
EUROGRAPHICS 2000 Tutorial

Interactive 3D Rendering and Visualization in Networked
Environments

Ioana M. Martin, James T. Klosowski, William P. Horn

IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA

Abstract
Efficient delivery of 3D graphics over networks is becoming increasingly important for a number of applications,
ranging from industrial design and manufacturing to entertainment. As companies make the transition from a con-
ventional business model to an e-business model, the number of users that require access to 3D model databases
is forecast to grow dramatically over the next few years. While some users may access these databases using high-
performance graphics hardware over high-speed connections, others are likely to access the data with devices
having limited hardware graphics support over slower connections such as busy intranets, dial-in networks, or
wireless connections. In this context, there is a requirement for efficiency. This translates into ensuring that access
to centralized data is provided through a unified interface cognizant of the environment conditions and capable of
transparently adjusting the access mechanism in order to provide the clients with optimal access service. In this
course, attendees will learn to leverage existing methods for data transfer and interactive graphics to create the
next generation of 3D networked graphics software tools.

Prerequisites
This course targets an audience possessing an understanding of the basics of 3D graphics and networking. It is
intended as an opportunity for the attendees to learn about ongoing efforts in both fields and to become aware of
the challenges and issues involved in transmitting complex 3D models over networks.

Course Outline

1. Introduction
2. Networked Graphics: Applications, Capabilities, and

Challenges
3. A Networking Primer

3.1. Fundamentals of data transfer
3.2. Network protocols
3.3. Integrated vs. differentiated services
3.4. Multimedia protocols
3.5. Designing a protocol for 3D data delivery

4. Interactive Rendering of Complex 3D Models
4.1. Data structures for model organization
4.2. Rendering acceleration techniques

4.2.1. Culling
4.2.2. Simplification
4.2.3. Levels-of-detail
4.2.4. Impostors

4.3. Model perception and representation selection

5. Overview of 3D Transfer Technologies
5.1. File formats for 3D data transfer

5.1.1. VRML
5.1.2. Java 3D
5.1.3. XGL
5.1.4. MPEG-4
5.1.5. MetaStream

5.2. Techniques for efficient transmission of 3D data
5.2.1. Compression
5.2.2. Streaming

6. Adaptive System Design and Implementation
6.1. Combining modalities for network rendering
6.2. Environment monitoring
6.3. Adaptive selection of transmission methods
6.4. Support for real-time interaction
6.5. Implementation issues

7. Conclusions

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

1. Introduction

Emerging networking infrastructures include an increasing
variety of clients and servers inter-connected by communi-
cation fabrics of various types and capabilities. This hetero-
geneity makes it difficult for servers to provide a level of
service that is appropriate for every client that requests ac-
cess to multimedia content. So far, a significantbody of work
has been dedicated to the challenges of universal access, re-
garding the delivery of traditional multimedia content such
as text, images, audio, and video. Less attention was focused
on three-dimensional (3D) digital content, as true market op-
portunities for 3D graphics over networks have just recently
begun to emerge.

Over the past years, a number of optimization technolo-
gies regarding both transmission and rendering of 3D mod-
els have been developed (e.g., compression, model simplifi-
cation, levels-of-detail, streaming, image-based techniques).
In this course, the attendees will learn to combine and lever-
age these existing methods to create the next generation of
3D networked graphics software tools. The objectives of this
course are for the attendees to:

1. Become aware of the problems related to the rendering of
3D models over networks.

2. Learn about the various approaches that have been devel-
oped to alleviate these problems, including their strengths
and limitations.

3. Understand what are the considerations and requirements
that software developers should take into account when
designing graphics applications for networked environ-
ments.

The course is organized into three major parts. The first
two parts cover relevant topics in networking and interac-
tive computer graphics. The third part addresses issues that
arise from the merger of the first two topics and describes
the technologies necessary to build interactive 3D applica-
tions in networked environments. Demos are provided to il-
lustrate some of the concepts presented.

The networking primer (section3) is intended as a re-
view of relevant networking concepts. The primer includes
an overview of efforts to ensure quality-of-service for multi-
media applications. Typically, such applications require real-
time traffic which is not naturally supported by the Inter-
net. Several general solutions have been proposed, includ-
ing traffic classification, priority allocation by application,
and reservations. We cover the fundamentals of the real-time
protocols (RSVP, RTP, RTCP, and RTSP) and we take a look
at traffic management using quality-of-service. We analyze
the requirements for the development of a protocol that sup-
ports delivery of streams containing 3D data.

The second part of the course (section4) is dedicated to
techniques that have been developed to address the challenge
of rendering detailed 3D models at interactive frame rates.
We review the ingredients needed to represent a model (ge-

ometry, topology, and other attributes), as well as various
types of representations and data structures for organizing
model components. We also describe techniques that exploit
these mechanisms to build effective systems that balance in-
teractivity and realism. In this context, we investigate model
perception issues and methods to decide how various parts
of a model contribute to the overall quality of the render-
ing and how to dynamically select an appropriate represen-
tation for each component. Complexity management tech-
niques including culling, simplification, levels-of-detail, and
impostors will be presented.

The primary focus of the course (sections5 – 6) is on
the merger of networking and interactive 3D graphics to
provide solutions to the problem of visualizing models on
clients with varying graphics hardware capabilities over a
wide range of connection fabrics. In recent years, a vari-
ety of algorithms and storage technologies have been de-
veloped that promise to overcome difficulties inaccessing
and viewing large data sets. Such algorithms include com-
pression and progressive transmission of models to reduce
the perceived network delay. Storage formats that support
streaming of multimedia have been enhanced to include 3D
data (e.g., MPEG-4), or have been designed specifically for
3D data streaming (e.g., MetaStream). In this part of the
course we provide a survey of these algorithms and tech-
nologies, and we discuss their advantagesand disadvantages.
We explore the (typically implicit) assumptions these meth-
ods make about their operating environments. Issues related
to adaptive systems that are aware of differences in envi-
ronment conditions and, at the same time, leverage exist-
ing technologies are discussed in detail. Design topics such
as combining representations, adaptive selection with mul-
tiple constraints, benchmarking and dynamic environment
monitoring, as well as implementation issues such as data
structures, single vs. multiple threads, and scalability are ad-
dressed.

2. Networked Graphics: Applications, Capabilities,
Challenges

The most familiar application of 3D graphics in networked
environments, aside from games, is on-line advertising and
shopping. The e-commerce dream is being able to sell ev-
eryday items via the Web by presenting them in 3D form so
buyers could view them from any angle inside a virtual store.
“Will that bathing suit make me look fat? Can I see home
plate from a seat in Section 293 at Yankee Stadium?” Online
shoppers can find answers to these and other questions on an
increasing number of Web sites that are deploying interactive
3D technologies designed to reproduce real-life experiences.
It’s convenient, it’s fun, and according to retail experts, 3D
is seen as one of the most promising ways to convert online
browsers to online buyers.

In the business world, universal network access causes
community boundaries to be redefined and new models of

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

business organization and interaction become possible. By
permitting business partners to connect to their networks,
corporations are creating global inter-corporate networks.
Employees access information in any part of a corporation
and collaborate with geographically dispersed subsidiaries.
Additionally, international mergers such as Ford Motor’s ac-
quisition of Volvo and Daimler’s acquisition of Chrysler, are
driving the need for global connectivity to an even higher
level. Such companies have connected tens of thousands of
their employees to the Internet and are using it as a way to
gain a competitive advantage by providing universalaccess
to 3D models for design and manufacturing.

In medicine, ultrasound devices used to diagnose human
organs such as the heart and the liver and to observe fetus de-
velopment are now moving from the traditional 2D images to
3D reconstructions. While dynamically obtaining 3D images
of a beating heart remains a future goal, people have recently
been able to look at 3D models of smiling faces of their
unborn babies. Longstanding predictions that 3D graphics
would become a simple tool of the medical office are not so
far-fetched anymore.

In education, a 3D model may be worth a thousand words.
A recent survey of university professors has shown that,
when asked for a wish list in terms of teaching aids, as-
suming no technological barriers, an overwhelming majority
had interactive 3D graphics on their list. From mathematics
and engineering, to biology and geography, to choreography
and textile design, replacing 2D images and video clips with
3D models that can be manipulated interactively enriches the
learning experience.

These are just a few of the many applications of 3D
graphics that could benefit from efficient and adaptive tech-
niques for network delivery. To achieve these benefits, there
are many challenges that must be addressed by networked
graphics applications. Due to the increasing heterogeneity of
networked environments, networked graphics applications
must support access to appropriate representations of 3D
models that enable clients to view these models regardless of
their graphics capabilities and the network connections they
use. However, accommodating multiple representations of
the same model and selecting the optimal one(s) with respect
to given constraints and criteria is not trivial. Bandwidth (or
the lack thereof) has been a challenge for networked applica-
tions in general. As the gap between high and low-bandwidth
connections increases, so do the requirements for adaptive
applications. At one end of the bandwidth spectrum is the
Next Generation Internet62, that promises an order of mag-
nitude higher bandwidths than typically available today. At
the other end of the spectrum, are pervasive devices and in-
formation appliances that usually support lower bandwidth
links. Last but not least, the economic and social globaliza-
tion implies an explosion in the number of clients accessing
information, and in particular, 3D data. In this context, scal-
ability and security are issues that cannot be ignored.

3. A Networking Primer

In this section we review basic networking concepts such
as latency, bandwidth, reliability, and protocols, we present
an overview of multimedia protocols such as RSVP, RTP,
RTCP, RTSP, and traffic control using quality-of-service, and
we identify issues that have to be taken into account when
selecting or developing a protocol for 3D graphics.

3.1. Fundamentals of data transfer

The role of a network is to provide connectivity among a set
of computers. Some networks are designed to connect only
a few machines (e.g., intranets), whereas others may poten-
tially connect all the computers in the world (e.g., the Inter-
net). Network connectivity occurs at many different levels. A
simple network consists of two or more computers (nodes)
directly connected by a physical medium (link). Figure1 il-
lustrates two examples of direct links: point-to-point (con-
necting a pair of nodes) and multiple-access (several nodes
share the same physical link). The number of computers
that can be connected with a direct link is restrictive. Fortu-
nately, connectivity does not necessarily imply the existence
of a direct physical connection. Figure2 shows an exam-
ple of a switched network in which nodes that are attached
to at least two links run software that forwards the data re-
ceived on one link out on another. Examples of switched net-
works include circuit-switched (e.g., the telephone system)
and packet-switched (e.g., most computer networks). For
networked graphics we are interested in the latter category.
Nodes in a packet-switched network send discrete blocks of
data to each other. Such blocks are usually termedpackets
or messagesand are typically delivered using a store-and-
forward strategy. As the name suggests, first a node receives
a complete packet over some link, stores it in its internal
memory, and then forwards the complete packet to the next
node.

(a)

(b)

Figure 1: (a) Point-to-point link. (b) Multiple-access link.

A set of independent networks can be connected to form
an internetwork, or internet for short. A node that is con-
nected to two or more networks is commonly called a router
or gateway and, similar to a switch, it forwards messages
from one network to another. Note that an internet can
be built as an interconnection of internets. Ultimately, to

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

Figure 2: Switched network: the cloud distinguishes be-
tween nodes on the inside that implement the network
(switches) and nodes on the outside that use the network
(hosts).

achieve connectivity, each node must be able to specify the
other nodes in the network to which it wishes to commu-
nicate. This is done by assigning an address to each node.
The process of determining how to forward messages toward
the destination node based on its address is calledrouting.
The most popular scenario is that of a source node sending
a message to a single destination node (unicast). However,
sometimes it is desirable for a node to send a message to
all nodes on the network (broadcast), or to a select subset
(multicast). Thus, in addition tonode-specific addresses, a
network should also support multicast and broadcast.

Resource sharingMultiple hosts share a network bymul-
tiplexing. Intuitively, multiplexing is analogous to multiple
jobs sharing a common CPU. There are several strategies
for multiplexing multiple data flows onto onephysical link.

Using synchronous time-division multiplexing (STDM),
time is divided into equal-sized quanta and each flow is given
a chance to send its data over the physical link in a round-
robin fashion. Usingfrequencydivision multiplexing(FDM),
each flow is transmitted over thephysical link at a different
frequency, much the same way that the signals for different
TV stations are transmitted on aphysicalcable TV link. Both
STDM and FDM have similar drawbacks. If one of the flows
does not have any data to send, its share of the link remains
idle, even if one of the other flows has data to transmit. Also,
adding new quanta (STDM) or frequencies (FDM) may not
be practical.

To solve these problems,statistical multiplexingis typ-
ically used. As in STDM, the physical link is shared over
time. In contrast to STDM, the data is transmitted fromeach
flow on demand, rather than in a round-robin fashion. Thus,
if only one flow has data to send, it transmits that data with-
out waiting for its turn. To ensure that other flows have a
chance of transmitting, statistical multiplexing defines an
upper bound on the size of the block of data that each flow
is permitted to transmit at a given time. This block of data
is usually termedpacket. The termmessageis typically used
for the arbitrarily large data an application transmits as a se-
quence of packets. A decision as to which flow will trans-
mit next is made on a packet-by-packet basis. This decision
can be made in a number of different ways. For example, a
switch could be designed to service packets in a first-in-first-
out (FIFO) manner. Another approach would be to service
the different flows in a round-robin fashion to ensure that
certain flows receive a particular share of the link’s band-
width. A third approach is for an individual application to
request that its packets not be delayed for more than a cer-
tain length of time. Yet another example is to define priori-
ties based on the class of data or aggregated traffic. A net-
work that supports the latter two approaches is said to pro-
videquality of service(QoS).

Reliability Reliable message delivery is one of the most im-
portant functions that a network can provide. There are three
major classes of network failure. First, as a packet is trans-
mitted over a network, bit errors may occur as a result of out-
side forces (e.g., lightning strikes, power surges). Such errors
are typically rare. They are either detected and corrected, or
the packet has to be retransmitted. Second, complete packets
may be lost by the network (e.g., a switch runs out of buffer
space or there is a bug in the software handling the packet).
The main challenge in this case is distinguishing between
packets that are lost and those that are late in arriving at the
destination. Third, physical links may be cut or participating
nodes may crash. While such failures can eventually be cor-
rected, they can have a dramatic effect on a network for an
extended period of time.

Performance Network performance is measured in two
fundamental ways:bandwidth(or throughput) and latency
(or delay).

The bandwidth of a network is measured in terms of the
number of bits that can be transmitted over the network in a
certain period of time. For example, a network might have
a bandwidth of 10 million bits/second (Mbps), which means
that it can deliver 10 million bits every second. Sometimes
it is useful to think of bandwidth in terms of how long it
takes to transmit each bit of data. For example, on a 10 Mbps
network, it takes 0.1 microseconds to transmit each bit.

Latency corresponds to how long it takes a message to
travel from one end of the network to the other and it is mea-
sured in terms of time. In some situations it may be useful

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

to know how long it takes to send a message from one end
of a network to the other and back, i.e., the round-trip time
(RTT) of the network. Latency can be thought of as having
three components:

Latency= Propagation+Transmit+Queue

Propagation=Distance=SpeedOf Light

Transmit= Size=Bandwidth

wherePropagationdenotes the speed-of-light propagation
delay,Transmit is the amount of time it takes to transmit a
unit of data, andQueueis the time spent in queuing delays
inside the network.

The combination of bandwidth and latency determine the
performance characteristics of a given link. Their relative
importance depends on the application. For example, a client
that sends a 1-byte message to a server and receives a 1-byte
message in return is latency bound. This application will per-
form differently on a transcontinental channel with 100 ms
RTT than on a channel across the room with a 1 ms RTT.
Whether the channel is 1 Mbps or 100 Mbps is insignificant.
In contrast, consider fetching a 25 MB 3D model over a net-
work. The more bandwidth that is available, the faster the
model will be downloaded. In this case, the bandwidth dom-
inates the performance. It will take 20 seconds on a 10 Mbps
to transmit the model, whether there is a 1 ms or a 100 ms
latency is insignificant.

3.2. Network protocols

To hide complexity, networks are designed with several lev-
els of abstraction corresponding to various layers of service.
The idea is to start with services offered by the hardware
and to add a sequence of layers, each providing a higher,
more abstract level of service. The services provided at the
high layers are implemented in terms of services provided
at the low levels. The advantages of layering are two-fold.
First, the network software is decomposed into more man-
ageable pieces, each solving a particular problem. Second,
when adding a new service, it is easier to leverage existing
lower levels.

Protocols The layers of a network consist of abstract ob-
jects calledprotocols. A protocol provides a communication
service used by higher level objects to exchange messages.
A protocol has two different interfaces. Aservice interface
defines the operations that objects can request from a lower
protocol. Apeer interfacedefines the messages exchanged
between the same protocol on different hosts.

The OSI architecture The Open Systems Interconnection
(OSI) architecture shown in Figure3 (a) defines a standard
architecture for exchanging information between computers.
Its functionality is partitioned into seven layers.

1. The physical layer handles the transmission of raw bits
over a communication link.

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

IP

TCP UDP

Application

(a) (b)

Figure 3: (a) OSI architecture; (b) Internet architecture.

2. The data link layer collects a stream of bits into a larger
structure called aframe.

3. The network layer handles routing among nodes. The
unit of data exchanged among nodes is typically called
a packet(rather than frame), although they are the same
thing.

4. The transport layer implements a process-to-process
channel for which the unit of data exchanged is the mes-
sage.

5. The session layer provides management of dialog con-
trol (e.g., one-way or two-way traffic) and synchroniza-
tion (e.g., two audio and video streams part of the same
teleconferencing application).

6. The presentation layer is concerned with the format of the
data exchanged between peers (e.g., whether an integer is
16, 32, or 64-bits long).

7. The application layer contains a variety of protocols that
are commonly needed. For example, the File Transfer
Protocol (FTP) defines how file transfer applications can
interoperate.

The Internet architecture The Internet architecture
evolved from experiences with an early network funded
by the US Department of Defense called ARPANET. The
Internet architecture can be described using a four-layer
model as shown on Figure3 (b).

1. At the lowest level are a wide variety of network proto-
cols (e.g., Ethernet, TokenRing).

2. The Internet Protocol (IP) supports the interconnection
of multiple networking technologies into a single, logical
internetwork.

3. The third layer contains two transport protocols: the
Transmission Control Protocol (TCP) and the User Data-
gram Protocol (UDP). These protocols provide alterna-
tive logical channels to applications. TCP supports reli-
able delivery, whereas UDP is unreliable.

4. The fourth layer contains a number of application proto-
cols (e.g., FTP, HTTP).

The Internet architecture does not imply strict layering.
An application may bypass the transport layers and use IP

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

directly. In fact, programmers are free to define new abstrac-
tions that run on top of the existing protocols.

SocketsA popular application programming interface
(API) supported by most operating systems is the so-called
socket interface(originally provided by the Berkeley distri-
bution of Unix).

The main abstraction of the socket interface is thesocket,
i.e., the point where an application process attaches to
the network. The interface defines operations for creat-
ing a socket, attaching the socket to the network, send-
ing/receiving messages through the socket, and closing the
socket.

3.3. Integrated vs. differentiated services

Typically, Internet service is provided using abest-effortap-
proach. This approach does not allow users to request an in-
crease the quality of service they receive, even if they are
willing to pay for it. However, the ability to address the vari-
ous requirements of different customers is rapidly becoming
important. This trend has resulted in several efforts to de-
fine mechanisms to support QoS. Internet service providers
would like to maximize the sharing of the costly backbone
infrastructure in a manner that enables them to control the
usage of network resources according to service pricing and
revenue potential. Ideally, they should be able to:

(a) isolate traffic from different customers and provide min-
imum bandwidth guarantees;

(b) define different levels of service for different types of
traffic, in a customer-dependent manner (e.g., some cus-
tomers may define voice over IP or database queries to
have high priority, while others may specify FTP trans-
fers to have low priority);

(c) allow customers to choose an extremely reliable and
high-performance (possibly expensive) service.

The approaches that have been developed to provide QoS
can be divided into two broad categories:fine-grained(to
provide QoS to individual applications) andcoarse-grained
(to provide QoS to large classes of data).

Both categories have received considerable attention in
recent years and Internet Engineering Task Force (IETF)
working groups have been created to address QoS issues.
The IETF is an open international community of network de-
signers, operators, vendors, and researchers concerned with
the evolution of the Internet architecture and the smooth op-
eration of the Internet. Solutions to the fine-grained category
are referred to asintegrated services.Solutions to the coarse-
grained category are referred to asdifferentiated services.

Integrated servicesThe term “Integrated Services” refers
to a body of work produced by IETF around 1995-97. The
corresponding working group developed specifications of

severalservice classesdesigned to meet the needs of real-
time applications. The group also defined how a reserva-
tion protocol (see RSVP) could be used to make reservations
based on these service classes.

Two main service classes have emerged from the IETF
specifications. The first one offersguaranteed serviceand it
is designed for intolerant applications that require that pack-
ets never arrive late. The second class has been chosen to
meet the needs of tolerant, adaptive applications, and the
service provided is known ascontrolled load. In the latter
case, the goal is to emulate the conditions of a lightly loaded
network, even though the network may be heavily loaded by
isolating controlled traffic from other traffic. As these classes
are deployed, it will become clear whether additional ser-
vices are needed.

Resource reSerVation Protocol (RSVP)RSVP is a net-
work control protocol that operates on top of IP and allows
a receiver to request a specific QoS for its data flows. Appli-
cations use RSVP to reserve the necessary resources along
transmission paths so that the requested bandwidth is avail-
able when the transmission actually takes place. There are
two things a receiver needs to know before it can make a
reservation:

(a) an estimate of the amount of traffic that is to be sent, so
it can make an appropriate reservation, and

(b) the path of transmission, so it can establish a reservation
at each router in the path

Once this information is available, a request for reserva-
tion is made at each node along the sender-receiver path. Af-
ter reservations are made, routers supporting RSVP extract
the QoS class for each incoming packet and make forward-
ing decisions based on this information.

Differentiated services In contrast to Integrated Services
which are concerned with allocating resources to individual
flows, theDifferentiated Servicesmodel allocates resources
to a small number of traffic classes. The IETF Differenti-
ated Services (diffserv) group is working towards the defi-
nition of a general conceptual model consisting of a small,
well-defined set of building blocks from which a variety of
aggregate behaviors may be built to support various types
of applications, and specific business requirements. The ba-
sic idea is to include a small bit-pattern in each packet to
mark the type of treatment it should receive at each network
node and to define a common understanding about the use
and interpretation of this pattern for inter-domain use, multi-
vendor interoperability, and consistent reasoning about ex-
pected aggregate behaviors in a network.

Currently, the best-effort service model is enhanced by
adding just one new class, offering “premium” service. One
bit in the packet header could be used to distinguish between
premium and regular packets. Two questions have to be ad-
dressed:

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

� Who sets the premium bit and under what circumstances ?
For example, packets may be marked as premium by the
ISP, based on the price paid for the service.

� What happens when a premium packet reaches a router ?
A number of strategies have been defined, includingex-
pedited forwarding (EF), in which a packet is forwarded
with minimal delay and loss, andassured forwarding
(AF), in which packets within a specified profile are guar-
anteed to be delivered.

3.4. Multimedia protocols

Multimedia applications are part of a class of applications
that are time sensitive and are generally termed asreal-time
applications. The idea of playing multimedia over the Inter-
net is attractive, as the Internet has become a platform for
the majority of networking activities. Users can receive data
and multimedia content over the same network, without hav-
ing to invest in additional hardware. However, the availabil-
ity of increased bandwidth is a necessary but not sufficient
condition. Multimedia data needs to be played back continu-
ously and smoothly, and the Internet does not naturally sup-
port real-time traffic. Appropriate hardware and software in-
frastructures and application tools have to be developed to
support real-time applications.

The TCP protocol is designed for reliable transmission of
data with minimal delay constraints. However, multimedia
traffic does not require reliable transmission and other pro-
tocols may be more appropriate. If a receiver has to wait for
a TCP retransmission, an unacceptable gap can occur in a
playback of a video (or any other delay-sensitive data). Also,
since there is no predefined path for packets to flow over the
Internet, there is no mechanism to ensure that the bandwidth
needed is available between the sender and the receiver, so
QoS cannot be guaranteed. In addition, TCP does not pro-
vide timing information, which is critical for multimedia
support. Most multimedia applications are less affected by
missing data than by lengthy delays caused by retransmis-
sions. Also, they do not require in-sequence delivery. In this
section, we present several protocols that have been devel-
oped to enhance the Internet architecture to support audio,
video, and interactive multimedia conferencing.

Real-time Transport Protocol (RTP) is a protocol that pro-
vides support for applications transmitting real-time data
over networks. Services include payload type identification,
sequence numbering, and time stamping. RTP typically runs
on top of UDP and it works in conjunction with an aux-
iliary control protocol (RTCP) to monitor packet delivery.
The header of an RTP packet provides timing information
necessary to synchronize data, as well as sequence numbers
to place incoming packets in order. The payload type iden-
tifier indicates the type of data and the compression scheme
used to deliver it. However, RTP does not provide any mech-
anisms to ensure timely delivery or QoS. Hence, for appli-
cations that require such guarantees, RTP must be accompa-

nied by other mechanisms. Figure4 shows an RTP packet
encapsulated inside a UDP packet.

RTP headerUDP header RTP payload

Figure 4: The structure of an RTP packet inside a UDP
packet.

Real-Time Control Protocol (RTCP) works in conjunction
with RTP to monitor performance and to issue diagnostics.
RTCP control packets are periodically transmitted byeach
participant in an RTP session to all other participants. The
primary goal is to provide information to the application re-
garding the quality of the data distribution so that appropri-
ate action is taken.

Real-Time Streaming Protocol (RTSP)is a presentation
protocol for streaming multimedia data over a network. In-
stead of downloading large multimedia files and playing
them back, data is sent over the network in streams. While
a packet is being played, another is being received and users
have access to the multimedia content without waiting for
the entire data to be received. Sources of data for streaming
can include both live data feeds as well as stored clips. RTSP
is an application-level protocol designed to work with lower
level protocols such as RTP and RSVP. It provides VCR-
style functionality for audio and video streams, including
pause, fast forward, reverse, and absolute positioning.

3.5. Designing a protocol for 3D data delivery

Delivery of 3D data over networks can be viewed as an ex-
tension to the delivery of multimedia data. Certain features,
such as increased bandwidth and the ability to stream are de-
sirable for both 3D and multimedia applications. Other fea-
tures, however, are specific to 3D applications and have to
be addressed by specialized protocols.

Graphics applications are typically less tolerant to packet
loss than video and audio applications. Although timely de-
livery is still important, a reliable transport protocol such as
TCP is likely to be more suitable for transmission of geo-
metric data than an unreliable protocol for which additional
support would be necessary to recover the dropped pack-
ets. Depending on the format used to encode the 3D data,
a lost packet may result in a minor defect in the surface of
an object, or it may render useless all remaining packets.
Out-of-order transmission of packets may also be a problem
for geometric data. Existing streaming techniques for geom-
etry tend to generate progressive representations consisting
of a coarse model and a sequence of refinements for which
the order in which they have to be applied to recover the full-
resolution model is predefined. Similarly, effective compres-
sion methods typically use prediction in conjunction with
entropy coding to achieve good compression rates. In this
case, predictors and items predicted must be part of the same

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

package, which may not be easily accomplished. The over-
head introduced to achieve error resilience for progressive
or compressed streams will probably exceed the overhead of
choosing an existing reliable protocol such as TCP over a
faster, unreliable scheme.

Audio and video streams support a limited type of in-
teractions such as start, stop, fast forward, and reverse. In-
teractions with a 3D scene are more complex and, among
other things, include: 3D manipulation of the scene or of
individual objects; restricting access and display to parts of
the scene; and changing camera positions or the attributes of
objects in the scene. It is desirable to take such interactions
into account when downloading the content. In such cases,
a feedback channel should be available to communicate the
changes caused by interactive actions.

The delivery of 3D data over networks may require mul-
tiplexing the geometric information with other kinds of
streams, such as images, video, and audio. Texture images
are one simple example. Image impostors, as discussed in
the next section, constitute another example and are used
to reduce the transmission and rendering complexity of
3D scenes. A protocol supporting delivery of 3D graphics
should provide synchronization with other types of streams.

SUMMARY

A network can be defined recursively as consisting of two or
more nodes connected by a physical link, or as two or more
networks connected by one or more nodes.

Layered architectures provide a framework for network de-
sign. The central objects in this design are network proto-
cols. Protocols provide a communication service to higher
level protocols and define the format of the messages ex-
changed by peers. Two popular architectures are OSI and
the Internet.

The Internet uses a best-effort approach that does not allow
users to request an increase in the quality of service they
receive. To address this problem, two classes of approaches
are considered: integrated services that provide fine-grained
quality of service toapplications and differentiated services
that address larger classes of traffic.

When designing a protocol for 3D delivery, issues such as
streaming, error resilience, packet order, and multiplexing
of geometry streams with other types of data should be con-
sidered.

4. Interactive Rendering of Complex 3D Models

Users typically want to interact with 3D models in real-time.
They want to load, visualize, and inspect models without
having to wait minutes, or even seconds, for the images to
appear on their computer screens. In addition, users also
want models to look as realistic as possible. Consequently,
3D models are increasing in complexity every day. Design-
ers, at the request of their customers, are making their mod-
els more realistic using additional details. Added realism can
be achieved, for instance, by specifying colors, normals, or
textures to supplement the information captured by the ge-
ometry of a model, or by using additional geometric detail
to approximate objects more closely.

In parallel to an increase in model complexity, graphics
hardware has also been improving, providing additional ca-
pabilities, as well as better rendering performance. Unfor-
tunately, the increase in graphics processing power has not
been able to keep up with the rapid growth of models. More-
over, there has been an explosion of new types of computing
devices, such as personal digital assistants (PDAs), wearable
computers, and so-called information appliances. These de-
vices provide no hardware support for 3D graphics and some
are even limited in the types of 2D images they can display.
Consequently, significant amount of research is being done
to develop techniques which address the challenge of ren-
dering 3D models in real-time so that users can visualize
and interact with the models.

In this section, we focus on the techniques that enable
users to interact in real-time with complex 3D models. We
begin by reviewing commonly used methods to represent
and organize 3D models in computer graphics. We empha-
size the tradeoffs which must be made between interac-
tivity and realism and we discuss model perception issues
and methods to decide how the various components of a
model contribute to the overall “feel” of the rendered im-
ages. We emphasize interactive rendering techniques that
provide users with the highest image quality possible, while
maintaining interactivity.

4.1. Data Structures for model organization

The information used to represent a 3D model may include,
but is not limited to, geometry, topology, materials, normals,
and textures. In most cases, the geometry of a model is spec-
ified as vertex coordinates, and its topology specifies how to
connect the vertices together, e.g., as triangles or quadrilat-
erals, to form the surface of the model. The topology is often
described using triangles, since they are the simplest of prim-
itives, and (typically) graphics hardware is designed to ren-
der them. Thus, for faster rendering, many models are spec-
ified using triangles to avoid conversion of other primitives
to triangles by the hardware. The geometry and topology of
a model could also be described using alternative schemes,
such as NURBS and Bezier curves20, or even as canonical

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

shapes such as cubes, spheres, cylinders, and cones. Since
all of these representations can ultimately be triangulated,
we focus our discussion to triangulated models.

The material properties of a model specify how light is re-
flected by its geometry to produce color. Examples of such
properties include diffuse color, specular color, shininess,
and transparency. Many models include only a simple dif-
fuse color, specified for each of their vertices or for each
of their faces. Normals may also be specified either at the
vertices (for smooth shading) or per face (for flat shading).
Some models use textures as a simple means of giving the
appearance of a more complicated model. In such cases, tex-
ture coordinates are provided for the vertices.

Model representations For a model withn vertices and
m triangles, a simple representation is to list its vertices
v0; :::;vn�1, followed by the trianglest0; :::;tm�1, where
eachvi is a point in<3 and eacht j is a set of three indices
into the vertex list. This scheme, known as anindexed face
set (IFS) 5, easily supports colors, normals, or texture co-
ordinates for additional detail. For many models, an IFS is
the representation most often chosen due to its simplicity
and functionality. Unfortunately, some models require more
complicated descriptions than those allowed by the IFS. For
this reason, we discuss an alternative representation for or-
ganizing models.

A scene graphis a general term given to a hierarchical
data structure used to describe a model. Scene graphs are
most often directed acyclic graphs, in which nodes store their
data in fields. Typically there are several types of nodes in a
scene graph, which may represent geometry, material prop-
erties, groups of other nodes, or even particular behaviors of
the geometry, such as a motion sequence or the set of view-
points for which the geometry should be drawn. More com-
plicated features such as audio and video can also be incor-
porated so that appropriate effects occur when the viewer is
close enough to a specific component of the model. Exam-
ples of well-known scene graphs include VRML5 (which
originated from Inventor27), IRIS Performer67 and Java
3D 82.

The hierarchical data structures that provide the structure
of a scene graph may organize a model spatially, function-
ally, or by some combination of the two. A spatial hierarchy
organizes a model’s geometry into groups based upon their
location in space. Objects that are located close to each other
have a better chance of being grouped together than those
that are far apart. A functional (i.e., semantic) hierarchy ar-
ranges geometric components according to their function or
purpose. For example, a model of an automobile may group
all of the geometry which comprises the engine together, or it
may even further subdivide the geometry into smaller parts,
such as the spark plugs. Figure17 illustrates an example of
a semantic hierarchy. Some scene graphs use both kinds of
groupings. Initially they use the functional hierarchy, since

designers have traditionally built models using this frame-
work, and then a spatial hierarchy is superimposed on top of
the functional one.

Each nodeν of a scene graph may consist of a bounding
volume,e.g., a sphere or axis-aligned bounding box, which
approximates all of the geometry associated withν, and all
of its children. The bounding volumes are beneficial for ac-
celerating the rendering of the model (see section4.2.1). Ge-
ometry can be stored at any level of the hierarchy, although
it is often stored only in the leaf nodes as an IFS, triangle
fan, or triangle strip.

Triangle Fans and Strips As previously mentioned, due
to its simplicity, the IFS is a popular choice for describing
the geometry and topology of a model. However, an IFS is
not the most efficient representation for rendering purposes.
Each triangle is defined by three vertices, all of which must
be sent to the graphics pipeline for processing. As many tri-
angles share vertices, it seems possible to increase graphics
performance by sending fewer than three vertices per tri-
angle to the graphics pipeline. In doing so, fewer vertices
and normals would need to be transformed and fewer light-
ing calculations would have to be computed. However if the
bottleneck of the graphics processing is the number of pix-
els that can be filled per second, i.e., the pixel fillrate, then
no performance gain would be achieved by sending fewer
vertices.

T0

v
0

T1
T2

T3
T4

v
1

v
2

v
3

v
4

v
v

5
6

Figure 5: Triangle fan.

Figure5 shows an example of atriangle fan, which is a
set of connected triangles, all of which share a common ver-
tex,v0. This fan of five triangles can be completely described
as an ordered list of seven verticesv0;v1; :::;v6, where each
triangle Ti in the fan can be specified by the three indices
v0;vi+1;vi+2. Thus, rather than sending three vertices per
triangle down the graphics pipeline, only one vertex needs
to be sent, following the three vertices which define the first
triangle.

Triangle stripsdescribe another sequence of connected
triangles which require only one additional vertex per tri-
angle (after the three vertices for the first triangle). Figure6

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

T0
T1

T2

T3

T4v
0

v
2

v
3

v
4

v
5

v
6

v
1

Figure 6: Triangle strip.

illustrates a triangle strip which is described, similarly to the
triangle fan, as an ordered list of seven verticesv0;v1; :::;v6.
In this case however, each trianglei is defined by the three
indicesvi ;vi+1;vi+2. Initially the three vertices (v0;v1;v2) of
first triangle are sent down the graphics pipeline. For each
subsequent triangle, only a single vertex needs to be pro-
cessed since the other two vertices have already been han-
dled with the previous triangle.

Due to their efficiency, low-level graphics APIs such as
OpenGL support triangle fans and strips as rendering prim-
itives. Consequently, considerable research has been dedi-
cated to efficiently computing fans and strips given a trian-
gulated model. Recent efforts by Evans, et al.19 and Xiang,
et al.99 address this problem.

4.2. Rendering acceleration techniques

Users demand interactivity and realism when visualizing 3D
models. Interactive rendering techniques are being designed
to address increased model complexity with reduced or no
loss in rendering performance. Whenever possible, these
techniques conservatively preserve all of the detail so that
the rendered image is accurate, while providing an increased
level of interactivity. If the model is too complex to render at
interactive rates using these techniques, approximations of
the model are often used to achieve the desired interactivity,
while maintaining a reasonable image quality.

The techniques discussed next include culling, simpli-
fication, levels-of-detail, and impostors. Among these, we
overview conservative approaches which produce fully ac-
curate images, as well as several approximate methods
which sacrifice image fidelity for greater interactivity. Ide-
ally, the trade-offs these approaches make will not be notice-
able to the viewer. In most of the cases, however, the algo-
rithms simply attempt to reduce the inaccuracies perceived
by the human eye.

4.2.1. Culling

One technique to accelerate rendering is to avoid drawing
those portions of a model that do not contribute to the final

image. Once these portions (or a subset), have been com-
puted, one cancull (i.e., remove), them from the rendering
process. Culling is often referred to asvisibility culling, since
it involves determining what geometry is not visible from a
given viewpoint and ignoring it from further consideration.

For large scenes, the number of visible triangles is typi-
cally much smaller than the total number of triangles. This is
true, for instance, for urban models, as well as indoor mod-
els, since the walls of the buildings restrict the amount of
visible geometry. Thus, efficient visibility algorithms can re-
duce the amount of geometry that must be processed consid-
erably, thereby increasing the rendering performance.

The z-buffer6 is one example of a visibility algorithm that
is widely implemented in hardware. For each pixelp on the
screen, the z-buffer maintains the depth value of the triangle
fragment currently contributing to the color buffer atp. If
another fragment that is closer to the viewer is rendered, the
algorithm will replace the existing value in the z-buffer at
p with the depth value corresponding to this fragment. One
drawback to the z-buffer is that the pixels may be overwrit-
ten many times, which can slow down the graphics perfor-
mance. Ideally, only the visible triangles are rendered and
therefore the amount of overdrawing is minimized. There-
fore, the z-buffer is typically used as a filter, and additional
culling algorithms are used to approximate the visible set of
triangles.

As described in13, we distinguish between the exact set
of all visible trianglesV, a conservative visible setC (the
set of all visible trianglesV plus some invisible ones), and
an approximate visible setA (the set of most visible trian-
gles plus some invisible ones). Computing the exact visible
setV is a very complicated and expensive operation. There-
fore, culling research has focused primarily on computing
conservative visible sets or approximate visible sets, using
the z-buffer to determine which triangles will actually con-
tribute to the final image. By trading off accuracy in the final
rendered image, overall rendering time can often be signifi-
cantly reduced. We discuss several types of culling including
back-face, view frustum, detail, and occlusion culling.

Back-face culling One of the most popular forms of culling
is back-faceculling, which refers to not rendering the geom-
etry that is facing away from the viewer. Assuming that the
model is opaque and that its faces are consistently oriented
so that their normals point towards the outside of the model,
the viewer only sees those faces with normals directed to-
wards the viewpoint. Hence, computing the dot-product of
the face normal with a vector between the viewpoint and an
arbitrary point on the face indicates whether the face is front
or back-facing.

Back-face culling is included in many rendering APIs
(e.g., OpenGL) and is a relatively cheap way to conserva-
tively reduce the number of triangles that need to be ren-
dered by roughly one-half. However, back-face culling typ-

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

F

ED

���
���
���
���

���
���
���
���

A

C
B

Figure 7: Culling examples. For the currentviewpoint (cam-
era icon), only the front-facing triangles of objects A and B
need to be rendered. Objects A and B have four and three
back-faces respectively, which do not need to be rendered
since they face away from the viewer. Object C is culled since
it is occluded from the viewpoint by objects A and B. Objects
D, E, and F are not within the viewer’s field of view and
culled by the view frustum.

ically processes only a single triangle at a time. Kumar, et
al. 49 and Hoff, et al.35 have shown that it is possible to ob-
tain further speedups by determining whether multiple trian-
gles can be back-face culled using only a single test run in
software.

View frustum culling When visualizing a model, the user
specifies a viewpoint, a view direction, and a field-of-view
(FOV). Together, these form a 3D viewing volume, also
called aview frustum, which defines the region of space
which is visible to the viewer. View frustum culling avoids
rendering any geometry which is outside of this viewing vol-
ume since it would be clipped away anyway in the graphics
pipeline20. View frustum culling is typically performed in
software at the application level to avoid sending unneces-
sary triangles to the graphics pipeline.

View frustum culling is apopular conservative culling
technique since it can be done efficiently using a hierarchy
built upon the input model (see section4.1). If such a hier-
archy exists, it can be compared against the view frustum to
determine which objects are outside of the viewer’s FOV9.
This process can be performed using a recursive traversal al-
gorithm starting at the root of the hierarchy. If the current
node is outside of the frustum, the traversal of the subtree
starting at this node can stop since all of the geometry cor-
responding to it and its children is not visible to the viewer.
If the node is completely contained within the frustum, all
of the geometry within the node, and its children, is within
the user’s FOV and will need to be rendered. Although the
hierarchy may still need to be traversed along this branch to
render the geometry, no additional view frustum tests will
need to be performed since it has already been determined
that all of the nodes (along this branch) are within the view
frustum. If the current node is partially within the view frus-

tum, the traversal algorithm is called recursively for each of
the children of the current node.

Detail culling Unlike the previous two culling methods,de-
tail culling is an approximate method that allows faster ren-
dering at the expense of image fidelity. The idea behind this
method, also referred to as screen-size culling 60, is to avoid
rendering polygons in the model that convey only small de-
tails. For an object or group of objects, a bounding volume
is computed and projected onto an image plane. If the pro-
jected area of the bounding volume is below some threshold,
e.g., some number of pixels, the geometry within the bound-
ing volume is not rendered in the final image. Therefore, ob-
jects which are very far away from the viewer, and tend to
contribute little to the overall image, are culled.

Occlusion culling For those objects that pass all the pre-
viously mentioned culling tests, i.e., objects that are front-
facing, within the view frustum, and that contribute signif-
icantly to the scene,occlusion cullingavoids rendering the
geometry which is hidden from the viewer by other geom-
etry and therefore does not contribute to the final rendered
image. While occlusion culling is the most complicated of
the culling methods covered in this tutorial, it also has the
potential of providing the best results.

Due to the vast coverage of this type of culling in the lit-
erature, many classifications of these algorithms have been
made. For a complete taxonomy of occlusion culling algo-
rithms, refer to the survey by Cohen-Or et al.13. We classify
the existing approaches into two main categories: object-
space and image-space algorithms. However, in addition to
these categories, we also discuss several other properties of
occlusion culling algorithms:

� Preprocessing: the occlusion computations may be per-
formed during a preprocessing step and stored, or they
may be computed online, as the model is being visualized.

� Viewpoints: the occlusion computations may be valid for
a single viewpoint or for a region of viewpoints.

� Occluder fusion: an object may only be occluded from
the viewpoint by a collection of other objects, as opposed
to any single object. Some algorithms consider only in-
dividual occluders, whereas others take into account the
combined effect of occluders for more accurate occlusion
determination.

� Conservativeness: some algorithms are guaranteed to cull
only geometry that is not visible to the viewer, while oth-
ers may sacrifice image fidelity for speed.

� Dynamic scenes: most culling algorithms are designed for
static scenes. Algorithms that rely heavily on preprocess-
ing, especially in object-space, are difficult to extend to
dynamic scenes.

Most occlusion culling algorithms maintain one or more
hierarchical data structures, in object-space, image-space, or
both. Our classification is based on where the actual visibil-
ity determination is made.

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

Object-space culling Coorg and Teller have proposed sev-
eral object-space culling algorithms. Their first algorithm16

pre-computes a conservative setC of the visible triangles for
a region of viewpoints. As the viewpoint moves, they keep
track ofvisual eventsusing separating and supporting planes
between convex objects that will cause changes toC. The
second technique proposed by Coorg and Teller17 also uses
separating and supporting planes to determine visibility, but
it is much more efficient. Rather than keeping track of vi-
sual events, a small set of large occluders is dynamically se-
lected for each viewpoint. These occluders are then used to
compute those portions of a model that are within the shad-
ows of the occluders. Both of these methods are conserva-
tive, consider only individual occluders, and are applicable
to static scenes. A method similar to Coorg and Teller17 is
theshadow frustawork of Hudson et al.41.

Some object-space techniques take advantage of very spe-
cific problem domains. For example, there has been a signif-
icant amount of occlusion culling research specifically tar-
geted for walkthroughs of architectural models88; 55; 2 and
outdoor urban environments14; 95; 48; 96. A property of archi-
tectural models that researchers have exploited is that such
models can easily be broken intocells and portals. Cells
have boundaries that coincide with opaque surfaces, such as
rooms and hallways. Portals correspond to the non-opaque
surfaces that are present between cells, such as doors and
windows. The technique of Teller and Séquin88 creates an
adjacency graph, which connects the cells via portals, that is
then used to compute the cell-to-cell visibility. Each cellc
has a list of all of the other cells that may potentially be seen
from a viewpoint withinc. This list determines the geome-
try which could potentially be seen while the viewpoint is
within cell c, and constitutes a conservative visible set. Fur-
ther processing can determine which objects are potentially
visible from cellc. The method combines occluders effec-
tively and can result in significant rendering performance
improvements (e.g., a 100 times speed-up). The drawbacks
of this approach are that these computations are performed
as a significant preprocessing step, which precludes dynamic
scenes from being considered, and the memory consumption
may be fairly large.

Luebke and Georges55 use a method similar to Teller
and Séquin, although the preprocessing has been greatly re-
duced by dynamically computing the visibility in such a cell-
partitioned model. The approach of Aliaga and Lastra2 re-
duces the complexity of rendering the geometry that could
be visible from a particular cell by replacing the portals
with images instead of the actual geometry from the visi-
ble cells. This technique, discussed further in section4.2.4,
trades conservativeness for interactivity.

Outdoor urban environments are another special case of
occlusion culling that has been well-studied14; 95; 48; 96. These
environments are similar to architectural models in that they
can often be subdivided easily into cells and portals. An-

other advantage is that such models can easily be thought
of in only 2.5 dimensions. Building layouts are projected
onto the xy-plane and a height value for each of the line seg-
ments is associated with the floor plans to indicate how high
a wall actually is. In general, these techniques are conserva-
tive, compute visibility for a region of viewpoints, work well
for static scenes, and combine occluders to achieve signifi-
cant occlusion. Some of these methods require significant
preprocessing14; 48; 96, while others do not95.

The Prioritized-Layered Projection (PLP) algorithm46; 47

is a fast, approximate visibility technique for visualizing
models with high depth-complexity. For each viewpoint, an
estimate of the visible set of triangles is computed and ren-
dered. PLP is an effective method for computing nearly-
correct images for time-critical applications. The user can
specify how many triangles may be rendered in a particu-
lar frame. PLP computes an initial spatial tessellation, that
has more cells where there is more geometry and fewer cells
where there is less geometry. Cells in the tessellation are as-
signed (for each viewpoint) asolidityvalue, which is a prob-
abilistic measure basedupon the geometry in the neighbor-
ing cells. Solidity values are computed online as the spatial
tessellation is being traversed. During this traversal, cells are
inserted into a priority queue, based upon their solidity, to
determine which cells are most likely to be visible. Cells are
removed from the queue and their geometry is rendered, un-
til the triangle budget is reached. PLP can take advantage of
occluder fusion. In its current form, it is only applicable to
static scenes.

Image-space cullingAlthough many image-space tech-
niques also use hierarchies built in object-space, they clearly
differ from object-space methods in that the occlusion com-
putation is performed in viewing coordinates. In general,
these techniques compute visibility by filling up the image as
objects are rendered and culling subsequent objects against
the already filled parts of the image.

Due to the discrete nature of an image, image-space tech-
niques are usually simpler to implement and are more robust
than object-space algorithms. Also, it is typically easier to
approximate the visible set, for an even greater performance
improvement.

Image-space techniques are often preferred over their
object-space counterparts when the model is composed of
many small triangles without clearly defined occluders. By
projecting a large number of small triangles that are indi-
vidually insignificant occluders, the accumulated effect in
the image plane can be significant. A disadvantage of the
image-space techniques is that they rely on reading back in-
formation from the framebuffer, which is usually inefficient.

The Hierarchical Z-buffer (HZB) of Greene, et al.29 ex-
tends the traditional z-buffer by maintaining animage Z
pyramid to quickly reject hidden geometry. A second data
structure, an octree, is also built upon the geometry in object-

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

space. At run-time, the octree is traversed and each node of
the tree is queried against the current HZB. If the current
node is determined to be behind previously seen geometry,
then this node is skipped, together with all of its children and
their geometry. Otherwise, the geometry is rendered, the new
z values are propagated through the HZB, and the children
of the node are visited. Temporal coherence is exploited by
pre-rendering previously visible nodes. The main weakness
of the HZB approach is that the queries against the HZB, as
well as the updates, assume the availability of special graph-
ics hardware to achieve interactive rates. These ideas were
extended in28.

The Hierarchical Occlusion Maps (HOM)100 approach is
similar to the HZB in that it uses hierarchies within both ob-
ject and image-space. Initially, the image-space HOMs are
built by rendering geometry with a high potential for occlu-
sion, i.e., geometry that is very close to the current view-
point. To determine whether the remaining geometry is vis-
ible from the current viewpoint, the object-space hierarchy
is traversed and each node is checked against the HOM, us-
ing, if necessary, a conservative depth-test to determine oc-
clusion. This technique supports occluder fusion and, if de-
sired, culling of objects that contribute only a few pixels to
the scene. The HOM technique is one of the few existing
methods that works for dynamic scenes.

Bartz et al.4 introduce another technique based on an
object-space hierarchy (asloppy n-ary space partitioning
tree in this case) and an image-based occlusion test. Their
method uses OpenGL to scan-convert bounding volumes
into a virtual occlusion buffer.This buffer is then sampled
to detect changes triggered by nodes containing potentially
visible geometry. The sampling density can be adjusted to
provide adaptive, non-conservative culling.

The techniques presented in4 may be implemented in
hardware for greater efficiency, although no such implemen-
tation exists at this time. However, occlusion culling hard-
ware does exist. The VISUALIZE fx family of graphics ac-
celerators from Hewlett-Packard (HP) supports an extension
to OpenGL that allows a query to be made against the z-
buffer 76. This query indicates whether the z-buffer would
have been modified, if specified geometry had been ren-
dered. For example, a bounding volume may be used to ap-
proximate some complex geometry. The HP extension can
then determine if this bounding volume would have modi-
fied the z-buffer. If not, the complex geometry inside it need
not be rendered at all.

4.2.2. Simplification

Even with all of the culling techniques described above,
some 3D models are still too complex to render interactively.
Another approach to address this problem, which may be
used in addition to culling, issimplification, i.e., the process
of reducing the complexity of a given model. In its most ba-
sic form, simplification takes a geometric model and pro-

duces one or more geometric representations of that model
that are faster to render. This gain in rendering efficiency
comes at the price of an approximate image. The rendered
image will likely not be exactly the same as if the original
model were rendered, although with good simplification al-
gorithms, the user may not notice the difference. Herein lies
the main problem of simplification:can a simplified model
be computed such that it is significantly faster to render than
the original, and yet the appearance of the original model is
preserved?

The simplification problem can been formulated in sev-
eral ways such that one can speak of optimal solutions. For a
good discussion of these formulations and the difficulty that
exists in solving them, the reader is referred to91; 10. As we
have already mentioned, models tend to be very complex,
which means that simplification algorithms must be very ef-
ficient. The majority of the algorithms use inexpensive local
operations, applied repeatedly, until a target model complex-
ity is reached. The running time of such algorithms is typ-
ically O(nlogn), for a model withn triangles. While local
operations may produce good results, they typically cannot
make any guarantees as to the quality of the overall solution.
There has been considerable work on the problem of simpli-
fication, and many different techniques have been applied.
Next, we classify these techniques according to the type of
local operation applied during the simplification process.

Vertex clustering Rossignac and Borrel70 proposed a very
simple and robust technique for reducing the complexity of
a model. In their approach, the model is placed within a uni-
form grid of cells and the vertices within each of these cells
are clustered together to form a single vertex. Only those
triangles whose three vertices fall within different cells will
remain in the simplified model. Vertex clustering works for
all models since it makes no assumptions about their topol-
ogy. However, the simplified models are not always good
approximations of the original. Low and Tan52 and Luebke
and Erikson53 independently achieved better simplification
results by generalizing this method to use an adaptive spatial
partitioning.

Face contraction The face contraction operation is similar
to vertex clustering in that the three vertices of a triangular
face of a model are contracted into a single vertex (typically
resulting in four faces being removed from the model). How-
ever, the significant difference is that the underlying topol-
ogy of the model determines which vertices are “clustered”
together. This helps to better preserve the important features
of the original model, although it also places some restric-
tions on what geometry is removed during simplification.
Face contractions have been proposed by Hamann32 and
Gieng et al.26.

Edge contraction For more precise control during the
simplification process, the majority of recent tech-
niques39; 30; 68; 24; 25; 51; 38 have opted to use edge contractions

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

to reduce model complexity. This operation, illustrated in
Figure8, merges two adjacent vertices into one and removes
all of the triangles, usually two, that contained this edge.

All methods that use edge contractions must make two im-
portant decisions. The first is in what order the edges should
be contracted. Most algorithms use a greedy approach that
contracts, at each iteration, the edge that is “cheapest”, ac-
cording to some cost function. The second decision is where
to place the newly created vertex. The new location can be
decided bysubset placement, at either endpoint or the mid-
point of the edge, or byoptimal placement, at the location
that minimizes the cost function24.

Garland and Heckbert24 generalize the edge contraction
operation to allow for arbitrary pairs of vertices to be con-
tracted. This can be advantageous in that it allows for dis-
connected components of the model to be fused together.
However, such contractions may lead to non-manifold re-
sults.

T0

T1

v
0

v
1 v

01

Figure 8: The edge contraction operation. Contracting the
edge between vertices v0 and v1 removes triangles T0 and T1
from the mesh. The two vertices are replaced with a single
vertex v01.

Vertex decimation Another local operation for reducing a
model’s complexity is known as vertex decimation. A vertex
of a model is selected for removal and then adjacent trian-
gles are also removed. This results in a hole in the model
which is then re-triangulated, using onlyn� 2 triangles.
Such techniques have been proposed by Schroeder et al.75

and Turk 90 and are reasonably efficient and effective, al-
though they are inherently limited to manifold surfaces.

Recently, more attention has been placed upon preserv-
ing the overall appearance of a model during the simplifi-
cation process, as opposed to simplifying only the geome-
try of the object. Models may have associated colors and
normals (per vertex, per corner, or per face), as well as tex-
ture coordinates per vertex. By addressing these additional
attributes in the model, the total overall appearance can be
even greater25; 38; 11; 12; 7.

So far, we have discussed “static” simplification algo-
rithms which produce an independent set of representations
for a given model. When dealing with such representations,
an important issue is deciding which of them to render for
a given viewpoint. This issue is discussed in section4.2.3.
In contrast to static methods, research has also been done

on “dynamic” simplification, which occurs at run-time and
is usually dependent upon the viewpoint and view direction.
While view dependentmethods37; 54; 98 may be more compu-
tationally expensive and may actually require more memory
than the static approaches, they have the advantage that they
provide a more realistic image, without many of the artifacts
which may result from switching between static representa-
tions.

There are several surveys on simplification algorithms.
Heckbert and Garland34 provide a good taxonomy of simpli-
fication algorithms. The main classification upon which they
distinguish algorithms is the types of models upon which
the algorithms run, e.g., manifolds, non-manifolds, or height
fields. Cignoni et al.8 present a characterization of several
simplification methods, based on the simplification strategy,
the error management policy, and the capability to preserve
mesh characteristics. Additionally, they report the results ob-
tained using six simplification codes that are in the public
domain. A comparison of the computational cost and the
approximation accuracy of the output meshes is included.
A more recent survey on the simplification problem is pre-
sented in10.

4.2.3. Levels-of-detail

Static simplification algorithms produce an independent se-
quence of representations for a model, each of which are
computationally less expensive to render than the previous
one. Since each representation is faster to render, and there-
fore contains fewer details of the model, they are often called
levels-of-detail(LODs). LODs are typically used when a
model is moving away from the viewer. In such cases, small
details in the model are no longer perceived by the viewer
and therefore need not be rendered.

Recall that simplification algorithms, and LODs, are used
as an interactive rendering technique when a model is too
complex to render in real-time. When using LODs to trade
accuracy in the images for greater rendering performance,
an important issue to address is which LOD should be ren-
dered for a given viewpoint. The most naive approach is to
select LODs based upon their distance from the viewer. Al-
though this is a very efficient technique, which determines
distance and selects an appropriate LOD using a look-up ta-
ble, disturbing artifacts may occur in the rendered images
(e.g., popping when switching between LODs).

Rather than discretely selecting a single LOD to render for
each viewpoint, alternative schemes can be used to improve
the overall visual quality at the expense of additional render-
ing time. One example of such a scheme is alpha-blending,
which fades from one LOD to another over the course of
several frames. During these frames, the LODs are rendered
with the blending coefficients slowly changing to fade from
one LOD to the other. Another technique to smoothly tran-
sition between LODs is to usemorphing, which actually
changes the geometry that gets rendered from one LOD to

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

the other during the transition. Geomorph LODs36, essen-
tially animate the edge collapse operation performed during
the simplification algorithm. When going from one repre-
sentation to the next simpler one, the two vertices that are
being contracted are animated so that the transition between
LODs is seamless. Geomorphs can only be used for simplifi-
cation algorithms based on edge contractions and are a good
example of dynamic levels-of-detail.

4.2.4. Impostors

Despite the use of culling and simplification algorithms,
some models are still too complex to render at interactive
rates even when only the simplest LOD is used for all of
the objects in the model. In such cases, other representations
are needed to reduce the rendering complexity even further,
while still preserving the overall appearance of the model.
One example of such a representation was mentioned in sec-
tion 4.2.1, as images were used to replace the geometry that
was visible through the portals within architectural models.
Such images are known asimpostors.

Maciel and Shirley56 introduced the notion of an impos-
tor, which has come to mean an image of complex geometry
that is texture mapped onto a rectangle. To prevent occluding
objects that may be present behind the impostor, the image
is opaque where the geometry is present and is transparent
everywhere else. To be effective, an impostor must be faster
to render than the geometry it is replacing, it should closely
resemble the geometry, and it should be reusable for sev-
eral viewpoints. Since the movement of a projected image
of geometry diminishes with an increased distance from the
viewer, impostors can best be used if the geometry is slowly
moving and if it is located far from the viewer. When the
distance from the viewer to the impostor is small, the fixed
resolution of the impostor may become obvious and the in-
dividual pixels will become apparent. Before this disturbing
effect occurs, the impostor should either be replaced with
another representation of the geometry, or another impostor
should be selected.

The original presentation of an impostor by Maciel and
Shirley was more general than the simple description given
above. They divided impostors into two classes: view depen-
dent and view independent. One example of view dependent
impostors include the images of some geometry mapped
onto the appropriate faces of the geometry’s bounding box.
Then, depending upon which of the six faces of the bound-
ing box was visible to the viewer, the appropriate impostor
would be displayed. Another well-known example is abill-
board 60, which works well for symmetric objects such as
pine trees since it is designed to rotate so that it always faces
the viewer. View independent impostors include static LODs
and simple bounding boxes colored using a representative
color for the geometry within the box.

An extension of the notion of an impostor is thenail-
board 72, which is an impostor that also maintains a depth

buffer of the same size as the impostor image. Nailboards
are superior to impostors because they can avoid visibility
problems when the impostor rectangle intersects nearby ge-
ometry. The depth buffer values of the nailboard are used as
offsets to correctly determine occlusion. A related concept is
the layered depth imageintroduced by Shade et al.77, which
may have several depth values per pixel.

Hierarchical image caching(HIC), invented indepen-
dently by Schaufler and Stürzlinger73 and Shade et al.78,
uses impostors in a hierarchy for improved performance. Ini-
tially, the model is partitioned into a hierarchy of boxes,each
of which has an impostor created for it. Additional impostors
are created for the parents in the hierarchy. HIC typically
works for static scenes, although it could be combined with
nailboards to handle dynamic objects.

4.3. Model perception and representation selection

We have presented several techniques for accelerating the
rendering of 3D models. In some cases (e.g., back-face
culling), the algorithms are conservative and the rendered
images are completely accurate. In other cases (e.g., simpli-
fication or impostors), the algorithms tradeoff accuracy for
increased interactivity. Ideally, the inaccuracies introduced
by the latter will go unnoticed by the viewer. Related to this
topic, we discuss the issue of model perception. By being
aware of the factors that influence perception, we can de-
sign more effective interactive rendering systems. For those
cases when accuracy must be sacrificed to achieve interactiv-
ity, understanding how a person perceives a rendered image,
can influence the design of a system that will select the most
appropriate representation (e.g., LOD or impostor) to ren-
der for a model component. Two approaches that take such
perception issues into account are discussed next23; 56.

The purpose of rendering images is to convey informa-
tion to a viewer. This information can be as simple as
what a model looks like, or as complex as what properties
(e.g., stress, vibration) the model will exhibit during a simu-
lation. By understanding how people perceive what they see,
we can design more effective rendering systems. There are
several good references on the study of visual perception and
its application to computer graphics43; 44; 33. Each of these
presents fundamental findings on how we perceive certain
aspects (e.g., color or shape) within rendered images. These
findings enable us to more effectively convey information
as we create different representations of the components of
a model and then choose which of these representations to
render given certain viewing parameters. For example, such
information is useful when selecting which level-of-detail or
which impostor to use for a group of model components.
Next, we discuss several characteristics that humans per-
ceive and why knowing how we perceive them is important
to rendering systems. These include color, motion, texture,
and shape.

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

Using color to add detail to a model is both natural and
useful. For instance, a viewer can immediately identify ge-
ometry that belongs to the same part of a model making
it easier to understand what is being displayed. One popu-
lar example of a color model is the hue-lightness-saturation
model (HLS)20, where hue is the basic quality of a color,
lightness is the amount of light emitted, and saturation is the
vividness of the color. When creating a model, or any repre-
sentation to replace the model, it is important to know that
when objects differ only in hue and saturation, but not in
lightness, then certain visual information (e.g., perspective
depth cues) is lost to the viewer and the rendered images are
not as effective. This information is particularly valuable to
have when initially creating a model, as well as when sim-
plifying a model to create LODs.

Another aspect that conveys significant information to the
viewer is that of motion. For example, as components of a
model are moving, information about their relative depth and
shape, as well as how they are grouped together, is passed on
to the viewer. Perhaps the most important result of motion is
to realize that as an object moves into our periphery, we are
no longer able to interpret the structure of that object. This
aspect, also referred to asfocus, is important when selecting
which LODs to use for objects that are not in focus. It is also
useful when designing impostors: if the impostor is not the
main focus in the image, then a lower resolution texture map
could be used, thereby saving computation time and mem-
ory.

Texture maps are well-known to be an effective means
of conveying complicated information to the viewer. Rather
than modeling a brick wall exactly, an image of a brick wall
can be mapped onto a simple rectangle to give the same ap-
pearance to the viewer. It is important to know if textures
are being used in conjunction with geometry when LODs
are created. The textures will still convey a great deal of in-
formation to the viewer, so we might want to simplify the
geometry more than we would have in the absence of tex-
tures.

During the simplification process, one of the most impor-
tant features to maintain is the overall shape of the object.
This is especially true around the silhouette of the object,
since changes in the objects silhouette edges may be distract-
ing to the viewer. Thus, with this additional knowledge, sim-
plification algorithms can be designed to limit the amount of
disturbing effects that may result when looking at coarser
models. Another important feature in maintaining the shape
of an object is the shading44.

In addition to the individual effects of the characteristics
perceived by the human visual system, there is also a com-
bined effect in some cases. That is, perceptual characteris-
tics are not independent. The perception of one characteris-
tic may very well be influenced by another. As an example,
studies have shown that the color of an object can influence
the perceived size of an object44.

Funkhouser and Séquin An interactive rendering system
that guarantees a constant frame rate regardless of model
complexity was designed by Funkhouser and Séquin23.
When the complexity is extremely high, this system trades
accuracy for interactivity. This is accomplished by maintain-
ing several representations (in this case LODs) for each of
the model components, and then deciding which representa-
tion to render to maximize the quality of the displayed image
without exceeding the available frame time.

Funkhouser and Séquin initially apply view frustum
culling to the components of a model. A heuristic algorithm
is then applied that adapts the selection of representations for
all components being considered. This algorithm is predic-
tive in that it makes its selection based on the desired frame
rate and which components are within the viewer’s field of
view, as opposed to a reactive algorithm which makes its se-
lections based upon the time it took to render the previous
frame. To maximize the image quality without exceeding
the available frame time,costandbenefitfunctions are uti-
lized. For each component in the model, a benefit-cost ratio
is computed and the components are selected for rendering
in a decreasing order of their benefit-cost ratio.

The cost function attempts to measure how expensive it is
to render a particular representation of a component of the
model. It is based upon the per-primitive costs (e.g., coor-
dinate transformations, lighting calculations) and per-pixel
costs (e.g., rasterization, depth computations). The coeffi-
cients of the cost function are determined by the particular
graphics hardware used.

The benefit function estimates how well a representation
contributes to the final image. To precisely compute this ben-
efit would require taking many factors into account, such
as visibility and human perception. As this becomes much
too complicated, Funkhouserand Séquin have simplified the
function to use a linear combination of the following charac-
teristics: size, importance, accuracy, focus, motion, and hys-
teresis. We discuss each of these below.

Thesizeof an object refers to the projected screen-space
coverage. An object with a large screen-space size is deter-
mined to be more important than an object with a small size.
For certain models, some objects are inherently more im-
portant than others. For example, the walls and floors of an
architectural model may provide much more information to
the user than the actual office furniture. In such cases, the
user can specify that these objects have a greaterimportance
and should be more likely to be rendered with a high-quality
representation. Theaccuracyof a representation measures
how similar it is to the original object, in terms of color, mo-
tion, shape, etc. Thefocusfunction has a higher value for ob-
jects near the center of the screen. As previously discussed,
the small details of an object are not perceived when the ob-
ject is in our periphery. Objects moving very quickly are de-
termined to be not as important as slowly moving ones, since
due tomotionthey may appear on the screen for only a short

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

amount of time.Hysteresisassumes that if the representation
is changing from the previously used one, the benefit will be
smaller because of potentially disturbing artifacts (e.g., pop-
ping.)

Maciel and Shirley A drawback of the previous system is
that due to the greedy heuristic that determines which rep-
resentation should be rendered for each object, it is possible
that many objects with low benefit-cost ratios may not be
displayed at all, leaving large blank spots in the final image.
Maciel and Shirley56 identified this problem and used im-
postors to accelerate rendering.

In general, the system of Maciel and Shirley can be con-
sidered an extension to the previous work by Funkhouser
and Séquin. The systems differ, however, in several impor-
tant ways. First, in 56 the entire model is organized into a
single hierarchy that contains impostors (including LODs)
for objects, as well as for clusters of objects. By clustering
objects together, a single impostor can be used and a sig-
nificant reduction in the model complexity can be achieved.
Another crucial difference between these systems is that in56

for every viewpoint every object within the view frustum, or
a cluster that contains that object, will be rendered. Thus, no
large gaps in the final rendered image will exist. Another dif-
ference is that Maciel and Shirley assume that their system
runs on a multiprocessor machine that has texture mapping
capabilities. They also rely on the hardware to automatically
create the hierarchy, generate the impostors, and compute
their rendering cost.

In determining the contribution of a model component to
the rendered image, the two systems have many similarities,
but several important distinctions. Maciel and Shirley break
the contribution up into two categories: the contribution in-
trinsic to a component and the contribution intrinsic to a rep-
resentation of that component. Similar to Funkhouser and
Séquin, the factors that are intrinsic to a component include
its size, focus, motion, and importance. The per-component
benefit is a weighted average of these factors and is used to
select the appropriate representation to render for the object.
Intrinsic to the representation of an object is its accuracy to
the full detail object. A major difference between the two
systems is how the accuracy of the representation is actually
computed. Since Maciel and Shirley use impostors as rep-
resentations of components or clusters of components, they
must compute the accuracies of both view dependent and
view independent representations. Next, we describe how
accuracies are computed.

To select between the view dependent and view indepen-
dent representations, Maciel and Shirley determine the ac-
curacies of each and then select the one with the highest
accuracy-cost ratio, where the cost quantifies how expen-
sive it is to render a particular representation. The accuracy
of the representations is computed based upon the viewing
angle and the distance to the object. The space of all view-
ing directions is discretized and an orthographic projection

is used to compute the accuracy of the representation. For
each of the sampled view directions, the accuracy is mea-
sured and recorded in a table, based upon the representation
and view direction. To measure the accuracy, they use sim-
ple image processing techniques. They do not immediately
do pixel-by-pixel comparisons, since two very similar but
slightly off images would have a very low similarity value.
Instead, since the achromatic channel of vision is the most
important to shape recognition, they obtain a gray scale ver-
sion of the images by averaging the RGB components. A
Laplacian operator is used to determine edges followed by
a blurring step, which increases the probability of matching
the two images. Finally, the images are compared pixel-by-
pixel.

Maciel and Shirley note that a cluster of components typ-
ically conveys more information than the sum of the indi-
vidual components. However, since it is typically difficult to
account for this phenomenon without knowledge of the mod-
els, they make a simplifying assumption and merely sum up
the individual contributions to compute the benefit of a clus-
ter. They also note that in some cases, impostor selection is
very easy. For example, if the image-space size of a compo-
nent is below some threshold, a simple impostor (e.g., av-
erage color bounding box) may be used. Otherwise, if an
object’s image-space size is above the threshold, the full de-
tail model is used. Additional threshold values may be used
to select various levels-of-detail.

SUMMARY

Interactive rendering of complex models is a fundamen-
tal problem in computer graphics. Users demand realistic-
looking models and the ability to interact with them in real-
time. Many algorithms have been developed to address this
problem. Culling is a technique that avoids rendering ge-
ometry that does not contribute to the final image. Exam-
ples of culling include back-face, view frustum, detail, and
occlusion culling. In some cases, culling is not sufficient to
provide interactivity. Consequently, the complexity of models
can be reducedby using a process called simplification. Sim-
plification can be used to produce various representations of
a model, each of which are more efficient to render than the
previous one. While these representations,also called levels-
of-detail, can increase the interactivity, they tradeoff accu-
racy of the final rendered image. An alternative approach to
reducing complexity is to replace the geometry of a model
with an image that is texture mapped onto a rectangle. This
image is commonly referred to as an impostor.

To design a more efficient rendering system, it is important
to understand the factors that influence human perception.
Knowing how a human perceives color, motion, shape, and
texture can influence the rendering techniques selected to
provide interactivity and realism.

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

5. Overview of 3D Transfer Technologies

Efficient delivery of 3D models is dependent upon the data
structures used to represent the data, as well as on the
method(s) selected for transmission. In this section we de-
scribe several file formats that have emerged for storage and
transmission of 3D data and we discuss alternative strategies
to en-masse downloading of models.

5.1. File formats for 3D data transfer

In this section, we present several file formats for storage and
transmission of 3D models over networks. These formats in-
clude VRML, Java 3D, XGL, MPEG-4, and MetaStream.

5.1.1. VRML

Most often, 3D models are transmitted over networks using
the Virtual Reality Modeling Language (VRML). VRML is
an ASCII text format in which models are fully described in
terms of their geometry and their attributes. VRML is de-
signed to encode polygonal models composed of vertices
and planar faces. In addition, it offers the ability to spec-
ify commonly used semantics found in today’s 3D applica-
tions, such as light sources, material properties, texture map-
ping, fog, hierarchical transformations, viewpoints, and ani-
mation.

Among the advantages of VRML are:

� Popularity: a large number of applications use VRML as
a graphics interchange format.

� Integration: VRML provides technology that integrates
2D and 3D graphics with text and other types of multi-
media.

� Distributed content: one of the key features of VRML is
its support of the World Wide Web. VRML has several
nodes which use URLs to connect the scene graph to the
network. These nodes include fetch-on-demand and hy-
perlinks to other VRML content and Uniform Resource
Locators (URLs). Figure9 sketches the flow of informa-
tion in a network environment during the processing of a
VRML file.

� Standardization: VRML is at the basis of the MPEG-
4 standard for transmission of graphics content; also,
VRML files may contain references to data in many other
standard file formats (e.g., JPEG, PNG, GIF for textures,
WAV, MIDI for sound).

� HTML-compatible: VRML files may be embedded in
Web pages using the HTML <OBJECT> tag.

� Reusability: it is relatively easy to combine VRML files
created by various people or tools to create new files.

As 3D models required or generated by various applica-
tions become routinely more complex, the use of VRML for
transmission becomes highly inefficient. Representing and
downloading data as ASCII text is typically time-consuming
and requires considerable amounts of network bandwidth

Inline VRML

Behavior (java,..)

Video (mpeg)

Texture (jpeg,...)

Sound (pcm,...)

VRML

World Wide Web

Browser

Input to sensor
node

Viewpoint
manipulation

route

scene graph

Figure 9: Flow of information while processing a VRML file.

and storage on the receiving computers. The transmission
of large VRML files in their entirety, without the possibility
of displaying the intermediate data, causes significant delays
between the time users request a model and the time they are
able to view it. In many cases, even after the entire data is
downloaded, the amount of data is typically to large to be
processed locally, and additional delays occur as the user in-
teracts with the model. Finally, VRML implementations do
not usually differentiate between necessary and unnecessary
information. Given the limited size of a computer screen, not
all parts of a complex model are relevant at any given time. A
lot of valuable time and resources could potentially be saved
during model transfer by taking into account only relevant
data. Appendix A contains a brief note on the history of the
VRML format, as well as an example of a simple 3D object
described in VRML.

VRML200X-X3D While little content has been generated
which exploits the VR aspects of VRML 2.0 (animation, in-
teraction, and behavior), the format continues to enjoy con-
siderable success as the standard way to express 3D worlds.

In early 1999, the consortium that manages VRML issued
a press release expressing their intent to create VRML200X-
X3D, or X3D for short. The stated goals of X3D are back-
ward compatibility with VRML 2.0, integration with XML,
componentization, and extensibility.

5.1.2. Java 3D

Java 3D is a proprietary, high-level, platform-independent,
3D graphics programming API designed to enable high-
performance implementations across a wide range of plat-
forms. Java 3D has been designed to handle everything from
the simple display of 3D logos to the complex navigation
of large “moving” virtual worlds. The API provides func-
tionality for real-time 3D simulations such as those found in

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

VRML 2.0 and advanced 3D games. Java 3D is not an au-
thoring application, its solepurpose is to provide the fastest
possible runtime rendering of potentially very complex en-
vironments.

As a high-level API Java 3D is designed to exploit tra-
ditional low-level APIs such as OpenGL, Direct3D, and
QuickDraw3D. Prior to running Java3D applications, users
must download and install a runtime environment for Java
3D and Java.

Recently there has been somesignificant cooperation be-
tween the SUN Java 3D community and the VRML200X-
X3D community. A tangible result is Xj3D, a set of (java-
based) interfaces, library extensions, and applications that
enable VRML 2.0 and X3D viewing in a Java 3D runtime
environment. Additional details can be found in 92.

5.1.3. XGL

Typically, VRML is rendered using one of three low-level
mechanisms: OpenGL, Direct3D, or QuickDraw3D. The
XGL file format usesthe XML 1.0 syntax to encodegeom-
etry and properties for subsequent rendering with OpenGL.
Details on the XGL project can be found in 97. Since it uses
XML, XGL files are easy to both create and parse. Also, a
number of freeparsersare readily available.

The XGL format is complete in the sense that a program
can use the format to losslessly encode all of its OpenGL
objects, transmit them to another program, and render the
identical OpenGL content on the receiving machine. An ex-
ampleof an XGL file is ill ustrated in Appendix B.

Because the XGL format uses XML syntax, it is easy to
write applicationsthat read and writeXGL. To export XGL,
anapplication needsonly writeout atext fileusing theXML
syntax. XGL supportsavariety of mechanismsfor arranging
and referencing data within the file, so it should be easy to
find a method of exporting data that is easy to implement
for any graphics system. There are anumber of free XML
parsers available, eliminating the need to implement a com-
plex parser when building an XGL reader.

5.1.4. MPEG-4

The Moving Picture Coding Experts Group (MPEG) pur-
sues international standards for compression, decompres-
sion, processing and coded representation of moving pic-
tures, audio and their combination. MPEG-4 is a standard
for multimedia applications based on the scenegraph tech-
nology of VRML 2.0. The joint useof this technology rep-
resents ahistorical convergencebetween computer graphics
and multimedia.

Unlike VRML 2.0, the scene graph in MPEG-4 has a
binary encoding. The MPEG-4 scene graph encoding is
known as theBinary Format for SceneDescriptions (BIFS).
The standard adds many additional nodes (100 vs. 54) and

complexity to the already very complex VRML 2.0 stan-
dard. AlthoughVRML andMPEG-4havemuch in common,
perhaps the biggest difference is in the network-delivery
mechanisms. In MPEG-4 all information is conveyed using
streams. In contrast, VRML2.0 doesnot specify any require-
ments or mechanismsfor streams and content is usually de-
livered by using TCPto perform afile transfer.

MPEG-4 covers the encoding of a large variety of audio-
visual mediaobjects. Thesemediaobjects can beeither nat-
ural or synthetic. Composition and spatial relationships are
defined using a VRML-style scene graph. The leaf nodes
of the scenegraph contain mediaobjects. Thestandard pro-
videssupport for thestreaming of thescenegraph structure,
streaming of updatesto thescenegraph, and for thestream-
ing of content to individual nodes. In contrast, the VRML
2.0 standard does not contain any streaming specifications.
Similar to VRML 2.0, thescenegraphstructureand thenode
attributes arenot necessarily static. In MPEG-4, nodes, node
fields, and graph structure can all change as the result of
user interactions or transmitted (streamed) updates. MPEG-
4 specifies how streams are multiplexed and synchronized.
The standard provides a generic set of QoS descriptors for
MPEG-4 media, but it doesnot attempt to specify how these
parametersareexploited in thenetwork layers. Thestandard
also specifiesaback channel to enabletheuser to communi-
catewith thetransmitter. Appendix C summarizesthearchi-
tecture of an MPEG-4 receiver. Figure10 ill ustrates how an
MPEG-4 transmitter and anMPEG-4 receiver would usethe
Internet to communicate.

R

R

R

R

Sender's
Subnet

Receiver's
SubnetRR

MPEG-4
Transmitter

UDP or TCP
IP

Network

MPEG-4
Terminal

UDP or TCP
IP

Network

Internet

Figure10: StreamingMPEG-4 contentson the Internet (the
letter R indicatesrouter nodes).

5.1.5. MetaStream

MetaStream (MTS) is a binary file format developed by the
MetaCreations corporation as a multiresolution storage for-
mat for 3D models and their textures. The format combines
the advantages of progressive representations with geomet-
ric compression, to deliver 3D graphicsover the Internet.

In MTS, data is organized hierarchically into blocks. Sev-
eral standardblock types(e.g., image, 3D geometry) arepro-
vided anduser-definedblock typesmay bedefinedto extend

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

the format as needed. In addition, blocks are classified as
carrier blocksintended for storage and organization of other
blocks, anddata blocksfor storage of the actual data. Data of
different kinds may stored together intogroup blocksusing
one of several strategies that define how data blocks of each
kind are to be interleaved with others. These strategies al-
low the creator of an MTS file to decide upon the streaming
behavior of the file1.

3D models are encoded into MTS files by specifying the
so-calledbase mesh(i.e., the coarsest resolution mesh), a
sequence ofrefinement recordsthat lead from the base mesh
to the final model, andplug-in propertiesthat allow extra
information to be associated with the models. For compres-
sion purposes, a combination of techniques is used to encode
the data into a compact format. These include quantization,
entropy coding, and the use of special data formats.

There are many advantages offered by the MTS format,
some of the most compelling ones beinggood compression
ratios, streaming, and high visual quality of the final render-
ings. Additionally, the format supports animation and inter-
activity and its creators have designed it to integrate with
HTML and XML.

5.2. Techniques for Efficient Delivery of 3D Data

A number of techniques have been developed in recent years
to reduce the delay perceived when 3D data is transferred
over a network. Such methods can be classified into two
broad classes. On one hand, compression methods reduce
the amount of data to be transferred and hence, the time
to transfer it, by encoding the data in a form that is more
compact than the original representation. On the other hand,
streaming methods deliver the data progressively and aim to
reduce the time between the request of a model and the dis-
play of a first meaningful representation of the model. In this
section, we define the basic concepts related to compression
and streaming and we overview some of the existing tech-
niques in each category.

5.2.1. Compression

Data compression is concerned with representing informa-
tion in a compact form by identifying structures that exist
in the data. An early example of compression is the Morse
code developed in the 19th century by Samuel Morse. Let-
ters sent by telegraph were encoded with dots and dashes
and Morse noticed that certain letters occur more often than
others. To reduce the average time for the delivery of a
message, he assigned shorter sequences to letters occurring
more frequently, and longer sequences to those encountered
less often. In addition to exploiting the structure of the data
(e.g., statistical structure in the previous example), the char-
acteristics of the users of the data may also be exploited for
compression purposes. For instance, when delivering audio
and video data, perceptual limitations are taken into account

to achieve compression by discarding information that is ir-
relevant.

Compression is routinely used in a variety of applications
for compression of different kinds of data, including text,
audio, video, and, more recently, 3D geometry. Before we
overview the most recent developments in techniques for
compression of 3D data, we briefly introduce basic concepts
and terms related to compression in general.

Fundamentals In general, the termdata compressionis
used to denote two algorithms: one that generates a com-
pressed representationXc of a given data setX, and one that
operates on the compressed representationXc to recover a
reconstructionXr of X. Thus compression schemes can be
broadly classified intolosslessif the recovered dataXr is
identical to the originalX, or lossy if Xr is different from
X 71.

The performance of a compression technique is typically
evaluated in several ways. Thecompression ratiomeasures
the number of bits required to represent the data before com-
pression with respect to the number of bits required after
compression. Therate of compression is another perfor-
mance indicator that reflects the average number of bits re-
quired to represent a single sample. For lossy schemes, it is
also useful to quantify the difference between the original
and the reconstruction, that is, to evaluate thefidelity or the
qualityof the reconstruction.

Entropyis a concept introduced by Claude Shannon79 as
a quantitative measure of the information associated with a
given experiment. For a given set of independent eventsAi
which are outcomes of a random experiment, the entropy of
the experiment (i.e., the amount of information associated
with it) is:

H =�∑P(Ai) logP(Ai)

Shannon showed that, if an experiment is a source that
outputs symbolsAi from a setA, then the entropy is a mea-
sure of the average number of binary symbols needed to code
the output of the source. In particular, he showed that the best
a lossless compression scheme can do is to encode the out-
put using an average number of bits equal to the entropy of
the source.

In general, determining the entropy of a physical source is
not feasible and estimates must be used instead, based on as-
sumptions about the structure of the data. These assumptions
constitute themodelfor the data, and good models typically
lead to efficient compression schemes.

Codingmeans assigning binary sequences (codewords) to
the elements of an alphabet. The set of the binary sequences
constitutes acode. If the same number of bits is used to en-
code every symbol of an alphabet, the corresponding code
is termedfixed-length. However, as mentioned previously, it
is a good idea to use fewer bits to represent symbols that
occur less often, that is, to use avariable-lengthcode. For

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

such codes, an important property isunique decodability ,
i.e., any given sequence of codewords can be decoded in a
unique way. For example, a code with the property that none
of the codewords is a prefix of another codeword satisfies
this property. Such a code is called aprefix code. A simple
way to represent a prefix code is using binary trees: at each
node, the left branch corresponds to the bit 0 and the right
branch corresponds to the bit 1 (or vice-versa). Codewords
are associated with the leaves of the tree.

Symbol Probability Codeword

a 0.4 0
b 0.2 10
c 0.2 110
d 0.1 1110
e 0.1 1111

d ecba

0.4 0.2 0.2 0.1 0.1

0
0

0
0 1

0.2
1

0.4
1

0.61

1.0

Figure 11: The Huffman encoding procedure: starting with
the alphabet symbols as the leaves of a binary tree, the two
nodes with the smallest probabilities are always combined
first. The probability of a parent is equal to the sum of the
probabilities of the children. The codeword corresponding to
each symbol is derived by traversing the tree from the root to
the corresponding leaf and assigning a0 to each left branch
and a1 to each right branch.

Huffman codesare prefix codes and were developed by
D. Huffman42 as part of a class assignment! The procedure
for generating these codes exploits the ideas that symbols
that have a higher probability of occurrence should occur
more frequently and that the two symbols that occur least
frequently must have the same length. The only additional
constraint added to these ideas by the Huffman procedure is
that the two lowest probability codes differ only in the last
bit. An example of how to build a Huffman code using a bi-
nary tree is shown in Figure11 for a small alphabet. It has
been shown that these codes are optimal for a given statisti-
cal model.

Arithmetic coding71 is another popular method for gener-
ating variable length codes. It is especially suitable for small
alphabets and alphabets with highly skewed probabilities.

The idea is to tag a sequence of symbols with a unique iden-
tifier to distinguish it from other sequences. The identifier is
chosen to be a real number in the interval [0, 1). The cumu-
lative distribution function associated with the source is used
to partition the unit interval into subintervals. The first sym-
bol in the sequencerestricts the tag to one of the subintervals,
which is subdivided in the same proportions as the original.
The process is repeated for succeeding symbols. Major ad-
vantages of arithmetic coding include ease of adapting codes
to changing input statistics and the ability to separate mod-
eling and coding procedures for increased flexibility.

Compression of 3D modelsA number of powerful tech-
niques have emerged over the past few years for compres-
sion of 3D polygonal and, more recently, tetrahedral meshes.
The majority of existing schemes are termed as lossless, but
lossy techniques have also been proposed.

Most 3D compression schemes are based on efficient cod-
ing of the topological information. They use connectivity to
predict the position of a vertex with respect to its neighbors
and then variable length codes are used to encode correc-
tions to the predicted positions. Vertex coordinates are typi-
cally quantized to finite precision (10-14 bits). More recent
approaches investigate the use of signal processing tech-
niques to compress geometry. In the remainder of this sec-
tion, we provide pointers to some of the most recent work
published in this area, and we overview in detail the com-
pression method of Taubin and Rossignac that has become
part of the MPEG-4 standard. For additional details on ge-
ometric compression, we recommend the SIGGRAPH and
Eurographics 2000 courses on this topic.

In 1995, M. Deering introduced the concept ofgeome-
try compressionand the idea of representing polygonal data
with fewer bits than using conventional representations, for
only a slight loss in quality18. Polygonal data (i.e., trian-
gles) is converted to an efficient linear strip format that al-
lows for compact representation of geometry while main-
taining a linear data structure. Based on this representation,
vertex positions and attributes (i.e., normals and colors) are
quantized. Subsequently, the differences between neighbor-
ing quantized values are encoded using variable-length Huff-
man codes. Compression ratios achieved with this method
are between 6:1 and 10:1, depending on the original repre-
sentation and the final quality level desired. The speeds re-
ported are 3,000 triangles per second for compression, and
10,000 triangles per second for decompression.

In 1996, Taubin and Rossignac introduced thetopological
surgeryprocedure for compression of 3D meshes based on
spanning trees that can be encoded into extremely compact
form 87. Topologicalsurgery expands upon the work of Deer-
ing, by providing lossless encoding and higher compression
ratios for the connectivity information, better organization
of the mesh vertices for compression, as well as the means
to generate long triangle strips for efficient rendering using
graphics adapters.

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

According to this scheme, the triangles of a mesh are
viewed as forming one or more connected components. The
connectivity information pertaining to each component is
encoded using avertex spanning treein the graph of ver-
tices and edges of that component. Since often times prox-
imity in the vertex spanning tree implies geometric proxim-
ity, ancestors in the tree are used to predict vertex positions
and only the differences between predicted and actual posi-
tions are encoded. When vertex coordinates are quantized,
the corrections typically have smaller magnitude than the
absolute positions and can therefore be encoded with fewer
bits. The corrections are entropy encoded using Huffman or
arithmetic coding.

To encode the connectivity, the mesh is first cut through
a subset of its edges, including all the edges of the spanning
tree (see Figure12). When treated as a topological boundary,
the cut edges define the mesh as a set of triangle runs con-
nected by branching triangles. Compressing a simple mesh
(without attributes) involves:

� constructing and encoding the vertex tree that encodes
a spanning tree of the graph defined by the vertices and
edges of the mesh;

� compressing the vertex position corrections representing
deviations between predicted and actual positions;

� encoding the triangle tree which consists of triangle strips;
and

� computing and compressing the marching pattern defining
left-right movements along the triangle strips.

Figure 12: Representation for compression using the topo-
logical surgery method: the vertex spanning tree is com-
posed of vertex runs; cutting through the edges of this tree
yields a simply connected polygon with the vertex loop as
its boundary. Figure courtesy of G. Taubin, reproduced with
permission.

The results reported for topological surgery include com-
pression/decompressionspeeds of 60,000 to 90,000 triangles
per second and compression ratios ranging between 26:1 and
97:1.

The pioneering ideas formulated in18 and 87 have been
exploited by a number of other techniques. For instance, in
a 1998 paper, Gumhold and Strasser31 described an algo-
rithm that improves on the performance of Deering’s tech-
nique, both on the compression ratios and the time to com-
press/decompress the data. Theircut-borderalgorithm en-
codes an arbitrarily connected and oriented triangle mesh in
one pass, by defining a set of encodable operations. These
operations describe the order of traversal of the triangle
mesh and uniquely encode the connectivity of the mesh,
starting from a seed triangle. They are Huffman encoded
into a bitstream, together with additional vertex data. For the
models used as benchmarks in Deering’s paper, Gumhold
and Strasser report compression ratios between 7.4:1 and
12:1. The running times reported are between 300,000 and
500,000 triangles per second for compression, and approxi-
mately twice as much for the decompression. Similar tech-
niques, that focus on connectivity compression are89 and69.

An alternative approach to connectivity compression is
that proposed by Karni and Gotsman in45. By analogy with
compression techniques for images, the authors exploit ele-
ments of spectral theory pertaining to 3D meshes for lossy
compression purposes. Using terminology borrowed from
signal processing, the main observation is that relatively
smooth models can be recovered with little loss in visual
quality from a relatively small number of low-frequency ba-
sis functions. The adaptation of spectral theory to 3D meshes
is taken from84 and consists of computing the mesh Lapla-
cian and its eigenvectors and eigenvalues. These may be
viewed as the natural vibration modes of the surface and the
associated natural frequencies, respectively. However, the
computation of the Laplacian for the entire mesh is numeri-
cally instable for large meshes. The authors, have therefore
proposed a partitioning of the mesh into submeshes. The re-
sults reported (at the time of the writing of this tutorial) are
compared only to the technique reported in89 which they
seem to outperform in terms of visual quality of the decoded
models. No timing results or comparisons with other tech-
niques were available.

3D Compression in MPEG-4 The Hierarchical3DMesh
node of MPEG-4 supports the progressive streaming of con-
nectivity, geometry, and properties of a 3D polygonal mesh.
It uses the topological surgery compression scheme to re-
duce the size of the polygonal mesh and the progressive
forest split mechanism (see section5.2.2) to progressively
transmit the mesh.

The mesh connectivity provides a spatially coherent or-
dering which permits the efficient encoding of coordinate
and property data. A logic diagram for the MPEG-4 mesh
encoder is shown in Figure13 and a logic diagram for the
MPEG-4 mesh decoder is shown in Figure14. As illustrated
in these figures, connectivity information of the 3D mesh is
used to guide both the encoding of the vertex and property

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

data. Optionally, to reduce total size, properties are quan-
tized prior to compression.

Geometry

Connectivity

Property

3D mesh

Geometry
coder

Connectivity
coder

Property
coder

Entropy
coding

MPEG
System
MUX

bitstream

Figure13: MPEG-4 3D mesh encoder.

Geometry

Connectivity

Property

3D mesh

Geometry
decoder

Connectivity
decoder

Property
decoder

Entropy
de-

coding

MPEG
System
DEMUX

bitstream

C
om

po
si

tin
g

an
d

R
en

de
rin

g

Figure14: MPEG-4 3D mesh decoder.

The sequenceof images in Figure 15 shows how the ge-
ometry of a model (without properties) changes as a func-
tion of the number of bits per vertex coordinateused during
compression. Similar effects can beobservedby varying the
number of bits per normal, per color component, and per
texture coordinate.

5.2.2. Streaming

Streaming is a technique for transferring data such that it
can beprocessedasasteady and continuousstream that can
be accessed before the entire data is transmitted. Streaming
technologies offer two major advantagesto transmission of
multimedia data: shorter times between the request for the
dataand thereceipt of an initial representation, theabilit y to
play (and possibly, to interact with) the data at intermediate
stagesduring transmission. For streaming to work, theclient
receiving the data must be able to collect it and send it as a
steady stream to the application that is processing it. If the
client receivesthedatafaster than required, it hasto savethe
excessdata in a buffer. Conversely, if the data is received at
aslower rate, its presentation may not appear to besmooth.

(a) (b) (c)

Figure 15: (a) The original model. (b) The same model
quantized to 11 bits per coordinate. (c) The same model
quantized to 9 bits per coordinate. Reproduced from86 with
permission.

Considerations Several issues have to beconsidered when
streaming geometry. As previously mentioned, one of the
main goals of streaming is to minimize the perceived de-
lay in the transmission of a largemodel by sendingan initial
representation of reduced complexity which is subsequently
refined. However, converting a 3D model from its original
format to arepresentation that canbestreamed isnon-trivial.
For instance, the resulting stream may have atotal size that
exceeds that of the original model or of the original model
compressed using some compression technique. For large
models it is usually preferable to receivesomething as soon
as possibleand to receive the entire model over a relatively
longer periodof time, thanto receivenothingfor awhile, and
then to obtain the entire model in one piece. Nevertheless,
a stream that has not been carefully optimized may trickle
down the network for a long time, making the receipt of the
full model quite painful. Competitive streaming techniques
use compression to reduce the size of the stream. A related
question is what should be part of the initial representation.
Is it better to have a(possibly very) coarserepresentation of
the entire model, or should the initial representation consist
of only the parts of the model that are “most important”?
Also, where should the first refinements be made: at arbi-
trary locations or viewpoint dependent? How often should
the model rendering be updated with data being streamed
in? In the case of a 2D image being downloaded progres-
sively, updatesmay beinserted at thecorrect pixel locations.
In the caseof updating a 3D model, the entire scene has to
be redrawn to createan updated frame, and thus, caching of
the received databecomesimportant.

In the case of video and audio data, a typical optimiza-
tion of transmission consistsof using an unreliable transport
protocol such as UDP, since for this type of data there is
usually a certain tolerance to loss of packets. Transmission
of packets out of order is another characteristic of unreli -
able transmission. In the caseof 3D data, depending on the
application, it may beunacceptableto losedataduring trans-
mission, and theuseof a reliable protocol such as TCPmay
be required. Also, depending on the method used to create
thestreamablerepresentation, out of order refinement of the
model may not bepossible.

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

Streaming techniquesIn 36, Hoppe introduced the concept
of a progressive mesh(PM). His idea was to simplify an ar-
bitrary polygonal mesh through a sequence ofedge-collapse
operations and during this process, to record the sequence of
inverse transformations (i.e.,vertex splits) necessary to re-
construct the original mesh from the simplified one (see also
section4.2.2). For transmission over a network, one would
first send the simplified mesh as an initial approximation of
a model, followed by a streamed sequence of vertex splits
required to fill-in the full-resolution mesh. Building such a
PM representation typically involves an optimization phase
to ensure that the simplified meshes generated are good ap-
proximations of the original. Such an optimization may in-
volve the use of error metrics as well as various searching
techniques to determine the order in which edge collapse
operations are performed. A number of such optimizations
have been developed24, 50. In addition to being naturally
suited for network transmission, PM representations offer an
alternative scheme for compression of meshes, even though
not as effective as18, 87. The key observation is that each ver-
tex split operation defines a local perturbation of the mesh
that can be compactly encoded. Hoppe has also extended the
PM approach to handle simplification/refinement of a mesh
based on viewpoint position37.

A generalization of Hoppe’s PM technique is theprogres-
sive forest split(PFS) of Taubin et al.85. The PFS format
shares with PM and similar methods the representation of a
polygonal mesh as a low resolution model and a sequence
of refinement operations and the ability to smoothly inter-
polate between consecutive levels of detail. However, at the
expense of granularity, it renders itself better to compression,
by using a more complex refinement strategy: theforest split.
Using the terminology from the Topological Surgery com-
pression method described in the previous section, a forest
split operation is represented by a forest in the graph of ver-
tices and edges of a mesh, a sequence of simple polygons,
and a sequence of vertex displacements. Applying such an
operation involves cutting the mesh through the forest edges,
splitting the resultingboundaries apart, and filling each of
the resultingboundary loops with a simple polygon.

In addition to geometry, it is often necessary to stream ad-
ditional types of data, such as texture images. Although the
techniques previously mentioned have been or can be mod-
ified to include properties such as texture coordinates, they
do not address the need for streaming the actual texture im-
ages. In principle, one could view these as separate streams
that may be transmitted independently either before or after
the geometry is transmitted. However, the visual quality on
the receiving side may be seriously impacted by using such
a strategy, especially for scenes which are heavily populated
with textured objects.

To address this issue, Cohen-Or et al.15 have developed a
streaming technique that exploits frame-to-frame coherence
in 3D animation sequences of data sets dominated by tex-

tures. This technique is view-dependent, in that it identifies a
superset of the visible parts of the model at each frame, and
it streams geometric and texture information for these. In-
stead of using the original textures of a model, a set of view-
dependent textures are used. Given a camera position, a new
frame is generated on the client based on data streamed up
to a certain point, which includes the visible polygons and a
number of nearby views. Given a set of view-dependent tex-
tures, the highest quality one is selected foreach polygon.
Other streaming techniques that focus on the integration of
geometric and other types of data are proprietary and are in-
corporated into products58, 66, 93.

3D – an extension to streaming multimediaOver the last
decade, a number of competing technologies and industry
standards have emerged for streaming of multimedia data
such as text, audio, and video. As the examples below illus-
trate it, serious efforts are now being made not only to add
3D data to this list, but also to integrate 3D content seam-
lessly with other media types.

As described in the previous section, the MPEG-4 mul-
timedia standard supports 3D content via a subset of the
VRML scene graph structure using the BIFS binary encod-
ing. The recently introduced Hierarchical3DMesh node type
supports the full functionality of the 3D mesh compression
by topological surgery, including the streaming of polygo-
nal data into the scene graph through a separate thread. An
example of streaming 3D data and textures in MPEG-4 is
shown in Figure16. Commands to create the scene graph
containing the Hierarchical3DMesh node are transmitted via
the Scene Description stream. Commands to create the two
object descriptors linking the scene graph leaf nodes with the
appropriate elementary stream are transmitted in the Object
Descriptor stream. The Progressive Forest Split Compressed
Geometry elementary stream loads the Hierarchical3DMesh
node and the Texture elementary stream loads the Texture
node. In this example, an Intellectual Property Management
and Protection (IPMP) stream is also attached to the Hier-
archical3DMesh node. The content of this stream is used to
protect the intellectual property contained in the compressed
geometry stream61.

HotMedia is a toolkit for enhancing e-business applica-
tions with special effects, such as interactive multi-track an-
imations, panoramas, rotations, zooms and scrolling, and
streaming audio synchronized with HTML or Javascript. 3D
content is now being added to this list. HotMedia files are
served from standard HTTP servers and require no plug-ins.
HotMedia dynamically determines which players are needed
and downloads them "just-in-time". The data (e.g., images,
animations) are downloaded progressively, so that the user
experience begins right away, without waiting for the entire
file to be received40.

Pulse Entertainment, a provider of interactive rich media
technology for the Internet, announcedearlier this year (May

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

2000)64 that Pulse-powered content will stream to RealNet-
works’ RealPlayer. Such content includes interactive 3D an-
imations which are typically designed in 3D Studio MAX
and translated into Internet-ready content using a 3D Studio
MAX translator developed by Pulse.

The MetaCreationsm Corporation, Virtue3D, Inc., Reali-
tyWave, Inc., and Vuent, Inc. are just a few additional exam-
ples of companies that focus on Internet visualization tech-
nologies and 3D rendering services for online access. They
own proprietary streaming technologies which they license
to their customers, and in addition, they offer tools and ser-
vices for creating 3D content and integrating it into customer
sites.

�� ��
����Hierarchical3DMesh

BIFS Command
(Replace Scene)

Scene Descriptor Stream

Object Descriptor Stream

Progressive Forrest Split Compressed Geometry Stream

IPMP Stream

Initial Object Descriptor

ES_Descriptor

ES_Descriptor

Object Descriptor Update

Scene Graph

ES_ID

ES_ID

ES_ID

ES_ID

ObjectDescriptorID

Shape

Texture

Object Descriptor

ES_Descriptor

Object Descriptor

ES_Descriptor

ES_Descriptor

Texture Stream

ES_ID

ObjectDescriptorID

Figure 16: Progressive streaming of 3D polygonal meshes
in MPEG-4.

SUMMARY

Efficient storage and delivery of 3D data is dependent upon
the format used to represent the data. VRML is one popular
3D file format that supports descriptions of basic geome-
try, as well as complex attributes and behaviors of 3D mod-
els. However, it is not suitable for transmission of complex
scenes over networks, as the size of the VRML files required
to store such scenes is prohibitively large. Alternative for-
mats (e.g., MPEG-4, MTS) have been designed to allow for
efficient encoding and streaming of 3D data.

A number of compression and streaming techniques have
been developed to optimize 3D data delivery. Compression
techniques are concerned with representing data in a com-
pact form by exploiting structures within the data. In the
case of 3D models, most compression schemes focus on ef-
ficient encoding of model topology, which drives the encod-
ing of geometry and other attributes. Streaming methods de-
liver data as a steady stream that can be accessed and pro-
cessed before the entire contents is transmitted. The progres-
sive mesh is a popular representation that allows streaming

of 3D models. Considerations such as what data should be
part of the initial representation, in what order should the
refinements be made, and the use of compression to reduce
the total size of the stream should be taken into account.

6. Adaptive System Design and Implementation

A significant body of work has been dedicated to the chal-
lenges of adaptive delivery of traditional multimedia content
such as text, images, audio, and video59, 21, 22. For instance,
in the TranSend project21, 22, the adaptation is termed "dis-
tillation" and it is achieved by image compression, reduction
of image size and color space, and video conversion to differ-
ent frame rates and encodings. In59, a multimodal progres-
sive hierarchy called the InfoPyramid is used to represent
multimedia Web content items such as text, images, video,
and audio. This hierarchy is used to select, for a given set of
client resources, the version of a content item that delivers
the most value. The types of client devices considered range
from workstations to cellular phones. For traditional multi-
media types,transcodinghas proven successful in serving
variations of the same object at different sizes and using dif-
ferent modalities. For instance, in59, a video item may be
transcoded into a sequence of images for clients that are not
capable of displaying video. In general, transcoding is de-
fined as a transformation that is used to convert multime-
dia content from one form to another. It can be naturally
extended to 3D data. By their very nature, 3D models are
amenable to access through various representation modali-
ties, that typically imply tradeoffs between complexity, in-
teraction, and download times. As in the case of the other
types of multimedia, adaptive delivery of 3D content reduces
the end-to-end latency perceived by clients.

6.1. Combining Modalities for Network Rendering

In section4we have presented various data structures and or-
ganization schemes for 3D models. These schemes are also
important for management of 3D data for transmission pur-
poses. Unless models are downloaded en-masse, they have
to be partitioned into units of content that allow a finer res-
olution processing for the purposes of transmission and ren-
dering. In the remainder of this section, we regard complex
models as collections of components. We define a model
componentas an atomic part of a model that corresponds to a
visually meaningful entity that can be individually transmit-
ted from a server to a client. The partitioning of the model
into components may be defined at model creation time or
on-the-fly. The partitioning may range from a simple de-
composition into connected components to a complex scene
graph describing semantic groupings, spatial groupings, or
a combination of the two. Figure17 shows an example of a
scene graph in which the components have been partitioned
based on semantic similarities. Semantic partitions are char-
acteristic to CAD/CAM applications where components that

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

belong to the same assembly are typically grouped together.
Groupings based on spatial tessellations are common in en-
vironment navigation applications and are typically used for
models that have a high depth complexity for pruning oc-
cluded regions.

Figure 17: Example of a scene graph in which model com-
ponents have been grouped according to semantic criteria.

The advantages of partitioning a model into components
include efficient data management, support for implement-
ing refined schemes for perceptual measurements, and most
important, the ability to associate several representation
modalities witheach component. The use of different modal-
ities permits an application to perform trade-offs between
image quality and transmission and rendering performance.
Examples of modalities include simple polygonal mesh rep-
resentations, progressive meshes36, 2D images, depth im-
ages, bounding boxes (with or without textures), and canon-
ical shapes (e.g., sphere, cylinder, cone, box). These modal-
ities may be computed and delivered at various levels of res-
olution.

Under this organizational paradigm, the selection of a rep-
resentation to be delivered to a client entails prioritizing
model components according to some criterion (e.g., im-
portance to the final rendering) and determining, given a re-
source budget, the most appropriate modality to be used for
each component. In addition, user preferences may influence
the selection of specific modalities, resource budget alloca-
tion, and the resolution of various tradeoffs.

Figure 18 illustrates the adaptive client-server environ-
ment proposed in57. In this paradigm, 3D models are stored
in a database which is connected to a server. When a client
makes a request for a 3D model to the server, it first receives
basic information about the model requested (i.e., meta-
data). Themeta-dataallows the client to define selection
criteria and, based on these, to steer the downloading of the
model. In Figure18, the selection of modalities takes place
on the client. Alternatively, the selection may be performed
on the server. The tradeoffs involved will be discussed in
section6.5.

Figure 18: Logical flow of control in an adaptive client-
server setup: a monitoring tool records the characteristics
of the environment, such as server load, network delay, and
client and server rendering capabilities. This data is used in
conjunction with information about the model to select suit-
able modalities for transmission and rendering of the model
components. Reproduced from57 with permission.

6.2. Environment Monitoring

To dynamically adapt content, a tool is necessary to monitor
the environment in which model transfer and rendering oc-
curs. This tool provides quantitative information to the selec-
tion process. The state of a particular client-server setup may
be characterized in terms ofstate parameters. Some of the
most important parameters to be evaluated within an adap-
tive framework may include:

a) the rendering capability of the client,
b) the rendering capability of the server,
c) the load on the server, and
d) the performance of the communication link.

There are several ways to record measurements for such
parameters. For example, one may extract values of the
performance counters maintained by the operating system

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

(e.g., the Performance Monitor on Windows NT). Alterna-
tively, one may record measurements that are easier to inter-
pret from an application’s perspective57. For instance, one
could use the average frame rate to describe the rendering ca-
pabilities of a machine (client or server) for a discrete range
of model sizes and several types of rendering. The server
load could be measured in terms of the average time between
the receipt of a request by the server and the processing of
that request. The network performance may be measured in
terms of latency and bandwidth. The main advantage of us-
ing application measurements is not having to interpret the
values of low-level performance counters. Numbers related
to CPU, memory, I/O, and network behavior may be difficult
to map to values corresponding to the application-level state
parameters considered. Instead, history information may be
recorded dynamically for each of the state parameters. This
information could be used to predict future behavior and to
estimate performance. Next, we describe two schemes for
measuring performance in the case of two of the parameters
previously mentioned. Similar schemes may be devised for
other parameters that may be of importance during transmis-
sion and rendering.

Measuring client rendering performance A benchmark
test can be used to determine the frame rates achievable on
a given client for a preset number of rendering types (e.g.,
wireframe, shaded, with or without textures). The goal is to
capture initial measurements that reflect the client capabil-
ities. Alternatively, if the benchmark is not performed, the
history may be initialized with default values (e.g., measure-
ments recorded when the client is installed). A benchmark
could be designed, for instance, to render different size data
sets for a preset number of frames. The average of the mea-
surements collected for each set may be entered in the his-
tory. As models are downloaded, rendered, and manipulated
by users, the frame rate history can subsequently be updated
with measurements performed on these models. Various re-
placement strategies (e.g., least-recently used) may then be
used to limit the size of the history and to ensure that only
the most recent data is used for performance estimation.

Measuring network performance As described in section
3, network performance is measured in two fundamental
ways: bandwidth and latency. The former is measured by the
number of bits that can be transmitted over the network in a
certain period of time, whereas the latter corresponds to how
long it takes a message to travel from one end of the net-
work to the other. In networked graphics, we are interested
in estimating the time necessary to transfer a given modality
from a server to a client. As in the case of rendering perfor-
mance, benchmarks may be performed to measure transfer
times for different size packets. To reduce inaccuracies due
to path asymmetries and differences in the source and des-
tination clocks, round-trip delays of messages may be more
useful than one-way latency. According to63, the relation-

ship between transfer time, bandwidth, and data size can be
expressed as:

Trans f erTime= RTT+Trans f erSize=Bandwidth,

where RTT represents the round-trip time of the network and
is used to account for a request message being sent across
the network and the data being sent back. Figure19 illus-
trates the benchmark measurements taken for two client-
server configurations over 10Mbps and 100Mbps connec-
tions, respectively. For small data sizes, the transfer time is
latency bound, and the bandwidth available does not signifi-
cantly influence the transfer time. In contrast, for large data,
the more bandwidth there is, the faster the data is delivered.
One way to use these measurements is to approximate the
transfer time of a modality of a given size with the shortest
time recorded for that size81. If the actual size does not have
a corresponding entry in the history, the transfer time may be
approximated by the next largest size for which history data
is available.

Figure 19: Benchmark measurements for two client-server
configurations with different bandwidth connections. A log-
arithmic scale was used to show relative performance. Re-
produced from57 with permission.

6.3. Adaptive Selection

When several modalities are available for the transmission
of a model component, a selection algorithm must be em-
ployed to decide which modality to choose. A transcoding
engine is then necessary to perform the conversion of the
corresponding 3D content to a format that is consistent with
the modality selected. The content conversion may be done
either on-line, upon selection of a desired modality, or off-
line at model creation time.

6.3.1. The Performance Model

In general, modality selection is performed to determine “the
best” representation of the 3D data to be sent to a requesting

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

computer. To compare modalities, one must define a set of
performance parameters that allow comparisons in terms of
the resources required by various modalities and the values
they offer. For example, ifm denotes a modality associated
with a model component, the following performance param-
eters may be considered74:

1. T(m) : the total estimated time to deliverm to a client,
2. Q(m) : the estimated quality associated with renderingm,
3. I(m) : the degree of interaction supported bym.

The estimated delivery timeT is defined as the sum of
estimates of the timeTg it takes the transcoding engine to
generatem, the timeTt to transfer it over the network, and
the timeTr to render it for the first time on the client:

T(m) = Tg(m)+Tt(m)+Tr(m).

For modalities generated off-line andcached with the model,
the generation time is equivalent to the time to retrieve them
from the database, which we approximate with a constant.
For modalities generated on-the-fly, the transcoding time is
estimated based on information about the rendering capabil-
ities of the server (if the generation involves rendering on
the part of the server) and/or the worst-case complexity of
the transcoding method as a function of modality size.

The estimated qualityQ reflects how closely the rendering
of a model component using a particular modality resembles
the rendering of the full-detail data. In general, it is diffi-
cult to find a common measure of fidelity to be used for a
variety of 2D and 3D modalities without actually rendering
them and comparing the resulting images. One way would
be to define quality as a dimensionless number between 0.0
and 1.0 that is modality specific. For instance, the modal-
ity corresponding to the full-detail representation of a model
component may be assigned a quality of 1.0; the quality of
a level-of-detail representation may be expressed as a per-
centage of the number of vertices in a level with respect to
the number of vertices in the full-detail representation; the
quality of a depth image could be 1.0 if the image is ren-
dered at the same (or higher) resolution as on the client, or
proportionally less, otherwise.

The degree of interactionI represents the number of de-
grees of freedom when interacting with a particular modal-
ity. It can assume values between 0 and 7 for the three prin-
cipal axes of rotation, translation, and the field-of-view. Ge-
ometric modalities typically have all degrees of freedom,
whereas image-based representations usually allow for re-
stricted forms of interaction only (e.g., panoramas typically
allow rotation about a point, but no translation).

6.3.2. The Selection Process

The meta-data information describes the basic characteris-
tics of a model and may be customized according to the ca-
pabilities of the clients. In this section we focus on adaptive
delivery of 3D models to clients with varying degrees of sup-
port for 3D rendering (either in software or in hardware) for

which the main challenge is to determine an optimal mix-
ture of modalities to represent a model. Clients that can dis-
play only text or 2D images are not discussed in this course.
For 3D capable clients, the meta-data information may in-
clude the model structure (e.g., relationships between com-
ponents or a model hierarchy), limited geometric informa-
tion (e.g., bounding box, coarse mesh) for each of the model
components, and the number, types, and characteristics of
all modalities available foreach component57. For instance,
the characteristics of a modality may be the data necessary
to evaluate the performance parametersT, Q, andI for that
modality and include size (e.g., number of geometric prim-
itives or pixel dimensions), and number of degrees of free-
dom supported.

Estimating perceptual importance Initially, the geomet-
ric information contained in the meta-data can be used to
display an outline of the requested model (see Figures20
(a)-(b)) and to allow users on the client side to define cam-
era parameters. Next, to determine the order in which model
components should be considered for modality selection and
downloading, the visibility and perceptual importance of
each component are estimated. The perceptual importance
is a measure of the contribution of a component to the per-
ception of a final rendering of the model. It is difficult to
design good heuristics for evaluating importance in a way
that closely mimics the partition made by a human eye into
what is important and what is not. However, benefit heuris-
tics such as those proposed in56 for interactive navigation
of large 3D data sets may also be used to predict importance
in the context of adaptive transmission. Visibility and per-
ceptual importance may be approximated from the coarse
geometric information. A simple way of estimating visibil-
ity is to perform view-frustum culling at thebounding box
level. Perceptual importance can be roughly approximated
by the projected area of the bounding box. Alternatively, one
could employ an image-based method to estimate visibility
and perceptual importance in one pass. For a given viewing
position, the collection of bounding boxes representing a 3D
model could be rendered into an off-screen buffer (e.g., the
back buffer). Each box would then be rendered using a color
that uniquely identifies it (see Figure20 (c)). The result-
ing image is processed to compute a histogram of the colors
in it. Model components corresponding to the colors found,
i.e., those whose bounding boxes are visible from the current
viewpoint, are sorted in decreasing order of their histogram
levels and are considered by the adaptive selection algorithm
in this order. Components left out by this algorithm are con-
sidered to be context data and are processed last. This ap-
proach has the advantage that it is fast to compute and can be
later augmented to incorporate additional parameters23 such
as distance from the center of the screen (i.e., the focus of
attention) to more accurately predict perceptual importance.

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

(a) (b) (c)

A

B

(d) (e) (f)

Figure 20:Example of adaptive selection of components to be downloaded to a client based on estimated perceptual importance
and visibility from the currentviewing position. (a) Original model. (b) Meta-data information includes a collection of bounding
boxes that can be manipulated in 3D to select a viewing position. (c) Once a view is selected, the bounding boxes of the
components are rendered into an off-screen buffer. The histogram levels of the resulting image (shown in theupper right
corner) determine the components that will be downloaded and the order in which they are processed. In this example, three
components are downloaded. (d) Hybrid rendering on the client combining the components downloaded with a depth image
generated on the server. (e) Same as (d), except the three components downloaded are shown as wireframe. (f) Top view of the
bounding boxes corresponding to components A and B. Using a non-layered approach, component A is never considered by the
selection algorithm due to occlusion by the larger box corresponding to component B. Reproduced from57 with permission.

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

Automatic selection User preferences and/or information
provided by the environment monitor and meta-data may be
used to determine the time budgetBT available for transmis-
sion and rendering. Starting with the component with the
highest importance value, a selection algorithm could pro-
ceed to identify the most suitable modality for a compo-
nentC, as follows. The performance parametersT, Q, and
I are evaluated for all modalities available forC, based upon
the characteristics ofC defined in its meta-data. Among the
modalities withT � BT , the one with the highest quality
Q is selected. If several modalities have the highest quality,
the one that supports the highest degree of interactionI is
chosen. This type of selection assumes that timely delivery
of the model data is most important to the client, followed
by the quality of the modalities received, and lastly by the
degree of interaction they offer. However, depending on the
application, alternative prioritization schemes may be more
suitable. For instance, clients may be willing to concede on
the waiting time, as long as the quality level of all compo-
nents received is larger than a threshold valueBQ. In this
case, modalities are first selected based on the quality level
they provide, and if several modalities offer the same qual-
ity they are differentiated based on their associated delivery
times, and lastly, based on their corresponding degrees of in-
teraction. Different prioritization schemes corresponding to
the permutations ofT, Q, andI may be considered57.

6.4. Support for Real-Time Interaction

When multiple representations are combined to render a
model, it is likely that some of them are view independent,
whereas others are generated with respect to a particular
viewing position. In an interactive client session, the view-
point may change quite often, and the challenge is to update
the view-dependent representations accordingly, with aslit-
tle delay as possible, to maintain consistency between all
rendered parts of the model. For example, assuming that a
given model component is represented by a depth image,
manipulating the model in real time implies updating the
image to reflect changes in its position with respect to the
viewer. If a new image is generated on the server for every
frame, the client will receive the data with delay due to la-
tency in the generation process and in the transmission over
the network. Moreover, rendering a large number of frames
may overburden the server, it could severely impact the traf-
fic over the network, and it would affect the interaction on
the client side, as the client spends precious cycles receiv-
ing and decoding the data. In principle, there are several up-
dating alternatives to the brute-force approach of generating
view-dependent representations from scratch, each time the
position of the model changes.

A simple technique is to display only view-independent
representations as the object moves, and to send a request
for a view-dependent representation to be generated only for
the final position of the model, after the motion has stopped.

For example, one could use bounding boxes to manipulate
the model, and when a desired orientation is chosen, data
is generated and transmitted from the server,under the as-
sumption that the object will remain in that position for a
certain period of time.

A more elaborate alternative would make use of view-
dependent data previously downloaded to synthesize a new
view-dependent representation locally on the client. For ex-
ample, if several 2D images are available from several view-
ing positions, a new image corresponding to a new po-
sition could be synthesized by warping the available im-
ages (e.g.,3, 65). A drawback is that accumulating view-
dependent representations on the client may require a con-
siderable amount of storage. Additionally, accurate warping
may require complex processing that may not be feasible in
real time.

A different class of techniques are so-calleddead reck-
oning techniques (or protocols) that attempt to predict the
position of the model at future moments in time80. Based on
this prediction, a view-dependent representation is generated
consistent with the state of the model at the estimated time
of receipt by the client. In between updates the state is still
inconsistent, but some overhead is eliminated by determin-
ing in advance what will be needed for display by the time
data arrives at the client. In the remainder of this section we
briefly describe the underlying philosophy of such protocols.

Historically, a sailing ship’s speed over a nautical mile
was measured by means of a rope with knots tied to a log. A
sand filled timing glass was used to measure the time from
leaving the log dead (much as a dead man might appear) in
the water (dead reckoning) and the number of evenly spaced
knots passed along the rope. Some argue that the term dead-
reckoning is derived from the navigational practice of start-
ing from a point that was dead in the water. From this point
the direction and time would be used to deduce location
along the route as it crossed longitudinal lines. Others con-
tend that dead reckoning comes from "deduced reckoning",
also from sailing, which is a simple mathematical procedure
for determining the present location of a ship by advancing
some previous position through known course and velocity
information over a given length of time.

A dead reckoning protocol involves two aspects: predic-
tion and convergence.Predictionis the method by which the
position of the object is inferred based on previous history.
However, the prediction is just an estimate of the true posi-
tion, which may have to be corrected to match the true po-
sition. Convergencedefines how the position is to be cor-
rected. Such corrections are usually done gradually, over
several frames, to avoid popping artifacts.

6.5. Implementation Issues

Implementing an adaptive system for delivering 3D models
over networks is a non-trivial task. The complexity arises

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

primarily from the necessity to combine techniques from dif-
ferent domains into a common framework. These domains
include:

1. Networking: the adaptive system must take into account
the heterogeneity of the environment and it must contend
with the various issues that networked applications face:
network resource management, error resilience, and fault
tolerance.

2. Rendering: since the end goal is to display and visualize
the 3D models on the computers which have requested
them, techniques developed in the graphics field must be
exploited to create visual representations that meet the
exigencies of the application for which they are used.

3. Virtual manipulation/navigation: the main reason behind
using 3D models and not 2D images is the need for inter-
acting with the model in real-time. Therefore, algorithms
that have been developed for rendering acceleration to
support interactivity must be folded into the system as
well.

4. Database management: while simple models may be
stored in single files, others may consist of collections of
files corresponding to various types of information asso-
ciated with the models. Alternatively, for processing and
transmission purposes, caching of different representa-
tions associated with a model may result in multi-element
collections. In such cases, the system has to deal with is-
sues such as search, retrieval, and access to these files.

5. Security: is paramount to the success of such systems, as
it becomes a major concern for almost all applications
of networked graphics. Technologies for authentication,
encryption, and watermarking are just a few examples of
what may be required as part of the system.

While we emphasize the importance of all of the above
topics when building an adaptive networked graphics frame-
work, we restrict our discussion here to implementation con-
cerns related to network transmission and rendering.

The action that initiates model transfer between a client
computer and a remote repository is usually the request of a
model of interest from the repository by a user or an applica-
tion. Typically, the request goes to either a server in a client-
server type of architecture or to a proxy server that identi-
fies the requested data on nodes in a distributed environment.
Unless the original representation of a model is used or un-
less the representation(s) to be delivered has been cached,
the data has to be loaded for processing at the source nodes.
In the case of complex models, loading a model into mem-
ory may take a very long time. Hence, if the resources are
available, it may be more efficient to dedicate certain nodes
(or processes) to servicing complex models that are most fre-
quently requested. Thus, a model is loaded once and various
requests for that particular model are routed and handled by
the process dedicated to that model, as opposed to loading
the model upon each request.

Server scalability is another important issue. 3D models
are becoming commodity media items, which implies that
millions of requests have to be handled simultaneously. A
distributed server may be one solution for such situations.

A related concern is the type of connection and the
amount of bookkeeping that has to be maintained on the
server for each client. For example, if a point-to-point com-
munication using a TCP socket is established between a
server and each of its clients, then the alternatives are: (a)
to keep an open connection for each client for the duration
of a client session at the price of allowing only a limited
number of clients to have access to this server, or (b) to open
a connection for each request and to close it after the request
is serviced, thus introducing an overhead for setting up con-
nections. Bookkeeping may also impact scalability. If only
the server has access to the models and their structure, then
any adaptive processing that may be required will have to be
done on the server. Choosing to transmit some information
about the model to clients (e.g., meta-data) may enable them
to make decisions locally and, on that basis, to request data
from the servers.

The implementation of an adequatetransmission protocol
for the geometry and related data (textures, materials, anno-
tations, etc.) is important for dealing with some of the issues
mentioned in section5.2.2, such as reliable vs. lossy trans-
mission and buffer caching.

On the client side, there are a number of design and im-
plementation issues to be considered, as well. For exam-
ple, it may be desirable to separate communication with the
server, the decoding of the data received, and the rendering
of the model. A common solution is to dedicate a separate
thread to each of these activities, with the caveats of possi-
bly having to synchronize them and to manage the commu-
nication between these threads. Rendering the data as soon
as it becomes available may not be efficient, as updating a
frame may require redrawing an entire scene. Accumulating
data and not displaying it, however, may impact the inter-
activity and the ability of the user to steer the downloading
process. Adequate buffering strategies that compromise be-
tween these alternatives must therefore be implemented.

Finally, an important issue is where the bulk of the se-
lection work is performed: on the server or on the client.
If the selection is performed on the server, the advantage is
that model information necessary to compute estimates of
the performance parameters does not have to be transmitted
to the client. However, doing all the selection work on the
server considerably increases the server load, which has an
impact on scalability. If the selection is performed on the
client, additional data about the model has to be downloaded
to help make an informed decision. The latter approach may
be preferable if good performance estimates can be derived
without excessively increasing the size of the meta-data.

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

SUMMARY

In multimedia jargon, transcoding defines the process that
is used to convert multimedia content from one form to an-
other. By extension, transcoding of 3D content implies the
use of different representation modalities to deliver models
adaptively to various clients.

We regard models as collections of components that can be
individually transmitted and rendered. This allows for effi-
cient data management and fine-grained schemes for mea-
suring perceptual importance. Combining different modali-
ties for representingeach component typically leads to better
performance than the use of a "one-size-fits-all" strategy.

The selection of the most appropriate representation to be
sent to requesting clients should account for the resources
available, the importance of various components to the final
rendering, as well as for user preferences.

A monitoring tool is a necessary part of an adaptive environ-
ment that provides quantitative informationabout the state
of the environment. Preferably, such a tool captures infor-
mation about the environment dynamically, so that the ap-
plication framework can adapt to changes that may have an
impact on the overall performance.

7. Conclusions

In this course, we have described the main issues related to
the delivery of 3D models over networks. We started by re-
viewing basic notions of networking and we presented a sur-
vey of some of the most important technologies developed
for optimizing rendering and transmission of 3D models. By
formulating the problems of universal access to non-trivial
3D models and by contrasting different methods, weillus-
trated the importance of adaptive approaches. We conveyed
the fact that graphics and networking are both mature fields,
which have been traditionally considered separately, but are
now beginning to converge. Our main goal was to emphasize
the various possibilities for leveraging existing technologies
from both areas, to create powerful networked graphics en-
vironments.

Acknowledgements

The authors would like to thank all of those who contributed
to the preparation of the material for this tutorial. In partic-
ular, we would like to thank Dirk Bartz, Fausto Bernardini,
Paul Borrel, Josh Mittleman, Bengt-Olaf Schneider, Claudio
Silva, Frank Suits, and Gabriel Taubin.

QuickDraw3D is a trademark of Apple Computer Cor-
poration. 3D Studio MAX is a registered trademark of Au-
todesk, Incorporated. HotMedia is a registered trademark of
International Business Machines Corporation. MetaStream

is a trademark of MetaCreations, Incorporated. Direct3D is
a registered trademark of Microsoft Corporation. RealPlayer
is a registered trademark of RealNetworks, Incorporated. In-
ventor, IRIS Performer, OpenGL are trademarks of Silicon
Graphics, Incorporated. Java, Java 3D, Javascript, and XGL
are trademarks of Sun Microsystems, Incorporated.

References

1. V. Abadjev, M. del Rosario, A. Lebedev, A. Migdal, and
V. Paskhaver. Metastream. InVRML 99, pages 53–62, Febru-
ary 1999. 20

2. D. Aliaga and A. Lastra. Architectural walkthroughs using
portal textures. InIEEE Visualization 97, pages 355–362, Oc-
tober 1997.12

3. S. Avidan and A. Shashua. Novel view synthesis by cascad-
ing trilinear tensors.IEEE Transactions on Visualization and
Computer Graphics, 4(4):293–306, 1998.30

4. D. Bartz, M. Meißner, and T. Hüttner. OpenGL-assisted occlu-
sion culling for large polygonal models.Computers & Graph-
ics, 23(5):667–679, October 1999.13

5. R. Carey and G. Bell.The Annotated VRML 2.0 Reference
Manual. Addison-Wesley Developers Press, Reading, MA,
1997. 9

6. E. Catmull.A Subdivision Algorithm for Computer Display of
Curved Surfaces. PhD thesis, Dept. of CS, U. of Utah, De-
cember 1974.10

7. P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno. A
general method for preserving attribute values on simplified
meshes. InIEEE Visualization 98, pages 59–66, October 1998.
14

8. P. Cignoni, C. Montani, and R. Scopigno. A comparison of
mesh simplification algorithms.Computers and Graphics,
22:37–54, 1998.14

9. J. Clark. Hierarchical geometric models for visible surface
algorithms. Communications of the ACM, 19(10):547–554,
October 1976.11

10. J. Cohen. Model simplification. InInteractive WalkThrough
of Large Geometric Datasets (SIGGRAPH 99 Course Notes
#20), August 1999.13, 14

11. J. Cohen, D. Manocha, and M. Olano. Simplifying polygonal
models using successive mappings. InIEEE Visualization 97,
pages 395–402, 1997.14

12. J. Cohen, M. Olano, and D. Manocha. Appearance-preserving
simplification. In SIGGRAPH 98 Conference Proceedings,
pages 115–122. ACM SIGGRAPH, July 1998.14

13. D. Cohen-Or, Y. Chrysanthou, and C. Silva. Visibility prob-
lems for walkthrough applications. InVisibility: Problems,
Techniques, and Applications (SIGGRAPH 00 Course Notes
#4), July 2000.10, 11

14. D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario. Con-
servative visibility and strong occlusion for viewspace parti-
tioning of densely occluded scenes.Computer Graphics Fo-
rum, 17(3):243–253, 1998.12

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

15. D. Cohen-Or, Y. Mann, and S. Fleishman. Deep compression
for streaming texture intensive animations. InSIGGRAPH 99
Conference Proceedings, pages 261–268. ACM SIGGRAPH,
1999. 24

16. S. Coorg and S. Teller. Temporally coherent conservative vis-
ibility. In 12th Annual ACM Symposium on Computational
Geometry, pages 78–87, 1996.12

17. S. Coorg and S. Teller. Real-time occlusion culling for models
with large occluders. InSymposium on Interactive 3D Graph-
ics. ACM SIGGRAPH, 1997.12

18. M. Deering. Geometry compression. InSIGGRAPH 95 Con-
ference Proceedings, pages 13–20. ACM SIGGRAPH, 1995.
21, 22, 24

19. F. Evans, S. Skiena, and A. Varshney. Optimizing triangle
strips for fast rendering. InIEEE Visualization 96. IEEE, Oc-
tober 1996.10

20. J. Foley, A. van Dam, S. Feiner, and J. Hughes.Computer
Graphics, Principles and Practice, Second Edition. Addison-
Wesley, Reading, Massachusetts, 1990. Overview of research
to date. 8, 11, 16

21. A. Fox and E. A. Brewer. Reducing www latency and band-
width requirements by real-time distillation. InProc. 5th Intl.
WWW Conference, Paris, France, 1996.25

22. A. Fox, S. Gribble, E. Brewer, and E. Amir. Adapting
to network and client variation using infrastructural proxies:
Lessons and perspectives.IEEE Personal Communications,
40:10–19, 1998.25

23. T. Funkhouser and C. Séquin. Adaptive display algorithm for
interactive frame rates during visualization of complex virtual
environments. InSIGGRAPH 93 Conference Proceedings,
pages 247–254. ACM SIGGRAPH, August 1993.15, 16, 28

24. M. Garland and P. Heckbert. Surface simplification using
quadric error metrics. InSIGGRAPH 97 Conference Proceed-
ings, pages 209–216. ACM SIGGRAPH, August 1997.13,
14, 24

25. M. Garland and P. Heckbert. Simplifying surfaces with color
and texture using quadric error metrics. InIEEE Visualization
98, pages 263–269, October 1998.13, 14

26. T. S. Gieng, B. Hamann, K. I. Joy, G. L. Schussman, and
I. J. Trotts. Constructing hierarchies for triangle meshes.
IEEE Transactions on Visualization and Computer Graphics,
4(2):145–161, April 1998.13

27. Silicon Graphics.Iris Inventor Programming Guide, 1992. 9

28. N. Greene. Hierarchical polygontiling with coverage masks.
In SIGGRAPH 96 Conference Proceedings, pages 65–74.
ACM SIGGRAPH, August 1996.13

29. N. Greene, M. Kass, and G. Miller. Hierarchical Z-buffer visi-
bility. In Computer Graphics Proceedings,Annual Conference
Series, 1993, pages 231–240, 1993.12

30. A. Guéziec. Surface simplification with variable tolerance. In
International Symposium on Medical Robotics and Computer
Assisted Surgery, pages 132–139, November 1995.13

31. S. Gumhold and W. Strasser. Real-time compression of tri-
angle mesh connectivity. InSIGGRAPH 98 Conference Pro-
ceedings, pages 133–140. ACM SIGGRAPH, 1998.22

32. B. Hamann. A data reduction scheme for triangulated surfaces.
Computer Aided Geometric Design, 11:197–214, 1994.13

33. C. Healey, V. Interrante, and P. Rheingans. Fundamental is-
sues of visual perception for effective image generation. In
SIGGRAPH 99 Course Notes #6, August 1999.15

34. P. Heckbert and M. Garland. Survey of polygonal surface sim-
plification algorithms. InMultiresolution Surface Modeling
(SIGGRAPH 97 Course Notes#25), August 1997.14

35. K. Hoff III. Backface cluster culling using normal-space par-
titioning. Technical report, Computer Science Dept., Univ. of
North Carolina at Chapel Hill,1996. 11

36. H. Hoppe. Progressive meshes. InSIGGRAPH 96 Conference
Proceedings, pages 99–108. ACM SIGGRAPH, August 1996.
15, 24, 26

37. H. Hoppe. View-dependent refinement of progressive meshes.
In SIGGRAPH 97 Conference Proceedings, pages 189–198.
ACM SIGGRAPH, 1997.14, 24

38. H. Hoppe. New quadric metric for simplifying meshes with
appearance attributes. InIEEE Visualization 99, pages 59–66,
October 1999.13, 14

39. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Mesh optimization. InSIGGRAPH 93 Confer-
ence Proceedings, pages 19–26. ACM SIGGRAPH, August
1993. 13

40. HotMedia. www.ibm.com/hotmedia.24

41. T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and
H. Zhang. Accelerated occlusion culling using shadow frustra.
In 13th Annual ACM Symposium on Computational Geometry,
pages 1–10, 1997.12

42. D. Huffman. A method for the construction of minimum
redundancy codes.Proceedings of the IRE, 40:1098–1101,
1951. 21

43. V. Interrante, P. Rheingans, J. Ferwerda, R. Gossweiler, and
T. Filsinger. Principles of visual perception and their applica-
tions to computer graphics. InSIGGRAPH 97 Course Notes
#33, August 1997.15

44. V. Interrante, P. Rheingans, J. Ferwerda, R. Gossweiler, and
C. Healey. Applications of visual perception in computer
graphics. InSIGGRAPH 98 Course Notes #32, July 1998.15,
16

45. Z. Karni and C. Gotsman. Spectral compression of mesh ge-
ometry. In SIGGRAPH 00 Conference Proceedings. ACM
SIGGRAPH, 2000. To appear.22

46. J. Klosowski and C. Silva. Rendering on a budget: A frame-
work for time-critical rendering. InIEEE Visualization 99,
pages 115–122, October 1999.12

47. J. Klosowski and C. Silva. The prioritized-layered projection
algorithm for visible set estimation.IEEE Transactions on
Visualization and Computer Graphics, 6(2), June 2000.12

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

48. V. Koltun, Y. Chrysanthou, and D. Cohen-Or. Virtual occlud-
ers: An efficient intermediate pvs representation. InEuro-
graphics Workshop on Rendering 00, June 2000.12

49. S. Kumar, D. Manocha, W. Garrett, and M. Lin. Hierarchical
back-face computation. InEurographics Workshop on Ren-
dering 96, pages 235–244, New York City, NY, June 1996.
Eurographics, Springer Wein.11

50. P. Lindstrom. Out-of-core simplification of large polygonal
models. InSIGGRAPH 00 Conference Proceedings. ACM
SIGGRAPH, 2000. To appear.24

51. P. Lindstrom and G. Turk. Fast and memory efficient polygo-
nal simplification. InIEEE Visualization 98, pages 279–286,
October 1998.13

52. K. Low and T. Tan. Model simplification using vertex-
clustering. InSymposium on Interactive 3D Graphics, pages
75–82. ACM SIGGRAPH, April 1997.13

53. D. Luebke and C. Erikson. View-dependent simplification of
arbitrary polygonal environments. InSIGGRAPH 97 Confer-
ence Proceedings, pages 199–208. ACM SIGGRAPH, August
1997. 13

54. D. Luebke and C. Erikson. View-dependent simplification of
arbitrary polygonal environments. InSIGGRAPH 97 Confer-
ence Proceedings, pages 199–208. ACM SIGGRAPH, August
1997. 14

55. D. Luebke and C. Georges. Portals and mirrors: Simple, fast
evaluation of potentially visible sets. InSymposium on Inter-
active 3D Graphics, pages 105–106. ACM SIGGRAPH, April
1995. 12

56. P. Maciel and P. Shirley. Visual navigation of large environ-
ments using textured clusters. InSymposium on Interactive 3D
Graphics, pages 95–102. ACM SIGGRAPH, April 1995.15,
17, 28

57. I. Martin. Adaptive rendering of 3d models over networks us-
ing multiple modalities. Technical Report RC21722(97821),
IBM Research, April 2000.26, 27, 28, 29, 30

58. MetaCreations Corporation. www.metacreations.com.24

59. R. Mohan, J. Smith, and C.-S. Li. Adapting multimedia inter-
net content for universal access.IEEE Transactions on Multi-
media, 1(1):10–19, 1999.25

60. T. Möller and E. Haines.Real-Time Rendering. A. K. Peters,
Ltd., Natick, MA, 1999. 11, 15

61. MPEG-4 information technology - coding of audio-visual ob-
jects - Part 1: Systems, 1999. ISO/IEC JTC 1/SC 29/WG 11
N 2501. 24

62. Next Generation Internet Initiative. www.ngi.gov.3

63. L. Peterson and B. Davie.Computer Networks. Morgan Kauf-
mann, 2000.27

64. Pulse Entertainment. www.pulse3d.com.25

65. M. Rafferty, D. Aliaga, and A. Lastra. 3d image warping in ar-
chitectural walkthroughs. InProceedings ofVRAIS 98, pages
228–233, 1998.30

66. RealityWave Inc. www.realitywave.com.24

67. J. Rohlf and J. Helman. IRIS performer: A high performance
multiprocessing toolkit for real–Time 3D graphics. InSIG-
GRAPH 94 Conference Proceedings, pages 381–395. ACM
SIGGRAPH, July 1994.9

68. R. Ronfard and J. Rossignac. Full-range approximation of tri-
angulated polyhedra.Computer Graphics Forum, 15(3):67–
76, August 1996.13

69. J. Rossignac. Edgebreaker: Connectivity compression for tri-
angle meshes.IEEE Transactions on Visualization and Com-
puter Graphics, 5(1):47–61, 1999.22

70. J. Rossignac and P. Borrel. Multi-resolution 3D approxima-
tion for rendering complex scenes. InSecond Conference on
Geometric Modelling in Computer Graphics, pages 453–465,
June 1993. Genova, Italy.13

71. K. Sayood.Introduction to Data Compression. Morgan Kauf-
mann, San Francisco, CA, 1996.20, 21

72. G. Schaufler. Nailboards: A rendering primitive for image
caching in dynamic scenes. InEurographics Workshop on
Rendering 97, pages 151–162, June 1997.15

73. G. Schaufler and W. Stürzlinger. A three dimensional im-
age cache for virtual reality. Computer Graphics Forum,
15(3):227–236, August 1996.15

74. B.-O. Schneider and I. Martin. An adaptive framework for 3d
graphics over networks.Computers and Graphics, 23:867–
874, 1999.28

75. W. Schroeder, J. Zarge, and W. Lorensen. Decimation of trian-
gle meshes. InSIGGRAPH 92 Conference Proceedings, pages
65–70. ACM SIGGRAPH, July 1992.14

76. N. Scott, D. Olsen, and E. Gannett. An overview of the VI-
SUALIZE fx graphics accelerator hardware.The Hewlett-
Packard Journal, pages 28–34, May 1998.13

77. J. Shade, S. Gortler, L. He, and R. Szeliski. Layered depth im-
ages. InSIGGRAPH 98 Conference Proceedings, pages 231–
242. ACM SIGGRAPH, July 1998.15

78. J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Sny-
der. Hierarchical image caching for accelerated walkthroughs
of complex environments. InSIGGRAPH 96 Conference Pro-
ceedings, pages 75–82. ACM SIGGRAPH, August 1996.15

79. C. Shannon. A mathematical theory of communication.Bell
System Technical Journal, 27:379–423, 1948.20

80. S. Singhal and M. Zyda.Networked Virtual Environments.
Addison-Wesley, 2000.30

81. Q. Snell, A. Mikler, and J. Gustafson. Netpipe: A network
protocol independent performance evaluator. InProceedings
of IASTED ISSM Intl. Conference, pages 129–134, 1996.27

82. H. Sowizral, K. Rushforth, and M. Deering.The Java 3D API
Specification. Addison-Wesley, Reading, MA, 1998.9

83. I. Sutherland. Sketchpad: a man-machine graphical communi-
cation system.SJCC, 1963. 35

84. G. Taubin. A signal processing approach to fair surface design.
In SIGGRAPH 95 Conference Proceedings, pages 351–358.
ACM SIGGRAPH, 1995.22

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

85. G. Taubin, A. Gueziec, W. Horn, and F. Lazarus. Progressive
forest split compression. InSIGGRAPH 98 Conference Pro-
ceedings, pages 123–132. ACM SIGGRAPH, 1998.24

86. G. Taubin, W. Horn, J. Rossignac, and F. Lazarus. Geometry
coding and VRML.Proceedings of the IEEE, Special issue on
Multimedia Signal Processing, 86(6):1228–1243, June 1998.
23

87. G. Taubin and J. Rossignac. Geometric compression
through topological surgery.ACM Transactions on Graphics,
17(2):84–115, 1998.21, 22, 24

88. S. Teller and C. Séquin. Visibility preprocessing for interac-
tive walkthroughs. InSIGGRAPH 91 Conference Proceed-
ings, pages 61–69. ACM SIGGRAPH, July 1991.12

89. C. Touma and C. Gotsman. Triangle mesh compression. In
Graphics Interface, pages 26–34, June 1998.22

90. G. Turk. Re-tiling polygonal surfaces. InSIGGRAPH 92 Con-
ference Proceedings, pages 55–64. ACM SIGGRAPH, July
1992. 14

91. A. Varshney.Hierarchical Geometric Approximations. PhD
thesis, Computer Science Dept., Univ. of North Carolina at
Chapel Hill,1994. 13

92. Web 3D consortium. www.vrml.org.19

93. Vuent Inc. www.vuent.com.24

94. J. Wernecke.The Inventor Mentor. Addison-Wesley, Reading,
MA, 1993. 35

95. P. Wonka and D. Schmalstieg. Occluder shadows for fast walk-
throughs of urban environments.Computer Graphics Forum,
18(3):51–60, September 1999.12

96. P. Wonka, M. Wimmer, and D. Schmalstieg. Visibility prepro-
cessing with occluder fusion for urban walkthroughs. Techni-
cal Report TR-186-2-00-06, Institute of Computer Graphics,
Vienna University of Technology, 2000.12

97. Xgl file format specification. www.xglspec.org.19

98. J. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-
of-detail-based rendering for polygonal models.IEEE Trans-
actions on Visualization and Computer Graphics, 3(2), April–
June 1997.14

99. X. Xiang, M. Held, and J. Mitchell. Fast and effective stripi-
fication of polygonal surface models. InSymposium on Inter-
active 3D Graphics, pages 71–78. ACM SIGGRAPH, April
1999. 10

100. H. Zhang, D. Manocha, T. Hudson, and K. HoffIII. Visibil-
ity culling using hierarchical occlusion maps. InSIGGRAPH
97 Conference Proceedings, pages 77–88. ACM SIGGRAPH,
August 1997.13

Appendix A: A Brief History of VRML

The Virtual Reality Modeling Language (VRML) was the first sig-
nificant effort to focus on the delivery of 3D graphics across the
World Wide Web. While the arrangement of graphical structures
into directed acyclic graphs (scene graphs) can be traced back to
Sutherland’s work on Sketchpad83, many of the other features and
conventions in VRML can be traced back to SGI’s Inventor prod-
uct. The IRIS Inventor 3D toolkit94 was introduced by SGI in 1992.
Inventor is a C++ 3D toolkit with an object-oriented design. It is
based on a hierarchical scene graph and it provides many features
including a full set of tools to support: creation, modification, and
interaction with scene graphs, geometry, events, and manipulators
(e.g., trackball). In addition to providing these tools, Inventor also
introduced a file format to store its scene graph.

The initiative behind VRML can be traced back to a spring of
1994 Birds of a Feather session at the first annual World Wide Web
Conference in Geneva, Switzerland. As a result of this meeting, an
ad-hoc group formed and the VRML mailing list was created to
discuss the issues. One of the early goals was to create a specifi-
cation that was analogous to HTML by exploiting WWW hyper-
links. Indeed, VRML originally stood for “Virtual Reality Markup
Language”. The analogy between VRML and HTML was not that
strong and word “Modeling” was eventually replaced “Markup”.
Eventually, three requirements were chosen for VRML 1.0: plat-
form independence, extensibility, and the ability to work well over
low-bandwidth connections.

A consensus was reached and version 1.0 specification for a file
format was released in Spring of 1995. The format was essentially
a stripped-down version of Inventor’s ASCII format in which only
fundamental nodes were retained. The only features in VRML that
were not supported by inventor were theWWWInline (read from
URL) and WWWAnchor (WWW hyperlink) nodes. Indeed, if these
two nodes are not present, a VRML file can be changed to an inven-
tor file by changing “#VRML V1.0 ascii” to “#Inventor V1.0 ascii”.

VRML 1.0 was the first successful attempt to provide a standard
file format for the interchange of 3D models on the Internet. VRML
1.0 enjoyed considerable success. Several freely available browsers
were released and a considerable number of VRML worlds were
available for download. Perhaps the biggest deficiency of VRML
1.0 is its inability to satisfy the third design requirement. Bandwidth
and throughput were major limitations in the late 1990s (as they
still are today) andaccessing large VRML models meant very long
delays.

In the fall of 1995 several long-term contributors to the VRML
community formed the VRML Architecture Group (VAG) to guide
an effort to create a VRML 2.0 specification. VRML 1.0 had inher-
ited some deficiencies from Inventor. A major problem with the ba-
sic scene graph strategy of Inventor is the excessive overloading of
the parent-child relationship. In addition to providing a state mech-
anism to support the model instancing matrix, inheritance was also
used to provide basic properties such as normals, coordinates, and
materials. The excessive overloadingof state producedscene graphs
that were difficult to optimize for display.

In addition to improvements in the design of the scene graph,
the VAG believed that the consensus of VRML community was that
VRML 1.0 lacked key features of animation, interaction, and behav-
ior. The perception was that these features were necessary to create
the “moving worlds” required for a more impressive virtual reality

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

experience. Desires to move toward capabilities such as multi-user
worlds where avatars could conduct “virtual sword fights and col-
laborative data mining could take place” dominated the discussion
on the requirements for VRML 2.0.

VRML 2.0 (also known as VRML 97) was completed in August
1996. The changes in the treatment of state were well thought out
and led to an improved representation for the scene graph. How-
ever, in hindsight, the complexity of the new features (animation,
interaction, and behavior) were disastrous. Resources diverted to
the exploitation and implementation of these features were squan-
dered and, as a result, many of the key commercial ventures based
on VRML 2.0 did not succeed.

VRML 2.0 had the same network throughput limitations of
VRML 1.0. The throughput limitations were exacerbated by three
major deficiencies in the format. First, because there was no support
for a binary format or geometric compression, large models were up
to two orders of magnitude larger than they had to be. Second, no
attempt was made to efficiently store levels of detail. Finally, no pro-
vision was made for progressive transmission. Proposals were made
to address these issues, but, for a variety of reasons, none of them
made their way into the VRML specification. Despite its deficien-
cies, VRML 2.0 remains a popular file format for representing 3D
virtual worlds (see Figure21).

#VRML V2.0 utf8

Shape

appearance Appearance

material Material

ambientIntensity 0.5

diffuseColor 0.1837 0.1837 0.1837

geometry IndexedFaceSet

coord Coordinate

point [

0.94 0.00 -0.33 ,

-0.47 0.81 -0.33 ,

-0.47 -0.81 -0.33 ,

0.00 0.00 1.00 ,

]

coordIndex [

2, 1, 0, -1,

3, 2, 0, -1,

1, 3, 0, -1,

2, 3, 1, -1,

]

color Color

color [

1.00 0.62 0.00,

1.00 0.00 0.00,

0.87 0.00 0.87,

0.37 0.37 1.00,

]

colorPerVertex FALSE

colorIndex [0 1 2 3]

Figure 21: A simple VRML file.

Appendix B: The XGL File Format

<WORLD>

<LIGHTING>

<DIRECTIONALLIGHT>

<DIFFUSE>1.000,1.000,1.000</DIFFUSE>

<SPECULAR>0.100,0.100,0.100</SPECULAR>

<DIRECTION>-0.302,0.302,0.905</DIRECTION>

</DIRECTIONALLIGHT>

<AMBIENT>0.000,0.000,0.000</AMBIENT>

</LIGHTING>

<MESH ID="0">

<MAT ID="0">

<AMB>0.000,1.000,0.000</AMB>

<DIFF>0.000,1.000,0.000</DIFF>

<SPEC>1.000,1.000,1.000</SPEC>

<EMISS>0.000,0.000,0.000</EMISS>

<SHINE>51.200</SHINE>

<ALPHA>1.000</ALPHA>

</MAT>

<P ID="0">-1.0,-0.5,0.0</P>

<P ID="1">-1.0,-0.5,1.0</P>

...

<N ID="5">0.0,0.0,-1.0</N>

<F>

<MATREF>0</MATREF>

<FV1>

<PREF>0</PREF>

<NREF>0</NREF>

</FV1>

<FV2>

<PREF>1</PREF>

<NREF>0</NREF>

</FV2>

<FV3>

<PREF>2</PREF>

<NREF>0</NREF>

</FV3>

</F>

...

</MESH>

<OBJECT>

<TRANSFORM>

<FORWARD>0.000000,0.000000,1.000000</FORWARD>

<UP>0.000000,1.000000,0.000000</UP>

<POSITION>0.000000,0.900000,-0.000000</POSITION>

<SCALE>1.000000</SCALE>

</TRANSFORM>

<MESHREF>0</MESHREF>

</OBJECT>

<OBJECT>

...

<TRANSFORM>

<FORWARD>0.000000,0.000000,1.000000</FORWARD>

<UP>0.000000,1.000000,0.000000</UP>

<POSITION>-0.900000,-0.000000,0.000000</POSITION>

<SCALE>1.000000</SCALE>

</TRANSFORM>

<MESHREF>0</MESHREF>

</OBJECT>

<BACKGROUND>

<BACKCOLOR>1.0,1.0,1.0</BACKCOLOR>

</BACKGROUND>

</WORLD>

Figure 22: A simple XGL file.

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

Appendix C: TheMPEG-4 Receiver Architecture

Thedecoder model enablesa transmitter to predict how a receiving
terminal wil l behave in terms of buffer management and synchro-
nization when reconstructing the transmitted scene. The decoder
model includesa timing model and buffer model.

Transmission / Storage Medium

(PES)
MPEG2

TS

(RTP)
UDP
IP

AAL2
ATM

FlexMux

Object
Descriptor

Scene
Graph

Description

AV
Object
Data

Upstream
Data

Compression
Layer

SL

Composition and Rendering

1
12

2

3

4
5

67
8

9

10

11 MPEG-4 is
wonderful!

Sync
Layer

Delivery
Layer

Elementary
Stream Interface

Elementary
Streams

SL Packetized
Streams

Requests

Multiplexed
Streams

DMIF
Application Interface

...

SL SL

FlexMux

SL SL SL SL SL

Display and User Interaction

Video Playback (with
multiple audio

tracks)
Applications

(e.g. web browser)
....

Figure23: Systemview of an MPEG-4 receivingterminal.

The timing model defines the temporal behavior of the scene.
Two sets of timing information are defined MPEG-4: clock refer-
ences and time stamps. The clock reference conveysthe time base
to the receiving terminal. Timestampspermit thescheduling of de-
coding or composition for individual mediaobjects.

The buffer model enables the transmitter to monitor and con-
trol the buffer resources that are needed to decode the elementary
streams. The buffer model permits the scheduling of data transmis-
sion in a way that insures that buffers at the receiving end to not
underflow or overflow.

As shown in Figure 23, instead of using its own transport mech-
anisms, MPEG-4 is designed to exploit existing transport protocols
to transmit and receivecontent via streams. For example, MPEG-4
content can be delivered using: the Asynchronous Transfer Mode
(ATM) Adaptation Layer2 (AAL2), an MPEG-2 stream, or trans-
port control / Internet protocol (TCP/IP). MPEG-4 specifies a mul-
tiplexing tool called FlexMux to recover elementary streams from
multiplexed streams. The MPEG-4 interface to the Delivery layer
is the DMIF Application Interface(DAI). The Delivery Multimedia
Integration Framework (DMIF) providesan abstraction of network,
broadcast and file access in order to allow content providers to de-
velop content oncefor different transport technology instances.

MPEG-4 specifies mechanisms to describe, group, and to syn-
chronizeelementary streams. Each elementary stream containsonly

one type of data. Individual streams or groupsof streams are iden-
tified and characterized by object descriptors. Object descriptors
are themselvesdelivered by elementary streams. Themetadatacon-
tained in object descriptorsindicates the format of astream and pa-
rameters required for decoding. Object descriptors may be used to
select a subset of its referenced streams for a particular representa-
tion or encodingof amediaobject.

The description of the scenegraph and the description of the el-
ementary streams are separated in MPEG-4. Media objects in the
scene graph are not concerned with the details of the the streams
used to deliver their content. Likewise, streams know nothing of
the scene graph structure. Object descriptors are used to connect
streams with media objects. The separation of media objects and
streams facilit ates theauthoring of content by separating thedetails
of aparticular mediastream fromtheconstruction(authoring) of the
scenegraph.

The synch layer (SL) extracts timing information (clock refer-
ences) and synchronization data (time stamps) from SL-packetized
streamsandreconstructselementary streamsfrom individual access
units (e.g. a frame of video). The operations performed by the SL
are not specific to a particular media type, for example, the mecha-
nisms used to create SL-packetized streams for video are the same
as thoseused for audio.

Elementary streams are decoded using stream-specific decoders
in the compression layer. The receiving terminal then composes
and renders the decoded streams. Finally, the system architecture
permits the receiving terminal to communicatewith the transmitter
through abackupchannel.

MPEG-4 contains a mechanism for intellectual property man-
agement and protection (IPMP). Although beyond thescopeof this
course, IPMPprovidesimportant functionality for content providers
to restrict the use of their material. For example, this mechanism
could be used to restrict the capabilit y of a receiver to locally store
a3D mesh.

c The Eurographics Association 2000.

Martin, Klosowski, Horn / 3D Rendering Over Networks

c The Eurographics Association 2000.

