
Web3D-based Online Walkthrough of Large-scale Underground Scenes

Xiaojun Liu, Ning Xie, Jinyuan Jia*
Department of Software engineering, School of Software

Engineering
Tongji University

Shanghai 201804, China
xjliu@126.com, ningxie@tongji.edu.cn, yjia@tongji.edu.cn

Abstract—Large-scale scenes’ processing has become the major
trend today. We mainly address the online walkthrough of
Large-scale underground (UG) scenes in this paper. Taking
into account the characteristics of UG scene, we first propose a
lightweight preprocessing to optimize the raw UG scene and
unify the raw data with scene, sub-scene and simple model.
Then we generate a three-layered grid structure for organizing
the scene to facilitate the visibility culling and data accessing.
Finally, we design two scene management strategies, named
SOI-ExteriorShell and Portal-InteriorShell, and integrate our
methods in an experimental prototype. The experimental result
shows that our method can remove a large amount of
redundancies from the raw data, reduce resource consumption
greatly and make it possible to walkthrough in large-scale UG
scenes online without any web browsers plugins.

Keywords- lightweight; large-scane; underground scene;
Web3D

I. INTRODUCTION
Nowadays, web page has been regarded as the most

popular way for information sharing. The number of Web3D
based application is growing rapidly and it is also urgently
required to display large-scale 3D scenes over the internet,
especially with web pages. However, the web browsers, not
like standalone software, cannot afford the resource
consumption for rendering and processing large-scale 3D
scenes in real-time. Moreover, though the bandwidth of the
internet connection is increasing rapidly, it is still a great
challenge to transfer such a tremendous amount of data. In
this paper, we present an online walkthrough solution for
large-scale Underground (UG) scenes.

UG scenes, including UG buildings with complex indoor
and outdoor structures, are mainly the man-made
constructions located below the ground surface, such as UG
station, UG supermarket etc. In UG scenes, there are simple
objects like UG pipelines and complex buildings which
consist of a great many polygon data that demonstrate the
buildings in three kinds of shells: interior shell, exterior shell
and connecting shell. Interior shells depict the room
boundaries respectively inside the exterior shell which stands
for the boundary surface of an entire building. The
connecting shell is the bounded connecting parts between
shells or buildings. Generally, these three kinds of shells are
primary structured with ceiling, floor and wall by sets of

polygons. The relations between two shells, if exists, are also
depicted by shared polygons. Therefore, the raw UG scenes
have some defective characteristics:

(1) Redundant. Many duplicated edge, vertex and geo-
metrically reused model always exist in the raw scenes.

(2) Unstructured. Logically the scene primary contains
three kinds of shells, but actually are just polygons. Shells
cannot be extracted explicitly from unstructured polygons.

(3) Inefficient. It is very inefficient to use raw UG model
in scene management, e.g. just locating a shell needs to
search thousands of polygons.

To walkthrough the UG scenes, we must optimize them
in advance. In this optimization, not only data structure but
also scene management should be considered.

II. RELATED WORK
There are a great many studies related to 3D scenes

rendering. Scene graph has been widely used in e.g. OpenSG,
Blue-c etc [1-2]. To improve their performance, Song et al.
[3] extended OpenSG for processing continuous simulation
data. Open Scene Graph (OSG) also extended them by
integrating plugins for file operation [4]. Li et al. [5]
optimized the current grid organization algorithm with a new
structure named Optimized Recursive Grids (ORG). Stein et
al. [6] discussed the spatial data structures in 3D web
environment and showed the importance of combination of
data structure and visibility for web3D.

Meanwhile, some researches focus on reducing the data
amount of scenes. Cohen-Or, Kasik etc. mainly related this
work on visibility analysis [7-10]. They improved rendering
by scene culling, graphics hardware accelerating, area of
interest, etc. Fisher and Wen et al. addressed the similarities
between models [11-12]. Their methods can be used to
identify the recurred object so as to remove redundancies.

Many other related studies are also conducted. Zheng et
al. [13], Deng et al. [14] and Limper et al. [15] investigated
their work mainly about network direction, from ray tracing,
demand loading strategy, a streamable format for 3D data
transmission etc. [16-19] mainly focused on data caching,
distributed scene oriented service development and efficient
data exchange architecture.

In spite of the considerable related researches, many of
them lack in considering the characteristics of UG scenes or
remote visualization over the internet.

III. OVERVIEW
In this work, on considering the characteristic of the raw

UG scene data, we primarily introduce our approach in 3
parts (the first 3 steps as shown in Fig. 1).

a) Lightweighted preprocessing. To remove the re-
dundancies and reconstruct the relations of shells, we unify
the raw data with a shell-based format. (Section IV)

b) Scene graph generation. With the shell-based data,
we generate a three-layered grid structure to organize the
whole scene. (Section V)

2015 IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications

1550-6525/15 $31.00 © 2015 IEEE

DOI 10.1109/DS-RT.2015.30

104

Figure 1. Pipeline of our paper

c) Scene management strategy design. We design
two scene management strategies to respectively
correspond to outdoor and indoor scenes. (Section VI)

IV. LIGHTWEIGHTED PREPROCESSING
There are two steps in this section: shell extraction and

redundancies removal.

A. Shell extraction
Because of their similar internal structure, we consider

every UG building as a sub-scene, which contains many
shells. Shell extraction is a way to reconstruct the input
polygons into shells and their topological relations. These
shells are therefore deemed to be child models of UG
buildings. Fig. 2 shows a building and its extracted shells
with 1 exterior shell (W1), 7 interior shells (N1 to N7), and
10 portals (C1 to C10).

Figure 2. A shell extraction example

For UG pipelines, due to their linear spatial shape and
the fact that they are always related to road sections, we
hereby handle them as the child of corresponding road
section and regard the road section as sub-scenes.

B. Redundancies removal
There are many redundant data which needs to be

removed, e.g. some reused standard models in UG scenes,
as illustrated in Fig. 3 and duplicated edge/polygons.

Figure 3. Standard model examples in UG scene

In this section, we mainly focus on these two kinds of
redundancies: reused model and extruded vertex. For
reused model, such as two shells or two standard models

in Fig. 3, we directly use the voxel shape description
(VSD) [12] to detect the repeated models. For extruded
vertex, a simplification of geometric operations is
employed.

With the preprocessing, the two kinds of sub-scenes:
building and road sections, are uniquely identified by their
IDs. Their child models are identified by names and
connected with relations. Though the redundant data has
been removed, the structure is preserved.

V. SCENE STRUCTURE GENERATION
In large-scale 3D scenes, the amount of data that needs

to be processed is greatly depended on viewpoint position,
sight range and other factors. Considering their different
characteristics, we classify our scene into indoor and
outdoor scenes. While roaming, we can switch between
these two scenes upon the current viewpoint position.

A. Three-layered Grid structure for Outdoor Scene
We organized outdoor 3D scenes with a three-layered

2D uniform grid structure, because the space of third
dimension Z is so small comparing with the other two
dimensions. Many researches in grid generation have
existed, and we employ and improve the method [5] in our
method because of its efficiency.

(1) We decrease the involved polygons from all to the
bottom ones for reducing the computational cost;

(2) We only record the description file (DF) names or
the model IDs to reduce the amount of loaded DF;

(3) Our method is extended to support appending,
deletion and updating models on the grid layer.

Figure 4. Three-layered grid structure for outdoor scene

In the three-layered 2D uniform grid (Fig. 4), three
layers are designed for different situation. The first layer
SL is to control the amount of information currently
loaded, so as to avoid the loaded information far beyond
sight range. On SL, the names of DF from BL are recorded
by SL’s unit cell. BL is the layer on which the Sector of
interest (SOI) is implemented, and it is important for

105

determining the range of scene scheduling and collision
detection. The third layer TL is a supplement layer to deal
with the extreme case in which too many (tiny) sub-scenes
are in the same BL’s cell and will lead to a sharp increase
of the DF size. By TL, we can process this independently.

The pseudo-code of our method for sub-scene deletion
on the existed scene structure is as follows:

Algorithm Sub-scene deletion from the existed scene structure
Input: Sub-scene ID, Scene structure DF
Output: Scene structure DF after deletion process
1. bbegin
2. flag = FALSE;
3. ffor each DF on SL ddo
4. flag Locate the DF information on BL;
5. iif flag is TRUE tthen
6. goto line 10;
7. eend ffor
8. iif flag == FALSE tthen
9. goto line 23;
10. Locate the BL’s cell of the sub-scene to list LC;
11. ffor each element of LC ddo
12. Search the sub-scene ID;
13. iif searched tthen
14. Delete the ID number;
15. goto line 23;
16. iif searched the DF name on TL tthen
17. goto line 21;
18. eend ffor
19. iif searched nothing tthen
20. goto line 23;
21. iif searched DF on TL tthen;
22. execute as line 10 to line 18;
23. eend

B. Shell-based Structure for Indoor Scene
The strategy for indoor scene is Portal-InteriorShell

detailed in VI-B. The goal is just to process the shells
related with current shell. In this way, all the invisible
shells can be culled away and the shell-based structure can
be directly used to generate corresponding scene structure.

VI. SCENE MANAGEMENT STRATEGY DESIGN
To support the smooth walkthrough, we introduce two

online management strategies in our methods.

A. SOI-ExteriorShell Outdoor Scene Strategy
When in large-scale outdoor scenes, because of the

limit sight range, we are just interested in the visible area
around our viewpoint. An appropriate strategy for
managing interest area could filter out the invisible scene
models [7-9] efficiently. Based on the scene structure, we
build a sector region as our interest area (SOI, Fig. 5 (a))
which can be calculated based on the Field Of View
(FOV) to minimize the resource. In SOI, all the IDs of
sub-scenes are firstly loaded from DF and then the
corresponding sub-scene data followed. The cell of SOI is
coded as following:

struct Grid_Cell {
long x, y; //cell coordinate
vector<string> vID; //IDs included

}
In the real world, the nearest object should be seen first.

In our method, we resolve it by evaluation a priority by

their position. In a simple manner, the cell’s priority w in
our method is formulated as (1):

w = | s.x – p.x | + |s.y – p.y |, (1)
where p is the position of the viewpoint, and s is the cell’s
center position inside SOI S.

(a) Grid cells in SOI (b) Cells’ priorities in SOI

Figure 5. Sector of interest

While navigating, the SOI is updated while the
viewpoint translating (Fig. 5). Firstly, the incremental cells
in the near future are automatically forecasted, and pre-
loaded according to their priority value from (1).
Secondly, the cells no longer in SOI will be released from
memory to guarantee the constant memory footprint.

B. Portal-InteriorShell Indoor Scene Strategy
With the occlusion of roofs, walls, and floors, it is very

different to navigate in indoor scenes with in outdoor ones.
Because the visible spaces are always connected by
“openings” or “portals”[7], we adopt a Portal-InteriorShell
indoor scene strategy.

In this strategy, the data scheduling and rendering is
driven by portals. For an actual simulation, we also
introduce the distances between viewpoint and portals of
current shell to determine the appropriate time to load the
necessary data. The distances are detected in real-time and
can be presented as a brief formula (2):

D = v * (t + �t), (2)
where v is the velocity of navigating. t is the elapsed time
within data loading, and the �t depicts the time delay.

Fig. 6 shows the progressive data load corresponding
with the path in Fig.2. We can see that the amount of
processing data is just the shells connected with the current
shell directly.

Figure 6. Progressive load along the path in Fig. 2

VII. EXPERIMENT RESULT AND DISCUSSION
To analyze our method, we implement a prototype in

which we respectively select 100, 200, 500, 1000, 1500,
2000, 2500, and 3000 models. And the sizes of the models

106

range from 50K to 7.1M. The hardware configuration is:
Intel i5-3330 CPU, 2.0 GB RAM, NVIDIA GeForce
610M and Windows 8 (64 bit). Initial settings are listed as
follow: 8 cells for SOI radius, 6 models per cell, 90
degrees for FOV, and 30 for max FPS. Fig. 7 and Fig. 8
show the experiment result.

 (a) FPS comparison (b) Memory comparison

Figure 7. Performance comparison

From Fig. 7, we can see that the FPS maintains around
the max refresh rate with our method but drops sharply
without our method. Especially when the number of
models increases to 500, the FPS drops close to 0. And the
similar improvements can also be found in memory
footprint. We can conclude that the scene models have
been sufficiently culled and the memory consumption can
remain stable even though the complexity of scene grows.

Figure 8. Snapshots from our experiment

VIII. CONCLUSION
Scene graph and its management play an important

role in walkthrough of large-scale scenes. Based on the
characteristics of UG scenes, we proposed a lightweight
scene processing method which is composed of 3 main
procedures: raw data lightweighting, scene structure
reconstruction and scene management integration. Some
other simplifications and improvements are made for
improving efficiency. The experiment showed that our
method can achieve both low resource consumption and
high efficiency and can be easily extended to other
scenarios similar to UG buildings. Finally, there are also
some shortcomings that need further efforts, e.g. the
method used for simplifying extruded shell just works in
limit cases. To have a better lightweighting, we will have
to analyze the shape and distribution of models further.

ACKNOWLEDGMENT
We thank the anonymous reviewers for their valuable

comments firstly. Meanwhile, this work was also
supported by Projects of National Natural Science
Foundation (No.61272276), National 12th five years Plan

for Science & Technology Support (No.2012BAC11B00-
04-03), The Research Fund for the Doctoral Program of
Higher Education (No.20130072110035), Changbai
Valley Talent Plan of Changchun National Hi-Tech
Industrial Development Zone (No.3-2013006), and Key
project in scientific and technological of Jilin province
(No.20140204088GX).

REFERENCES
[1] D. Reiners, “OpenSG: A scene graph system for flexible and

efficient realtime rendering for virtual and augmented reality
applications”, PhD theses, Darmstadt, TU, Germany, 2002.

[2] M. Naef, E. Lamboray, O. Staadt, and M. Gross, “The blue-c
distributed scene graph”, Proc. of the workshop on Virtual
environments, Zurich, Switzerland, 2003, pp. 125-133.

[3] I. Song, and J. Yang, “A scene graph based visualization method
for representing continuous simulation data”, Comput. in Industry,
2011, 62(3): 301-310.

[4] D. Burns, and R. Osfield, “Open scene graph a: Introduction, b:
Examples and applications”, Proc. of IEEE Virtual Reality,
Washington, DC, 2004, pp. 265-265.

[5] J. Li, and W. Wang, “Optimizing Grid Construction in Linear
Complexity”, J. of Software, 2011, 22 (10): 2488-2496 (in
Chinese).

[6] C. Stein, M. Limper, and A. Kuijper. “Spatial data structures for
accelerated 3D visibility computation to enable large model
visualization on the web”, Proc. of the 19th International ACM
Con. on 3D Web Technol. 2014.

[7] D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Durand, “A
Survey of Visibility for Walkthrough Applications”, IEEE Trans.
Vis. Comput. Graph., 2003, 9(3):412-431.

[8] D. Kasik. “Visibility-guided rendering to accelerate 3D graphics
hardware performance”, ACM SIGGRAPH 2007 courses. 2007.

[9] J. Jia, W. Wang, M. Wang, C. Fan, C. Zhang, and Y. Yu, “Multi-
layered Incremental & Scalable Sector of Interest(MISSOI) Based
Efficient Progressive Transmission of Large-scale DVE Scenes”,
Chin. J. of Comput., 2014, 37(6):1324-1334 (in Chinese).

[10] C. Stein, et al. “hare3d: Rendering Large Models in the Browser” ,
WebGL Insights (2015): 317.

[11] M. Fisher, and P. Hanrahan, “Context-based search for 3D
models”, ACM Trans. on Graph., 2010, 29(6):182.

[12] L. Wen, N. Xie, J. Jia, “Fast accessing Web3D contents using
lightweight progressive meshes”, Computer Animation and Virtual
Worlds In press, 2015.

[13] Z. Zheng, E. Prakash, and T. K. Y. Chan, “Interactive View-
Dependent Rendering over Networks”, IEEE Trans. Vis. Comput.
Graph., 2008, 14(3):576-589.

[14] Y. Deng, and R. W. H. Lau, “On Delay Adjustment for Dynamic
Load Balancing in Distributed Virtual Environments”, IEEE Trans.
Vis. Comput. Graph., 2012, 18(4): 529-537.

[15] M. Limper, et al. “SRC-a streamable format for generalized web-
based 3D data transmission”, Proc. of the 19th International ACM
Con. on 3D Web Technol. 2014.

[16] M. Limper, et al. “The POP buffer: Rapid progressive clustering
by geometry quantization”, Computer Graphics Forum. Vol. 32.
No. 7. 2013.

[17] A. Schiefer, et al. “Service-oriented scene graph manipulation”,
Proc of the 15th International ACM Con. on 3D Web Technol.
2010.

[18] Y. Jung, et al. “Declarative 3D Approaches for Distributed Web-
based Scientific Visualization Services”, Dec3D. 2012.

[19] T. Franke, et al. “VCoRE: a web resource oriented architecture for
efficient data exchange”, Proc. of the 18th International ACM
Con. on 3D Web Technol. 2013.

107

