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1.0  Introduction

In the classical computer-graphics approach to three-dimensional rendering, a scene is

described in terms of its geometry and surface properties. Given this representation, the

rendering task can be thought of as a physical simulation problem. Recently, there has

been an increased interest in alternate rendering paradigms, most of which fall into a cat-

egory that we call image-based rendering. In these alternate approaches, reference images,

rather than geometry and surface properties, are used as the primary scene description.

In this paper we describe a simple extension to the well known results of projective

geometry, resulting in an efficient foundation for the construction of image-based ren-

dering systems.

The fact that all planar projections of a given three-dimensional planar surface are

related by two-dimensional homogeneous transforms, known as perspective mappings,

is an important result of projective geometry. While the three-dimensional projection

process defines mappings from R3 → R2, these two-dimensional homogeneous relation-

ships define transformations from R2→ R2, where the domains and ranges are in the

images’ coordinate systems. These perspective mappings can be easily expressed in

matrix form as shown below:

where

By setting g and h to zero, we can see that two-dimensional affine mappings are a proper

subset of the perspective case. Mann and Picard [Mann94] have also shown how all pla-

nar projections about a common center of projection are related by perspective map-

pings.

When perspective mappings are considered as image-warping functions [Heckbert89]

[Wolberg90], several practical benefits are exposed. First, since perspective mappings are
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of rank three with eight degrees of freedom, they are uniquely invertible. This allows the

image warping process to proceed in either a forward-mapping or inverse-mapping

fashion1. Second, the linear form of the denominators and numerators of the mapping

functions makes them well suited for incremental evaluation. The combination of these

two factors explains the underlying computational advantage of texture mapping over

pure geometric representation in computer graphics. However, the reason why textures

play only a supplemental role in traditional three-dimensional image generation is that a

single perspective transform can only convey planar shapes. Thus, they are generally

considered as merely an augmentation to the shading process rather than a shape

description.

In the following derivation we will show how perspective mapping, with a simple mod-

ification, can represent shape as well as changes of viewing position. When evaluated as

a two-dimensional image warp, this modified mapping maintains most of the advan-

tages of the original method.

2.0  Derivation

We use a series of backprojections and reprojections to derive the modified perspective

mapping function. Throughout, we will use the following model of a three-dimensional

projection that retains our image-space orientation. A point and three vectors, ( , , ,

and ), describe the projection. As shown in Figure 1, the point, , determines the center

of projection,  denotes a vector from the center of projection to the origin of the viewing

plane, and ,  form a basis set for spanning the viewing plane. This formulation is

capable of describing any planar projection, and it naturally allows for skewed and off-

axis projections.

FIGURE 1. The center-of-projection and three vectors determine the planar projection.

Only the relative magnitudes of the vectors , , and  are significant. Thus, it is often

convenient to scale them such that one is unit-length. We define a matrix, M, and its

1. A forward-mapping process computes destination pixels by accumulating successive source pixel contri-
butions. Inverse-mapping determines the subset of source pixels that contribute to a given destination pixel.
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inverse as follows. M is the concatenation of the column vectors, , , and . The rows

of the inverse of M are defined as cross-products of the projection vectors. This formula-

tion of the adjoint matrix provides a useful geometric interpretation.

The back projection of an image coordinate, (x, y), into three-space is defined as

where  is the two-dimensional homogeneous image coordinate, , and

 is the normalized range function defined for each point on the image plane. The

projection of a point in space, (X, Y, Z), onto an image plane is given by the expression,

where ≈ denotes equivalence down to a scale factor. The combination of these expres-

sions establishes the relationship between images of the same point in two different pro-

jections, and . This relationship is

determined by the following expression,

After multiplying through and reorganizing terms we arrive at

Next, the second term’s dependence on the range function can be factored out by scaling

the result by its normalized inverse,

giving

We call  the generalized disparity term for reasons that we will discuss later.
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x̂2 N2 ṗ1 M1x̂1
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We can now specify the mapping functions as the following rational expressions:

where

and

Compare this formulation to the expression for the planar perspective mapping func-

tion.

If the value of the generalized disparity function is defined to be , which cor-

responds to , then our formulation matches the perspective mapping case.

In fact, any constant-valued disparity function is equivalent to a translation and uniform

scaling of the planar perspective mapping at infinity. One can visualize the disparity

function as selecting an appropriate slice from a set of parallel planes undergoing a com-

mon projection. For this reason, the disparity function is merely a perturbation to per-

spective mapping.

3.0  Discussion

In our derivation of the perturbed projective mapping function, we defined the general-

ized disparity value in terms of the image’s range function. This is equivalent to consid-

ering the image to be a bivariate function with an explicit geometric definition. In this

section we will show how an explicit determination of the scene’s geometry is unneces-

sary when determining the image warping function needed to reproject a given image to

a new viewing position.

We begin by comparing the generalized disparity value, given previously, to the expres-

sion for stereo-disparity in the case of cameras with parallel optical axes [Faugeras93] as

given below:

x2

ax1 by1 c kδ1 x y,( )+ + +

gx1 hy1 i mδ1 x y,( )+ + +
-----------------------------------------------------------------= y2

dx1 ey1 f lδ1 x y,( )+ + +

gx1 hy1 i mδ1 x y,( )+ + +
-----------------------------------------------------------------=

a u1 r⋅= b v1 r⋅= c o1 r⋅= k ṗ1 ṗ2–( ) r⋅=
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In the stereo-disparity case, the depth at a point on the image is determined by its projec-

tion onto a unit vector along the optical axis. This formulation makes sense when both

images share a common optical axis that is assumed to be perpendicular to a common

image-plane. In determining depth-from-stereo, this geometric orientation arises

because it is required for epipolar lines to map to image scan lines. However, this rela-

tionship does not hold for arbitrary viewing parameters. Generally, an image rectifica-

tion1 step is required to align the optical axis of an arbitrary projection in order to satisfy

the condition that the projection of epipolar planes correspond to image scan lines. In

contrast, the range function is simply defined as the radial distance from the center of

projection to the point. This implies that the generalized disparity function does not

assume the existence of any preferred direction, such as the optical axis of the stereo-dis-

parity case.

The stereo-disparity function can be related to the generalized disparity function on a

term-by-term basis. The role of the baseline is replaced by the vector, , connecting

the initial and the desired centers of projection. This is the vector that appears in the

computation of the k, l, and m terms of the perturbed projective mapping function. The

focal length is related to the generalized disparity function’s normalizing term, .

This normalization factors out of the disparity calculation the distance from the center of

projection to each point on the image plane, whereas the focal length corresponds to this

distance along the optical axis. Thus, since all points include their own scale factor, they

can be treated uniformly, eliminating the special distinction of the optical-axis. Finally,

the depth factor of stereo-disparity is related to the range value of the generalized dis-

parity function, as discussed previously.

A similar relationship can be shown between the generalized disparity function and the

translational component of the optical-flow function, as derived by [Prazdny83]. This

suggests several possibilities. First, consider that it is straightforward to convert stereo-

disparity values to the generalized disparity form. This merely involves a scaling of the

stereo-disparity values by the secant of the angle between the pixel’s ray and the optical

axis, and dividing out the length of the baseline. This scalar-valued generalized-dispar-

ity function allows us to warp images so that they behave like a three-dimensional

model, and it does so using directly observable image measurements, (i.e. disparity val-

ues or optical flow) without needing to create an explicit geometric representation.

While the perturbed projective mapping function correctly determines the image coordi-

nates of each pixel in the resulting projection, the possibility exists that it may also intro-

duce many-to-one mappings, called topological folds. A situation is depicted in Figure 2

where two different images result from the same reference image and image-warp func-

tions; the only difference was the order of evaluation. Ideally, only the front-most surface

1. The image rectification step is equivalent to a perspective image mapping.
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would be displayed. Determining the correct visible surface at each pixel position is one

of the fundamental problems of traditional computer graphics.

One method for determining the correct visibility is to treat the image as a spatial height-

field and use traditional computer graphics techniques to transform, project, and scan

convert the result. A standard Z-buffer algorithm could be used to determine the visibil-

ity on a pixel-by-pixel basis. There are shortcomings with this approach, however. The

transformation process requires the computation of an additional rational expression to

determine the z-value for each pixel. Also, a screen-sized memory array is required to

store these z-values. This approach is nearly identical to a geometric representation1.

FIGURE 2. The image warp’s mapping function allows invalid visibility solutions.

We have developed an alternate approach to determining the visible surface that does

not require an explicit conversion to a geometric representation and has the following

important properties. It determines a unique evaluation order for computing the image-

warp function such that surfaces are drawn in a back-to-front order; thus, it allows a sim-

ple painter’s style visibility calculation. It maintains the spatial coherence of the image,

allowing the warp function to be computed incrementally. And, most significantly, the

enumeration order can be computed independent of the generalized disparity function,

1. We say nearly because a clever implementation might take some advantage of the image-height field’s
spatial coherence.

Correct Incorrect
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. This last property is surprising since all of the information concerning the shape

of the underlying data is represented by this disparity information. Our visibility algo-

rithm is capable of determining the visible surface using only the centers-of-projection of

the reference and desired images, along with the projection parameters of the reference

image. This visibility approach allows us to use only standard image warping methods

without any explicit appeal to the geometric content of the scene. A detailed discussion

of the algorithm can be found in [McMillan95a] and [McMillan95b].

4.0  Results

We have developed several prototype image-based rendering systems using the meth-

ods and algorithms described. Each system was written in C and operates in a standard

UNIX environment as an X-windows application. Three of these systems are briefly

described below.

We have constructed a general purpose planar image-warping system that takes as input

a reference image and either its corresponding disparity or range image. This system is

capable of generating arbitrary reprojections of a 512 × 512 reference image in excess of

10 frames per second. Unlike traditional computer graphics systems, the performance of

our image-based rendering system is independent of the geometric complexity of the

underlying scene. Instead, the performance is determined by the sizes of the reference

image and the reprojected result. Example outputs are shown in Figure 3.

FIGURE 3. Example images output from an image-based rendering system. The input reference image is
shown in Image A. Image B shows a perspective mapping. Images C and D show perturbed perspective
mappings.

We have also built a head-tracked stereoscopic image-based rendering system, as

described in [McMillan95a], to evaluate the effectiveness of the shape generated by the

perturbed projective mapping. While the system allows for separate reference images for

the left and right eyes, we have found that the illusion of a solid object in three-space can

be just as convincing with only a single reference image. The warped left-eye and right-

eye images are easily fused stereoscopically even without independent monocular occlu-

sion information. We have also been pleasantly surprised with the size of the useful

δ x y,( )

A B C D



Shape as a Perturbation to Projective Mapping McMillan and Bishop

Results 8

working range for the warped images generated from a single reference image. Figure 4

shows a tracked user walking around an image-based model synthesized from a single

reference image.

FIGURE 4. A user demonstrating a head-tracked stereoscopic image-
rendering system. Both the left eye and right eye images result from
warping a single reference image.

The image warping methods presented can be easily extended to handle non-planar pro-

jection manifolds. We have developed a third image-based rendering system which uses

cylindrical projections as reference images, and generates planar reprojections from arbi-

trary viewing positions. With this system we hope to generate truly immersive virtual

environments. Example outputs from this system are shown in Figure 5.

FIGURE 5. A cylindrical reference image generated from 36 planar projections (top) and three planar
reprojections (bottom) each generated from a different center of projection, but, with correct apparent depth and
occlusion.
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5.0  Conclusions

We have presented a simple perturbation to projective mapping that provides a repre-

sentation of three-dimensional shape as a scalar function defined on the image’s local

coordinate system. We have shown how this scalar function, which we call the general-

ized disparity function, relates to directly observable image features. Since an image-

warping function for generating arbitrary reprojections of the scene can be established

by knowing only the value of this disparity field and various projection parameters of

the reference image and the desired view, we consider this image-based rendering para-

digm independent of an explicit geometric model. While the information required to

generate such a model is inherent in our representation, we at no time build or process

one.

There are considerable efficiencies in using the perturbed projective mapping approach

for scene generation. First, the rational-linear expressions describing the arbitrary image

warps allow for a simple incremental evaluation in screen space. Second, an image enu-

meration order which guarantees a correct visibility solution can be determined without

the need for a three-dimensional representation, or a screen-sized depth-buffer. And

finally, the computation required to compute an image warp is independent of the geo-

metric complexity of the scene represented. The computational requirement is instead

determined only by the number of pixels in the reference and desired images.

We have demonstrated how our approach to representing shape can form the basis for

an image-based scene representation. The techniques that we describe are well suited to

a hardware implementation. In fact, it seems entirely possible that existing texture-map-

ping hardware could be used to compute our perturbed perspective mappings with little

more than a firmware modification.
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