
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/220067190

FL-system	:	A	Functional	L-system	for
procedural	geometric	modeling

Article		in		The	Visual	Computer	·	June	2005

DOI:	10.1007/s00371-005-0289-z	·	Source:	DBLP

CITATIONS

26

READS

57

3	authors:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

GeoHistoricalData	View	project

SimPLU3D	View	project

Jean-Eudes	Marvie

Technicolor

35	PUBLICATIONS			193	CITATIONS			

SEE	PROFILE

Julien	Perret

Institut	national	de	l’information	géographiq…

47	PUBLICATIONS			147	CITATIONS			

SEE	PROFILE

Kadi	Bouatouch

Université	de	Rennes	1

140	PUBLICATIONS			1,188	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Julien	Perret

Retrieved	on:	21	November	2016

https://www.researchgate.net/publication/220067190_FL-system_A_Functional_L-system_for_procedural_geometric_modeling?enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA%3D%3D&el=1_x_2
https://www.researchgate.net/publication/220067190_FL-system_A_Functional_L-system_for_procedural_geometric_modeling?enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA%3D%3D&el=1_x_3
https://www.researchgate.net/project/GeoHistoricalData?enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA%3D%3D&el=1_x_9
https://www.researchgate.net/project/SimPLU3D?enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA%3D%3D&el=1_x_9
https://www.researchgate.net/?enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Jean-Eudes_Marvie?enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Jean-Eudes_Marvie?enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Technicolor?enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Jean-Eudes_Marvie?enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Julien_Perret?enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Julien_Perret?enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Institut_national_de_linformation_geographique_et_forestiere?enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Julien_Perret?enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Kadi_Bouatouch?enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Kadi_Bouatouch?enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Universite_de_Rennes_1?enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Kadi_Bouatouch?enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA%3D%3D&el=1_x_7

Visual Comput (2005) 21: 329–339
DOI 10.1007/s00371-005-0289-z O R I G I N A L A R T I C L E

Jean-Eudes Marvie
Julien Perret
Kadi Bouatouch (�)

The FL-system: a functional L-system for
procedural geometric modeling

Published online: 24 May 2005
 Springer-Verlag 2005

IRISA/INRIA Rennes,
Campus Universtaire de Beaulieu,
Avenue du Général Leclerc,
35042 Rennes Cedex, France
(jemarvie,juperret,kadi)@irisa.fr

Abstract In this paper, we present
an FL-system, an extension of an
L-system that allows us to generate
any kind of object hierarchy and
mesh on the fly. This has been made
possible thanks to a modification
of the classical L-system rewriting
mechanism that produces a string of
symbols interpreted afterwards. In
our system, terminal symbols are not
characters, but functions that can be
executed at any step of the rewriting
process. Thanks to this extension,
our system allows the instantiation
of generic objects during the course
of the rewriting process as well as
their initialization. Therefore, we are
able to simulate all of the existing

solutions proposed by classical L-
systems, but we are also able to
generate VRML97 scene graphs and
geometry on the fly, since VRML97
nodes are handled as generic objects.
As an example, we will show in
the second part of this paper how
to use our extension to describe
building styles that are utilized
to generate large sets of different
building models. We also present
some models of urban features (street
lamps, etc.) and plants modeled and
generated using FL-systems.

Keywords L-systems · Gram-
mars · Object modeling · Real-time
rendering

1 Introduction

We are interested in generating very complex city models;
that is, city models containing many different styles of
buildings and many buildings for each style. We also want
to add some vegetation as well as urban features (street
lamps, etc.) in the streets. As these models may be very
large, we seek a description method that would encode 3D
databases at a low memory-storage cost and that would be
able to reconstruct the models on the fly.

Given these constraints, the use of L-systems is nat-
ural. Indeed, thanks to their amplification role [15], L-
systems allow the generation of complex models using
a small set of input parameters that are the parameters of
the axiom (see Fig. 1). Although the size of the file used
to encode a grammar used to describe a model can be quite
large, the grammar can be used to describe a single build-

ing style that is used to generate a large set of different
building models matching the given style (see Fig. 1). Fur-
thermore, using L-systems naturally allows the description
of plants, since the L-systems were primarily designed for
this purpose. Thus, the use of L-systems is of interest for
meeting all of our objectives. Finally, the use of L-systems
is highly scalable and portable, since the L-systems con-
sist of scripts that can be parsed and rewritten on the fly.

By contrast, the turtle paradigm proposed by L-
systems is not really convenient to describe models of
buildings, or more generally, 3D models or object hi-
erarchies. Therefore, we have extended different parts
of the L-system language to be able to use generic ob-
jects as rule parameters. As we will see in this paper,
these generic objects are generated by functions that re-
place classical terminal symbols. Our extended L-system
is thus called a functional L-system (FL-system). We have
also introduced the possibility of controlling the parallel

https://www.researchgate.net/publication/234774961_Plants_fractals_and_formal_languages?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==

330 J.-E. Marvie et al.

Fig. 1. Generation of geometric models using FL-system gram-
mars. The output of each rewriting is a geometric model that can
be stored in a new file or directly used for rendering

rewriting process. Thanks to these two major contribu-
tions, our grammars are now able to generate any kind of
VRML97 [8] scene graph and mesh on the fly. Thus, we
are capable of describing grammars for the generation of
building models, urban features, as well as vegetation. The
process of generating geometric models using FL-system
grammars is illustrated by Fig. 1.

2 Related work

Procedural techniques have been studied for many years
in order to provide an efficient alternative to exhaustive
representation of complex geometric objects. Such tech-
niques propose the drastic reduction of the size of geomet-
ric representations thanks to the use of procedures (func-
tions or rules) for geometric model construction. Rewrit-
ing systems such as L-systems [7], shape grammars [4,
16], or instant architecture [18] can be considered as pro-
cedural techniques.

L-systems [7], proposed by Lindenmayer as a basis
for a theory of biological development, are parallel string
rewriting systems. Most L-systems use a Logo-style tur-
tle [1] as a geometric interpretation of strings. The basic
idea is to define a state of the turtle as a set of attributes
such as its position and orientation in the Cartesian coor-
dinate system, its color, its linewidth, etc. Various appli-
cations of L-systems using the turtle interpretation have
led to the generation of fractals and to the realistic mod-
eling of plants and networks of streets. Nevertheless, the
turtle interpretation seems quite inappropriate for particu-
lar models, especially for buildings. This particular point

will be discussed later. From the generation of fractals
and the modeling of plants [2, 12–14, 17] to street model-
ing [11], L-system formalisms have quickly evolved. The
rules of such systems can be parametric, stochastic, or
conditional. These powerful formalisms increase the ac-
curacy of realistic plant models through the simulation
of the growth process. However, the lack of high-level
parameters and the use of a turtle in the geometric inter-
pretation of strings make current L-systems inappropriate
for modeling buildings. Moreover, in L-systems, the tur-
tle interpretation is made once the rewriting process is
over: the generation of geometry is made as a postpro-
cess.

Hart [3, 5] describes the object instancing paradigm,
a procedural modeling technique allowing efficient repre-
sentations of objects presenting redundancy. It is possible
to convert a turtle-based L-system into an instancing hier-
archy. The turtle controls are replaced by geometric primi-
tives and affine transformations. L-system productions are
converted into an instancing hierarchy.

Used in the generation of architectural models, shape
grammars [16] allow the definition of various styles
through the definition of composition rules. However, the
derivation process (the application of rules) is not auto-
matic since the rules are mostly chosen by the user.

Instant architecture [18] presents a mechanism for the
automatic generation of architectural models based on
shape grammars. Unlike previously presented formalisms,
in which each model is defined by a grammar, this frame-
work is based on a large database of grammar rules defin-
ing a variety of designs. This database contains two types
of grammars: a split grammar, which derives shapes, and
a control grammar, which sets out the shapes spatially.
Both grammar rules are selected by an attribute-matching
system, which also attributes the grammar parameters.
While this system offers a powerful tool for the creation of
building models from different sizes of input data, model
generation remains quite long. Moreover, it does not allow
the definition of any geometric models and is only appro-
priate for the modeling of buildings.

For a good comparison of L-systems and Chomsky
grammars, one can refer to Prusinkiewicz [14]. Briefly,
L-system rewriting rules refer to an evolution of a com-
ponent over time, whereas Chomsky grammar rules spec-
ify a decomposition over space. Moreover, the L-system
rewriting process is controlled by the number of deriva-
tion steps, which predefines the terminal age of the sys-
tem, while Chomsky grammar decomposition is limited
by atomic terminal symbols.

Since the motivation of our approach is to provide
a generic framework for procedural modeling, we develop
a hybrid derivation process combining both iterative and
parallel applications of rules. We also redefine the in-
terpretation of terminal symbols by using functions in-
stead of strings or shapes. Moreover, with the manipu-
lation of object references as parameters, such functions

https://www.researchgate.net/publication/220720895_Modeling_the_Mighty_Maple?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/47504041_Instant_Architecture?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/47504041_Instant_Architecture?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/221546320_A_Simple_but_Effective_Algorithm_to_Model_the_Competition_of_Virtual_Plants_for_Light_and_Space?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/2636820_The_Object_Instancing_Paradigm_for_Linear_Fractal_Modeling?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/256057782_Pictorial_and_Formal_Aspects_of_Shape_and_Shape_Grammars?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/256057782_Pictorial_and_Formal_Aspects_of_Shape_and_Shape_Grammars?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/35255007_Shape_grammars_and_their_uses?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==

The FL-system: a functional L-system for procedural geometric modeling 331

can be interpreted in many different ways according to the
user’s choices. Finally, we present a for expression offer-
ing a simple and effective way to generate sets of objects.
Our approach allows for the definition of complex struc-
tures such as VRML97 scene graphs and the use of object
instances.

3 Overview

This paper proposes our extended L-system-based lan-
guage, a formalism that is well-suited to procedural geo-
metric modeling. As an extension of L-systems, we intro-
duce the generalization of rule parameters to generic ob-
ject references to allow the manipulation of scene graphs
and complex geometric structures. The system is, thanks
to these mechanisms, strictly independent of the underly-
ing data structures that are created and modified by ter-
minal symbols corresponding to functions. In our system,
functions are embedded as dedicated extensions. Finally,
a new type of grouping rules dedicated to the descrip-
tion of sets, as well as a parallelism control scheme, are
defined in order to increase the expressiveness of the lan-
guage.

Thus, in order to specialize the system to geometric
modeling, we developed the following two extensions: the
first one, which is an algebraic extension, enables geo-
metric transformations such as translation or rotation on
vertex lists. The second, which is a VRML97 extension,
allows the creation of VRML97 nodes and the modifica-
tion of fields in order to generate scene graphs and geo-
metric objects automatically.

In this way, we use the whole system for the definition
of buildings by introducing the notion of building style.
A building style is defined as a set of rules, which, tak-
ing into account different parameters, give birth to a set
of different buildings. From now on, the set of rules de-
fined by the user will be called the grammar. Finally, the
generative use of our system is also illustrated by the mod-
eling of simple plants and urban features such as street
lamps.

The rest of this article is structured as follows: Sect. 4
defines our rewriting system and its specificities. Then,
Sect. 5 describes our extensions dedicated to the creation
of 3D models, while Sect. 6 presents an application of the
system to the generation of buildings. Finally, Sect. 7 il-
lustrates and discusses our results, and is followed by our
conclusions in Sect. 8.

4 FL-system

In this section, we present context-free L-systems (also
known as OL-systems) upon which our FL-system was
constructed. Then we describe the major functionalities
we added to the existing formalism.

4.1 Context-free L-systems

A stochastic and parametric context-free L-system can
be defined as an ordered 5-tuple Gπ =< V, Σ, ω, P, π >,
where

– V is the alphabet of the system,
– Σ is the set of formal parameters,
– ω ∈ (V ×Re∗)+ is a nonempty parametric word called

the axiom (Re is the set of real numbers),
– P ⊂ (V ×Σ∗)×C(Σ) → (V × E(Σ))∗ is a finite set of

productions,
– function π : P → (0, 1], called probability distribu-

tion, maps the set of productions to the set of produc-
tion probabilities,

– C(Σ) denotes a logical expression with parameters
from Σ,

– E(Σ) is an arithmetic expression with parameters from
the same set.

An FL-system basically has most of the capabilities of
context-free L-systems, such as parameterized rules, con-
ditions, and stochastic rule selection. Each of these rule
types is illustrated in Fig. 2 using the formalism presented
in the work of Prusinkiewicz et al. [13]. n ∈ Σ is a pa-
rameter; n = 0 in C(Σ) is a conditional expression; and
p ∈ (0, 1] is a probability.

Fig. 2. A simple L-system example that illustrates parameterized,
conditional, and stochastic rules

4.2 Object references as generic parameters

Since our goal is to describe the generation of complex
structures, we define F (Σ) as the set of functions with pa-
rameters in Σ. In our system in particular, F (Σ) includes
functions such as the creation and modification of lists,
vectors, and matrices.

Additionally, we define O as the set of generic ob-
ject references. A rule parameter p is thus defined over
P = Re ∪O ∪S, where S is the set of strings and P the
set of rule parameters. Parameters can therefore be real
numbers, strings, or generic object references that can re-
fer, for example, to vectors or higher-level objects such as
VRML97 nodes, as will be seen in Sect. 5. Therefore, the
type of the generic objects that are referred to by parame-
ters do not need to be known by the rewriting system but
only by the functions that will require them.

In the set of functions F (Σ), we can distinguish two
types of functions. The first type includes the functions

332 J.-E. Marvie et al.

that do not return a value. These functions, which replace
the usual L-system terminal symbols, will be called ter-
minal functions. They are used to generate or modify the
content of a generic object whose reference is given as
a parameter of the function. The other type includes the
functions that return a value in P . These functions, mainly
used as parameter functions, are typically used to create
the generic objects and return a reference to a created ob-
ject. When these functions are used as rule parameters,
they are first executed and their returned values are then
used as the effective parameters of the corresponding rule
during its rewriting.

Taking these two new definitions into account, we re-
define the set of productions P and the axiom ω as fol-
lows:

– ω ∈ (V ×P ∗)+
– P ⊂ (V ×Σ∗)×C(Σ) → (V × (E(Σ)∪F (Σ)))∗

4.3 Functions as terminal elements

As said before, the terminal symbols of FL-systems are
functions with which an execution scheme is associated.
These terminal functions are typically used to generate
or modify the content of objects generated by parameter
functions using geometric data. Therefore, an important
feature of FL-systems is the generation of geometry dur-
ing the rewriting process. Whereas the turtle interpretation
is made sequentially and as a postprocess [12], the exe-
cution of terminal functions, in our system takes place
during the rewriting process. Actually, our rewriting sys-
tem operates on a rewriting queue. At the beginning of
the derivation process, this rewriting queue only contains
the axiom of the system. As the axiom is rewritten, it is
replaced by its successors in the queue. When terminal
functions are found in this queue, they are applied im-
mediately; that is to say, they are executed. The use of
object references as parameters allows the functions to op-
erate on objects provided by previously rewritten rules or
those generated by parameter functions. More precisely,
this allows a terminal function to generate geometry and
to initialize a previously generated object with this new
geometry at any step of the rewriting process.

4.4 Sets and iterations

Defining a set of n derivation branches can be done, in
L-systems, using a simple recurrence as shown in the fol-
lowing example:

A(n) : n = 0 → B
A(n) : n <> 0 → A(n −1)B

However, this notation is not intuitive and hides the ex-
istence of the generated set of elements. Moreover, in our

a b

Fig. 3. Trees of generation with n = 2. (a) for the recurrence ex-
ample. (b) for the iteration example

opinion, this is contrary to the parallel spirit of L-systems
to define a set of elements this way. Finally, the derivation
process follows a comb (Fig. 3a) whereas we would prefer
a flat tree (Fig. 3b). In order to provide a true set definition,
we add the well-known iterative notation:

A(n) → for(i = 0; i <= n; i ++) B

This notation allows the definition of sets of deriva-
tion branches in a simple, clear, and efficient way. The
generated structure is similar to the notion of group as
defined by Leyton [6]. Note that even if this notation is
basically iterative, it is used to describe an ordered set
of symbols that are rewritten in parallel. That is to say,
the for expression builds an ordered set of symbols with
which associated rewriting rules can potentially be pa-
rameterized with the value of the iterator i . The rewriting
of these rules starts only after all of the parameters are
passed to the ordered child rules. This means that the se-
quential notation is used in a first step, followed by the
parallel rewriting. Thus, a child rule parameterized with
i = 0 knows that it is the first enumerated rule even if an-
other rule parameterized with i = 4 is rewritten before it.

Let R(Σ) be a repetition expression (a for expression)
with parameters in Σ and R(Σ)× V denoting the rep-
etition of symbol V . The set of productions P is thus
redefined as follows:

P ⊂ (V ×Σ∗)×C(Σ)

→ (R(Σ)× (V × (E(Σ)∪F (Σ)))∗)∗

4.5 Parallelism tuning

From the use of references and functions arises the con-
straint of synchronizing the creation of objects with func-
tions operating on them. That is why we introduce the
symbol ‘!’ as a synchronization operator. This operator
cuts the parallel derivation and delays the rewriting of the
marked rules until the rewriting of the non-terminal sym-
bols written on its left has been completed. The example
depicted in Fig. 4 specifies that the derivation of rule C
must be done after the complete derivation of rule B.
Therefore, if B dynamically generates a structure, C can

The FL-system: a functional L-system for procedural geometric modeling 333

Fig. 4. The ‘!’ symbol is used to control the parallel rewriting pro-
cess. It ensures that B is completely rewritten before C, whereas D
can be rewritten at any moment

use it. Note that in this example, f 1 and f 2 are terminal
functions.

As our system does not operate on strings but on ob-
jects, we use a derivation queue to deal with the deriva-
tion process. Each parallel derivation consists of rewriting
each rule contained in the queue. Terminal symbols, being
functions, are executed, whereas non-terminal symbols,
say rules, are rewritten into the next step of the queue. Fig-
ure 5 shows the successive steps of the derivation of the
above system. Note that in this example, D is rewritten be-
fore C due to our parallel implementation, but it could also
be rewritten after.

Fig. 5. Successive states of the derivation queue during the deriva-
tion of the system described in 4.5. Note that rule C is not rewritten
until it comes to the top of the queue; it waits for the complete
derivation of rule B

This synchronization allows a strictly parallel deriva-
tion process as well as a sequential or a hybrid one. As
parameters can be references to data sets, this mechanism
ensures that an object is created before being manipulated.

Let Sy be a synchronization expression (‘!’ or noth-
ing); the set of productions P is finally redefined as fol-
lows:

P ⊂ (V ×Σ∗)×C(Σ)

→ (Sy ×R(Σ)× (Sy × V × (E(Σ)∪F (Σ)))∗)∗

4.6 Potential of the grammar

To summarize this section, we have presented a generic
rewriting system offering many possibilities. Indeed, the
functional characteristics of FL-systems together with the
enhanced control of parallelism allow the development of
new extensions. Finally, we introduced a better control of
the derivation process through the for expression.

Furthermore, as a geometric model is generated dur-
ing the rewriting process, it is possible to perform a lazy
rewriting for the generation of levels of detail. The idea is

that the rewriting process can be stopped after the gener-
ation of a level and restarted when its subsequent level is
requested. For instance, this mechanism could be used to
generate a small set of leaves for a tree and to add more
leaves as the viewpoint gets closer to the model.

5 Application to 3D models

Now that our generic rewriting system is defined, we can
extend it to the generation of 3D models. For this purpose,
new functions will be introduced to perform on-the-fly
algebraic computations, turtle simulation, as well as the
generation and modification of VRML97 data structures.

5.1 Algebraic extension

We lay down basic algebraic functions adapted to geo-
metric transformations, such as translation, rotation, and
scaling. These terminal functions are defined in F (Σ) as

– translate(M, x, y, z),
– rotate(M, x, y, z, α),
– scale(M, sx, sy, sz),

where M is a reference to a 4×4 homogeneous matrix to
which we apply the transformation. Other terminal func-
tions such as

– multMatrix(M, L), which apply the matrix M to the
elements of list L and parameter functions, and

– copyMatrix(M), which returns a copy of matrix M,

are also introduced. Finally, basic mathematical functions
such as the cosine and sine are also defined.

5.2 Turtle simulation

To replace the turtle, the user has the opportunity to in-
sert a local Cartesian coordinate system as a parameter of
the rules. This solution enables the simulation of the tur-
tle interpretation using geometric objects and geometric
transformations as turtle moves. The turtle position vec-
tor and its three perpendicular vectors, �H, �L, and �U, are
replaced by a local coordinate system handled through a
4×4 homogeneous matrix parameter where (�H, �L, �U) is
mapped to (�y, �z, �x). The module F, which moves the tur-
tle forward, is replaced by a translation along the y-axis
and the modules +, -, &, ˆ, /, and \, by rotations. Figure 6
shows the conversion from turtle interpretation to affine
transformations.

Thus, when a terminal function generates a mesh, it
can apply the current matrix to its set of vertices in order
to place it in the global coordinate system. Such a func-
tion can also use the current matrix to initialize a trans-
formation node inside a scene graph generated during the

334 J.-E. Marvie et al.

Fig. 6. The turtle rotations. L-system modules and associated rota-
tions in (�x, �y, �z), where M is the current matrix

rewriting process. Finally, in order to replace the bracket
notation that is used in L-systems to specify a branching
in turtle moves, we use the copyMatrix terminal function
to duplicate the local coordinate system in order to provide
each successor rule with a copy. Therefore, each successor
rule can operate on its own local coordinate system (that
is to say, on its own current matrix). This naturally follows
the construction of transformation hierarchies.

5.3 VRML97 extension

To create 3D models, we generate VRML97 [8] objects
and scene graphs dynamically. As with traditional L-
systems, which use terminal symbols to describe the turtle
moves together with their geometric interpretation, we in-
troduce two functions for the creation of VRML97 nodes
and the initialization of their fields:

– defVrmlNode(type, name) which has two parameters:
type is a VRML97 node name (IndexedFaceSet, Trans-
form, etc.) and name its optional definition name (for
handling the DEF/USE mechanism). This parameter
function creates a node, then returns a value in Σ that
is a formal parameter pointing to the created node.

– setVrmlfield(node, fieldName, value) which has three
parameters: node ∈ Σ is the formal parameter pointing
to a VRML97 node, fieldName the name of the field
which is modified, and value is its new value. This
function is a terminal function.

These two simple terminals allow for the creation of
complete VRML97 scene graphs. This extension can be
implemented as follows: first, a node is created using
the defVrmlNode parameter function. Then, a set of rules
is applied recursively, creating and/or manipulating data
sets representing the future content of the node. Finally,
the fields of the node are assigned afterwards using
the resulting data. For that purpose, one can mark the
setVrmlField terminal function with the ! operator. In
this manner, the terminal function is executed only after
all predecessors are rewritten; that is, only once the re-
ferred VRML97 node is created and the data sets are
produced.

The example presented in Fig. 7 illustrates the use of
this extension. In the notation we use to describe our
grammars, ‘=’ represents the symbol ‘→’ and () an
empty list. When used in a parameter expression, the sym-
bol ‘=’ denotes the naming of the parameter. In this ex-

Fig. 7. A set of rules that generates and initializes an IndexedFace-
Set node with a quad produced by the computeQuad rule

ample, the grammar is composed of an axiom and two
rules named w, initIfs, and computeQuad, respectively.
These three symbols are non-terminals.

The axiom w derives the rule initIfs, which takes two
parameters that are references to generic objects. These
generic objects are VRML97 nodes that are created by the
axiom using the parameter function called defVrmlNode.
The first object is an IndexedFaceSet node and the
second is a Coordinate node.

The rule named initIfs derives the rule named com-
puteQuad, which takes two lists references as parame-
ters. These two lists will be filled by the rule compute-
Quad; the first, called vertices, is filled with the ver-
tices of the quad, and the second, called indices, is filled
with the vertex indices that defines the quad. These pa-
rameters are named so that they can be given as pa-
rameters to two terminal functions, collectively called
setVrmlField. These two terminal functions initialize the
fields of the VRML97 nodes ifsNode and coordNode
with the list of vertices and the list of indices, respec-
tively. Note that these terminal functions are marked with
the ‘!’ character. This notation means that the rule com-
puteQuad has to be rewritten before the following ter-
minal functions use its result (i.e., the two lists) to ini-
tialize the VRML97 data structure. The third terminal
function, named setVrmlField, finally sets the VRML97
field coord of the IndexedFaceSet node with the
Coordinate node (it constructs the node hierarchy).
Note that this last terminal function can be placed either
before or after the computeQuad rule, since it only uses
the node references previously produced by the axiom and
does not rely on computeQuad results.

Finally, the rule called computeQuad derives two ter-
minal functions. This last rule generates and stores the
quad into the two lists called vertices and indices that are
created by the initIfs rule and whose references are given
as parameters. The two lists are constructed using the conc
terminal function that concatenates two lists. For clarity,
the quad example we present is very simple, but one can
also add texture coordinates as well as material properties
to the generated objects. Furthermore, one can use the al-
gebraic extension to describe more complex meshes using
parametric surfaces, for example.

The FL-system: a functional L-system for procedural geometric modeling 335

5.4 On-the-fly rewriting

In our implementation, the module in charge of the rewrit-
ing of the grammars is embedded as a plug-in into a Mag-
ellan [10] application that is in charge of the visualiza-
tion process (see Fig. 8). The grammars are described in
VRML97 files as script nodes. When a VRML97 file con-
taining a xcript node is opened, the grammar is analyzed
and rewritten by a rewriting thread that runs in parallel to
the Magellan rendering thread. Therefore, data can be pro-

Fig. 8. On-the-fly rewriting process. The grammars are analyzed
and rewritten by a rewriting thread that runs in parallel to the Mag-
ellan rendering thread

Fig. 9. (a) The left picture represents the real model. (b) The center picture shows the incrustation of the façade, reconstructed with our
grammar, into the picture of the original model. (c) The right picture shows a different model generated using the complete building
style with different axiom parameters. Note that the plant growing on the façade is generated using another grammar following the same
grammar structure as the one used to generate the façade. Other plants are also generated using FL-systems

duced on the fly and placed into the Magellan scene graph
in parallel with rendering.

In order to add the generated models into the VRML97
scene graph of Magellan, the axiom is assigned a parame-
ter that is a reference to a VRML97 Group node to which
the grammar can add the nodes it generates. Thus, once
the grammar is rewritten by the rewriting thread, the latter
grammar can add the Group node that contains the model
to the Magellan scene graph.

6 The case of buildings

Now that we have extended our system to the modeling of
3D models, we can use it for a more precise application.
This section presents a study showing how to model build-
ing styles with FL-systems. The basic idea is that we can
describe a certain set of buildings with the same grammar.
Such a grammar generates not only a building, but a set
of buildings matching the style described by the grammar
(i.e., their building style). Thus, by changing the parame-
ters of the axiom or by stochastic rule-selection, the same
grammar can produce a wide variety of buildings of the
same style.

6.1 A building style study

We will focus our study on the description of a particular
building style starting from an existing building depicted
in Fig. 9a. The associated grammar consists of two main
components.

https://www.researchgate.net/publication/266275567_Remote_Interactive_Walkthrough_of_City_Models_Using_Procedural_Geometry?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==

336 J.-E. Marvie et al.

– Terminal elements, which are atomic architectural
elements such as doors and windows. With regards to
VRML, the terminal functions generate the geometry
that is put into the Shape nodes used to describe the
model.

– Productions are rules describing the non-terminal ar-
chitectural elements. Such rules can be rules of decom-
position (e.g., decomposition of a façade into a set of
floors), growth rules (e.g., to obtain the volume of
a building from its footprint), or both. With regards to
VRML, these decompositions can be used to generate
node hierarchies.

The choice of terminal elements is quite straightfor-
ward for the user. It determines the elements that are
not decomposed. Terminal elements are, in our grammar,
parameterized 3D meshes that describe windows, walls,
and doors produced by the terminal functions. The non-
terminals are rules of composition or decomposition of
terminals as well as of other non-terminals. These rules
decompose the space into subspaces and set them out spa-
tially. Finally, the axiom parameters determine the follow-
ing inputs: the building’s footprint as a convex polygon
(a list of 3D vertices), the number of floors of the building,
and their heights.

According to these parameters, the footprint is used
within the growth process to obtain the façades and the
roof of the building. Each façade is decomposed into a set
of floors composed of a wall, a set of windows and pos-
sibly a door. This modeling process, illustrated in Fig. 10,
can be seen as a set of growth and decomposition steps.

Fig. 10. An alternation of growths and decompositions in the mod-
eling of a building

To extend the footprint of the building into façades, for
each vertex of the footprint, we create a local coordinate
system and compute the width of the façade as the dis-
tance between two consecutive vertices of the footprint.
The height of the façade can be computed using the num-
ber of floors m and the floor heights h and H given as
parameters of the axiom.

Having written a set of rules that compute these param-
eters, we then write a set of rules that compute the sizes
of the different elements of each façade, as well as their
placement. This set of rules is presented in Fig. 12. For
clarity, we did not detail the generation of the geometry

Fig. 11. Input parameters for the façade

nor the generation or initialization of the VRML97 node
hierarchy.

The rule called facade produces the façades of Figs. 9b
and 9c. In this façade style, the sizes of all of the termi-
nal elements are fixed. The only parts that are stretchable
are the wedgings of the façade. The parameters that con-
trol the structure of the façade are depicted in Fig. 11.
The facade rule derives to the layout rule and provides
the rule with parameters: m, the number of floors; n =
floor((width − 2 ∗ smin)/w), the number of fixed-width
vertical sections (window and pier) that can be placed
along the width of the façade; w, the width of a vertical
column, H the height of the first floor; a, the width of
a window; d, the half-width of column and pier; h, the
height of other floors; and s = (width−n ∗w)/2, the dif-
ference between the wedging width and the part of the
façade that is not large enough to add another window (s
is the stretchable value).

The rule called layout derives two rules – firstFloor,
which is used to place the elements of the first floor, and
nextFloors, which places the elements of all of the other
floors. Thus, layout performs a part of the decomposition
of the façade.

Then, the rule firstFloor derives three rules – the two
rules called wedging are used to produce the geometry
of the left and right wedgings of the first floor, while the
for expression is used to generate the repetition of ar-
cades that compose the first floor. Therefore, firstFloor is
also a decomposition rule, whereas wedging and arcades,
which are not detailed here, are rules that produce the
geometry of the terminal elements.

The FL-system: a functional L-system for procedural geometric modeling 337

Fig. 12. A part of the grammar that generates the façades presented
in Figs. 9b and 9c

Finally, nextFloors derives six rules – four rules
that are used to produce the geometry of wedgings and
columns, and two for expressions that are respectively
used to perform the placement of windows and piers.

6.2 Optimizations

A geometric model can be well-suited for different pur-
poses, according to the way it is generated by a grammar.
All of our grammars, dedicated to the generation of build-
ings, generate a set of levels of detail (LOD) that is used to
accelerate the rendering process (Fig. 13). Our grammars
always share a maximum of geometry between different
LODs in order to reduce the memory (RAM) required to
store the VRML97 model of the building. This instance-
sharing is performed through the use of the VRML97
DEF/USE mechanism; for instance, if the geometry of the
walls is the same for the second and third levels, it is then
"DEFined" for the second level and "USEd" for the third
level.

In addition to this general mechanism, we also write,
for each building style, two versions of the grammar. The
first version, which is designed to produce models that
are optimized for real-time rendering, generates a geomet-
ric model where the geometry that composes the building
is described using absolute coordinates. This prevents the

graphics hardware from having to compute costly trans-
formations. Furthermore, all elements using the same tex-
ture map are encoded into a single Shape node. For in-
stance, in our building-style study, the geometry of all of
the windows of the upper floors can be encoded into a sin-
gle Shape node whose Material node describes the
visual appearance and the texture map of these windows.
This modeling structure significantly prevents the graphics
hardware from swapping between different textures.

The second version is designed to produce compact
models. Therefore, using this version, it is possible to gen-
erate a huge number of models requiring a smaller amount
of RAM. Thus, this version generates a more complex
VRML97 node hierarchy, each node of which places the
geometry of its child Shape nodes, using Transform
nodes. For instance, the geometry of a window that is gen-
erated only once into a Shape node using a local coor-
dinate system is then instantiated multiple times. Each in-
stance of the window Shape is then placed to compose the
façade using transformation nodes. It is the description of
the meshes that consumes memory; therefore, this model
structure generates more compact models. On the other
hand, the rendering process has to perform a more com-
plex scene graph traversal and the graphics hardware has
to compute costly geometric transformations to produce
the final images. Furthermore, distributing the objects into
different Shape nodes introduces more texture swaps.

To summarize, our grammars always generate LODs,
which is, in our opinion, an important basic optimization.
Furthermore, one of the two versions might be chosen ac-
cording to the application targeted by the user. In any case,
we are able to provide a grammar that fits one of the fol-
lowing constraints: speed and compactness.

7 Results

To experiment with FL-systems, we defined a small set
of grammars representing buildings, as well as plants and
trees. This set of files is very compact, since, for example,
the set of 40 rules representing the model of Fig. 13 takes
only 23KB.

Fig. 13. LODs generated by a grammar

338 J.-E. Marvie et al.

Fig. 14. Top: example of generated models using few rules and dif-
ferent normalized texture sets. Center left: example of generated
urban features. The street lamp is generated using parametric sur-
faces. Bottom: bird’s eye view of a city

We defined a few rules representing patterns of win-
dows, walls, doors, and roofs. By combining these rules,
we wrote different building grammars. Defining a set of
texture names as an input parameter of the axioms al-
lows the use of different sets of textures within the same

grammar. This combination of models and texture sets al-
lows the generation of a rich set of different buildings.
Finally, using footprint and elevation parameters also pro-
duces different building models of a given style. Figure 14
shows different building models we generated using three
grammars and six texture sets. The computation of each
model took less than 20 ms on a 2.4 GHz Intel Pentium IV.

As our objective was to provide a generic language for
procedural geometric modeling, we also tested the gen-
eration of plants. Figure Fig. 9c shows the output of two
L-system grammars directly translated into our language.
We used the examples given in [13](Figs. 1.25 and 2.6).

In [9, 10] we integrated procedural models in a street
network that was generated automatically. For further de-
tails, one could refer to those papers, which show how
to manage the interactive visualization and transmission
of a very large city model over low-bandwidth networks.
In this model, shown in Fig. 14, roads and buildings
are procedurally generated using FL-systems. Further-
more, a new parameter is given to the axiom of the build-
ing grammar. This parameter contains the heights of the
neighboring buildings. With a knowledge of the neighbor-
hood, the grammar that generates the building can avoid
the creation of unuseful geometry (e.g., shared walls) and
aberrations (e.g., a window cut by the wall of a neighbor-
ing building).

8 Conclusion

We have proposed and developed three extensions to the
classical L-system: an adaptive parallel rewriting mech-
anism, a set derivation, and the use of generic parameters
together with terminal and parameter functions replacing
strings. The first extension offers complete control of the
derivation process, whereas the second allows the flatten-
ing of the derivation tree. The third extension offers easier
manipulation of generated data structures, since interpre-
tation of the grammar is performed during the rewriting
process. Furthermore, the functional properties of FL-
systems allow any kind of new user extensions.

The resulting formalism lies between L-systems and
a Chomsky grammar. In fact, its derivation process com-
bines the L-system terminal age and the Chomsky gram-
mar terminal symbols. It allows the conditional rules not
only to choose the rule to be applied, but also to stop the
derivation process.

Moreover, this language has proved to be efficient for
interactive generation of complex 3D models optimized
for real-time rendering. It has been tested for the gener-
ation of buildings, plants, trees, and urban features.

Further research will focus on the lazy rewriting of
our grammar and the generation of dynamic scenes. We
are also studying the extraction of grammars from in-
put images using vision-based methods and user inter-

https://www.researchgate.net/publication/4038516_Remote_interactive_walkthrough_of_city_models?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/266275567_Remote_Interactive_Walkthrough_of_City_Models_Using_Procedural_Geometry?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==

The FL-system: a functional L-system for procedural geometric modeling 339

action. Finally, we intend to illustrate the flexibility of
our language through the use of other geometric lan-

guages (different from VRML) such as solid modeling
languages.

References
1. Abelson, H, diSessa AA (1981) Turtle

geometry. MIT Press, Cambridge
2. Bloomenthal J (1985) Modeling the mighty

maple. In: Proceedings of the 12th annual
conference on Computer graphics and
interactive techniques, pp 305–311

3. Ebert DS, Musgrave FK, Peachey D, Perlin
K, Worley S (2003) Texturing and
modeling: a procedural approach, 3rd edn.
Kaufmann, San Francisco

4. Gips J (1974): Shape grammars and their
uses. Dissertation, Stanford University

5. Hart JC (1992) The object instancing
paradigm for linear fractal modeling. In:
Proceedings of the conference on Graphics
interface ’92. Kaufmann, San Francisco, pp
224–231

6. Leyton M (2001) A generative theory of
shape. Lecture notes in computer science,
vol. 2154. Springer, Berlin Heidelberg New
York

7. Lindenmayer A (1968) Mathematical
models for cellular interactions in
development, I & II. J Theor Biol
18:280–315

8. Marrin C, Carey R, Bell G (1997) A
VRML specification, 1997.
http://www.vrml.org/
Sprecifications/VRML97

9. Marvie J-E, Perret J, Bouatouch K (2003)
Remote interactive walkthrough of city
models. In: Proceedings of Pacific
Graphics, IEEE Computer Society, October
2003 2:389–393

10. Marvie J-E, Perret J, Bouatouch K (2003)
Remote interactive walkthrough of city
models using procedural geometry.
Technical Report PI-1546, IRISA, July
2003. http://www.irisa.fr/
bibli/publi/pi/2003/1546/1546.html

11. Parish YIH, Müller P (2001) Procedural
modeling of cities. In: Proceedings of
SIGGRAPH 2001, Los Angeles, CA, USA,
August 2001, pp 301–308

12. Prusinkiewicz P, James M, Mech R (1994)
Synthetic topiary. In: Proceedings of
Computer Graphics and Interactive
Techniques, pp 351–358

13. Prusinkiewicz P, Lindenmayer A, Hanan JS
et al. (1990) The algorithmic beauty of

plants. Springer, Berlin Heidelberg New
York

14. Prusinkiewicz P, Mundermann L,
Karwowski R, Lane B (2001) The use of
positional information in the modeling of
plants. In: Proceedings of Computer
Graphics and Interactive Techniques, pp
289–300

15. Smith AR (1984) Plants, fractals, and
formal languages. In: Proceedings of the
11th annual conference on Computer
graphics and interactive techniques, pp
1–10

16. Stiny G (1975) Pictorial and formal aspects
of shape and shape grammars. Birkhauser,
Basel

17. Van Haevre W, Bekaert P (2003) A simple
but effective algorithm to model the
competition of virtual plants for light and
space. J WSCG 2003 11(3):464–471

18. Wonka P, Wimmer M, Sillion F, Ribarsky
W (2003) Instant architecture. In:
Proceedings of SIGGRAPH 2003, July
2003, pp 669–677

JEAN-EUDES MARVIE is a computer science
engineer (INSA 2001). He was awarded a PhD
in computer science in the field of computer
graphics in 2004. His research interests are: real
time rendering, large models visualization and
generation, procedural modeling, distributed ap-
plications dedicated to interactive visualization,
rendering on large displays and virtual reality.
He is currently doing a postdoc fellowship,
granted by the INRIA Futurs, at the LABRI
(France).

JULIEN PERRET is currently a PhD student at
the IRISA (a computer science research unit
located in Rennes, France). He received a MSc
degree from the University of Rennes 1 and
a MEng degree from the National Institute of
Applied Sciences in 2002. His research
interests include urban and natural virtual en-
vironments modeling, procedural modeling
techniques, architectural models, and evolving
virtual environments.

KADI BOUATOUCH is an electronics and auto-
matic systems engineer (ENSEM 1974). He
was awarded a PhD in 1977 and a higher
doctorate on computer science in the field of
computer graphics in 1989. His research inter-
ests are: global illumination, lighting
simulation and remote rendering for complex
environments, real-time high fidelity rendering,
parallel radiosity, virtual and augmented reality
and computer vision. He applied his research
work to infrared simulation and tunnel lighting.
He is currently Professor at the university of
Rennes 1 (France) and researcher at IRISA. He
is member of Eurographics, ACM and IEEE.
He is and was member of the program commit-
tees of several conferences and workshops, and
referee for several Computer Graphics journals
like: The Visual Computer, IEEE Computer
Graphics and Applications, IEEE transaction
on Visualization and Computer Graphics, IEEE
transaction on image processing, ACM
Transaction on Graphics, etc. He also acted as
a referee for many conferences and workshops.

https://www.researchgate.net/publication/220720895_Modeling_the_Mighty_Maple?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/220720895_Modeling_the_Mighty_Maple?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/220720895_Modeling_the_Mighty_Maple?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/220720895_Modeling_the_Mighty_Maple?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/47504041_Instant_Architecture?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/47504041_Instant_Architecture?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/47504041_Instant_Architecture?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/47504041_Instant_Architecture?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/221546320_A_Simple_but_Effective_Algorithm_to_Model_the_Competition_of_Virtual_Plants_for_Light_and_Space?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/221546320_A_Simple_but_Effective_Algorithm_to_Model_the_Competition_of_Virtual_Plants_for_Light_and_Space?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/221546320_A_Simple_but_Effective_Algorithm_to_Model_the_Competition_of_Virtual_Plants_for_Light_and_Space?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/221546320_A_Simple_but_Effective_Algorithm_to_Model_the_Competition_of_Virtual_Plants_for_Light_and_Space?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/4038516_Remote_interactive_walkthrough_of_city_models?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/4038516_Remote_interactive_walkthrough_of_city_models?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/4038516_Remote_interactive_walkthrough_of_city_models?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/4038516_Remote_interactive_walkthrough_of_city_models?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/4038516_Remote_interactive_walkthrough_of_city_models?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/234774961_Plants_fractals_and_formal_languages?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/234774961_Plants_fractals_and_formal_languages?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/234774961_Plants_fractals_and_formal_languages?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/234774961_Plants_fractals_and_formal_languages?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/234774961_Plants_fractals_and_formal_languages?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/2636820_The_Object_Instancing_Paradigm_for_Linear_Fractal_Modeling?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/2636820_The_Object_Instancing_Paradigm_for_Linear_Fractal_Modeling?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/2636820_The_Object_Instancing_Paradigm_for_Linear_Fractal_Modeling?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/2636820_The_Object_Instancing_Paradigm_for_Linear_Fractal_Modeling?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/2636820_The_Object_Instancing_Paradigm_for_Linear_Fractal_Modeling?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/256057782_Pictorial_and_Formal_Aspects_of_Shape_and_Shape_Grammars?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/256057782_Pictorial_and_Formal_Aspects_of_Shape_and_Shape_Grammars?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/256057782_Pictorial_and_Formal_Aspects_of_Shape_and_Shape_Grammars?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/35255007_Shape_grammars_and_their_uses?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/35255007_Shape_grammars_and_their_uses?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/266275567_Remote_Interactive_Walkthrough_of_City_Models_Using_Procedural_Geometry?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/266275567_Remote_Interactive_Walkthrough_of_City_Models_Using_Procedural_Geometry?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/266275567_Remote_Interactive_Walkthrough_of_City_Models_Using_Procedural_Geometry?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/266275567_Remote_Interactive_Walkthrough_of_City_Models_Using_Procedural_Geometry?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/266275567_Remote_Interactive_Walkthrough_of_City_Models_Using_Procedural_Geometry?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/266275567_Remote_Interactive_Walkthrough_of_City_Models_Using_Procedural_Geometry?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/266275567_Remote_Interactive_Walkthrough_of_City_Models_Using_Procedural_Geometry?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/266275567_Remote_Interactive_Walkthrough_of_City_Models_Using_Procedural_Geometry?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/266275567_Remote_Interactive_Walkthrough_of_City_Models_Using_Procedural_Geometry?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==
https://www.researchgate.net/publication/266275567_Remote_Interactive_Walkthrough_of_City_Models_Using_Procedural_Geometry?el=1_x_8&enrichId=rgreq-26785b4e302722a9931ca15c0629be97-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NzE5MDtBUzoxMDQ1MDM3MDU2MDQxMDJAMTQwMTkyNzAzMzY0OA==

