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Abstract—Large-scale scenes’ processing has become the major 
trend today. We mainly address the online walkthrough of 
Large-scale underground (UG) scenes in this paper. Taking 
into account the characteristics of UG scene, we first propose a 
lightweight preprocessing to optimize the raw UG scene and 
unify the raw data with scene, sub-scene and simple model. 
Then we generate a three-layered grid structure for organizing 
the scene to facilitate the visibility culling and data accessing. 
Finally, we design two scene management strategies, named 
SOI-ExteriorShell and Portal-InteriorShell, and integrate our 
methods in an experimental prototype. The experimental result 
shows that our method can remove a large amount of 
redundancies from the raw data, reduce resource consumption 
greatly and make it possible to walkthrough in large-scale UG 
scenes online without any web browsers plugins.  
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I.  INTRODUCTION 
Nowadays, web page has been regarded as the most 

popular way for information sharing. The number of Web3D 
based application is growing rapidly and it is also urgently 
required to display large-scale 3D scenes over the internet, 
especially with web pages. However, the web browsers, not 
like standalone software, cannot afford the resource 
consumption for rendering and processing large-scale 3D 
scenes in real-time. Moreover, though the bandwidth of the 
internet connection is increasing rapidly, it is still a great 
challenge to transfer such a tremendous amount of data. In 
this paper, we present an online walkthrough solution for 
large-scale Underground (UG) scenes.  

UG scenes, including UG buildings with complex indoor 
and outdoor structures, are mainly the man-made 
constructions located below the ground surface, such as UG 
station, UG supermarket etc. In UG scenes, there are simple 
objects like UG pipelines and complex buildings which 
consist of a great many polygon data that demonstrate the 
buildings in three kinds of shells: interior shell, exterior shell 
and connecting shell. Interior shells depict the room 
boundaries respectively inside the exterior shell which stands 
for the boundary surface of an entire building. The 
connecting shell is the bounded connecting parts between 
shells or buildings. Generally, these three kinds of shells are 
primary structured with ceiling, floor and wall by sets of 

polygons. The relations between two shells, if exists, are also 
depicted by shared polygons. Therefore, the raw UG scenes 
have some defective characteristics: 

(1) Redundant. Many duplicated edge, vertex and geo- 
metrically reused model always exist in the raw scenes. 

(2) Unstructured. Logically the scene primary contains 
three kinds of shells, but actually are just polygons. Shells 
cannot be extracted explicitly from unstructured polygons. 

(3) Inefficient. It is very inefficient to use raw UG model 
in scene management, e.g. just locating a shell needs to 
search thousands of polygons.  

To walkthrough the UG scenes, we must optimize them 
in advance. In this optimization, not only data structure but 
also scene management should be considered. 

II. RELATED WORK 
There are a great many studies related to 3D scenes 

rendering. Scene graph has been widely used in e.g. OpenSG, 
Blue-c etc [1-2]. To improve their performance, Song et al. 
[3] extended OpenSG for processing continuous simulation 
data. Open Scene Graph (OSG) also extended them by 
integrating plugins for file operation [4]. Li et al. [5] 
optimized the current grid organization algorithm with a new 
structure named Optimized Recursive Grids (ORG). Stein et 
al. [6] discussed the spatial data structures in 3D web 
environment and showed the importance of combination of 
data structure and visibility for web3D. 

Meanwhile, some researches focus on reducing the data 
amount of scenes.  Cohen-Or, Kasik etc. mainly related this 
work on visibility analysis [7-10]. They improved rendering 
by scene culling, graphics hardware accelerating, area of 
interest, etc. Fisher and Wen et al. addressed the similarities 
between models [11-12]. Their methods can be used to 
identify the recurred object so as to remove redundancies.  

Many other related studies are also conducted. Zheng et 
al. [13], Deng et al. [14] and Limper et al. [15] investigated 
their work mainly about network direction, from ray tracing, 
demand loading strategy, a streamable format for 3D data 
transmission etc.  [16-19] mainly focused on data caching, 
distributed scene oriented service development and efficient 
data exchange architecture.  

In spite of the considerable related researches, many of 
them lack in considering the characteristics of UG scenes or 
remote visualization over the internet. 

III. OVERVIEW 
In this work, on considering the characteristic of the raw 

UG scene data, we primarily introduce our approach in 3 
parts (the first 3 steps as shown in Fig. 1). 

a) Lightweighted preprocessing. To remove the re- 
dundancies and reconstruct the relations of shells, we unify 
the raw data with a shell-based format. (Section IV) 

b) Scene graph generation. With the shell-based data, 
we generate a three-layered grid structure to organize the 
whole scene. (Section V) 
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Figure 1. Pipeline of our paper 

c) Scene management strategy design. We design 
two scene management strategies to respectively 
correspond to outdoor and indoor scenes. (Section VI) 

IV. LIGHTWEIGHTED PREPROCESSING 
There are two steps in this section: shell extraction and 

redundancies removal. 

A. Shell extraction 
Because of their similar internal structure, we consider 

every UG building as a sub-scene, which contains many 
shells. Shell extraction is a way to reconstruct the input 
polygons into shells and their topological relations. These 
shells are therefore deemed to be child models of UG 
buildings. Fig. 2 shows a building and its extracted shells 
with 1 exterior shell (W1), 7 interior shells (N1 to N7), and 
10 portals (C1 to C10). 

 
Figure 2. A shell extraction example 

For UG pipelines, due to their linear spatial shape and 
the fact that they are always related to road sections, we 
hereby handle them as the child of corresponding road 
section and regard the road section as sub-scenes. 

B. Redundancies removal 
There are many redundant data which needs to be 

removed, e.g. some reused standard models in UG scenes, 
as illustrated in Fig. 3 and duplicated edge/polygons. 

 
Figure 3. Standard model examples in UG scene 

In this section, we mainly focus on these two kinds of 
redundancies:  reused model and extruded vertex. For 
reused model, such as two shells or two standard models 

in Fig. 3, we directly use the voxel shape description 
(VSD) [12] to detect the repeated models. For extruded 
vertex, a simplification of geometric operations is 
employed. 

With the preprocessing, the two kinds of sub-scenes: 
building and road sections, are uniquely identified by their 
IDs. Their child models are identified by names and 
connected with relations. Though the redundant data has 
been removed, the structure is preserved.   

V. SCENE STRUCTURE GENERATION 
In large-scale 3D scenes, the amount of data that needs 

to be processed is greatly depended on viewpoint position, 
sight range and other factors. Considering their different 
characteristics, we classify our scene into indoor and 
outdoor scenes. While roaming, we can switch between 
these two scenes upon the current viewpoint position. 

A. Three-layered Grid structure for Outdoor Scene 
We organized outdoor 3D scenes with a three-layered 

2D uniform grid structure, because the space of third 
dimension Z is so small comparing with the other two 
dimensions. Many researches in grid generation have 
existed, and we employ and improve the method [5] in our 
method because of its efficiency. 

(1) We decrease the involved polygons from all to the 
bottom ones for reducing the computational cost; 

(2) We only record the description file (DF) names or 
the model IDs to reduce the amount of loaded DF; 

(3) Our method is extended to support appending, 
deletion and updating models on the grid layer. 

 
Figure 4.  Three-layered grid structure for outdoor scene  

In the three-layered 2D uniform grid (Fig. 4), three 
layers are designed for different situation. The first layer 
SL is to control the amount of information currently 
loaded, so as to avoid the loaded information far beyond 
sight range. On SL, the names of DF from BL are recorded 
by SL’s unit cell. BL is the layer on which the Sector of 
interest (SOI) is implemented, and it is important for 
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determining the range of scene scheduling and collision 
detection. The third layer TL is a supplement layer to deal 
with the extreme case in which too many (tiny) sub-scenes 
are in the same BL’s cell and will lead to a sharp increase 
of the DF size. By TL, we can process this independently. 

The pseudo-code of our method for sub-scene deletion 
on the existed scene structure is as follows: 

Algorithm Sub-scene deletion from the existed scene structure
Input: Sub-scene ID, Scene structure DF 
Output: Scene structure DF after deletion process 
1.  bbegin 
2.    flag = FALSE; 
3.    ffor each DF on SL ddo 
4.      flag Locate the DF information on BL; 
5.      iif flag is TRUE tthen  
6.         goto line 10; 
7.   eend ffor 
8.    iif flag == FALSE tthen 
9.        goto line 23; 
10.     Locate the BL’s cell of the sub-scene to list LC; 
11.   ffor each element of LC ddo 
12.     Search the sub-scene ID; 
13.     iif searched tthen  
14.         Delete the ID number; 
15.         goto line 23; 
16.     iif searched the DF name on TL tthen 
17.        goto line 21; 
18.   eend ffor 
19.   iif searched nothing tthen 
20.       goto line 23; 
21.   iif  searched DF on TL tthen; 
22.      execute as line 10 to line 18; 
23. eend 

B. Shell-based Structure for Indoor Scene 
The strategy for indoor scene is Portal-InteriorShell 

detailed in VI-B. The goal is just to process the shells 
related with current shell. In this way, all the invisible 
shells can be culled away and the shell-based structure can 
be directly used to generate corresponding scene structure. 

VI. SCENE MANAGEMENT STRATEGY DESIGN 
To support the smooth walkthrough, we introduce two 

online management strategies in our methods. 

A. SOI-ExteriorShell Outdoor Scene Strategy 
When in large-scale outdoor scenes, because of the 

limit sight range, we are just interested in the visible area 
around our viewpoint. An appropriate strategy for 
managing interest area could filter out the invisible scene 
models [7-9] efficiently. Based on the scene structure, we 
build a sector region as our interest area (SOI, Fig. 5 (a)) 
which can be calculated based on the Field Of View 
(FOV) to minimize the resource. In SOI, all the IDs of 
sub-scenes are firstly loaded from DF and then the 
corresponding sub-scene data followed. The cell of SOI is 
coded as following: 

struct Grid_Cell {        
long     x, y;   //cell coordinate 
vector<string>     vID;   //IDs included 

} 
In the real world, the nearest object should be seen first. 

In our method, we resolve it by evaluation a priority by 

their position. In a simple manner, the cell’s priority w in 
our method is formulated as (1): 

w = | s.x – p.x | + |s.y – p.y |,                  (1) 
where p is the position of the viewpoint, and s is the cell’s 
center position inside SOI S. 

 
(a) Grid cells in SOI                          (b) Cells’ priorities in SOI 

Figure 5. Sector of interest 

While navigating, the SOI is updated while the 
viewpoint translating (Fig. 5). Firstly, the incremental cells 
in the near future are automatically forecasted, and pre-
loaded according to their priority value from (1). 
Secondly, the cells no longer in SOI will be released from 
memory to guarantee the constant memory footprint. 

B. Portal-InteriorShell Indoor Scene Strategy 
With the occlusion of roofs, walls, and floors, it is very 

different to navigate in indoor scenes with in outdoor ones. 
Because the visible spaces are always connected by 
“openings” or “portals”[7], we adopt a Portal-InteriorShell 
indoor scene strategy. 

In this strategy, the data scheduling and rendering is 
driven by portals. For an actual simulation, we also 
introduce the distances between viewpoint and portals of 
current shell to determine the appropriate time to load the 
necessary data. The distances are detected in real-time and 
can be presented as a brief formula (2): 

D = v * ( t + �t ),                                   (2) 
where v is the velocity of navigating. t is the elapsed time 
within data loading, and the �t depicts the time delay. 

Fig. 6 shows the progressive data load corresponding 
with the path in Fig.2. We can see that the amount of 
processing data is just the shells connected with the current 
shell directly. 

 
Figure 6. Progressive load along the path in Fig. 2 

VII. EXPERIMENT RESULT AND DISCUSSION 
To analyze our method, we implement a prototype in 

which we respectively select 100, 200, 500, 1000, 1500, 
2000, 2500, and 3000 models. And the sizes of the models 
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range from 50K to 7.1M. The hardware configuration is: 
Intel i5-3330 CPU, 2.0 GB RAM, NVIDIA GeForce 
610M and Windows 8 (64 bit). Initial settings are listed as 
follow: 8 cells for SOI radius, 6 models per cell, 90 
degrees for FOV, and 30 for max FPS. Fig. 7 and Fig. 8 
show the experiment result. 

 
 (a) FPS comparison                          (b) Memory comparison 

Figure 7. Performance comparison 

From Fig. 7, we can see that the FPS maintains around 
the max refresh rate with our method but drops sharply 
without our method. Especially when the number of 
models increases to 500, the FPS drops close to 0. And the 
similar improvements can also be found in memory 
footprint. We can conclude that the scene models have 
been sufficiently culled and the memory consumption can 
remain stable even though the complexity of scene grows. 

 
Figure 8. Snapshots from our experiment 

VIII. CONCLUSION 
Scene graph and its management play an important 

role in walkthrough of large-scale scenes. Based on the 
characteristics of UG scenes, we proposed a lightweight 
scene processing method which is composed of 3 main 
procedures: raw data lightweighting, scene structure 
reconstruction and scene management integration. Some 
other simplifications and improvements are made for 
improving efficiency. The experiment showed that our 
method can achieve both low resource consumption and 
high efficiency and can be easily extended to other 
scenarios similar to UG buildings. Finally, there are also 
some shortcomings that need further efforts, e.g. the 
method used for simplifying extruded shell just works in 
limit cases. To have a better lightweighting, we will have 
to analyze the shape and distribution of models further. 
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