writer logs allows POST to achieve similar functionality with significantly less

complexity, while allowing more general support for collaborative applications.

A few other structured peer-to-peer applications have been deployed on a wide

scale. The most notable of these include Kademlia [30], which is used as the backbone

of the eDonkey2000 [18] file sharing network. Also, the Coral [19] DHT has been used

to provide a distributed web cache, Coral-CDN [11], and the OpenDHT [27] project

aims to provide a general-purpose deployed DHT. However, the both of the latter

systems are centrally administered on the Planetlab [36] network, and they do not

address adding potentially untrusted entities.
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Conclusions

In this thesis, we have presented POST, a decentralized, serverless messaging sys-

tem that leverages the resources of participating desktop computers. POST provides

highly resilient and scalable messaging services, while ensuring confidentiality, data

integrity, and authentication. Three general, lean services provided by POST can be

used to support a variety of collaborative applications.

To demonstrate the feasibility of POST, we have also presented the design of

ePOST, a system providing email services built using POST. We deployed ePOST

within the Rice Computer Science department with real users relying on ePOST as

their primary email account. The results show that that POST is efficient enough to

support a demanding collaborative application, and that the overhead incurred with

respect to storage and bandwidth are acceptable for our target environment.

Generally, we see that the success of POST as a bellwether for peer-to-peer ap-

plications. Since email has been shown to be practically provided in a completely

decentralized setting, we believe that other demanding collaborative applications are

possible. Using the POST architecture, for example, one can easily provide instant

messaging, newsgroups, calendars, and shared whiteboards.
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