
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/268429977

Remote Rendering of Massively Textured 3D Scenes Through Progressive

Texture Maps

Article · January 2003

CITATIONS

11
READS

38

2 authors:

Some of the authors of this publication are also working on these related projects:

HDR video View project

Modeling and Rendering Buildings View project

Jean-Eudes Marvie

Technicolor

37 PUBLICATIONS   277 CITATIONS   

SEE PROFILE

Kadi Bouatouch

Université de Rennes 1

157 PUBLICATIONS   1,487 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Kadi Bouatouch on 09 October 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/268429977_Remote_Rendering_of_Massively_Textured_3D_Scenes_Through_Progressive_Texture_Maps?enrichId=rgreq-23cee13bd5d2a4a1445fd5f1647f812a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQyOTk3NztBUzoyODI1OTI4MjY5MzczNDdAMTQ0NDM4Njc4OTE4MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/268429977_Remote_Rendering_of_Massively_Textured_3D_Scenes_Through_Progressive_Texture_Maps?enrichId=rgreq-23cee13bd5d2a4a1445fd5f1647f812a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQyOTk3NztBUzoyODI1OTI4MjY5MzczNDdAMTQ0NDM4Njc4OTE4MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/HDR-video?enrichId=rgreq-23cee13bd5d2a4a1445fd5f1647f812a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQyOTk3NztBUzoyODI1OTI4MjY5MzczNDdAMTQ0NDM4Njc4OTE4MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Modeling-and-Rendering-Buildings?enrichId=rgreq-23cee13bd5d2a4a1445fd5f1647f812a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQyOTk3NztBUzoyODI1OTI4MjY5MzczNDdAMTQ0NDM4Njc4OTE4MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-23cee13bd5d2a4a1445fd5f1647f812a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQyOTk3NztBUzoyODI1OTI4MjY5MzczNDdAMTQ0NDM4Njc4OTE4MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Eudes_Marvie?enrichId=rgreq-23cee13bd5d2a4a1445fd5f1647f812a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQyOTk3NztBUzoyODI1OTI4MjY5MzczNDdAMTQ0NDM4Njc4OTE4MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Eudes_Marvie?enrichId=rgreq-23cee13bd5d2a4a1445fd5f1647f812a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQyOTk3NztBUzoyODI1OTI4MjY5MzczNDdAMTQ0NDM4Njc4OTE4MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technicolor?enrichId=rgreq-23cee13bd5d2a4a1445fd5f1647f812a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQyOTk3NztBUzoyODI1OTI4MjY5MzczNDdAMTQ0NDM4Njc4OTE4MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Eudes_Marvie?enrichId=rgreq-23cee13bd5d2a4a1445fd5f1647f812a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQyOTk3NztBUzoyODI1OTI4MjY5MzczNDdAMTQ0NDM4Njc4OTE4MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kadi_Bouatouch?enrichId=rgreq-23cee13bd5d2a4a1445fd5f1647f812a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQyOTk3NztBUzoyODI1OTI4MjY5MzczNDdAMTQ0NDM4Njc4OTE4MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kadi_Bouatouch?enrichId=rgreq-23cee13bd5d2a4a1445fd5f1647f812a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQyOTk3NztBUzoyODI1OTI4MjY5MzczNDdAMTQ0NDM4Njc4OTE4MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_de_Rennes_1?enrichId=rgreq-23cee13bd5d2a4a1445fd5f1647f812a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQyOTk3NztBUzoyODI1OTI4MjY5MzczNDdAMTQ0NDM4Njc4OTE4MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kadi_Bouatouch?enrichId=rgreq-23cee13bd5d2a4a1445fd5f1647f812a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQyOTk3NztBUzoyODI1OTI4MjY5MzczNDdAMTQ0NDM4Njc4OTE4MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kadi_Bouatouch?enrichId=rgreq-23cee13bd5d2a4a1445fd5f1647f812a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODQyOTk3NztBUzoyODI1OTI4MjY5MzczNDdAMTQ0NDM4Njc4OTE4MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Remote Rendering of Massively Textured 3D Scenes Through
Progressive Texture Maps

J-E. Marvie and K. Bouatouch
IRISA-INRIA

University of Rennes
Rennes, France

email: {jemarvie,kadi}@irisa.fr

ABSTRACT
In this paper we present a new progressive texture map
(PTM) format that encodes the mipmap levels of a texture
map into a compact and progressive way. In order to man-
age these PTMs for a purpose of remote visualisation of
architectural 3D scenes, we make use of a space subdivi-
sion and a visibility computation algorithm that are per-
formed in a preprocessing step. In addition to this prepro-
cessing, we precompute a metric which is used during the
navigation to select the texture mipmap levels to be down-
loaded and those to be added/removed to/from the graphics
hardware memory. Thanks to these mechanisms, we gen-
erate and visualize scalable databases for architectural 3D
scenes that contain a large number of high resolution tex-
ture maps. The visualisation system we propose is based
on a client/server architecture and allows for the transmis-
sion and the visualization of 3D scenes using either a re-
mote server connected via low bandwidth networks or a
local server. In addition our system automatically adapts to
the power of the client machine.

KEY WORDS
Rendering, Textures, Walkthrough, Streaming

1 Introduction

Thanks to high performance graphics hardware, texture
mapping has become a standard use to increase realism
and visual quality of real-time 3D applications. Neverthe-
less, most common applications such as games or 3D for
the web systems always use 3D scenes that are scaled to
fit the actual hardware performances. Web 3D applications
is an excellent illustration. One can never know how pow-
erful the client’s hardware and how fast the network will
be. The most commonly used solution is to propose sev-
eral rendering qualities to the end user which has to choose
one before downloading the 3D scene data (geometry and
texture maps). Another solution consists in using progres-
sive transmission of data. Such a solution allows the end
user to visualize at first a low quality representation of the
downloaded content while downloading the additional data
needed to refine this representation. When downloading an
image, the end user always wants the image to be of high-

est quality. Conversely, when the user moves rapidly in a
3D model he does not need high resolution texture maps all
the time. Finally, depending on the user graphics hardware
and on the network bandwidth, the highest resolution and
the number of texture maps that are used in a 3D model
are variable parameters. By using progressive texture maps
and a precomputed metric to select the required and appro-
priate resolution for texture mipmaps [10], we propose an
efficient and scalable system which aims at generating and
visualizing remote highly textured 3D scenes.

2 Related work

Progressive image transmission has been studied by many
authors, and many different solutions have been devel-
oped. Many of today image compression methods propose
progressive transmission mechanisms, including row in-
terlacing (GIF), scan-based progressive encoding (JPEG),
and hierarchical progressive encoding (Zerotree [6] or
SPIHT [5]). For textures, S3 compression (S3TC) pro-
vides good compression ratio for texture maps (6:1) and
recent graphics hardware are able to decompress these tex-
ture maps on the fly. Thus, this compression scheme is
usefull to reduce the AGP bus transfers as well as the re-
quired graphics hardware memory when using high resolu-
tion texture maps. Although these last techniques are very
powerful for image compression and transmission, they are
neither (most of time) lossless nor adapted to encode tex-
ture mipmaps.

The progressive transmission of textures gets interest-
ing if one is able to select and download only the mipmap
levels needed to produce the best visual representation for
a given viewpoint. In their streaming system [7] Teler et al.
propose to use the number of pixels (called pixel coverage
from now on) that the projection of an object’s bounding
rectangle covers on the screen, as a metric to select its re-
quired visual quality. Consequently, some objects can be
inside the view frustum but occluded by some other objects
(occluders). Therefore, occluded objects might have large
pixel coverages whereas they are not visible. Dumont [2]
applies a two pass algorithm to update the texture mipmap
levels in the graphics hardware. The result of the first ren-
dering pass is analysed to compute the pixel coverage of



each visible object that is then used to update the texture
mipmap levels used during the second rendering pass. This
algorithm copes well with the problem of occluded objects
and provides the best visual quality. On the other hand,
using a two pass algorithm and scanning the frame buffer
entails many computations that can drastically reduce the
frame rate.

To cope with the problem of occluded objects, a vis-
ibility preprocessing [1, 9, 8, 4] between a set of cells re-
sulting from the subdivision of architectural scenes can be
performed. More precisely, the model is subdivided into
a set of cells (rooms, corridors, etc.) using a BSP tech-
nique. Moreover cell-to-cell visibility relationships are de-
termined. Another advantage of this method is that, during
remote navigation, only the viewcell (the cell that contains
the viewpoint) together with its potentially visible set of
cells (PVS) need to be transmitted through the network to
perform the rendering on the client side. Furthermore, this
kind of scene partitionning allows to perform data prefetch-
ing and memory management [3].

3 Overview

With our system several client machines can connect to
a server to visualize static 3D scenes stored in scalable
databases. The main goal of our system is to minimize
the transmission of texture map data from the server to
the client memory (RAM) and from client RAM to the
OpenGL graphics hardware. In order to allow for a pro-
gressive transmission of architectural scenes during the vi-
sualisation process, they are first subdivided into cells [8]
and a cell-to-cell visibility relationship is established.

The texture maps of the original scene are then con-
verted into the progressive texture map (PTM) format we
present in Section 4. This file format encodes the mipmap
levels of a texture using a differential mechanism. Thus, the
mipmap levels can be transmitted separately starting from
the lowest mipmap resolution. Though storing the mipmap
levels of a square texture map entails an extra storage size
of more than 30% compared to the original texture map,
the differential method we propose increases the size of the
original map only by 6%.

Instead of computing the pixel coverage of each visi-
ble cell during navigation [7, 2] we precomputes, for each
cell, the average pixel coverage value of each cell within
its PVS. These values, valid for any viewpoint lying in the
convex hull of the cell for whitch they are computed, will
be called ACHs (Average Coverage Hints). We will see in
section 5 how to precompute these ACHs using an OpenGL
graphics hardware.

In Section 6 we explain how the client makes use of
the preprocessing results to download geometry and to se-
lect the mipmap levels needed for the best visual represen-
tation. We show how we manage these selected levels to
reduce the AGP transfers by filling the graphics hardware
memory in a way better than that of a classical LRU policy,
to minimize the network transfers and to optimize the client

RAM occupation. Finally, we present some results before
we conclude.

4 Progressive Texture Maps

The aim of the PTM format we propose is to encode
the mipmap representation of a texture map in a compact
way that allows the transmission of the mipmaps, level by
level. A first solution would be to encode the sequence of
mipmap levels in a raw manner into a single file. Although
this method is simple, it entails data redundancy. Actu-
ally, a texture map with a resolution of 1024x1024x24bits
requires 3MB of memory space whereas the associated
mipmaps requires 4MB. The solution we propose con-
sists in storing, for each level, only a portion of this level,
whereas the rest can be reconstructed using few additional
data and the level just below as seen hereafter.

4.1 Floating point solution

-

?

� -� - ?

6

� -

6

?

?

6

I
0
0,0

I
2
0,0 I

1
1,0

I
1
1,1I

1
0,1

l1

h0

l0l2

h2

I
2
0,1 I

2
0,2 I

2
0,3

I
2
1,0 I

2
1,1 I

2
1,2 I

2
1,3

I
2
2,0 I

2
2,1 I

2
2,2 I

2
2,3

I
2
3,0 I

2
3,1 I

2
3,2 I

2
3,3

F

F

I
1
0,1

h1

Figure 1. The three lower levels of a square PTM. For each
level, the dotted lines surround the pixels that are transmit-
ted from the server to the client (partial mipmap level) and
the bold lines surround the pixels that are computed on the
client side. F is the low-pass filter that transforms a level n
into a level n − 1.

In this section, we show how to reconstruct a mipmap
level n knowing 3

4 of its content (this fraction will be called
partial mipmap level) and its lower level n−1. To compute
a mipmap level n−1, we apply the 2x2 low pass filter F to
level n for each color component. Figure 1 shows the three
lower mipmap levels of a square texture map.

F =

(

1
4

1
4

1
4

1
4

)

The color component In−1
i,j of a texture pixel P n−1

i,j of the
mipmap level level n − 1 is obtained using Equation (1),
where In

i,j is the intensity of the color component of pixel
P n

i,j of the mipmap level n having a width and a height



equal to ln and hn respectively.

In−1
i,j =

1

4

∑

0≤l≤1
0≤m≤1

In
i·2+l,j·2+m







∀i, j ∈ Z

i < hn−1

j < ln−1

(1)

A partial mipmap level n contains the color components of
only three pixels (i.e. generated with the filter F ) for each
of its 2x2 pixel blocks. The missing color component of
the fourth pixel of a pixel block can be computed using the
three generated color components of this block and that of
lower level n−1, say In−1

i,j (see Equation (2)). In Figure 1,
the three generated color components are outlined with dot-
ted lines while the computed missing color components are
outlined with bold lines.

{

In
i·2+1,j·2+1=4·In−1

i,j
−In

i·2,j·2−In
i·2+1,j·2−In

i·2,j·2+1

∀i,j∈Z i<hn−1 j<ln−1

(2)

Having the level n − 1 in the client memory, we only need
to download 3

4 of the level n, the rest can be computed at
the client side using Equation (2). Consequently, instead
of transmitting a 4MB texture, we only transmit 3MB,
which corresponds to the original size of the texture map.
This solution is optimal in floating point representation but
it induces some residual errors when using integer repre-
sentation.

4.2 Integer solution

Usually, texture maps are encoded using 24 bits or 32 bits
per pixel and each color component has to be coded using
unsigned integers. However, in Equation (1), the division
by 4 generates a remainder rn−1

i,j ranging within the dis-
crete set {0, 1

4 , 1
2 , 3

4}. It generates, in Equation (2), a resid-
ual error εn−1

i,j within the discrete set {0, 1, 2, 3}. There-
fore, when downloading the mipmap level n we also need
to download the residual errors for this level to reconstruct
the missing color components. In this way, the reconstruc-
tion of the level n is given by the modified Equation (2):
{

In
i·2+1,j·2+1=4·In−1

i,j
+ε

n−1

i,j
−In

i·2,j·2−In
i·2+1,j·2−In

i·2,j·2+1

∀i,j∈Z i<hn−1 j<ln−1

(3)

The following section shows how we encode the partial
mipmap levels and the residual errors.

4.3 Compact representation

The residual error εn
i,j for a color component can be en-

coded using 2 bits. The division by 4 is done by shifting the
dividend value by 2 bits on the right and the 2 bits of the re-
mainder are retrieved using a logical mask. Therefore, the
algorithm for encoding-decoding is very fast, and storing
the errors increases the size of the texture file only by 6%.
Furthermore, each partial mipmap level can be encoded us-
ing JPEG loseless compression which leads to an aproxi-
mate compression ratio of 2.5:1 instead of 2:1 when using
JPEG hierachical encoding and loseless compression.

Once the partial mipmap levels and the residual errors
are computed, they are written into a file in a compact for-
mat which allows an optimized and progressive access to
this file. The file first contains a header describing the res-
olution of the highest mipmap level, the number of com-
ponents per pixel and the number of mipmap levels. When
reading the file, one must compute the resolution for each
mipmap level using the header values. Note that the num-
ber of levels allows to encode a lowest mipmap level of
any resolution. If the lowest encoded level is not reduced
to one pixel, the lower mipmap levels are computed by the
client with the Equation (1) after having downloaded the
lowest level. After this short header, the lowest level is en-
tirely written into the file using a line major order. This
level is then followed by a set of groups, each one contain-
ing the data needed to reconstruct one mipmap level. These
groups are written into the file starting with the lowest level
and ending with the highest one. Each group starts with the
array of residual errors needed to reconstruct the level, fol-
lowed by the array of color components that make up the
partial mipmap level.

5 ACH Preprocessing

Recall that the architectural scenes are first subdivided into
a set of cells for which a cell-to-cell visibility relationship
is precomputed. For each cell, the ACH values associated
with its potentially visible cells are computed by summing
a set of ACHs samples computed for different points of the
cell. An ACHs sample is computed in screen space by ren-
dering the potentially visible cells for six cameras having
the same center of projection (COP). The view direction of
each camera is perpendicular to one face of a box. Such a
box will be called rendering box from now on. The COP
shared by the six cameras is the center of the rendering
box and the FOV (field of view) of each camera is equal to
90 degrees. The projection plane of a camera is a face of
the rendering box. In our implementation we generally use
eight ACHs samples per cell whose COPs are uniformly
distributed inside the cell.

For each camera of the rendering boxes of a cell, all
the objects of its PVS are rendered. In order to accelerate
the rendering we use an OpenGL graphics hardware and we
perform a frustum culling on the bounding box of each ob-
ject. Each object is displayed with a unique color which is
assigned to the memory pointer pointing to its parent cell.
So the contents of the image directly gives the memory
pointers to all the cells visible from the COP of the associ-
ated camera. Then, for each camera Ci (of the Nc cameras
associated with a cell), we count the number of pixels Nij

covered by each visible cell Ij . The total number of pixels
N total

j covered by a visible cell Ij is then:

N total
j =

Nc
∑

i=1

Nij

Let Ncells be the number of visible cells for the Nc cam-



eras. The total number of covered pixels N total
pixels for the Nc

cameras is then:

N total
pixels =

Ncells
∑

j=1

N total
j

The ACH (Average Coverage Hint), denoted ACHj , asso-
ciated with each visible cell Ij is computed as:

ACHj =
N total

j

N total
pixels

The properties of the ACH values are the following:

{

∀j ∈ [1, Nnodes], ACHj ∈ [0, 1]
∑

j∈[1,Nnodes] ACHj = 1

6 Visualization

Once the visibility and the ACHs have been computed, the
database (described in VRML97) is stored on the server
using a root file, a set of cell files and the set of PTM files.
The root file contains a set of viewpoints from which the
navigation can start and each viewpoint refer to the file url
of the cell in which it is placed. Each cell file contains the
description of one cell: its convex hull description, its child
geometry, the Url list of its adjacent and potentially visible
cells and the list of their associated ACH values.

At the begining of the navigation, the clients down-
loads the root file and select one of the proposed view-
points. Once selected, the cell associated with the view
point is downloaded as well as its potentially visible cells.
At this point, all the texture map nodes (PTM nodes) that
are used by a shape contained in one of the cells are reg-
istred in a table used to manage the resident nodes. A res-
ident node is a node that manipluates some data that are
stored in the OpenGL graphics hardware (i.e. texture maps
or display lists). When the user moves inside the scene, its
trajectory is extrapolated to find and prefetch the next vis-
ited cell. When the current cell changes, all the PTM nodes
that are not used any more are removed from the resident
nodes table and their associated mipmap levels are removed
from the graphics hardware memory. Then, the new PTM
nodes are added to this same table.

The rendering algorithm is divided into three consec-
utive steps. In the first step, the PVS of the current cell
is analyzed to compute the set of visible objects. This is
performed by the nodes themselves and is implementented
in their computeVS method that takes the rendering options
as parameters. When an object finds its bounding box to
be inside the view frustum, it registers into a display table.
In the second step, the refreshResident methods of the resi-
dent nodes are invoked so that they can refresh the graphics
hardware memory according to the parameters computed
during the current PVS analysis. Finally, in the third step,
the display methods of the objects stored into the rendering
table are invoked to perform the rendering.

6.1 Memory budget allocation

During the first step, a frustum culling is first performed
using the convex hulls of the cells within the PVS of the
current cell. The ACHs are then used to make the visible
cells share out the memory budget Mmem that gives the
total amount of graphics hardware memory that can be used
for storing the texture mipmaps. The value for the Mmem

parameter is either user defined, or benchmarked for the
given graphics hardware. For each visible cell (including
the current cell), its ACH is normalized using the number
of cells that are visible. We compute the memory budget
Mmem

i to assign to each visible cell i using its normalized
ACH denoted ACHi as follows: Mmem

i = ACHi·M
mem.

Each visible cell shares out its budget among its child nodes
that use it to allow their child PTM nodes to select their best
suitable highest mipmap level, and returns Mmem

used which is
the exact amount of memory used to store all the mipmap
levels referred to by its child nodes. The budget of memory
available for the next visible cell is now Mmem − Mmem

used .
This process is repeated for each visible cell, starting from
the cell having the highest ACH and ending with the one
having the lowest one.

6.2 PTMs update

Recall that the computeVS method of a PTM is invoked
by its parent object if this latter is visible. Since a PTM
node can be shared out among different objects, it does not
update its mipmap levels each time its computeVS method
is invoked. Instead, it saves the memory budget allocated
to it at each call to this method according to the follow-
ing rules. Each time the computeVS method is invoked, the
PTM node has to decide if it keeps or not the memory bud-
get Nalloc, given as a parameter, to store its own mipmap
levels. Let L be the index of the current highest mipmap
level and N the current total amount of memory budget
saved during the previous calls to the computeVS method
of the PTM node. If the level L + 1 exists and its memory
size S(L+1) is higher than N+Nalloc, the memory budget
Nalloc is added to the current amount of memory N other-
wise the unused memory is returned to the parent node. If
the level L+1 does not exists, the same tests are performed
using the current highest mipmap level L.

Then, during the resident node update, the refreshRes-
ident method uses the total amount of memory budget N
to add/remove a mipmap level into/from graphics hardware
memory or to download a new level. Let Lmax be the high-
est level already downloaded and Ltotal is the total number
of levels that are stored on the server side. If S(L+1) ≤ N
and L + 1 ≤ Lmax and L + 1 ≤ Ltotal, the level L + 1
is added into the graphics hardware memory. Otherwise, if
S(L) > N the level L is removed from the graphics hard-
ware memory. Else, if we are not downloading a level and
S(L + 1) ≤ N and L + 1 > Lmax and L + 1 6= Ltotal, a
request for downloading the next level has to be sent.

In order to prevent the client from waiting a long time



for a high texture level when the network bandwidth is not
high enough, the user can set the parameter δtmax that rep-
resents the maximum amount of time that should be used
to download a level. Using the result of network bandwidth
and latency analysis performed for some recent download-
ings as well as the size of the requested level, the PTM
computes an estimation of the time needed to download
the required level. If the estimated time is lower or equal to
δtmax, the request is sent to the server, otherwise it is dis-
carded. Finally, two other parameters δtstatic

max and Mmem
static

are used if the viewpoint is static for a given number of
seconds tstatic which is a user defined parameter. For ex-
ample, one can use Mmem = 4MBytes, δtmax = 0.5sec,
Mmem

static = 16MBytes and δtstatic
max = 20sec to obtain a

good interactivity when moving the viewpoint and a good
quality when focusing on a given object.

7 Results

In this section we provide some results showing the per-
formances of our navigation system regarding the quality
of the network transmissions and interactivity during nav-
igation. In the following sections, the tests will be per-
formed using a museum model because of its low number
of polygons and its large amount (97.7MB) of high resolu-
tion (1024x1024) texture maps.

0

20

40

60

80

100

120

0 50 100 150 200 250 300

Q
ua

lit
y 

(p
er

ce
nt

ag
e)

Time (seconds)

no limit
512 Kbits/sec
56 Kbits/sec

0

20

40

60

80

100

55 60 65 70 75 80 85 90 95 100

Fp
s

Time (seconds)

Using PTM textures
Using TGA textures

Figure 2. Top: PTM downloading quality and bandwidth
adaptation over time. Simulations performed at three dif-
ferent bandwidth limitations. Bottom: Frame rate over time
for walkthroughs of museum using high resolution TGA
texture maps and PTM texture maps. The tests were per-
formed at a rendering resolution of 1280x1024.

7.1 Transmission quality

In order to analyze the transmission quality, we have
recorded a walkthrough path on the client side. This path
passes through all the rooms of the museum model. Our
system allows to simulate a remote walkthrough, using this
path, at different bandwidths. During the simulation, for
each used texture map within the PVS of the current cell,
we count the amount of downloaded levels that we normal-
ize using the highest number of levels for these textures.
This percentage is called progressive downloading quality.
The highest this value, the highest the progressive down-
loading quality. Figure 2 shows how the progressive down-
loading quality evolve over time for the walkthrough sim-
ulated at different bandwidths. The quality plot exhibits
very low values at the begining of the walkthrough because
the cells (and the geometry) downloading requests are as-
signed a priority higher than that of mipmap level requests.
Then, after this initialisation time we can see that the qual-
ity increases rapidly up to a bound controlled by the maxi-
mum download latency parameters δtmax and δtstatic

max . On
the quality plot corresponding to the simulation with no
bandwidth limitation, a quality of 100% is reached when
the viewpoint is static. We can see on the two other plots
that the quality also increases when the viewpoint is static.
Figure 3 shows three screen shots for a static viewpoint at
different times using a simulated bandwidth of 56Kbits/s
and one screen shot where texture maps are in the high-
est resolution, using a local server. The framerate is higher
than 29fps while it equals 2.7fps when the PTM mecha-
nism is not used.

7.2 Interactivity

Recall that our system relies on two parameters Mmem and
Mmem

static respectively used to limit the texture memory bud-
get for the graphics hardware for a moving and a static
viewpoint respectively. To show that our system is capable
of rendering scenes with high resolution texture maps at
an interactive frame rate, we have simulated a walkthrough
using a path with many direction an rotation changes of
the viewpoint. Such a path induces many transfers on the
AGP bus if the amount of texture maps is too high for the
used graphics hardware. For this test, the walkthrough was
performed twice for two different models. The first model
is the original museum scene with high resolution TGA
texture maps and the second one is the preprocessed mu-
seum using PTM texture maps. To walk through the second
model, we did not use any network bandwidth limitation
and the memory bounds were set to Mmem = 4MB and
Mmem

static = 12MB which are the best parameters for the
Pentium IV 1.7GHz, with a NVidia Quadro 2 Pro 64MB
we used for the tests. The first time, the walkthroughs
are simulated such that all the needed data are downloaded
with the maximum resolution and the TGA texture maps
are all loaded into the graphics hardware memory. Then,
the second time all the needed data for the walkthroughs



Figure 3. Screen shots from a static viewpoint placed in the museum at different times after the texture downloadings start. Top
left: 10s after, at 56Kbits/s. Top right: 35s after, at 56Kbits/s. Bottom left: 1m20s after, at 56Kbits/s. Bottom right: view
of highest quality 3s after the texture downloadings start using a local server.

are kept into the main and graphics hardware memories.
Figure 2 shows the frame rate (fps) analysis for the second
time walkthroughs. The fps plots show that between 72
seconds and 83 seconds the frame rate for the walkthrough
using TGA texture maps is very low because of the AGP
bus bottleneck whereas the frame rate for the walkthrough
using PTM texture maps ranges beteween 20fps and 50fps.
Consequently, our system allows real time visualization of
scenes that could not be visualized in a usual manner.

8 Conclusion

In this paper we have described a system that allows to vi-
sualize large 3D scenes that can contain a large amount of
high resolution texture maps. To obtain such results we
have proposed a compact and progressive representation
for texture maps that is fast to encode-decode using inte-
ger arithmetic. The precomputation of the ACH values we
use to select the level of a PTMs to be downloaded and
uploaded into the graphics hardware memory is fast since
it is performed by the graphics hardware. Thanks to this
mechanism and a small set of parameters, we can ensure
an automatic adaptation to the network and to the client
machine performances. Our ACH based visualization sys-
tem is highly scalable, modular and can handle any kind of
texture maps.

References

[1] J. Airey, J.H. Rohlf, and F.P. Brook. Toward image real-
ism with interactive update rates in complex virtual building

environements. In Symposium on interactive 3D graphics,
1990, 41-50.

[2] R. Dumont, F. Pellacini, and J.A. Ferwerda. A perceptually-
based texture caching algorithm for hardware-based render-
ing. In Proc. 12th Eurographics Workshop on Rendering,
2001, 246-253.

[3] T.A. Funkhouser. Database management for interactive dis-
play of large architectural models. In Graphics Interface,
1996, 1-8.

[4] T.A. Funkhouser, C.H. Squin, and S.J. Teller. Manage-
ment of large amounts of data in interactive building walk-
throughs. In Symposium on Interactive 3D Graphics, 1992,
11-20.

[5] A. Said and W.A. Pearlman. A new fast and efficient im-
age codec based on set partitionning in hierarchical trees.
In IEEE Trans. Circuits and Systems for Video Technology,
6(3), 1996, 243-250.

[6] J.M. Shapiro. Embedded image coding using zerotrees of
wavelet coefficients. In IEEE Trans. Signal Processing,
41(12), 1993, 3445-3462.

[7] E. Teler and D. Lischinski. Streaming of complex 3D scenes
for remote walkthroughs. In Computer Graphics Forum,
20(3), 2001, 15-25.

[8] S.J. Teller and C.H. Sequin. Visibility computations in poly-
hedral environments. Technical report, University of Cali-
fornia at Berkeley, 1992, CSD-92-680.

[9] S.J. Teller and C.H. Squin. Visibility preprocessing for in-
teractive walkthroughs. In Proc. ACM SIGGRAPH, 1991,
61-69.

[10] L. Williams. Pyramidal parametrics. In Proc. ACM SIG-
GRAPH, 1983, 1-11.

View publication statsView publication stats

https://www.researchgate.net/publication/268429977

