
Operation-based Update Propagation
in a Mobile File System

LEE, Yui-Wah

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

in Computer Science and Engineering

Thesis Committee:

Leung, Kwong-Sak

Lui, Chi-Shing, John

Wong, Man-Hon

Satyanarayanan, Mahadev (Carnegie Mellon University)

cThe Chinese University of Hong Kong

January 2000

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s)

intending to use a part or the whole of the materials in this thesis in a proposed publication

must seek copyright release from the Dean of the Graduate School.

For Wing

UMI Keywords:

Distributed File Systems, Mobile Computing, Operation-based Update Propagation,

Surrogate, Forward Error Correction.

Revision History:

Submission for examination - January 26, 2000

University Offical Version (Version 6.0) - May 9, 2000

Minor Revision (Version 6.1) - June 28, 2000

Abstract

This dissertation addresses a bottleneck problem in mobile file systems: the propagation

of updated large files from a weakly-connected client to a server. It proposes a new and

more efficient mechanism called operation-based update propagation, or operation

shipping. In the new mechanism, the client ships the user operation that updated the

large files, rather than the files themselves, across the weak network. (In contrast,

existing mechanisms use value shipping and ship the files.) The user operation is sent

to a surrogate client that is strongly connected to the server. The surrogate replays

the user operation, re-generates the files, and checks whether they are identical to the

originals. If so, it will send the files to the server on behalf of the client. If not, it

will report the failure to the client, which will then fall back to use value shipping to

propagate the files. Note that the new mechanism neither compromises correctness nor

hampers server scalability.

There are two types of operation shippings: application-transparent and

application-aware. Their feasibilities and benefits have been demonstrated by the

design, implementation, and evaluation of three realistic prototypes. These prototypes

are extended from three existing systems: the Coda File System, the Bourne Again

Shell (bash), and the GIMP (an image application). The bash shell is chosen as

an example interactive shell that works with Coda in application-transparent operation

shipping; the GIMP is chosen as an example interactive application that works with

Coda in application-aware operation shipping. In the former case, many existing non-

interactive applications do not need to be modified for being involved in operation

ii

iii

shipping; in the latter case, the existing interactive applications do need some moderate

modifications.

The prototypes have been evaluated using controlled experiments. The experiments

have demonstrated the huge performance improvements of operation shipping, which

ranged from 40 percents to nearly three orders of magnitude in terms of reduced

network traffic and elapsed time.

Besides, this work has made the following three main contributions: techniques

for fixing non-repeating side effects (a novel use of forward error correction, and

the technique of temporary-file renaming), a technique for re-enabling the use

of cancellation optimization with operation shipping, and a study on the design

alternatives for the support of application-aware operation shipping.

iv

Acknowledgments

Throughout these four years, there were hurdles and difficulties, but I have been lucky

that helping hands were always around.

First, I must thank my supervisor, Professor Kwong-Sak Leung. I have learned a

lot from him. Technical matters aside, I have learned from him much wisdom about

life. Also, even though he has a very busy schedule, he is always available for help and

advice. Most importantly, he has given me a free hand to pursue what really interests

me. Without his open-mindedness, this thesis could not have been possible.

I am also in deep gratitude to Professor M. Satyanarayanan (or Satya, as we usually

affectionately call him) in Carnegie Mellon University. He has been a constant source

of advice and support for me, from thesis matters to career planning. He is really

a great mentor and a true friend of mine. He always gives me the most appropriate

advice – even if it might not be to his ultimate benefit. Furthermore, he has invited me

to visit Coda group in CMU for one year, which proved to be a turning point of my

research career. Also, I am honored that Satya agrees to serve in my thesis committee.

I must express my appreciation to Professor John C.S. Lui and Professor Man-

Hon Wong. They both serve in my thesis committee and have been teachers and friends

of mine for many years.

In CMU, I had the chance to work with the Coda and Odyssey groups. I believe

they are among the best computer-science research groups in the world. I am grateful

for the help of the many current and past members of the two groups: Bob Baron,

Peter Braam, Anne Byrne, Maria Ebling, Tracy Farbacher, Jason Flinn, Jan Harkes,

Qi Lu, Lily Mummert, Dushyanth Narayanan, Brian Noble, Henry Pierce, Josh Raiff,

v

vi

Roy Taylor, Eric Tilton, and Kelvin Walker. I must especially mention David Eckhardt.

He is one of the greatest guys that I have met in Pittsburgh. Also, I am indebted to

Jay Kistler, Puneet Kumar, Hank Mashburn, and David Steere. Although they have

left the Coda group by the time I was there, their contributions to Coda and RVM

definitely have enlightened me a lot.

Many other friends and colleagues of mine have provided me great support

throughout the years, and the following is an incomplete list. In CUHK: Lui-Yuen Lai,

Alan S. H. Lam, Fiona N. Lam, Hon-Man Law, Kim-Wai Law, Wai-Shing Luk,

Wallace S. H. Or, Angus T. T. Siu, Oldfield K. Y. So, Peter T. S. Tam, Anita Y. Y. Wong,

Terence Y. B. Wong, Tien-Tsin Wong, Tony S. T. Wu, and Gang Xing. In CMU:

Armin Biere, Joaquin Fernandez, Chi-Keung Luk, Harry H. Y. Shum, Ye-Yi Yang,

Jie Yang, Wei-Yi Yang, and Yun-Shan Zhu.

I must also acknowledge Matt Mathis of Pittsburgh Supercomputer Center and Phil

Karn of Qualcomm, Inc. Matt gave me the idea of using forward error correction for

handling the non-repeating side effects of time stamps, and Phil allowed me to use his

package of Reed-Solomon Code in my prototype.

I am indebted to my parents, Chuen-Hing and Mui-Ying Lee, and my sister and

brothers, Yee-Fun, Ho-Wah, and Cheuk-Wah, for they have given me a family filled

with love and care.

Finally, my wife, Wing, deserves greater thanks than I can possibly give. She

encouraged me to pursue my PhD study, at a time when I was still in doubt. I often

think that she knows me better than I myself. Her supports for me, in various forms,

over the years have been enormous. For example, in 1996, I decided to visit CMU

for one year and would thus be separated from her. She did not complain; instead,

she supported me enthusiastically. We mitigated the hardship of separation by staying

together in all major vacations. For that she flew three times from Hong Kong to

Pittsburgh and earned 48,000 miles of mileage in one year! Without her love and

sacrifice, I could never have come this far. Wing, I love you.

Contents

1 Introduction 1

1.1 Distributed File Systems . 2

1.2 The Challenge of Mobile Computing 4

1.3 Mobile File Systems . 6

1.3.1 Disconnected Operation . 6

1.3.2 Weakly-connected Operation 7

1.4 Update Propagation of Files . 9

1.5 The Thesis . 11

1.5.1 Motivation . 11

1.5.2 Thesis Statement . 13

1.5.3 Validation of the Thesis . 13

1.6 Alternative Solutions . 14

1.7 Document Roadmap . 14

2 Coda Background 15

2.1 Architectural Features Inherited from AFS-2 16

2.1.1 Careful Distinction of Servers and Clients 16

2.1.2 Cache Structure . 19

2.1.3 Callback Cache-Coherence Scheme 20

2.1.4 Volumes . 21

2.2 Server Replication . 22

vii

CONTENTS viii

2.2.1 VSG and AVSG . 22

2.2.2 Optimistic Replication . 23

2.2.3 Version Vector . 23

2.2.4 Replica-Control Algorithm 24

2.2.5 Resolution and Repair . 25

2.2.6 Replicated Server and Callbacks 27

2.3 Disconnected Operation . 27

2.3.1 Hoarding . 29

2.3.2 Emulation . 29

2.3.3 Reintegration . 36

2.4 Weakly-connected Operation . 37

2.4.1 Overview of Trickle Reintegration 38

2.4.2 Structural Modification . 38

2.4.3 Aging Window of CML . 39

2.4.4 Object-level Concurrency Control 41

2.4.5 Chunks and Fragments . 41

2.4.6 Other Changes . 42

2.5 Chapter Summary . 43

3 Architecture 44

3.1 Overview of Operation Shipping . 44

3.2 Surrogate . 47

3.2.1 Location of Re-executions 48

3.2.2 Properties of Surrogate . 49

3.2.3 Dedicated Surrogate . 50

3.3 User Operations and Values . 50

3.3.1 User Operations . 50

3.3.2 Values . 54

CONTENTS ix

3.4 Preserving Correctness . 54

3.4.1 Increasing the Likelihood of Repeating Operations 55

3.4.2 Adjusting the Status Information 57

3.4.3 Validation . 57

3.5 Application-transparent Versus Application-aware Operation Shipping 58

3.6 Chapter Summary . 59

4 Application-transparent Operation Shipping 61

4.1 Logging . 62

4.1.1 Modeling the Problem . 62

4.1.2 Design Alternatives . 63

4.1.3 Logging Mechanism: Using the bash Shell as an Example . 66

4.2 Shipping . 76

4.2.1 Modeling the Problem . 76

4.2.2 Requesting . 77

4.2.3 Replaying . 81

4.2.4 Validation . 85

4.2.5 Reintegration/Aborting . 87

4.2.6 Finalization . 88

4.3 Non-repeating Side Effects . 90

4.3.1 Side Effects Due to Time Stamps 92

4.3.2 Side Effects Due to Temporary Files 97

4.4 Complication with Cancellation Optimization 99

4.4.1 Dilemma: to cancel or not to cancel? 99

4.4.2 Solution: Keeping Information in Ghost Records 101

4.5 Chapter Summary . 103

5 Application-aware Operation Shipping 104

5.1 Analyzing the Problem . 105

CONTENTS x

5.1.1 Logging and Replaying Processes 105

5.1.2 One-shot and Iterative Execution Styles 106

5.1.3 Application-specific Commands 107

5.1.4 Design Considerations . 108

5.2 Design Alternative 1: One-shot Re-execution Style 116

5.2.1 The File-system Side . 117

5.2.2 The Application Side: Using the GIMP as a Case Study . . . 120

5.3 Design Alternative 2: Iterative Re-execution Style 126

5.3.1 Logging . 128

5.3.2 Shipping . 129

5.4 Chapter Summary . 132

6 Evaluation 133

6.1 Implementation Status . 133

6.2 Application-transparent Operation Shipping 135

6.2.1 Experimental Setup . 136

6.2.2 Transparency to Applications 136

6.2.3 Network Traffic Reduction 137

6.2.4 Reduction of Elapsed Time 139

6.3 Application-aware Operation Shipping 145

6.3.1 Experimental Setup . 145

6.3.2 Applicability of Operation Shipping 146

6.3.3 Network Traffic Reduction 149

6.3.4 Reduction of Elapsed Time 152

6.4 Chapter Summary . 157

7 Related Work 158

7.1 Related Work . 158

7.1.1 Use in Databases . 158

CONTENTS xi

7.1.2 Directory Operations . 159

7.1.3 Re-executions . 159

7.1.4 Isolation-Only Transactions 160

7.2 Alternative Solutions . 160

7.2.1 Delta Shipping . 160

7.2.2 Data Compression . 161

7.2.3 Logging Keystrokes . 163

7.2.4 Operation Shipping without Involving the File System 163

8 Conclusions 165

8.1 Contributions . 167

8.2 Future Work . 170

8.2.1 Flexible Logging Policies 170

8.2.2 Application Profiles . 171

8.2.3 Dynamic Decision . 171

8.2.4 More Interactive Applications as Case Studies 172

8.2.5 Handling Time Stamps That Change Length 172

8.2.6 Incorporation of Other Traffic Reduction Techniques 173

8.2.7 Re-execution in the Iterative Style 173

8.2.8 Shared Surrogate . 174

8.2.9 Downstream Operation Shipping 174

8.3 Final Remarks . 176

A Cost Model 177

List of Figures

1.1 Propagation Times for Files on Different Networks 10

2.1 4.3 BSD File System Interface . 18

2.2 Three Volume States for the Support of Disconnected Operation . . . 28

2.3 Coda Updates and System-Call Mapping 31

2.4 Type-independent Fields of CML Records 32

2.5 Type-specific Fields of CML Records 33

2.6 CML Optimization Templates . 34

2.7 Three Volume States for the Support of Weakly-connected Operation . 39

2.8 CML During Trickle Reintegration 40

3.1 Overview of Operation Shipping . 45

3.2 Fallback Mechanism: Value Shipping 46

3.3 Some Examples of User Operations 52

3.4 Some Examples of Interactive and Non-interactive Applications . . . 53

3.5 Two Different Types of Operation shipping 60

4.1 An Hypothetical Change of the System-Call Interface 64

4.2 Process-creation Activities of an Execution of the User Operation

“make” . 65

4.3 Extended Interface for Logging User Operations 67

4.4 Pseudo Code Showing the Sequence of Executing an Application . . . 69

xii

LIST OF FIGURES xiii

4.5 Logging of User Operations . 70

4.6 Two Possible States of User Operations 71

4.7 High-level View of the New CML Structure 73

4.8 Type-independent Fields of Augmented CML Records 74

4.9 User Operation Database and User Operation Records 75

4.10 Shipping Stage . 78

4.11 RPC Interface for Operation Shipping 81

4.12 Pseudo code of the Re-execution of an Non-interactive Application by

Venus . 82

4.13 Error Returns of the UserOpPropagate RPC 89

4.14 Applications that Exhibit Non-repeating Side Effects 91

4.15 Dumping Two DVI files in Octal Format 92

4.16 Use of Forward Error Correction . 96

4.17 CMLs of Two Executions of ar . 98

5.1 Application-specific Commands and In-memory States of a Process . 107

5.2 Two Different Granularities of Command Grouping 109

5.3 Problem of Restoration of Replaying Context 113

5.4 Two Proposed Solutions to the Problem of Restoration of Replaying

Contexts . 114

5.5 Iterative Re-execution Style . 115

5.6 Interface for Application-aware Operation Shipping - Design

Alternative 1 . 117

5.7 Logging of Application-specific Commands - Design Alternative 1 . . 118

5.8 Shipping Application-specific Commands - Design Alternative 1 . . . 119

5.9 GIMP in Action . 121

5.10 Examples of some Exported Functions 122

5.11 GIMP commands that can be logged and replayed by the prototype . . 124

LIST OF FIGURES xiv

5.12 An Example GIMP-specific Operation Log 125

5.13 Overview of the Mechanism of Application-aware Operation Shipping

Using the Second Design Alternative 127

5.14 Logging Interface - Design Alternative 2 128

5.15 RPC Interface for Application-aware Operation Shipping - Design

Alternative 2 . 130

5.16 Interface for Replaying Operations - Design Alternative 2 131

6.1 Selected Tests and Applications for Application-transparent Operation

Shipping . 135

6.2 Network Traffic Reductions by Application-transparent Operation

Shipping . 137

6.3 Network Traffic for Value Shipping and Application-transparent

Operation Shipping . 138

6.4 Elapsed Time for Value Shipping and Application-transparent

Operation Shipping. 140

6.5 Speedups for Update Propagation by Using Application-transparent

Operation Shipping - Table . 142

6.6 Speedups for Update Propagation by Using Application-transparent

Operation Shipping - Graph . 143

6.7 Elapsed Time vs. Bandwidth for Test T1 144

6.8 Elapsed Time vs. Bandwidth for Test T9 144

6.9 Selected Tests for Application-aware Operation Shipping (to be

continued) . 147

6.10 Selected Tests for Application-aware Operation Shipping (continued) 148

6.11 Network Traffic Reductions by Application-aware Operation Shipping 150

6.12 Network Traffic for Value Shipping and Application-aware Operation

Shipping . 151

LIST OF FIGURES xv

6.13 Elapsed Time for Value Shipping and Application-aware Operation

Shipping. 154

6.14 Speedups for Update Propagation by Using Application-aware

Operation Shipping - Table . 155

6.15 Speedups for Update Propagation by Using Application-aware

Operation Shipping - Graph . 155

6.16 Elapsed Time vs. Bandwidth for Test T30 156

6.17 Elapsed Time vs. Bandwidth for Test T34 156

7.1 Comparing the Traffic Reduction by Operation Shipping and Data

Compression . 162

Chapter 1

Introduction

Most computer users know the great value of distributed file systems (DFSs). However,

seldom of them use these systems with their mobile computers. There are deep

reasons behind this phenomenon. The key reason is that most of the DFSs have

been designed with the assumption that computers are connected together by strong

networks, which have high bandwidths and low latencies. This assumption is true

in an environment where the computers are stationary, but it is not true in an mobile

computing environment where many computers are mobile and do not have strong

network connectivities most of the time.

Since around 1990, designers have noted the needs to accommodate DFSs to the

new environment of mobile computing, and have achieved some successes. Concepts

such as disconnected operation and weakly connected operation have been vividly

prototyped and firmly accepted by the designer community. However, as of the time of

writing of this thesis, mobile file systems still have not been used by the mainstream.

Besides reasons of marketing, implementation, and user training, there are also

technical reasons: mobile file systems are still not good enough, and bottlenecks still

present. This dissertation addresses an important bottleneck: the update propagation of

large files over a weak network from a client to server, and it shows that the bottleneck

can be alleviated.

1

CHAPTER 1. INTRODUCTION 2

This chapter will set the context of the thesis. Starting with a discussion on

distributed file systems, it progressively “zooms in” to the bottleneck problem that this

thesis is addressing. It then motivates the key idea of the solution, highlights the major

research questions, and then states precisely the thesis claim. It will also mention

briefly the other alternative solutions to the same bottleneck problem, and present a

roadmap of the whole dissertation.

1.1 Distributed File Systems

If we ask some computer users why their computers need to be networked, they will

probably give you four answers: (1) to access the Internet – for exchanging email

messages, and for surfing the World Wide Web, etc; (2) to share expensive resources

such as laser printers; and (3) to share files with other users; and (4) to access the same

set of files from different locations. The first two answers should be self-explanatory,

and are beyond the scope of this thesis. This thesis is more concerned with the third

and fourth answers.

There are two approaches to sharing files: either the users explicitly transfer their

files to and from different computers, or they organize their files and their computer

systems around a distributed file system.

The first approach is useful only when the sharing is ad hoc in nature. When the

sharing is more frequent and systematic, explicitly transferring files would become too

tedious. Moreover, transferring a file over a network actually amounts to creating a

new copy of the file on the remote machine. When there are more than one copies of

a file, the problem of versioning follows. For example, many computer users should

have experienced the following: “Which copy of this file is the latest one?” “I edited

and added different things on both copies, how can I merge them?” “Have I mistakenly

edited the other copy but not this master copy? Some of my changes may be missing!”

For frequent and systematic sharing of files, a better approach is to use distributed

CHAPTER 1. INTRODUCTION 3

file systems, such as Sun Microsystems’s NFS [42, 37], Carnegie Mellon University’s

and IBM’s AFS [51, 13, 45], or the DCE Distributed File System [17].

DFSs are usually designed using a client–server model. Files and directories are

physically located in a server (or a group of servers). The server exports a file-system

service to its clients. The clients thus can mount the exported file-system on local

mount points. Once this is done, applications on the clients access the mounted remote

file system and the local file system using the same application programmer’s interface

(API). In other words, they treat the remote file system as if it is local.

As a result, a DFS decouples the logical view and the physical location of a stable

storage (usually a disk). When a user on a client machine instructs an application to

“save this file to the disk (of this machine),” the file is actually saved to a “disk” that

may physically be on a remote server machine.

There are many advantages of using DFSs.

� Location independency of stable storage. Many computer users use more than

one computers. For example, a user may use both her computer at work in

daytime and her computer at home at nighttime. Another example is the case

for the students in a university. They normally do not have dedicated machines.

Rather, when they go to a computing laboratory, they just use any machines

available there. Location independency is a very important advantage to these

users, because they do not need to bother with the physical location of their

working files and directories. Using DFSs, they can see the same logical view of

their files and directories on different machines.

� Sharing of information. Sometimes, we want to use a file without having to

make an explicit copy of it. One example is that a user Joe want to print a file

of another user Maria. If the file is stored in a DFS, with appropriate access

permissions, Joe can just go into Maria’s directory and print the file. Another

more important example is for system administrators. Every computer in an

CHAPTER 1. INTRODUCTION 4

organization needs many software packages. To install these packages, a naive

solution would be to make an explicit copy of them to each machine. With

modern disk technology, doing so is not too expensive in terms of hardware

cost. However, the maintenance of these machines will be a nightmare.

This is because whenever a software package is to be upgraded, the system

administrators will need to copy the new version explicitly to all machines again.

Therefore, they prefer a better solution for installing the software packages.

The better solution is to let the machines to share the same logical view of the

software packages by using DFSs.

� Delegation of tedious backup duties to the professionals. Most computer

users lack the time and the professional skills to handle many important

maintenance duties, most notably the backing up of their data. With DFSs, the

backing up of users’ data is easy, because the data are physically located on

the server machines, and the users can delegate the backup duties to the system

administrators.

1.2 The Challenge of Mobile Computing

Note that all the above advantages apply also to mobile computing environments. It

would be nice if mobile users can also enjoy the same advantages. However, they

cannot yet. This is because many DFSs are not quite well-adapted to mobile computing

environments. As we know, most DFSs were first developed in the late 70’s and the

early 80’s. At that time, the concept of mobile computing was almost unheard of.

The early DFSs were designed with a fundamental assumption that the client

machines and the server machines are connected by good networks. These networks

have the characteristics of high bandwidth, low latency, and high availability. Another

way to express the assumption is that the clients and the servers are strongly connected.

The assumption matches the reality well in the old computing environments, in which

CHAPTER 1. INTRODUCTION 5

the computers are stationary and are connected by local area networks (LANs), such

as the 10-Mbps Ethernet.

However, in the new era of mobile computing, the assumption needs to be changed.

Whereas most stationary computers in office environments are strongly connected,

many other mobile computers are not. These mobile computers include laptops,

notebooks, sub-notebooks, and PDAs (personal digital assistants), which are always

on the move. Also, they include home computers, which support the mobility of

users.1 Although strong networks are common in many offices, mobile computers

are usually weakly connected. Typical networking technologies that are available to

mobile computers are wireless modem (typically 9.6 Kbps), wired modem (typically

56 Kbps for downlink, and 38.4 Kbps for uplink), ISDN line (typically 64 Kbps),

ADSL line (typically 1.5 Mbps for downlink, and 64 Kbps for uplink), and wireless

LAN (typically 2 Mbps). Moreover, many mobile computers are occasionally totally

disconnected.

Some people may think that with the advances in wireless communication

technologies, mobile computers will soon be strongly connected too. I am pessimistic

on this prediction. Although the technologies of wireless communication advance

rapidly, so do the technologies of wired networks. So, there is always a disparity

in the bandwidths available to stationary and mobile computers. For example, when

the mainstream modem technology used by home users has recently been upgraded

from 28.8 Kbps to 56 Kbps, the Ethernet technology has also undergone a major

upgrade – the bandwidth has increased from 10 Mbps to 100 Mbps. In general, in

the foreseeable future, I believe that “Mobile elements are resource-poor relative to

static elements”[48] – the bandwidth available is one such resources.

At the same time, the average file size is growing with the processing, storage, and

communication capacity of computers. In 1981, a study [43] shows that 50% of the
1We probably can use other names such as “weakly-connected computers.” but then these name are

not as well-understood as “mobile computers.”

CHAPTER 1. INTRODUCTION 6

files under study are smaller than 5 blocks – each block being 128 36-bit words – or

roughly 2.8 Kbytes. Nowadays, files greater than 64 Kbytes are very common.

The two facts – the disparity in network bandwidths available to stationary and

mobile computers, and the growth of file size – combine together and make it painful

to use DFSs on weak networks. A traditional DFS would use a weak network as if

it is strong, and the traffic that the DFS generate would simply jam the network. To

conclude, DFSs need to adapt to the new mobile computing environment for them to

be useful there.

1.3 Mobile File Systems

In this thesis, the DFSs that adapt well to mobile computing environments are called

Mobile File Systems (MFSs). Of course, they are not precluded to be used in

traditionally non-mobile environment.

1.3.1 Disconnected Operation

The very first thinking on the adaptation issue is “can we use a DFS when the client is

disconnected from the server?” The answer is “yes.” Some readers may be surprised

by the answer, and the trick is the following. Assuming the network disconnection

is only occasional, a DFS can transfer the needed data – they are the files and the

directories – before or after a network disconnection. During a network disconnection,

the DFS hides from the users the unpleasant fact of disconnection, and continues to

provide file-system service.

This leads to the concept of disconnected operation, or operation in a disconnected

mode. It is a combination of three mechanisms: (1) before a disconnection, a DFS

client caches file-system data aggressively; (2) during the disconnection, the client

continues to provide file-system services by using the cached data for read requests,

and by logging the update operations for write requests; (3) after the disconnection,

CHAPTER 1. INTRODUCTION 7

the client sends the logged updates to the file server.

James Kistler has demonstrated that disconnection operation can indeed be used

effectively in a DFS [18]. His work is ground breaking, and has triggered many other

research projects using similar concepts, some in the context of DFSs, some in other

contexts [15, 59].

1.3.2 Weakly-connected Operation

Disconnected operation is great. However, as Lily Mummert put it, “it is not a

panacea.” [31, 30] A mobile client operating in a disconnected mode suffers from

many limitations. First, although there is already the concept of hoarding [18] – or

predictive caching – cache misses still have non-zero probability to happen. When

they happen, they impede the users’ work. Second, updates made by a user on the

disconnected client are delayed from propagating to the server. The second limitation

manifests in several ways.

First, users on other clients cannot see the updates until the disconnected client

reconnects to the server. This delay of seeing the latest updates is acceptable to most

users. However, it should be kept small.

Second, the updates may be lost if unfortunately the client is lost, damaged,

or stolen before the updates are propagated to the server. This risk is relatively

high comparing to the case for stationary clients, because “mobility is inherently

hazardous.” [48]

Third, if a DFS is using optimistic replica control (Section 2.2.2), then a prolonged

delay of update propagation implies a higher chance of update conflicts, which happen

when a user on another client updates the same data item during the delay.

Finally, there is a higher chance of resource exhaustion on the disconnected client.

For example, the client may run out of local disk space that is used for logging the

updates.

CHAPTER 1. INTRODUCTION 8

To sum up, disconnected operation is useful but has limitations. These limitation

can be overcome by weakly-connected operation, or operation in a weakly-connected

mode. Note that many mobile clients are not totally disconnected but rather having

certain forms of weak network connections, which can be exploited to provide a better

service to the users.

There are several mechanisms that can be used in this venture: a better

communication-layer adaptation, a rapid cache validation, a better cache-miss

handling, and a better update-propagation mechanism [31, 30, 32].

The last mechanism is the most relevant to this thesis. The idea is the following.

A mobile client makes use of the available weak network and propagates its updates

to the server earlier. However, it should not slow down the client’s perceived speed,

which in this case is the processing rate for mutating file-system calls. Note that,

without a careful design, propagating updates to the server can indeed slow down the

processing rate. To understand why. Let us compare the processing of a mutating

file-system call on a disconnected client and a weakly-connected client. On the one

hand, the disconnected client logs the request locally. On the other hand, the weakly-

connected client, if naively designed, processes the call by sending data across the

slow network. The processing on the disconnected client can be faster than that on the

weakly-connected client, because the former involves a fast local disk but the latter

involves a slow network.

Therefore, in a carefully designed update-propagation mechanism for weakly-

connected clients, the foreground processing of a mutating file-system call should

be decoupled from the actual update propagation. That is, when the file system

receives a mutating call from an application, it logs the call locally and finishes the

foreground processing immediately, and the actually update propagation is done in the

background. As a result, the user using the application does not need to wait for the

slow update propagation to complete, and perceives that the processing of the call is

fast.

CHAPTER 1. INTRODUCTION 9

This mechanism is called trickle reintegration in Mummert’s work [31, 30]. It is

similar in spirit to write-back caching, which is used in Sprite [33] and Echo [27], but

there are important differences. On the one hand, write-back caching is intended for a

strongly connected environment. It preserves strict Unix write-sharing semantics, aims

at the reduction of file-system latency, and only delays updates by order of seconds. On

the other hand, trickle reintegration is intended for a weakly connected environment.

It exploits optimistic replica control, aims at the reduction of both the latency and the

network traffic volume, and can delay updates by order of hours.

Mummert has demonstrated that trickle reintegration is indeed useful. First, the

decoupling make the systems perceived to be fast. She has shown that there were

no perceivable difference in the speed of processing file-system calls even though

the network bandwidth had been varied by four orders of magnitude. Second, by

carefully choosing an age for updates to be refrained from propagation, some updates

cancel each others in a mechanism called cancellation optimization, which achieves

significant network traffic reduction.

However, updates eventually have to be propagated to the server. They can be

delayed but cannot be eliminated. Also, the network traffic needed for the propagation

is not small even after cancellation optimization. The next section will examine the

problem.

1.4 Update Propagation of Files

Many modern files are big. The shippings of these big files across weak networks

are not trivial tasks. Figure 1.1 tabulates the time needed to propagate some files of

different sizes on different networks. The different network speeds are selected with

the following reasons. 10 Mbps is a typical speed of local area networks found in many

office environments, and 64 Kbps, 28.8 Kbps, and 9.6 Kbps are the typical speeds

found in many mobile computing environments. The different file sizes are picked to

CHAPTER 1. INTRODUCTION 10

File size Example Network speed (bps)
(bytes) (nature; size in bytes) 10M 64,000 28,800 9,600
16K comment.txt 0.0 2.0 4.4 13.3

(text file; 23K)
64K usenix99.tex 0.1 8.0 17.6 53.3

(latex source file; 57K)
256K usenix99.ps 0.2 32.0 70.4 213.3

(PostScript file; 240K)
1024K libvicedep.a 0.8 128.0 281.6 833.3

(static library file; 1866K)

Figure 1.1: Propagation Times for Files on Different Networks

This table shows the theoretical time needed, in seconds, to propagate a file of a given size
across networks of different speed. The second column gives some example files, found in
our environment, that are about the same sizes as the given file sizes. The natures of the
files and the real sizes of the files are given in parentheses.

cover the full spectrum of modern usage of DFSs. These are typical sizes of real files,

as indicated by the example files listed also in the table.

The figure points out that there is a mismatch between the sizes of modern files and

the bandwidths of networks used in mobile computing environments. For example, it

takes 213.3 seconds to transfer a 256-Kbyte file across a 9.6-Kbps network. Most users

do not accept such a long delay.

Trickle reintegration can alleviate the problem to some extent, because an

application issuing a mutating file-system call needs not wait for the long delay when

the update propagation is put into the background. Also, cancellation optimization can

alleviate the problem by reducing the network traffic volume generated by mutating

file-system calls.

However, the propagation of uncancelled updates is still a bottleneck of DFSs. For

example, in a study carried out by Mummert et al. [31, page 151 - 154], they measured

the performance of trickle reintegration of four 45-minute sessions. At the end of the

sessions, the amount of data pending for propagation2 ranged from 1,060 Kbytes to
2They call the amount “End CML” in the paper

CHAPTER 1. INTRODUCTION 11

2,538 Kbytes. These amounts translate to 833 to 2,115 seconds of shipping times on a

9.6-Kbps modem network.

These long shipping times cause either or both of the following two inconveniences

to the users. First, they are visible to the users when the users are concerned of the

completions of the update propagations. For example, consider a user who has just

finished work and wants to propagate her updates to the server before shutting down

the network, she will have to wait for the long delay. Second, the shipping times

represent the durations during which the weak networks are congested by the traffic of

update propagations. Note that the networks are important resources for many other

purposes, such as for electronic mails or for the World Wide Web – the traffic volumes

of the DFSs should be kept small to leave rooms for the other purposes.

In other words, the update propagation of big files across a slow network is still a

bottleneck problem to be addressed, and this thesis is focused on the alleviation of the

bottleneck.

1.5 The Thesis

1.5.1 Motivation

The solution proposed in this thesis is called operation-based update propagation, or,

for brevity, operation shipping. It is motivated by the following two observations:

1. Big file, small operation. Many big files are created, modified, or updated by

some user operations that can be easily intercepted and compactly represented.

2. CPU cycles are cheap. The cost of re-executing the user operations to

regenerate the files is often much cheaper than that of shipping the files across

weak networks.

CHAPTER 1. INTRODUCTION 12

Let us see a motivating example here.3 Suppose a file-system client finds that

it has the following three newly updated files pending for propagation to the server:

usenix99.dvi, usenix99.log, and usenix99.aux. These three files

has probably been updated by the execution of a user command [23]: latex

usenix99.tex.

In this example, the three files together has a total size of 95 Kbytes, but the

command string has only 19 bytes. The ratio of the two numbers is approximately

5000:1. In other words, although the three files are quite big to be shipped across

a weak network, the command string is very compact and is easy to be shipped.

Moreover, the command can be intercepted easily at the level of the interactive shell4.

Besides, the re-execution of the command is also cheap. It can be finished within

five seconds on a modern computer (say, on an Intel Pentium MMX 200MHz machine).

In contrast, shipping 95 Kbytes of data across a 9.6-Kbps network needs 79.2 seconds.

The ratio of the two numbers is approximately 16:1. To sum up, this example

exemplifies the two observations stated previously. In Sections 6.2 and 6.3, we will

see more examples of a similar nature.

With the two observations, the idea of a new update-propagation mechanism

becomes obvious. In the new mechanism, the compact operation, instead of the big

updated files, is shipped across a weak network for update propagation. And then,

on the other side of the network, the operation is replayed or re-executed so as to re-

generate the files that are meant to be propagated. This mechanism is therefore called

operation-based update propagation, or operation shipping. In contrast, the traditional

mechanism of shipping the files is called value shipping, because the updated files can

be regarded as the values produced by the user operation.

The idea is conceptually simple. However, to really use it in mobile file systems,

we need to address a number of research questions:
3This example later becomes the test T16 in Chapter 6
4such as the “Bourne Again Shell” (bash)

CHAPTER 1. INTRODUCTION 13

1. How are user operations logged? What kind of user operations can be logged?

Who are responsible for logging them?

2. How are user operations re-executed? Will server scalability be hampered?

3. How about the correctness of the update propagation? What should the file

system do if the re-execution does not re-generate the same file?

This thesis is a study to answer these research questions, so as to firmly establish

the following thesis statement.

1.5.2 Thesis Statement

Operation-based update propagation is a feasible and beneficial

mechanism in a mobile file system. It is feasible because it can be deployed

rather easily into existing systems, and it does not compromise correctness

nor hamper server scalability. It is beneficial because it can reduce

significantly the network traffic.

1.5.3 Validation of the Thesis

Three realistic prototypes have been designed, implemented, and evaluated to validate

the thesis claim. They are extended from three existing systems: the Coda File System,

the Bourne Again Shell (bash), and the GIMP (an image application). After the

extensions, Coda works with bash in application-transparent operation shipping, and

with the GIMP in application-aware operation shipping (the meaning of the two types

of operation shipping will be explained in Section 3.5).

There are many advantages in building realistic prototypes. First, realistic

prototypes are the best demonstration that an idea works. Second, they allows realistic

evaluations to be performed. Finally, there are always issues that can be uncovered

only by really building and using the systems.

CHAPTER 1. INTRODUCTION 14

1.6 Alternative Solutions

Before concluding this chapter and going into the main body of the thesis, it is

appropriate to mention briefly the other possible solutions to the problem being

addressed. There are at least four alternative solutions proposed. First, delta shipping

reduces network traffic by shipping only the incremental difference between different

versions of the file meant to be shipped. Second, data compression reduces network

traffic by “compressing out” the redundancies in the file meant to be shipped. Third,

someone has proposed to log and replay the keystrokes. Fourth, someone has proposed

to implement operation shipping without involving the file system. These four solutions

will be discussed in more detail in Chapter 7.

1.7 Document Roadmap

The rest of this document is organized as follows. Chapter 2 presents the background

about Coda, which is the basis upon the prototype mobile file system is built. Chapter

3 provides an architectural overview of the new shipping mechanism. It also answers

two important questions. The first is how we can avoid hampering server scalability,

and the second is to how we can preserve correctness.

As will be explained also in Chapter 3, there are two types of operation-shipping

mechanisms: application-transparent and application-aware. These two mechanisms

are discussed respectively in Chapters 4 and 5.

Chapter 6 reports on the implementation status of the prototypes that have been

built for this work, and it evaluates their performance. It shows that huge performance

gains of operation shipping in terms of network traffic reduction and elapsed time

reduction.

Chapter 7 discusses related work, and Chapter 8 concludes with a summary of the

thesis work and its contributions and a discussion of future work.

Chapter 2

Coda Background

This chapter describes the context of this research: the Coda File System. It provides an

overview of the system and hence introduces many architectural and implementation

features of the file system that affect the design of the operation shipping mechanisms

to be discussed in the following chapters. Coda has been described quite extensively in

the literature [11, 49, 53, 19, 18, 52, 20, 31, 30]. Readers are referred to the literature

should the brief discussion in the following is not sufficient.

Coda is such a complex system that describing it in one chapter is a daunting task.

This chapter looks lengthy, because the discussion is organized along the evolution

path of Coda. This approach may put more materials than the absolute minimum that

are needed to understand the rest of this thesis, but it provides a better organization for

the discussion. The readers are recommended to only briefly skim through this chapter

to get a rough idea about Coda, and to come back to this chapter later when necessary.

In the rest of this document, back pointers to sections in this chapter will be provided

when appropriate.

Coda is a descendant of the AFS-2 file system. 1 The design goals of AFS are
1Carnegie Mellon University, together with the IBM Corporation, developed three different versions

of AFS. The Coda development team took the code base of the second version and started developing

Coda in the late 1980s.

15

CHAPTER 2. CODA BACKGROUND 16

to provide a scalable, high-performance, secure, and easy-to-administer file system.

The original design goal of Coda was to enhance the availability of AFS. Two

complementary mechanisms for high availability – server replication and disconnected

operation – were thus added to Coda. It turned out that the second mechanism

of disconnected operation is good for not only high-availability but also for mobile

computing. This is because disconnected operation allows a client to continue

operations in the face of not only an involuntary disconnection – an availability concern

– but also in the face of a voluntary disconnection – a concern for mobile computing.

Following the line of supporting mobile computing, Coda’s designers found that

total disconnection is actually a special and extreme case of weak connectivity.

Between the two extremes of strong connection and no connection, there is a wide

range of weak connection that can be exploited to provide even better support for

mobile computing.

The following sections follows the above evolution path, discussing one by one

the following four main evolution steps: AFS-2, server replication, disconnected

operation, and weakly-connected operation.

2.1 Architectural Features Inherited from AFS-2

To support the design goal of scalability, performance, security, and operability, AFS

has several main architectural features, which have been in turn inherited by Coda.

2.1.1 Careful Distinction of Servers and Clients

To support better scalability and security, AFS and Coda make a careful distinction

between servers and clients. Servers are also collectively known as Vice, which is a

small nucleus of a large distributed system. Servers are physically separated from the

rest of the machines and run only a few trusted software systems. They are looked after

by dedicated personnel and are trusted. On the other hand, clients, collectively known

CHAPTER 2. CODA BACKGROUND 17

as Virtue, are at the peripheral of the distributed system. They may be located anywhere

on the network and run arbitrary software systems. They are looked after by the users

or by some decentralized staff, such as the support staff in individual departments of

the organization. They have a high chance of being subverted by malicious users, and

the network segments connecting them may be eavesdropped. Therefore, they are not

trusted from the security point of view.

For better performance seen by the users of a client, most end-user computations

are performed on the client. The users see a better performance because the client

machine is shared by only a few users, or is even dedicated to only one user.

For better sharing, easier administration, and location-independency of users, Vice

exports a distributed file-system service to the clients.

On each client, there is a process called Venus that communicates with Vice and

exposes the file-system service to applications running on the client, using a close

approximation of the BSD 4.3 UNIX 2 interface (Figure 2.1). Applications make use of

the service through some file-system requests, which are also referred to as file-system

calls. As with other UNIX file systems, there are three kinds of file-system objects:

regular files, directories, and symbolic links. The shared objects have a distinctive

name space: every AFS’s object has a pathname prefix of /afs, and every Coda’s

object has a pathname prefix of /coda.

The primary replicas of these objects are physically stored in Vice, but they are

cached extensively on the clients for better performance. Cached replicas on the clients

are regarded as secondary replicas. The cache structure and the cache-coherence

scheme are to be discussed in the next two sub-sections.

AFS and Coda use the following three measures to enhance the system security

[44], which is an important concern for a large scale system. First, servers and clients

are treated very differently in terms of their security levels and the trusts they have.

Second, because the clients and the network segments connecting them cannot be
2BSD refers to the family of Berkeley Software Distributions of UNIX.

CHAPTER 2. CODA BACKGROUND 18

File-System Call Description
access Determine access permissions of an object.
chmod Change mode bits of an object.
chown Change owner of an object.
close Close an previously open’ed file.
creat Create a new file.
fsync Synchronize a file’s in-core state with that on disk.
ioctl Perform a control function on an open descriptor.
link Make a hard link to an object.
lseek Move the read/write pointer for an open descriptor.
mkdir Make a directory with the specified path.
mknod Make a special file.
mount Mount a file system.
open Open a file for reading or writing, or create a new file.
read, readv Read input from an open descriptor.
readlink Read value of a symbolic link.
rename Change the name of an object.
rmdir Remove a directory.
stat Get object status.
statfs Get file-system statistics.
symlink Make a symbolic link to an object.
sync Synchronize a file system’s in-core state with that on disk.
truncate Truncate a file to a specified length.
umount Remove a file system.
unlink Remove a directory entry.
utimes Set access and modification times for an object.
write, writev Write output to an open descriptor.

Figure 2.1: 4.3 BSD File System Interface

In the description, the term “object” refers to a file, a directory, or a
symbolic link. Source: Adapted from Mummert [30], Table 2.3, page 15

CHAPTER 2. CODA BACKGROUND 19

trusted, secure channels are provided for the communications between clients and

servers. AFS and Coda use a special RPC (remote procedure call) package – RPC2

[47] – that supports both the authentication scheme and a RPC-packet-level private-

key encryption.3 Third, AFS and Coda use access-control list (ACL) as a finer grain

protection specification scheme for various access rights on directories.

2.1.2 Cache Structure

Coda inherits the cache structure and cache-coherence scheme of AFS. Both of them

are crucial to the performance of the file system in a large scale. This sub-section

describes the cache structure, and the next sub-section describes the cache-coherence

scheme. The cache structure has four distinctive characteristics.

First, Venus uses whole-file caching but not block-oriented caching. This simplifies

the design of the cache structure and the cache-coherence scheme, and it demands

a smaller file-transfer overhead per bytes. It was motivated by the observation that

most files were small, and the whole files will be needed anyway in most file accesses

[35, 7, 5]. 4

Second, Venus caches file-system objects, both their status and data, in non-volatile

memory. This has two implications. First, the cache can be much larger, and therefore

more effective, since the local disk – a common form of non-volatile memory – on a

client machine is usually one to two order-of-magnitude larger than the virtual memory

(RAM plus swap space). Second, when a client reboots, it does not need to reload the

cache from the server. Note in particular that a disconnected client does not have
3In the package, hooks are provided for adapting different private-key encryption. Currently, only a

simple encryption scheme – the XOR scheme – is available. Furthermore, in Coda, the packet encryption

is usually turned off. This is because Coda is still largely used as research prototypes, and the security

concern is less eminent. As more and more production system are installed, the secure-communication

infrastructure will become more and more important.
4Modern files are no longer small. Also, more and more Coda clients are being used with weak

networks. Therefore, the design decision of whole-file caching may worth a revisit in the near future.

CHAPTER 2. CODA BACKGROUND 20

contact with any servers. In terms of implementation, the data part of file-system

objects are kept in local Unix files called container files. These files are allocated in a

cache directory, such as /usr/coda/etc/venus.cache. However, the status

part is being treated differently in AFS-2 and in Coda. In AFS-2, status are also

stored in local Unix files, but in Coda, they are instead stored in recoverable virtual

memory using the RVM package [55, 28]. Kistler provided a detailed explanation on

the change[18].

Third, Venus caches both the status and the data of file-system objects. In

particular, the naming information is also cached. This allows the clients to perform

pathname translation, which is the translation of a globally unique pathname to

a globally unique 96-bit identifier – the file identifier or fid. The moving of the

responsibility of pathname translation from the server to the client helps reduce the

client–server communication and the server workload.

Fourth, Coda treats the status and data caches separately. A client can cache the

status of a file-system object without its data. However, it always caches the data of an

object together with its status. This differential treatment allows a client to process the

stat system call – a frequent event – with less communication with a server.

2.1.3 Callback Cache-Coherence Scheme

Coda maintains the coherence of its clients using the notion of callback. A callback

scheme is an invalidation-based scheme rather than a validate-on-use scheme, and it

goes as follows. When a client caches an object from a server, the server establishes a

callback promise. The promise is that the server will invalidate the object by sending

the client a callback break when the cached copy is no longer valid (this happens when

another client has updated the object). With this promise, the client is assured that its

cached copy is fresh so long as it does not hear otherwise from the server. Therefore, it

needs not re-validate the freshness on every use. This scheme reduces significantly the

CHAPTER 2. CODA BACKGROUND 21

client–server communications as well as the server workload. However, it complicates

the server’s structure, since the server needs to keep states about the callback promises

that it has made. The possibility of network disconnection complicates the matter

further, as we shall see in the subsequent sections.

Coherence is maintained at the temporal granularity of sessions. Most file-system

requests form their own simple sessions, but the open and the close requests

are the exceptions, and a matching pair of them form a open–close compound

session. The advantage of this scheme is that it reduces the frequency of client–server

communications, and it is in line with the whole-file caching scheme. However, it

has a disadvantage that it has relaxed the UNIX file-sharing semantics, as discussed

in the following. Although processes on the same machine still see the precise

UNIX semantics (since they are both accessing the same local cached copy of a file),

processes on different machines do not. For example, if a process A is mutating a file,

another process B, which runs on another machine, will see the mutation of A only

after A has closed the file and B has re-opened the file. Fortunately, usage experience

has shown that such a relaxation of semantics is acceptable.

2.1.4 Volumes

One of the key concerns of AFS and Coda is the ease of administration in a large

scale. To this end, they both use a structuring primitive called volume. A volume is a

collection of files forming a partial subtree in the Vice name space. Volumes are like

mountable Unix file systems, but are considerably more flexible.

Volumes are glued together by mounting one on another. A leaf node of a volume

can be a mount point on which another volume can be mounted. By mounting volumes

on volumes, the whole Vice name space is formed. The root volume is special, as

it is not mounted anywhere but forming the root of the name space. A mount point

is implemented as a symbolic link with a special mode bit. Venus recognizes mount

CHAPTER 2. CODA BACKGROUND 22

points and crosses them transparently during name translations.

A volume is an administrative unit. Typically, a volume is assigned for a user or a

project. Volumes are physically in custodian by some servers, and they can be moved

from one server to another in a way transparent to the users. The physical location of a

volume is not explicitly stated in neither the high-level identifier – pathname – nor the

low-level identifier – fid. Rather, a client looks up the actual location of a volume from

a Volume Location Database (VLDB).

2.2 Server Replication

Server replication is an mechanism to increase the availability of the Coda file system.

By replicating data on multiple servers, the probability that the data are inaccessible

due to server or network failures is reduced. However, the challenge is how to maintain

the consistency of the replicated data after partitioned updates, and how to resolve the

situation when some data items are inconsistent.

2.2.1 VSG and AVSG

Replication is done at the granularity of volumes. The replication factor of a volume is

defined at the volume creation time, and can vary from one to eight. Typically, volumes

are doubly or triply replicated. The set of servers that are the current custodians of a

volume is called a Volume Storage Group (VSG). Due to server or network failures, the

number of servers that a client can contact may be reduced. The smaller set of servers

that can be reached for a given volume is called an Accessible Volume Storage Group

(AVSG).

CHAPTER 2. CODA BACKGROUND 23

2.2.2 Optimistic Replication

When there is a network partition, a client cannot talk to some of the servers of a give

volume, nor can it obtain an exclusive lock on all servers. Therefore, when it is trying

to update an object, another client in the other partition may be updating the replica

of the same object concurrently, and a write–write conflict may occurs. Facing this

possibility of conflict, there are two different approaches.

A pessimistic approach assumes that conflicts are likely, so partitioned updates are

either forbidden totally, or are allowed only under very restricted conditions, such as

the successful obtaining of a quorum, or the successful obtaining of a token. However

this approach severely limits the availability of the system. In contrast, an optimistic

approach always allows partitioned updates, and provides a higher availability.

Coda uses the optimistic approach. To maintain consistency, the system keeps

enough information of the partitioned updates. Upon the removal of the partitioning

condition, it detects all objects that are in an inconsistent state, and resolves as many

as possible of them. For unresolvable inconsistent objects, the system marks them for

manual repair. Usage experience has confirmed that write-sharing is indeed rare in a

distributed file system [20] and justifies the optimistic approach used by Coda.

2.2.3 Version Vector

Coda uses the notion of Version Vectors for the concurrency control of replica.5 The

dimension of a version vector is the same as the replication factor of an object. So

a n-way replicated object has a version vector V =< V1; V2; : : : ; Vn >. Each server

keeps a version vector with the replica of an object. In the version vector, Vi represents

an estimate of the number updates that the object has received on the i-th server. Note

that, because of possible network failures, the server can only estimate the number of

updates on the other servers. The maintenance procedure for version vectors will be
5Version Vector was first used in the Locus File System[39].

CHAPTER 2. CODA BACKGROUND 24

described in the following sub-section.

Updates are always allowed even when there is a network partition. When the

partitioning condition is removed, the version vectors kept on each server help to

determine what had happened on the object. Suppose there are two version vectors

from two servers A and B, there are three possible outcomes:

� If every component of the version vector of A is equal to the corresponding

component of that of B, then the object must have received an equal number of

updates on both servers, and they must be identical.

� If every component of the version vector of A is greater than or equal to the

corresponding component of that of B, then the object must have been updated

in A’s partition but not in B’s. In other words, B has missed the updates made

onA due to the network partition. The replica inA is said to be a dominant copy.

The remedy of this inconsistent state is simple: B’s replica should be replaced

with A’s.

� If some components of the version vector of A is greater than the corresponding

component of that of B, but some other components is smaller, then the object

must have been updated in both A’s and B’s partitions. A missed B’s updates,

and B missed A’s updates. In this case, the two replicas are diverging. It is not

right to either replace A’s replica by B’s, or replace B’s replica by A’s. This is a

true write–write conflict, and need to be resolved.

2.2.4 Replica-Control Algorithm

When a client accesses an object, it uses the approach of read-status-from-all, read-

data-from-one, write-all. When serving a file-system request, Venus reads the status

from all accessible servers. The status contains the version vector. If the version

vectors are the same, Venus can fetch the data from a preferred server. If the version

CHAPTER 2. CODA BACKGROUND 25

vectors differ, Venus will block the request and trigger a resolution on the servers. Only

if the resolution succeeds will Venus proceed to service the request. In the unfortunate

case that the resolution fails, the object is marked as inconsistent. It is no longer

accessible until the user repairs it manually with the aid of a repair tool.

When serving an update requests, Venus writes simultaneously the new version of

the object to all accessible servers. It also generates a store ID and ask the servers

to stamp the object with the store ID. A store ID has two components: <host ID,

seq>, where seq is a monotonically increasing number. A store ID tells which client

is the last updater of a replica of an object. A protocol called the Coda Optimistic

Protocol (COP) is used for the updating of objects, and it proceeds in two phases.

In the first phase (COP1), Venus sends the update request simultaneously to all

servers, and each server will proceed with the update independently. The update may

succeed in some servers but fail on the others. By collating the responses from all

servers, the client constructs a list of servers who made the update successfully. This

list is called the update set. The set can also be represented as a vector of the same

dimension as the version vectors, but the components only takes the value of either 0

or 1. For the i-th component, a 0 means the update failed on server i, a 1 means the

update succeeded on server i.

In the second phase (COP2), Venus sends the update set to all servers. This allows

the i-th server to update all the j-th components, j 6= i, on the version vector that it

keeps. The RPC2 package used by Coda supports MultiRPC, which allows a parallel

communication from one client to multiple servers [47].

2.2.5 Resolution and Repair

When Venus detects that the version vectors kept on different servers for an object

differ, it triggers a resolution. Coda uses different resolution mechanisms for files and

directories, because the two types of objects are different in nature. Directories are

CHAPTER 2. CODA BACKGROUND 26

structured objects, and the file system understands the update operations performed

on them. In contrast, files are unstructured byte streams, and the file system has no

knowledge as to how an application may update them. The following two paragraphs

describe the two resolution mechanisms respectively.

Because update operations on directories are understood by the file system,

resolving a directory amounts to finding the missed update operations and replaying

them. In Coda, every server maintains for each volume a resolution log, which

remembers all the directory-update operations performed on the volume. The

resolution protocol proceeds as follows. One of the servers is elected as the co-

ordinator. It collects the resolution logs from all servers, compares the logs, constructs

a partitioned-update log, and sends the log to all the servers. Each server then

compares its own resolution log with the partitioned-update log, determines the missed

operations, and replays the missed operations.

For the resolution of files, Coda uses the following approach. If a replica dominates

all the other replicas (Section 2.2.3), Coda will resolve the files by replacing all replicas

with the dominant replica. If the replicas are diverging and there is no dominant

replica, Coda may still be able to resolve the inconsistent file replicas with the aid of an

application-specific resolver (ASR). An ASR is provided by someone who understands

the file format used by an application. For example, a calendar resolver can merge

diverging calendar-file replicas by knowing how to interpret the calendar file format.

Unresolvable objects are marked as inconsistent. They are represented as dangling

symbolic links. A repair tool is provided to assist the manual repairing of the

inconsistencies. It has two components: one for repairing server-server conflicts,

which arise due to server replication; and the other for repairing client-server conflicts,

which arise due to disconnection operation (Section 2.3).

CHAPTER 2. CODA BACKGROUND 27

2.2.6 Replicated Server and Callbacks

The fact that objects are replicated on multiple servers complicates the original

callback-based cache-coherence scheme. Callbacks are now kept on each replicated

server. For each volume, when the AVSG shrinks, Venus may miss some callback

breaks sent from an unreachable server. When the AVSG grows again, Venus must

drop the callbacks for all objects in the volume, and re-establish them with the servers

in the enlarged AVSG.

2.3 Disconnected Operation

In a traditional distributed file system, a client stops working when it loses contact

with the server. Coda pioneered the concept of disconnected operation, which masks

as much as possible the unpleasant fact of network disconnection and allows the

client to continue working. A client enters into disconnected operation for a volume

when the AVSG of the volume becomes an empty set. Network disconnections can

be involuntary, such as the case due to a server or network failure, or they can be

voluntary, such as the case when a user unplugs her mobile computer from the network.

The key to disconnected operation is aggressive client-side caching. This is because

if the client has already cached the data and/or status of the needed file-system objects,

then it can continue to service requests using these cached objects even when it

is disconnected from the server. However, to make this possible, there are three

challenges:

1. Before a network disconnection, the client must cache file-system objects in

preparation of the disconnection. The cache-management scheme must reduce

the probability of cache misses, which impede progress and reveal the network

disconnection.

CHAPTER 2. CODA BACKGROUND 28

Hoarding

Emulation Reintegration

disconnection

physical
reconnection

logical
reconnection

disconnection

Figure 2.2: Three Volume States for the Support of Disconnected Operation

Source: Adapted from Kistler [18], Figure 3.1, page 54.

2. During the network disconnection, the client continues to service file-system

requests using cached objects. Both read-only and mutating requests are

serviced. For the latter, the client logs the requests so that they can be replayed

later on the server upon reconnection.

3. After the network disconnection, the client must merge the disconnected updates

with the server in a correct way. Conflicts must also be detected and handled.

The three challenges happens respectively in the three possible states of a volume:

hoarding, emulation, and reintegration. Figure 2.2 shows the three states and the

events that trigger the state transition. Note that, since each volume has its own

volume storage group and accessible volume storage group (Section 2.2.1), it has it

own volume state too. That is, different volumes on the same client can be in different

states.

The following three sub-sections discuss respectively the three states as discussed

CHAPTER 2. CODA BACKGROUND 29

in [18, 19]. Note that, since then the transient reintegration state has been changed

to a long-lasting write-disconnected state. The change is needed for the support of

weakly-connected operation, and will be discussed in the Section 2.4.2.

2.3.1 Hoarding

When some servers in the VSG are accessible, a volume is in the hoarding state. In

this state, Venus has all the connected-mode responsibilities for the volume: servicing

file-system requests, fetching objects from the servers and storing them back to the

servers, etc. Mutating requests, in particular, are written directly to the server through

the cache. Venus also needs to participate in the callback cache-coherence scheme and

the Coda Optimistic Protocol.

On top of these activities, Venus has one more duty: a careful management of the

client-side cache. Unlike ordinary cache, the cache must cater also for the long term

need of the user to prepare for possible disconnections. Coda allows users to specify

their long term needs in hoard profiles. The hoarding algorithm considers both the

reference patterns as well as the hoard profiles to strike a balance between short and

long term needs.

2.3.2 Emulation

A volume enters into the emulation state when its accessible volume storage group

(AVSG, Section 2.2.1) becomes empty. In this state, Venus emulates the unreachable

servers and services file-system requests using the cached objects.

File-system requests come in two flavors: read-only and mutating. The servicing

of read-only requests is simple. Venus just presents the cache objects to the requesting

applications. The servicing of mutating requests, on the other hand, is more complex.

Besides performing the requests on the locally cached objects, Venus must also log

enough information about the requests so that they can later be replayed on the server

CHAPTER 2. CODA BACKGROUND 30

when the network connection is resumed.

To admit more partitioned updates, Coda uses an inferred-transaction model of

access. In this model, file-system calls are internally mapped to transactions based

on their semantics and how they use the accessed data items. Figure 2.3 shows

the different types of update transactions, and the mapping from Unix file-system

calls. A transaction model admits more partitioned update than a shared-memory

model, because it exposes the structure of computation. Coda infers transactions

from the the type of file-system calls, instead of adding new transactional facility to

be invoked explicitly by the applications. This approach allows existing applications

to be benefited from the transaction model.

2.3.2.1 Client-Modify Log (CML)

The key data structure for keeping the disconnected update information is a per-

volume client-modify log (CML). Each record in the log corresponds to a logged update

transaction (Figure 2.3). A log records is appended to the log when a local update

transaction commits. To simplify reintegration and cancellation optimization (will be

discussed respectively in Sections 2.3.3 and 2.3.2.2), each non-empty CML is owned

by exactly one user. So, other users are not allowed to perform mutating file-system

calls on the volume during a disconnected session. This restriction seldom imposes

serious problems, since each Coda client is typically used exclusively by one user.

Figures 2.4 and 2.5 show respectively the type-independent and type-specific parts

of a CML record. Among the different type of CML records, store is special. This

is because the new value of a store transaction, new contents, can be very large.

The new value contains all the bits of the regular files being stored, and can be as large

as thousands or millions of bytes. In contrast, the new values of all other types of

records are compact, and they are usually less than a few hundreds bytes.

Therefore, store records are treated differently. Instead of storing all the bits of

the new contents field, Venus only stores a pointer to a container file, which is

CHAPTER 2. CODA BACKGROUND 31

chown (object, user)
chown

chmod (object, user)
chmod

utimes (object, user)
utimes

store (file, user)
[[create | open] [read | write]* close] | truncate

create (directory, name, file, user)
creat | open

mkdir (directory1, name, directory2, user)
mkdir

symlink (directory, name, symlink, user)
symlink

remove (directory, name, file, user)
remove (directory, name, symlink, user)

rename | unlink
rmdir (directory1, name, directory2, user)

rename | rmdir
link (directory, name, file, user)

link
rename (directory1, name1, directory2, name2, object, user)

rename
repair (file, user)

(no mapping)

Figure 2.3: Coda Updates and System-Call Mapping

The leftmost lines show the different types of Coda mutating transactions. The
indented lines show the mapping from UNIX system calls, in which the syntax
has the following meanings: juxtaposition represents succession, * represents
repetition, and | represents selection. Source: Adapted from Mummert [30], Table
2.4, page 16.

CHAPTER 2. CODA BACKGROUND 32

ClientModiyLog *log;
rec_dlink handle;

ViceStoreId sid;
Date_t time;
UserId uid;
int tid;
CmlFlags flags;

< type specific fields >

dlist *fid_bindings;
dlist *pred;
dlist *succ;

Figure 2.4: Type-independent Fields of CML Records

This figure shows the fields that are common to all different types of CML records.
Each record contains a back pointer to the CML itself (log) and to its successor
handle. The modify-time of the update is in time, the author of the update is
indicated by uid. Two fields are used as “transaction identifiers”; they are the store
id sid and tid. The fid bindings field contains pointers to the descriptor
of the file system object that the record references. Pointers to lists of preceding
and succeeding records are contained in pred and succ, respectively. Source:
Adapted from Mummert [30], Figure 2.5, page 17.

already in the cache. Recall that Coda uses whole-file caching, and the data part of a

regular file is stored in local UNIX files called the container file (Section 2.1.2). The

re-using of the container files for the new contents field of the CML is called the

store-record optimization. It is possible only when the following two conditions are

true: (1) there is at most one store record per file in the log, otherwise, the referent

of a non-final store is invalid; and (2) a container file referenced by a store record

must not be replaced until after reintegration. The two conditions are indeed true,

because the first condition is assured by the procedure of cancellation optimization

(Section 2.3.2.2), and the second condition is assured by marking as dirty all container

files that are referenced by any store records. The flag prevents the files from being

replaced from the cache, and is cleared only after reintegration.

CHAPTER 2. CODA BACKGROUND 33

Record Type Type-specific Fields of Record
chown fid, new owner, version id
chmod fid, new mode, version id
utimes fid, new modify time, version id
store fid, new length, new contents, version id, offset, server handles
create parent fid, name, child fid, mode, version id
mkdir parent fid, name, child fid, mode, parent version id
symlink parent fid, old name, new name, child fid, mode, parent version id
remove parent fid, name, child fid, link count, parent version id, child version id
rmdir parent fid, name, child fid, parent version id, child version id
link parent fid, name, child fid, parent version id, child version id
rename from parent fid, from name, to parent fid, to name, from fid, from parent

version id, to parent version id, from version id
repair fid, length, modify time, owner, mode, version id

Figure 2.5: Type-specific Fields of CML Records

This table shows the type-specific contents of CML records. The store record, which represents
the close of a file opened for write, includes new data by reference from a separate local cache
container file. Source: Adapted from Mummert [30], Table 2.6, page 18.

In other words, although logically CML is one entity, it comprises two parts. In

this thesis, the two parts are called the thin and thick part respectively. The thin part

comprises the fields proper as listed in Figures 2.4 and 2.5, including the pointers to

the container files; and the thick part comprises the pointed-to container files. In the

following chapters, we shall see that the main purpose of operation shipping is indeed

the avoidance of the shipping of the thick part of a CML, because it generates too much

traffic for a weak network.

In the implementation, the thin part of a CML is placed in recoverable virtual

memory using the RVM package [28, 55]. The thick part of a CML is stored as local

Unix files. Both the recoverable virtual memory and local Unix files are persistent, so

Venus can reintegrate even after a reboot.

CHAPTER 2. CODA BACKGROUND 34

Overwritten Subsequence Overwriter
[store (f; u) j utimes (f; u)]+ store (f; u)

chown (f; u) chown (f; u)

chmod (f; u) chmod (f; u)

utimes (f; u) utimes (f; u)

[store(f; u) j chown(f; u) j chmod(f; u) j utimes(f; u)]+ remove(�; �; f; u)
[chown(s; u) j chmod(s; u) j utimes(s; u)]+ remove(�; �; s; u)
[chown(d; u) j chmod(d; u) j utimes(d; u)]+ remove(�; �; d; u)

(a) Overwrite Optimizations

Identity Subsequence
Initiator Intermediaries Terminator

create (�; �; f; �) [store (f; �) j chown (f; �) j remove (�; �; f; �)
chmod (f; �) j utimes (f; �) j

link (�; �; f; �) j

remove (�; �; f; �) j
rename (�; �; �; �; f; �)]*

symlink (�; �; s; �) [chown (s; �) j chmod (s; �) j remove (�; �; s; �)

utimes (s; �) j
rename (�; �; �; �; s; �)]*

mkdir (�; �; d; �) [chown (d; �) j chmod (d; �) j rmdir (�; �; d; �)

utimes (d; �) j
rename (�; �; �; �; d; �)]*

(b) Identity Subsequence Optimizations

Figure 2.6: CML Optimization Templates

This figure shows optimizations that may be performed on CML records. Overwrite optimization
replaces a sequence of log records (the overwritten subsequence) with a single update (the
overwriter). Identity-subsequence optimization removes a sequence of log records, beginning with
the initiator, including intermediaries, and ending with the terminator. In the table above, f is a
file, s is a symbolic link, d is a directory, u is a user ID, and � means the value of the argument is
not relevant for the cancellation. All updates must be authored by the same user; this condition is
satisfied trivially by CML ownership. Source: Adapted from Mummert [30], Table 2.7, page 19.

CHAPTER 2. CODA BACKGROUND 35

2.3.2.2 Cancellation Optimization

File-system activities often exhibit canceling behaviors. Here are two examples: (1) if

a file is repeatedly stored, the later store operations will cancel the effect of the earlier

store operations; and (2) if a file is created and then subsequently removed, interspersed

perhaps with other updates to it, the remove operation will cancel the create operation

and the intervening update operations.

By exploiting these behaviors, Venus can transform a CML into a smaller

equivalent one by taking out canceled records. This procedure is called cancellation

optimization. The two logs are equivalent in the sense that the results of merging the

two logs with the server are the same. 6 A smaller log means less consumption on

the local storage space, a smaller reintegration traffic volume, and a smaller server

workload for reintegration. Trace-driven simulation and usage experience have both

confirmed the effectiveness of the optimization [54, 34].

Coda uses the following on-line approach for cancellation optimization. When

a new CML record is logged, Venus lookups the previous records in the log

and see whether they match one of the specified templates (Figure 2.6), and

proceeds to canceling if appropriate. The two preceding examples represent the

two types of optimization: overwrite cancellation and identity cancellation. In

overwrite cancellation, an overwriter cancels the overwritten subsequence; in identity-

subsequence cancellation, a whole identity subsequence – including the initiator, the

intermediaries, and the terminator – is canceled altogether. A store on a file is always

overwritten by a subsequent store on the same file; this guarantees that each file can

have at most one store record in a CML.
6Strictly speaking, there are two definitions of correctness: reintegration-transparent and 1SR-

preserving. Interested readers are referred to [18] for more details.

CHAPTER 2. CODA BACKGROUND 36

2.3.3 Reintegration

A once emulating volume goes into the reintegration state when the AVSG goes from

empty to non-empty. This state is a transient state in the original model proposed

by Kistler [18], and the volume is expected to return to the hoarding state after this

state. Reintegration proceeds in three phases: prelude, interlude, and postlude. Venus

dispatches a reintegrator thread to manage the reintegration procedures.

The prelude phase happens on the client. It encompasses the tasks necessary to start

reintegration, and is triggered by a triggering event, such as a reference to an object in

the volume. The most important task in this phase is the preparation of a reintegration

log, which contains all information related to the disconnected updates. Two other

tasks worth mentioning here. First, if there are some files open for update, any store

records referring to the files will be canceled “early.” Second, any temporary fids

generated by the client during a disconnected session will be replaced by globally

unique permanent fids, which are generated by servers. Details can be found in [18].

The client finally invokes a ViceReintegrate RPC with the server, marking the

end of prelude phase and the begin of interlude phase.

The interlude phase happens on the server. The server retrieves the reintegration

log, and unmarshalls the records from it. It then write-locks the updated objects.

Transactions logged on the reintegration log are thus replayed on the server side. While

replaying the transactions, the server makes a series of concurrency, integrity, and

protection checks. The concurrency check is performed by a combination of value-

based and version-based certification procedure. If all of the checks succeeds, the

server will tentatively commit the transaction. If the transaction being replayed is a

store transaction, the server will also backfetches the container file from the client.

Finally, if all transactions on the log can be tentatively committed, the server will

atomically commit them altogether, release the locked objects, and reply the RPC.

The reply of the RPC kicks off the postlude phase on the client. If the reintegration

CHAPTER 2. CODA BACKGROUND 37

succeeds, the client marks dirty objects as clean and discards the CML records. It then

finalizes the reintegration by transiting the volume from the reintegration state to the

hoarding state.

The above description is for the cases when reintegrations succeed. In fact,

reintegration may fail. The early Coda and the current Coda use two different failure

models. The early Coda used a coarse-grain model, and the current Coda uses a fine-

grain model. In the coarse-grain model, a single failure in one transaction renders the

whole reintegration failed. Also, Venus aborts the local updates by spiriting involved

objects away to a local closure file, purging them from the cache, and discarding the

CML records.

In contrast, in the fine-grain model, if a failure occurs, the server will abort the

reintegration but also returns an index containing the position of the offending record.

The client may then retry with non-offending records. Also, objects that have failed to

be reintegrated are marked as inconsistent in situ, like the cases for resolution failures.

The users are again provided with a manual repair tool to repair the objects.

2.4 Weakly-connected Operation

One more step ahead from disconnected operation is the support of weakly-connected

operation. The underlying theme is to exploit the available weak networks to deliver

services better than that of the totally disconnected situations.

Four different mechanisms have been incorporated into Coda to support the uses in

weak networks. Among them, trickle reintegration is the most relevant to this thesis,

and is discussed in this section. The other three – adaptation in the communication

layer, rapid cache validation, and better handling of cache misses – are less relevant

and are skipped for discussion here. The readers are referred to [30] for the discussions

of the three mechanisms.

CHAPTER 2. CODA BACKGROUND 38

2.4.1 Overview of Trickle Reintegration

There are two key related ideas in trickle reintegration. First, the available bandwidth,

albeit small, should be exploited to reintegrate a client’s updates, a small piece at a

time. An earlier update propagation has many advantages: updates can be visible to

other clients earlier, there is a smaller chance of lost of updates due to damage or threat

of the client, the time window opened for write–write conflict will be smaller, and local

resources held pending for reintegration can be released earlier.

Second, the trickling of updates should not make users’ life worse on the weakly-

connected client. In particular, the processing of file-system requests should not be

tied to the slow speed of update propagation. To this end, update propagation is

done asynchronously. It is decoupled from the request-processing and is put into

the background. When Venus receives a mutating file-system request, the request

is performed locally and is also logged for a later propagation to the server. The

processing of the request can finish quickly without blocking the requesting process

for the slow update propagation.

The mechanism of trickle reintegration introduces several architectural features that

deserve our attention.

2.4.2 Structural Modification

As discussed in Section 2.3, the early Coda designed before adding the considerations

for weakly-connected operation has a transient reintegration volume state (Figure 2.2).

Now this state has to become a stable write-disconnected state (Figure 2.7). There are

three reasons for this change. First, reintegration can no longer be assumed to finish

quickly, as tricklings of updates across slow networks may take minutes or even hours

to finish. Second, because update propagation is made a background activity, new

updates should be allowed to be made on the volume. In other words, while old updates

are being trickled back to the servers, new updates can be made to the volume. Third,

CHAPTER 2. CODA BACKGROUND 39

Hoarding

Emulation

disconnection

disconnection

reconnection
connection

strong
weak

Write
Disconnection

reconnection

Figure 2.7: Three Volume States for the Support of Weakly-connected Operation

Note that the reintegration state in Figure 2.2 has been replaced by the write-
disconnection state in the new volume state-transition diagram. Source: Adapted
from Mummert [30], Figure 5.1, page 71.

as long as the network connectivity is weak, for speedier processing, mutating file-

system calls are logged for asynchronous propagation. Therefore, the volume should

stay in the write-disconnected state so that new updates can be logged.

The new state is so named because it is a blend of a strongly connected state

and a disconnected state. As if the volume is strongly connected, Venus services

cache misses, and maintains cache coherence using callbacks. As if the volume is

disconnected, Venus performs updates locally and logs them in the CML – these

updates are propagated later in the background.

2.4.3 Aging Window of CML

As discussed in Section 2.3.2, cancellation optimization is an effective means to reduce

the size of CMLs, reintegration traffic, and server work load.

However, trickle reintegration reduces the effectiveness of log optimization. In fact,

CHAPTER 2. CODA BACKGROUND 40

Aging Window are eligible

Records younger than
the Aging Window must

stay in the Log

on Chunk Size
Selection is based

for reintegration.
Records selected

for reintegration

Records older than the

Cancellation Optimization
is allowed on records

that are not being
reintegrated

Log
Head

Log
Tail

Reintegration Barrier

New records
are appended
to log tail

Old records
are selected

from log head

. . . .

Figure 2.8: CML During Trickle Reintegration

An aging window is the minimum amount of time that a record must stay in a CML.
Only records older than the aging window are eligible for reintegration. The actual
number of records selected for a particular round may be smaller because of the
limit of the chunk size. A reintegration barrier is placed to prevent records that are
being reintegrated from being subjected to cancellation optimization.

we have two conflicting wishes. On the one hand, we want records to leave the CML

and be propagated earlier, for the reasons discussed in the beginning of this section.

On the other hand, we want them to stay longer in the CML so that they have a higher

chance to be canceled by subsequent records.

To balance the two wishes, Coda uses a simple strategy based on aging. The age

of a CML record is the amount of time that it has spent on the log. An aging window

defines the minimum age a record must have before it is eligible for reintegration.

Figure 2.8 shows the use of aging window. If probably chosen, an aging window can

cover the “hot spots” in which repeated updates on the same objects are likely. Coda

currently uses a fix aging window of 600 seconds. Mummert explains in detail how

the parameter was chosen in [30].

CHAPTER 2. CODA BACKGROUND 41

2.4.4 Object-level Concurrency Control

In the early Coda, Venus locks the whole volume that is being reintegrated. This

coarse-grain concurrency control is considered acceptable since reintegrations are

expected to be done on a strong network and to have low latencies. However, the

expectation is no longer true when Coda supports reintegration over weak networks.

To avoid preventing the others from using the volume during the potentially slow

reintegration, Venus now uses a finer-grain concurrency control: instead of locking

the whole volume, Venus now locks only the individual objects. There are two new

issues that need to be addressed: file contention and dead-lock. More details about

how they are addressed by Coda can be found in [30].

2.4.5 Chunks and Fragments

Since update propagations are now made asynchronous to the foreground processing

of the file-system requests, there is no pressing need to propagate updates all at once –

doing so would have a large impact on the weak networks since reintegration latencies

are no longer small now. Coda uses two measures to make reintegration traffic less

intrusive to the weak networks: chunks and fragment.

Instead of sending all CML records older than a given age (Section 2.4.3), a

reintegrator send them in chunks. It selects records from the prefix of a CML, in

the order of the log, until the aggregate size of the records reaches a limit defined

by the parameter chunk size. The parameter is calculated from a specified limit on

reintegration time, and varies with the current network bandwidths. The default of

reintegration time limit is set to 30 seconds, which translates to 36 Kbytes in a 9.6-

Kbps network, and to 7.7 Mbytes in a 2-Mbps network.

Most records will fit into a chunk, excepts some store records. Recall that

the container files can be large and may exceed chunk size by themselves. For

these records, reintegrator will send the data in the container files in fragments,

CHAPTER 2. CODA BACKGROUND 42

each of it has a size of the chunk size. Shipments of the fragments of a container

file may be done in many rounds of reintegration; they may even be done across

a Venus restart. The partial data of the container file are stored in a shadow

inode on the server. Venus refers to a shadow inode using a handle, which is

exported from the server. The server now exports four more RPCs for reintegrating

a files in fragments: ViceOpenReintHandle, ViceSendReintFragment,

ViceQueryReintHandle, and ViceCloseReintHandle.

2.4.6 Other Changes

Coda has two other changes added for the support of weakly-connected operation.

They are only mentioned briefly here. More details can be found in [30].

First, while in strong networks Venus still uses a “reintegrate-with-all” strategy for

replicated volumes, it now uses a “reintegrate-with-one-and-then-resolve” strategy in

weak networks. That is, instead of reintegrating with all servers in the AVSG, Venus

reintegrates with only one server, and then triggers a resolution to bring the other

servers up-to-date. This change is needed to save the precious bandwidth of weak

networks.

Second, a server breaks a callback whenever an object is updated, no matter

whether the update is on the data or the status, or both, of the object. It would be

quite unwise for a weakly-connected client to fetch unchanged data again if only the

status is updated. Note that status-only updates are quite common because resolution

updates status, and because weakly-connected clients now use a reintegrate-with-one-

then-resolve strategy to save reintegration traffic. These unnecessary data fetches are

suppressed in the new Venus.

CHAPTER 2. CODA BACKGROUND 43

2.5 Chapter Summary

In this chapter, some background knowledge about the Coda File System is presented.

The discussion is organized along the evolution path of Coda: from AFS-2, through

server replication and disconnection operation, to weakly-connected operation. Key

Coda architectural or implementation features are identified. Equipped with the

background knowledge, we can go into the following chapters, which will discuss the

design and implementation of an extension of Coda supporting operation-based update

propagation.

Chapter 3

Architecture

This chapter presents the high-level view of operation shipping to prepare the readers

for the more detailed discussion in the coming chapters. First of all, an overview of

the operation-shipping mechanism is presented in Section 3.1. A new party, called

the surrogate, is needed in the mechanism, and the need is justified in Section 3.2.

The terms “operation” and “value” have been used in the preceding discussion, and

Section 3.3 presents a concrete picture of what they are. A key concern about operation

shipping is the correctness of the new propagation mechanism, and Section 3.4 presents

the four-step approach designed for preserving the correctness. In practice, there

are two different types of operation-shipping mechanisms: application-transparent

and application-aware; Section 3.5 explains why there are two different mechanisms

needed.

3.1 Overview of Operation Shipping

Operation-based update propagation comprises two stages. The first one is the logging

stage, and the second one is the shipping stage. The purpose of the logging stage is to

establish an association between some high-level user operations and some low-level

values that they generate, and it is a preparation stage for the shipping stage.

44

CHAPTER 3. ARCHITECTURE 45

The shipping stage itself can be further divided into five phases. Figure 3.1 presents

an overview. In the figure, a new party called the surrogate appears. It will be discussed

in more detail in Section 3.2. For the moment, just take it as a special client strongly

connected to the server.

strong network

surrogate

server

weak network

client

0. Logging of user operations 3. Validation: V = V’ ?

Value V

2. Replaying O

Value V’

4. Reint-

5. Finalization

1. Requesting operation O

egration

Figure 3.1: Overview of Operation Shipping

This figures presents a high-level view of operation shipping. The concept
of the surrogate will be explained in Section 3.2. For completeness, the
zeroth step, which is the logging of user operations, is also shown.

The five phases of the shipping stage are:

1. Requesting. When propagating a value V to the server, instead of sending V

directly to the server, the client sends O, the user operation that generates V , to

the surrogate.

2. Replaying. The surrogate replays O, which re-generates a value V 0.

3. Validation. The surrogate checks whether V 0 is equal to V .

CHAPTER 3. ARCHITECTURE 46

4. Reintegration/aborting. If V 0 is equal to V , the surrogate will reintegrate V 0

with the server on behalf of the client; otherwise, it will abort the attempt of

operation shipping and discard V 0.

5. Finalization. The surrogate reports to the client whether the attempt of operation

shipping has succeeded, and the client proceeds to finalize the shipping state

as follows. If the attempt has succeeded, the client will locally commit V ;

otherwise, it will fall back to value shipping – that is, it will ship V directly

to the server.

This overview is largely simplified. The subsequent two chapters will provide more

details.

strong network

weak network

surrogate

server

client

Value V

Figure 3.2: Fallback Mechanism: Value Shipping

When shipping by operation is not possible, the client will fall back to
shipping by value. Note that the surrogate is not longer involved.

Note that operation shipping is always done in a “best-effort” manner. The file

system is always well prepared for the cases when operation shipping does not work,

CHAPTER 3. ARCHITECTURE 47

and it just falls back to the traditional way of value shipping. During value shipping,

the surrogate is not involved, and the client reintegrates directly with the server

(Figure 3.2). The followings are some examples of the cases when operation shipping

does not work.

� The surrogate cannot be contacted.

� The user does not have a valid token on the surrogate.

� The surrogate cannot re-execute the user operation.

� The re-generated value on the surrogate is different to the original.

� The surrogate fails to reintegrate with the server.

3.2 Surrogate

“High level [user] operation logging places a greater burden on the

server, because operations require greater computational resources. To

preserve scalability, the system must take server load into account before

agreeing to perform these functions. The client should negotiate operation

logging rights upon connection, and the server should be able to revoke

these rights if load becomes too heavy. [30, page 172]”

When the idea of high-level operation logging was first proposed. The main concern

in people’s mind is its adverse effect on server scalability, as we can see from the

above discussion. This was also my main concern when I first looked at the problem.

However, a deeper thinking into the issue led me to the conclusion that it should not

be the server who replays the operations, rather, a new party called the surrogate is

needed. This section details my thinking on this issue.

CHAPTER 3. ARCHITECTURE 48

3.2.1 Location of Re-executions

A key component of operation shipping is that user operations need to be re-

executed so that they can re-generate the files and other file-system modifications.

Obviously, re-executions incur computational workload. So the first question is where

the re-execution workload should be placed. A natural candidate seems to be the

server. However, there are several drawbacks rendering re-executions on the servers

impractical.

First, the server may be overloaded. In a typical installation of distributed file

system, the file server serves a large number of clients. The number may be in the

range of tens to hundreds, or even thousands. The file server is already very likely the

bottleneck of the system [46]. At the same time, the aggregate workload of all the re-

executions requested by the many clients is not trivial at all to the server, even though

the workload of each individual re-execution may look trivial. Therefore, adding more

workload to the bottleneck is not a wise thing to do.

Second, it is difficult to ask one server to instantiate the execution environments of

the numerous clients that it services. As we know, the execution environment affects the

result of an execution. It comprises many aspects, including the CPU, the operating

system, the application software, the system libraries, the system header files, and

others. For example, if we run the same compilation command on two machines, it may

not produce the same result if the two machines are loaded with different versions of

system header files. In general, the execution environment of the re-executing machine

should be as similar to the client as possible, otherwise the result of the re-execution

may not be the same as the original, and is thus useless.

Thirdly, re-executing on the server is a potential security threat. This is because

the server has to run whatever software that a user claims that he uses on his client. A

user with bad intention may supply a malicious program, not really for the purpose of

operation shipping, but for the purpose of attacking the availability or integrity of the

CHAPTER 3. ARCHITECTURE 49

server. Because of this reason, and also because of the scalability concern discussed

previously, many file servers prohibit the running of normal user applications but only

a small selected set of applications solely for the purpose of providing file-system

services. In many installations, normal users are even prohibited to login to the file

servers.

The previous arguments suggest that the re-execution workload should not be

placed on the server, but rather on another machine. This re-execution machine is

called the surrogate.

3.2.2 Properties of Surrogate

The word “surrogate” means proxy or agent in the English language. The term

surrogate is chosen, instead of its synonyms, because the latter are already used heavily

with other computer concepts, such as web proxy and Internet search agent.

For the purpose of operation shipping, a surrogate is performing the reintegration

on behalf of a weakly-connected client. Therefore, it needs all the machinery for

reintegration with server. The easiest way is to modify Venus, the Cache Manager,

so that it can support both the replaying of user operations and the reintegration of the

the result with the server. Venus on the surrogate machine is thus run in a special mode

--isSurrogate.

The following are the desired properties of a surrogate machine:

1. It should be strongly connected to the server, so that the shipping of re-execution

result to the server can be done cheaply.

2. It should provide an execution environment as similar as possible to the weakly-

connected client that it services.

3. It should be at an adequate level of security, and processes suitable authentication

tokens for the user requesting services.

CHAPTER 3. ARCHITECTURE 50

3.2.3 Dedicated Surrogate

Should a surrogate machine be dedicated to only one weakly-connected client? Can it

be shared by multiple weakly-connected clients?

The first approach has many advantages. First, the surrogate can be identically

configured as the weakly-connected client. Second, it simplifies the system

administration. A re-configuration of a client, such as a software upgrade, can simply

be matched by a re-configuration of its dedicated surrogate without worrying that so

doing may break services to other clients. Third, it will be much easier to track down

the problem if a user operation does not produce an result that is the same as the

original.

Additionally, many computer users already own more than one personal computers.

For them, dedicated surrogates can be set up without additional hardware investment.

For example, a user Joe owns one computer at work, and another computer at home. He

can set up his computer at work, which is strongly connected to server, as the surrogate

machine of this weakly-connected computer at home. Another example is a user Mary,

who owns one desktop computer at work, and another notebook computer for business

trips. She can set up her desktop computer, which again is strongly connected to server,

as the surrogate machine of her weakly-connected laptop computer when she is on a

business trip.

This thesis assumes that the surrogate machine is dedicated to one client. The use

of shared surrogate machines is an interesting future work.

3.3 User Operations and Values

3.3.1 User Operations

What exactly are user operations? For the purpose of operation shipping, they are

some high-level commands of computer users that can be intercepted and logged on

CHAPTER 3. ARCHITECTURE 51

the client, and later be replayed on the surrogate.

There are two types of applications: non-interactive and interactive. A computer

user issues commands to them in different ways. Therefore, there are two categories

of user operations:

Type 1: invocation command of non-interactive application

Type 2: interactive and application-specific command

Figure 3.3 lists several examples of user operations in each category, and Figure 3.4

lists several examples of non-interactive and interactive applications. As discussed

in Section 3.5, these two different categories of user operations need two different

mechanisms of operation shipping.

User operations are usually compact. This is because user operations are

commands issued by human users, and the updates that they causes are the results of

some computations. Human users type or click much more slowly than computers can

process or generate data; therefore, user operations are much more compact than the

potential sizes of updates that they cause. The ratio may be as small as one in several

thousands. For example, an invert command specific to an image application may

need only a few bytes to represent, but it can potentially cause an update of an image

file of several tens of kilobytes.

However, user operations should not be confused with key strokes and mouse

clicks. Key strokes and mouse clicks are raw input. They are not yet interpreted,

and have little meaning if they are taken out of context. In contrast, user operations are

commands that have already been interpreted.

For example, in interactive shells that supports the history mechanism (such as the

C Shell [38]), the key strokes !! means “repeating the last command.” What exactly

is the last command really depends on the context. Suppose the command latex

usenix was the last command issued by the user, then the meaning of the key strokes

!! is the command. Another example is a mouse click. The exact meaning of a mouse

CHAPTER 3. ARCHITECTURE 52

User Operation Application
that receives
the user
operation

Application
that performs
the user
operation

Type 1: invocation command of non-interactive application
latex usenix99.tex shell latex
rp2gen callback.rpc2 shell rp2gen
yacc parsepdb.yacc shell yacc
c++ -c counters.cc -o counters.o shell c++
ar rv libdir.a ... shell ar
tar xzvf coda-doc-4.6.5-2.ppt.tgz shell tar
make shell make
sgml2latex guide.sgml shell sgml2latex

Type 2: interactive and application-specific command
load an image GIMP GIMP
invert an image GIMP GIMP
change brightness/contrast of an image GIMP GIMP
change color balance of an image GIMP GIMP
save an image GIMP GIMP
load a text file emacs emacs
insert some text emacs emacs
reformat a paragraph emacs emacs
global replace a string emacs emacs
save a text file emacs emacs

Figure 3.3: Some Examples of User Operations

Shell means an interactive shell such as the bash. Figure 3.4 will explain
the nature of the different applications mentioned in this table.

click at a certain co-ordinates really depends on what application windows happens to

be located at that co-ordinates.

The effects of user operations also depends on the context, but to much lesser

extents. For example, the interpreted command latex usenix may have different

effects if it is issued in different working directories. Therefore, the logging shell also

needs to log a few context information to prepare for a successful replay of a user

operation – the current working directory is one of those context information.

CHAPTER 3. ARCHITECTURE 53

Name Nature
Non-interactive applications
ar software library archive builder
gcc/g++ compiler and linker
dvips converter: from TeX dvi format to PostScript format
LATEX text formatter and typesetter
ld linker
make tool for managing software building processes
rp2gen stub generator for use with the RPC2 package
sgml2latex converter: from SGML format to LATEX format
tar file or tape archive packager
troff text formatter
yacc parser generator
Interactive applications
Applix Presents presentation software
Applix Word word processor
AutoCAD computer-aided design software
CorelDRAW drawing package
Emacs text editor
GIMP image manipulation program
magic layout system computer-aided-design software
Microsoft Word word processor
Microsoft PowerPoint presentation software
vi text editor
xfig drawing package
xv image viewer

Figure 3.4: Some Examples of Interactive and Non-interactive Applications

CHAPTER 3. ARCHITECTURE 54

3.3.2 Values

What exactly are values? For the purpose of discussion in this thesis, they are actually

the records in the CML (client-modify log). The following is the explanation of why

we label CML records as the values.

Recall that, for delayed update propagations, such as those in the disconnected or

weakly-connected mode, a mutating file-system calls are mapped to a Coda update,

and is logged in a CML. The log has different types of records as listed in Figure 2.3.

Also recall that the store records are special, because they logically include the new

contents of the files being stored. The new contents of a file is indeed the value of

the store operation.

Now, the traditional way of update propagation required the shipping of the CML

from a client to a server, including the new contents of the files. Therefore, it is labelled

as value shipping,1 and the CML records are labelled as values. Such a labelling is

justified because most of the traffic volume is due to the new contents of files.

3.4 Preserving Correctness

In the context of this thesis, the correctness of an update propagation means that a

server receives exactly the same values (CML records), no matter whether they are

value-shipped or operation-shipped from a client. For the case of operation shipping,

the values are re-generated by replaying the user operation on the surrogate. Intuitively,

a correct update propagation can be achieved when the user operation is repeating on

the surrogate. A user operation is repeating on the surrogate (or simply repeating if

there is no confusion) if it produces exactly the same values as its original execution.

However, the actual story is slightly more complex.

To preserve the correctness, there are four steps involved. First, several measures
1Despite the fact that some records, such as chmod or utimes, actually contains only directory

operations.

CHAPTER 3. ARCHITECTURE 55

can be taken to increase the likelihood that a user operation will be repeating on the

surrogate. Second, sometimes an operation is not repeating. However, if it produces a

set of values that is close enough to that of the original execution, we may be able to fix

the re-execution discrepancies. Third, we need to adjust the status information of the

values re-generated by the replayed operations. An example of the status information

is the modification time of the mutating file-system operations. Fourth, we need a

validation procedure as the final step. The first, third, and fourth steps will be discussed

in the following three sub-sections. The discussion of the second step will be deferred

to Section 4.3.

3.4.1 Increasing the Likelihood of Repeating Operations

Let us first analyze what makes an operation repeating. There are four factors.

Whenever it is possible, measures are taken to make an operation more likely to be

repeating.

1. Identical Configuration. The configurations on the surrogate and the client

should be identical. In general, a configuration comprises the machine

architecture, the operating system, the system header files, and system libraries,

etc. As discussed in Section 3.2, each client is already assumed to have a

dedicated surrogate; so it is easy to make them to have an identical configuration.

2. Application be Deterministic and Non-time-dependent. The application

should be deterministic and is not time-dependent. This condition rules

out pseudo-random applications and applications that depend on the time of

execution. The domains of interest of this thesis are program-development

and document-production environments. In these domains, pseudo-random

applications play a minor role, so the fact that their operations are not repeating

does not impose severe limitation. However, some important applications, such

as the text formatter LATEX, do put execution time stamps into the files that they

CHAPTER 3. ARCHITECTURE 56

produce. The operations of these applications are indeed not repeating, and they

will be handled in the step of fixing re-execution discrepancies (Section 4.3).

3. Identical Contexts. The contexts in which the operations are executed and

replayed are identical. For non-interactive applications, the context is the UNIX

process environment, which comprises four attributes: (1) the working directory,

(2) the environment list, (3) the command-line arguments, and (4) the file-

creation mask. For interactive applications, the context must also include the

in-memory state of the running process.

4. Identical Input Files. If an operation requires an input file stored in Coda, we

can rely on Coda to ensure that the client and the surrogate will use an identical

version of the input file. Coda can ensure this because a client ships updates

to its server in temporal order, and the surrogate will always retrieve the latest

version of a file from the servers. For example, consider a user issuing three user

operations successively on a client machine:

� Op1: update a source file using an editor

� Op2: compile the source file into an object file using a compiler

� Op3: update the source file again.

When the surrogate re-executes Op2, the client must have shipped Op1 but not

Op3, and the replayed operation will be reading exactly the version updated by

Op1.

It must be emphasized that the file system does not guarantee that all operations

be repeating on the surrogate – it just increases the probability of that happening.

If an operation is not repeating, the client will simply fall back to value shipping

(Section 3.1).

CHAPTER 3. ARCHITECTURE 57

3.4.2 Adjusting the Status Information

In addition to updating data, user operations also update some meta-data. The meta-

data are the status information of the CML records. Some of the meta-data are internal

to file system and are invisible to the users (e.g., the Store ID for concurrency control);

some are external and are visible to the users (e.g., the modification time). Venus on

the surrogate must reset these meta-data to those of the original execution, which are

packed by the clients as a part of the operation log.

3.4.3 Validation

Validation is the final step. It is done after the fixing of re-execution discrepancy and

the adjusting of status information. The key question is whether the portion of CML

on the surrogate, resulted from the replaying of a user operation, is identical to its

counterpart on the client. If it is, the surrogate will accept the replayed operation, and

will proceed to reintegrate the CML with the server. If it is not, the surrogate will reject

the replayed operation and report an error to the client, which will respond by falling

back to value shipping.

Recall from Section 2.3.2 that a CML physically comprises two parts: the thick

part comprises the container files, and the rest is the thin part. The thick part is stored

as local Unix files, and the thin part is stored in recoverable virtual memory. The thick

part is much more bulky than the thin part. The main purpose of operation shipping is

indeed the avoidance of the shipping of the think part of a CML, since it generates too

much traffic for a weak network.

Therefore, the validation uses two different approaches regarding the two parts.

First, the thin part is packed as a part of the operation log by the client. It is called the

reference CML on the surrogate. Validation is done by comparing a reference CML to

its counterpart re-generated on the surrogate.

Second, for the thick part. The client packs only a fingerprint of each container file.

CHAPTER 3. ARCHITECTURE 58

A fingerprint is a quick summary of a file, and it will be discussed later. Validation is

done by comparing the fingerprints of a container file on the client to its counterpart

on the surrogate.

A fingerprint function produces a fixed-length fingerprint f(M) for a given

arbitrary-length message M . A good fingerprint function should have two properties:

1. computing f(M) from M is easy,

2. the probability that another message M 0 gives the same fingerprint is small.

Here, the messages for which we compute the fingerprints are the contents of the

container files.

Our prototype uses MD5 (Message Digest 5) fingerprints [41, 56]. Each fingerprint

has 128 bits, so the overhead is very small. Also, the probability that two different

container files give the same fingerprints is very small: it is in the order of 1=264.

The fact that the probability is non-zero, albeit very small, may worry some readers.

However, even value shipping is vulnerable to a small but non-zero probability of error.

That is, there is a small probability that a communication error has occurred but is

not detected by the error-correction subsystem of the communication channel. People

probably can tolerate the small probabilities of errors of both operation shipping and

value shipping.

3.5 Application-transparent Versus Application-aware

Operation Shipping

Recall from Section 3.3 that there are two kinds of applications: non-interactive

and interactive. These two types of applications are so fundamentally different that

they demands two different mechanisms of operation shipping. For the former, the

mechanism is called application-transparent; for the latter, the mechanism is called

application-aware.

CHAPTER 3. ARCHITECTURE 59

Let us first consider non-interactive applications. For this type of applications, the

user operations are the invocation commands of the applications. Let us consider what

happen on the client and the surrogate. On the client, a non-interactive application

itself has no knowledge about the happening of the user operations, because it is just

passively invoked by an interactive shell. Therefore, the logging entity in this case is

the interactive shell. On the surrogate, again, the application is passively re-invoked

upon replaying. Therefore, Venus on the surrogate can serve as the replaying entity (the

task of re-invoking the application is so simple that we do not need another interactive

shell to serve as the replaying entity on the surrogate). To sum up, the happening of user

operations is totally transparent to the application. This transparency is important since

the application does not need any modification for participating in operation shipping.

On the other hand, for interactive applications, the user operations are some

interactive and application-specific commands. The knowledge about the happening

of some user operations rests with the application being used. Therefore, only the

application itself can be the logging entity. Similarly, it is also the replaying entity on

the surrogate. In other words, the application must be aware of the operation-logging

and operation-replaying activities. To use operation shipping for an application, it must

be extended to add the logging and replaying capabilities.

Figure 3.5 summarizes the differences between the two types of operation shipping

mechanisms, which will be discussed in more detail in the next two chapters.

3.6 Chapter Summary

A overview of operation shipping is presented in this chapter. The concept of

surrogate, operation, and value are discussed. This chapter has answered two of the

research questions posed in Chapter 1. The first is how we can avoid hampering

server scalability; the answer is in Section 3.2, which discusses about the concept of

surrogate. The second is how we can preserve correctness; the answer is in Section 3.4,

CHAPTER 3. ARCHITECTURE 60

Application-transparent
Operation Shipping

Application-aware Operation
Shipping

Application
Nature

Non-interactive Interactive

User Operation Type 1: invocation command of
non-interactive application

Type 2: interactive and
application-specific command

Application
has knowledge
about operation
shipping?

no yes

Logging Entity shell application
Replaying Entity Venus application
Application needs
modification?

no yes

Figure 3.5: Two Different Types of Operation shipping

which discuss the four-step approach for ensuring correctness. The last section of

this chapter explains that there are two types of operation-shipping mechanisms:

application-transparent and application-aware. The two mechanisms will be discussed

in more detail in the following two chapters.

Chapter 4

Application-transparent Operation

Shipping

Application-transparent operation shipping is the simpler of the two forms of operation

shipping, since a user operation is just an invocation command of a non-interactive

application. It is also the form of operation shipping that people probably will accept

earlier. The main reason is that it is backward compatible with respect to existing

applications. In other words, it can be deployed without requiring additional efforts of

modifying existing applications.

In this chapter, the design and implementation of the prototype operation-shipping

file system, based on Coda, are described. 1 The discussion is organized around the two

main stages: logging and shipping stages. The two stages are discussed in Sections 4.1

and 4.2 respectively.

Besides, in the course of developing the prototype file system, it has been found

that some important applications exhibit non-repeating side-effects, or re-execution

discrepancies. Without careful thoughts, the surrogate would have had to reject any

replayed user operations that use these applications. Section 4.3 shows how we can

avoid rejecting naively these user operations. Furthermore, it has also been found that
1The source code of the prototype can be downloaded from [2].

61

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 62

cancellation optimization, a proven technique, may force many user operations to be

value shipped. Section 4.4 explains what the issue is, and presents a new procedure of

cancellation optimization that works harmoniously with operation shipping.

In this chapter, the term “a user operation” means “a Type-1 user operation” –

that is, an invocation command of a non-interactive application. The term “replaying

of user operation” and “re-execution of application” mean the same thing. Without

further qualification, the term “client” means “weakly-connected client.”

4.1 Logging

Logging means the logging of user operations. It is the activity that happens while

users are performing their high-level commands. In this section, the modeling of the

problem is presented, which is followed by a discussion of the design alternatives in

two aspects. The actual mechanism used in the prototype file system is presented in

the last sub-section.

4.1.1 Modeling the Problem

When a user performs a user operation O, the execution of O causes a number of file-

system calls on a Coda client. Some of the calls are mutating. That is, they make some

changes on the state of the file system. For example, they may create a file (creat),

modify a directory entry (chmod), or update a file (write followed by close). A

full list of file-system calls can be found in Figure 2.1. Mutating file-system calls are

mapped to Coda updates using an inferred-transaction model (Section 2.3.2). The full

list of Coda updates can be found in Figure 2.3.

When the client is strongly connected, these Coda updates are written directly to the

server; when the client is weakly connected or disconnected, these updates are logged

as records in a client modify log (CML, Section 2.3.2) so that they can be propagated to

the server later. As explained in Section 3.3, the set of records V = fV1; V2; : : : ; Vmg

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 63

are regarded as the value of the user operation.

Traditionally, Venus, the client cache manager, does not know about the user

operation. Therefore, the logging of the user operation is to pass the following three

pieces of knowledge to Venus:

1. O has happened,

2. O has been executed with a context C,

3. O has generated V .

With the knowledge, Venus can later choose to ship O instead of V . It needs to

know about the execution context C, because O should be replayed with the same

context on the surrogate.

Now, there are two design questions:

� What is the best model to pass to the file system the association of O and V ?

� Who should be the logging entity? That is, who should communicate the above

three pieces of knowledge to Venus?

Next sub-section is going to examine these two questions.

4.1.2 Design Alternatives

4.1.2.1 Associating a User Operation with a Value

Recall that Venus receives the value when it receives some mutating file-system calls.

Therefore, one approach to tell Venus that a call is related to a user operation would be

to add one more argument to every file system call. For example, the write system

call interface could have been changed as shown in Figure 4.1.

This approach would work. However, it would also imply that all existing

applications would have to be modified to make use of the new interface. Therefore, it

is very unattractive in practice.

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 64

#include <unistd.h>
ssize_t write(int fd, const void *buf,

size_t count); /* old */
ssize_t write(int fd, const void *buf,

size_t count, int op_id); /* new */

Figure 4.1: An Hypothetical Change of the System-Call Interface

Some may suggest to add one more argument op id, which designate to
which user operation the system call belongs.

Instead of using the above-mentioned approach, the operation-logging file system

makes use the concept of process groups to establish the association between a user

operation and the value that it generates.2 The concept is originally used in UNIX for

job control. When a shell spawns a child and executes an application, it puts the child

into its own process group. The child may spawn some more children, but they will be

in the same group. This way, the shell can control the whole group as one unit.

Venus has already been built in such a way that it knows some basic information

about the calling process, such as the user ID, the process ID, the process group ID,

etc, when it receives a file-system call. Furthermore, as described in the preceding

paragraph, the shell puts all the processes created for a user operation into exactly one

process group. Therefore, Venus can associate a call with a user operation by knowing

the process group ID of the call.

Note that the file system identifies a user operation with its process group but not

with the individual process. This is because many applications may spawn children to

carry out some of the sub-tasks. For example, Figure 4.2 traces the process-creation

activities of an execution of the “make.” It shows that the execution has forked four

children, each of it was for an execution of the compiler “cc.” (The compiler in turn

might fork some more children.) The whole group of processes, but not only the make

process, are working for the requested user operation.
2This method is inspired by Qi Lu [24].

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 65

[clement@localhost oplog_applix]$ strace -e trace=process make
execve("/usr/bin/make", ["make"], [/* 24 vars */]) = 0
cc -g -I/usr/X11R6/include -c main.c -o main.o
fork() = 2401
wait4(-1, [WIFEXITED(s) && WEXITSTATUS(s) == 0], 0, NULL) = 2401
--- SIGCHLD (Child exited) ---
cc -g -I/usr/X11R6/include -c reparent.c -o reparent.o
fork() = 2405
wait4(-1, [WIFEXITED(s) && WEXITSTATUS(s) == 0], 0, NULL) = 2405
--- SIGCHLD (Child exited) ---
cc -g -I/usr/X11R6/include -c xutils.c -o xutils.o
fork() = 2409
wait4(-1, [WIFEXITED(s) && WEXITSTATUS(s) == 0], 0, NULL) = 2409
--- SIGCHLD (Child exited) ---
cc -g -I/usr/X11R6/include -o oplog_Presents main.o reparent.o
xutils.o -L/usr/X11R6/lib -lXm -lXt -lX11
fork() = 2413
wait4(-1, [WIFEXITED(s) && WEXITSTATUS(s) == 0], 0, NULL) = 2413
--- SIGCHLD (Child exited) ---
_exit(0) = ?

Figure 4.2: Process-creation Activities of an Execution of the User Operation “make”

This trace was produced by “strace,” a utility for tracing system
calls and signals. It shows that “make” forked four children in this
execution.

4.1.2.2 Logging Entity

Now, the file system needs an operation-logging entity to identify progress groups to

be logged and to get the details about the user operations. There are two alternatives

for the entity. The first alternative is the kernel; the second alternative is an interactive

shell.

The first alternative is possible because every application is executed using the

exec system call, and all the information pertaining to the user operation are available

to the kernel when the system call is invoked. This alternative has an advantage that

once it is done, operation shipping can be used no matter which interactive shell

the user is using. However, it has two more serious disadvantages. First, in this

approach, all exec’ed applications are considered useful user operations. However,

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 66

this position is too strong in practice, because not really all exec’ed applications are

useful user operations. For example, for an interactive application, the application-

specific commands performed with the application, but not the invocation command

of the application, are useful user operations. Second, it is contrary to the philosophy

that functionalities that are not absolutely needed in the kernel space should be moved

to the user space. This philosophy is commonly adopted, as it helps to keep the kernel

lean and allows more flexibility in designing the functionalities.

Therefore, the logging file system adopts the second alternative. That is, the

logging entity should be an interactive shell, which is a user-space program. There

are several advantages. First, operation logging is not a functionality that is absolutely

needed in the kernel space, so it is more appropriate to be placed in the user space.

Second, this approach allows the users to have more control on the scope of operation

logging. When they use an operation-logging shell, all the “magical” things of

operation logging and shipping will happen; when they do not want to use operation

logging and shipping, they can simply switch to use an ordinary shell. Third, this

approach allows a separation of policy from mechanism. The file system provides the

mechanism of operation logging, and the logging shell can choose to use different

policies for operation logging. For example, the logging shell may allow the user to

selectively enable or disable some applications from being logged.

4.1.3 Logging Mechanism: Using the bash Shell as an Example

The logging mechanism is now presented. It can be described in three aspects:

interface, usage, and implementation.

4.1.3.1 Interface

First of all, the file system supports operation logging by extending its interface.

The extended interface is expected to be used by an operation-logging shell. It

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 67

VIOC_BEGIN_OP fs_begin_op(char *command,
char **args,
char **env,
char *cwd,
mode_t umask);

VIOC_END_OP fs_end_op(pgid_t pgid);

The left column shows the two new ioctl commands added to support operation
logging. The right column shows the two corresponding convenient functions and
the arguments that they accept.

Figure 4.3: Extended Interface for Logging User Operations

comprises two new commands of the ioctl system call. The two new commands are

VIOC BEGIN OP and VIOC END OP. They are used by the logging shell to indicate

the begin and end of a logging session. The logging session is associated with the

process group of the caller of the “begin” command. During the logging session, the

effect of every mutating file-system call from the same process group seen by Venus is

regarded as a part of the value. Information about the user operation and the execution

context are also passed to file system with the “begin” command. Figure 4.3 shows the

extended interface. For each command, a convenient function is provided. It simplifies

the task of packing various arguments needed by the command, and is implemented as

a static library routine to be linked into the logging shell.

4.1.3.2 Usage

How should a logging shell make use of the extended interface? Let us first examine

how a Unix shell executes an application-invocation command.

Figure 4.4a shows the pseudo code of a Unix shell dealing with the execution.

Figure 4.5a depicts the execution in graphical form. When the shell recognizes the

application-invocation command O, it fork’s a copy of itself. On the child side, the

forked child creates a new process group itself by making use of the setpgid system

call, and then it exec’s the application. The application is thus executed, and it may

cause some mutating file-system calls V1; V2; : : : ; Vm while executing. On the parent

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 68

side, The parent waits for the termination of the child by using the waitpid system

call, and proceeds for other tasks when the child terminates.

Now, to log the user operation, the shell makes use of the two new ioctl

commands. First, the forked child issues VIOC BEGIN OP after the setpgid call

and before it exec’s the application. Second, the parent issues the VIOC END OP

command when the forked child terminates. Figure 4.4b shows the pseudo code, and

Figure 4.5b depicts the scenario. These two commands thus delineate the logging

session for the user operation.

In this project, a popular Unix shell – the GNU Project’s Bourne Again Shell

(bash) [10] – is extended to add the operation-logging capability. The source code

of bash is publicly available, and my extension is based on version 1.14.7. The

modification involves only a few lines of code. The source code of the extended bash

shell is available for download from [2]. The current version implements the most

straightforward policy, under which all user operations are logged. A future version

may implement a more flexible policy.

4.1.3.3 Implementation

In this sub-section, several implementation details are discussed. First, the activities

of the logging file system during a logging session are explained. Second, the data

structures for logging user operations are described.

Logging Session. Recall from Section 2.4.2 that a Coda volume has three different

states: hoarding, emulation, and write-disconnection. When the Venus is in a logging

session, all volumes that are being carried by Venus are put into the write-disconnection

state. All volumes are affected since Venus does not know yet which volumes will

be mutated by the coming file-system calls of the user operation. At the end of the

logging session, these volumes may transit to other states using the existing state-

transition rules. For example, a volume may return to the hoarding state when all of

the following three conditions are met: (1) there is no on-going logging session, (2)

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 69

...
if ((pid=fork()) == 0) { /* child */

setpgid(0,0); /* put myself in a pgrp */
execve(pathname, argv, envp); /* exec the app. */

} else if (pid > 0) { /* parent */
waitpid(pid, &status, option);

} ...
...

(a)

...
if ((pid=fork()) == 0) { /* child */

setpgid(0,0); /* put myself in a pgrp */
fs_begin_op(pathname, argv, envp, cwd, umask);

/* start the logging session */
execve(pathname, argv, envp); /* exec the app. */

} else if (pid > 0) { /* parent */
waitpid(pid, &status, option);
fs_end_op(pid); /* end the logging session */

} ...
...

(b)

Figure 4.4: Pseudo Code Showing the Sequence of Executing an Application

(a) and (b) are the pseudo code for an ordinary and an logging shell
respectively. The application being executed is specified by pathname.
The following are the meanings of the other arguments. argv is the
command-line argument list, envp is the environment-variable list, cwd is
the current working directory, umask is the file-creation mask, status
is used for getting the exit status of the terminated child, and option
specifies the exact behavior of the waitpid system call.

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 70

(a)

(b)

File System

exec

exit

V1

V2

.

.

.
Vm

kernel

fork

Logging Shell

File System

exec

exit

V1

V2

.

.

.
Vm

Shell

kernel

fork

Non-interactive
application

Non-interactive
application

waitpid

unblock

waitpid

unblock
VIOC_END_OP

ap
pl

ic
at

io
n

N
on

-in
te

ra
ct

iv
e

Lo
gg

in
g

se
ss

io
n

F
or

ke
d

C
hi

ld
N

on
-in

te
ra

ct
iv

e
ap

pl
ic

at
io

n
C

hi
ld

F
or

ke
d setpgid

setpgid
VIOC_BEGIN_OP

O

O

Time

Time

Figure 4.5: Logging of User Operations

(a) The typical sequence of a shell executing an application. (b) A logging shell logs the user
operation by inserting the VIOC BEGIN OP and VIOC END OP commands before and after the
execution of the non-interactive application. V1; V2; : : : ; Vm are the effects of the mutating file-
system calls that the application generates.

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 71

running terminated
VIOC_BEGIN_OP

VIOC_END_OP Operation Shipped
(either accepted
or rejected)

Figure 4.6: Two Possible States of User Operations

there is a strong physical network connection, and (3) all log records on the CML have

been reintegrated with the server.

A user operation has two different states. When its logging session is started by

a VIOC BEGIN OP command, it is in the running state. When its logging session is

ended by a VIOC END OP command, it is in the terminated state. Information about

a user operation is kept in the logging file system until the operation is shipped for

propagation. The file system attempts at most once operation-based update propagation

per user operation. If the attempt is rejected by the surrogate, the file system will

fall back to value shipping, so it will no longer need the information about the user

operation. If the attempt is accepted by the surrogate, it will not need the information

either. Figure 4.6 shows the various transitions of the states.

The CML records of a user operation are eligible for update propagation only after

the operation is in the terminated state. This is because the set of CML records is

considered an indivisible unit when attempting operation shipping, and the file system

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 72

can know about all the records for a given user operation only when the operation has

terminated.

An erroneous shell may forget to end a logging session after starting it. However,

Venus does not allow any logging sessions to stay forever in the running state,

otherwise the records of the session will block all other records in the same

CML from being reintegrated. All logging session is bounded by a parameter

UserOpTimeBound. A periodic daemon proactively ends all logging sessions that

have exceeded the time bound.3 The default value of the time bound is 600 seconds.

The Structure of the Operation Log. User operations and the file-system updates

that they generate are concepts at two different level of abstract. File-system updates

are logged in temporal order in the CML (Section 2.3.2). So, how should user

operations be logged?

One may attempt to add another log for user operation records. However, doing

so has two problems. First, Venus then needs to synchronize the two logs, since some

updates are shipped by value and some by operation. Second, this structure makes it

difficult to merge the operation-shipping mechanism into the existing value-shipping

mechanism.

A better solution is to augment CMLs so that they also carry the information about

user operations. Specifically, it is to tag CML records with the user operation, if any,

that causes them. Figure 4.7 shows a high-level view of the new CML structure. Note

that CML is a per-volume log. In the figure, it can be seen that records of different user

operations and records of no user operation can be kept in the same log.

Records of different CMLs, that is, records that mutate different volumes, may be

tagged with the same user operations. However, in the current implementation, they

will not be operation shipped but only be value shipped. There are two reasons for this

design decision. First, the existing reintegration mechanism is done on a per-volume
3This daemon is not yet implemented in the current version of the prototype, but it will be

implemented by the next release.

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 73

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

Mkdir Create Store Remove Rename

Create Chown Store Symlink

Volume 2

Volume 1

Create Store

User Op A

User Op B

User Op C

No user Op

cmlent of cmlent of

Figure 4.7: High-level View of the New CML Structure

This figure illustrates two client-modify logs of two volumes. Note that
some records in the logs are tagged with user-operation information, some
are not tagged.

basis. Operation shipping records of different CMLs simultaneously amounts to a

multi-volume reintegration, and it is possible only after an overhaul of the reintegration

mechanism. Second, the reintegration of a CML involves locking the volume involved

on the server. If multiple volumes are involved, then the server need to deal with a

number of complicated issues such as deadlocks. The design of the logging file system

favors simplicity. Complicated mechanism is used only when it is fully justified. So far

the need for supporting the shipping of multi-volume user operations is not eminent.

This is true because most users’ tasks are done within a volume.

Figure 4.8 shows the detailed structure of the augmented CML. Records that are

generated by a known user operation are tagged with non-zero value in the fields vbt

and userOpId. The two fields are used as indices for the User Operation Database

(OPDB), which will be explained below. The field userOpId is the process group

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 74

ClientModiyLog *log;
rec_dlink handle;

ViceStoreId sid;
Date_t time;
UserId uid;
int tid;
CmlFlags flags;

time_t vbt; /* for operation shipping */
pid_t userOpId; /* for operation shipping */
unsigned srgRejected:1; /* for operation shipping */
unsigned ghost:1; /* for operation shipping */

< type specific fields >

dlist *fid_bindings;
dlist *pred;
dlist *succ;

Figure 4.8: Type-independent Fields of Augmented CML Records

This figure shows how the CML record is augmented for supporting operation
shipping. Four more fields are needed: vbt (Venus Birth Time), userOpId,
srgRejected (this operation was rejected before by the surrogate), and ghost
(ghost record). The other fields are already explained in Figure 2.4.

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 75

* ** ** * *

opId

vbt

cmlent_count

pathname

argv

envp

cwd

umask

app_oplog_filename

runningOpList

terminatedOpList

vbt

OPDB

opRec

Figure 4.9: User Operation Database and User Operation Records

This figure illustrates the User Operation Database (OPDB) and the User
Operation Records (OpRec). Every entry in the two list of the OPDB is
a OpRec. In the OpRec, a field with a asterisk (*) is a field that needs a
separate string for physical storage; a field with two asterisks (**) is a field
that needs a separate array of string for physical storage.

ID of the user operation. The field vbt is the “Venus Birth Time.” It is needed since

different runs of Venus may see different process groups using the same process group

ID (the machine recycle the process group ID after reboot). A zero value on both the

two fields indicates that there is no user operation information provided for the record.

The field srgRejected indicates whether or not the user operation was rejected by

the surrogate before. The field ghost is to be explained in Section 4.4.2.

Figure 4.9 shows the structure of the User Operation Database (OPDB). The

database contains two lists of User Operation Records (opRec), one for the running

operations, and the other for the terminated operations. A newly created operation

record is added to the running list. It is later transferred to the terminated list when

its logging session terminates. It is discarded from the terminated list when the user

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 76

operation is shipped. Each record stores the relevant information for replaying the user

operation. The field app oplog filename is needed for an application-specific

operation log, and is only for application-aware operation shipping (Section 5.2.1).

4.2 Shipping

The main stage of operation-based update propagation is the shipping stage. It is

integrated into the existing reintegration mechanism. That is, when Venus is triggered

to start a reintegration, it selects some records from the prefix of the CML. Depending

on whether the records that it selects are associated with or without user operation

information, it proceeds with operation shipping or value shipping respectively.

Operation shipping is performed in a best-effort manner, so if some records cannot be

operation shipped, they will just be value shipped in the next round of the reintegration.

There are three parties involved in the shipping stage: the client, the surrogate,

and the server. Figure 4.10 shows an overview of the interaction between the three

parties. It also shows that the shipping stage comprises five phases: (1) requesting, (2)

replaying, (3) validation, (4) reintegration/aborting, and (5) finalization.

The client performs the requesting phases. The surrogate performs the replaying,

validation, and reintegration/aborting phases. The server is also involved in the

reintegration/aborting phases. Both the surrogate and the client need to perform some

duties in the finalization phase. The five phases are discussed in five sub-sections

following the next sub-section, which presents the problem model.

This section begins with a discussion on the modeling of the problem. It then

describes the five phases of the shipping stage in the next five sub-sections.

4.2.1 Modeling the Problem

Recall from Section 4.1 that Venus on a weakly connected client gets the knowledge

of O (a user operation), C (the execution context of O), and an association that a

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 77

number of records in the CML V1; V2; : : : ; Vm are resulted from the execution of O.

To complete the background processing of those file-system calls that generate the

records, Venus must eventually ship the records to the server for reintegration (Recall

from Section 2.1.1 that the server keeps the primary replicas of file system objects, and

the cached copies on the client are only secondary replicas.)

However, shipping the records to the server using the weak network is an expensive

operation. It imposes too much traffic for the network, and incur a long latency

for finishing the reintegration procedure. Therefore, Venus attempts to send O to a

surrogate for a re-execution of O, under the context C, which re-generates a set of

CML records V 0

1
; V 0

2
; : : : ; V 0

m
. It hopes that the re-generated set of records has the

property that Vi = V 0

i
; 8i 2 f1; 2; : : : ; mg. If this can be done, then it is no different

whether the server receives Vi from the client, or V 0

i
from the surrogate. The surrogate

is strongly connected to the server, so the reintegration of V 0

i
from the surrogate can be

done easily: the impact on the network is small, and the latency for the reintegration

procedure is low.

4.2.2 Requesting

A record in the CML is eligible for operation shipping if it is associated with a user

operation, and neither of the following two breaking conditions happen to the user

operation: (1) the user operation has been rejected before by the surrogate, (2) the

records of the user operation are interleaved by some records that are not associated

with the same user operation. A record that is not eligible for operation shipping can

only be value shipped. The first condition ensures that operation shipping is attempted

at most once. The second condition ensures that records are always shipped in temporal

order.

Note that Venus uses a static policy regarding operation shipping. That is,

an eligible user operation is always operation shipped regardless of the bandwidth

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 78

another
round

of reintegration

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

re
pl

ay
in

g
se

ss
io

n

fork

SIGUSR2

replaying phase

validation phase

finalization phase

requesting
phase

finalization

V’1

V’2
.
.

V.’m

child terminated

File System
on Client

File System
on Surrogate

File Server

ViceReintegrate

reply

sigsuspend

exec

reintegration/aborting phase

ViceReintegrate

ReexecTid = pid

ReexecTid = 0

Non-interactive
application

reply

UserOpPropagate

reply

phase

setpgid

pg
id

 =
=

 p
id

Time

Figure 4.10: Shipping Stage

This figure shows the five phases of operation shipping: requesting,
replaying, validation, reintegration/aborting, and finalization. It also shows
how the replaying session spans across the last four of the above five
phases. Shown in the lower part of figure is the fallback mechanism, which
is needed only when the shipping of a user operation is not successful.

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 79

condition. In Section 8.2.3 we will see that another approach is that Venus makes a

dynamic decision regarding whether an eligible user operation should be propagated

using operation or value shipping.

The shipping stage for operation shipping is an integrated part of the

existing reintegration mechanism. It is implemented in a procedure called

IncReintegrateViaSurrogate, and is an addition to the two existing value-

shipping procedures: reintegration by chunks (IncReintegrate) and reintegration

by fragments (PartialReintegrate) (Section 2.4.5).

Reintegration is triggered by some triggering events, such as the referencing of

an object in the volume by either a worker thread or the hoarding thread, or the

periodic volume daemon detects that the volume is pending for reintegration. Once

triggered, Venus will dispatch a reintegrator thread to oversee the reintegration process.

Reintegration proceeds in rounds. In each round, the reintegrator decides which

procedures to use depending on what records it can select from the prefix of the CML.

Note that the records are always selected for reintegration in temporal order.

If the first record is eligible for operation shipping, then the reintegrator checks to

see if the user operation is ready for shipping. A user operation is ready for shipping

when both of the following two conditions are true: (1) the user operation is in the

terminated state, and (2) all the records of the user operation have an age larger than

the age window. The first condition ensures that all records of a logging session will

be shipped in the same attempt of operation shipping so that the validation phase will

have all the needed information (Section 4.2.4); the second condition preserves the

effectiveness of cancellation optimization (Section 2.3.2.2).

If the user operation is ready, the reintegrator will proceed to use operation

shipping; if not, the reintegrator will terminate the current round of reintegration,

awaiting both of the two conditions to become true. The awaiting period is bound,

since the first condition is bound by the parameter UserOpTimeBound, and the

second condition is bound by the age window.

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 80

If the first record is not eligible for operation shipping, then the reintegrator will

proceed to use value shipping for the current round. Depending on the size of the first

record, it may proceeds with reintegration by chunks or reintegration by fragments.

That is, if the first record exceeds the chunk size, it will be reintegrated by fragments;

otherwise, all the subsequent non-eligible records fitting into a chunk will be selected

for the current round, and they will be reintegrated by chunk.

The requesting phase starts when the reintegrator decides to use operation shipping

and invokes IncReintegrateViaSurrogate. There are three main steps in this

phases:

� Permanent-Fid Allocation - If some newly created objects are having locally

generated temporary fids (file identifiers), the client needs to translate them

permanent fids, which are generated by the server and are globally unique The

need of this step is explained in Section 2.3.3. Note that the client needs to

communicate with the server using the ViceAllocFids RPC to allocate the

needed permanent fids.

� Preparing information for replay - Five groups of information are needed for

the replay of the user operation:

– Information about the user operation and the execution context: the

pathname of the invoked application, the command-line arguments, the

environment variables, the current working directory, and the file-creation

mask.

– The identifier of the user who has made this operation, and the identifier of

the volume in which the mutating file-system calls have happened.

– Checksum information. For each store record, the reintegrator need to

compute two types of checksum information: a MD-5 fingerprint, and a

Reed-Solomon forward-error-correction code. The former is for validating

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 81

UserOpPropagate (IN RPC2_CountedBS packedOpRec,
IN RPC2_Integer buf2size,
OUT ViceVersionVector updateSet);
IN OUT SE_Descriptor BD);

Figure 4.11: RPC Interface for Operation Shipping

Most arguments needed for the RPC are packed into packedOpRec. The
reference CML and the application-specific operation log are sent using
the RPC2 side-effect mechanism [47]. Their total size is buf2size.

the new contents of the re-generated store record, and the latter is for

fixing any minor re-execution discrepancies possible. The need of them

are explained in Sections 4.2.4 and 4.3.1.3 respectively.

– Reference CML. The thin part of all CML records of the user operation

is packed as the reference CML. Recall from Section 2.3.2.1 that the thin

part of a CML record includes everything of the CML except the contents

of the container file, if any. The reference CML is used in the validation

phase (Section 4.2.4).

– Application-specific Operation Log. This is needed only for application-

aware operation shipping. It is to be discussed in Section 5.2.1.

The first three groups are packed into a RPC argument called packedOpRec.

The last two groups are packed into an in-memory buffer call buf2, which is to

be retrieved by the surrogate using the RPC2 side-effect mechanism [47].

� Invoking the UserOpPropagate RPC. Finally, the reintegrator sends the

RPC request to the surrogate. The interface of the RPC is shown in Figure 4.11.

4.2.3 Replaying

On the surrogate, the receiving of the UserOpPropagatemarks the beginning of the

replaying, validation, reintegration/aborting, and finalization phases. The four phases

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 82

...
if ((pid=fork()) > 0) { /* parent */

put the volume in write-disconnected mode;
disable the volume from reintegration and ASR;
entering the volume as a mutator;
ReexecTid = pid; /* replay session begins */
kill(pid, SIGUSR2); /* child may proceed now */
wait for the child to finish, but not indefinitely;

} else if (pid==0) { /* child */
prepare childmask so that only SIGUSR2 is unmasked;
sigsuspend(&childmask); /* do not proceed until parent

* is in replay session (SIGUSR2) */
chdir(cwd); /* restore current working dir */
umask(_umask); /* restore file-

creation mask */
setuid(user); /* restore effective user id */
setpgid(0,0); /* put myself in a process group */
execve(pathname, argv, envp); /* really executing the app. */

}
...

Figure 4.12: Pseudo code of the Re-execution of an Non-interactive Application by
Venus

This pseudo code shows how Venus fork’s and exec’s the re-executor, and how they are
synchronized. The re-executor uses the parameters logged by the weakly-connected client for
restoring the re-execution context and re-execute the application. These parameters are cwd,
umask, user, pathname, argv, and envp.

are all controlled by a surrogate-server thread in Venus.

In the replaying phase, there are three preparatory steps before the user operation

is replayed:

� Entering - The surrogate checks to make sure that Venus is not already engaged

in other replaying activities. If Venus is already engaged, it will refuses to

participate in replaying, and will reply an error to the client (ESURR FAIL).

� Retrieving information for replay - The surrogate retrieves the information

needed for the replay of the user operation. The RPC argument packedOpRec

is unpacked, and buf2 is retrieved from the client using the RPC2 side-effect

mechanism.

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 83

� Token checking - The user performing the user operation must have a valid

authentication token on the surrogate machine. Otherwise, the surrogate will

refuses to participate in replaying, and it will reply an error to the client

(ESURR NOTOKEN).

� Replaying the user operation - Since the user operation is an invocation

command of a non-interactive application, the replaying of the user operation

is the re-execution of the application. Venus spawns a child process, called the

re-executor, which re-executes the application. The pseudo code of this step is

shown in Figure 4.12. There are several remarks about this step:

– Write-Disconnecting the volume. Although most re-executions are

anticipated to be successful (execute completely and pass the validation),

the file system must prepare for the possibility that they may fail (cannot

execute completely or fail the validation). Therefore, re-executions must be

abortable transactions such that failed re-executions will have no lasting

effect. This is done by putting the affected volume in write-disconnected

mode during the re-executions. When a volume is in the write disconnected

mode, input files can be retrieved from the server, but file-system updates

are not written immediate through to the server. The volume will be re-

connected to the server in the finalization phase.

– Disabling the volume from reintegration and application-specific

resolver. There may be some other concurrent activities going on in Venus.

Two of such activities – reintegration and application-specific resolver

(ASR) [21, 20] – may interfere with the activities of the replaying phases,

so they are disabled. These activities will be re-enabled in the finalization

phase.

– Entering the volume. The surrogate makes the user “enter” the volume

as a “mutator.” This means that the user will acquire a write lock of the

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 84

volume, after a possible duration of being blocked awaiting other active

users to “leave” the volume. Note that it is the user, but not the surrogate-

server thread, who enters the volume. This distinction is important because

the same user can have multiple threads active in the volume. The user will

leave the volume in the finalization phase.

– Marking the beginning of a replay session. The surrogate marks Venus

to be in a replaying session by setting the global variable ReexecTid to

be the process group ID of the re-executor. The replaying session will be

ended in the finalization phase.

When in a replaying session, whenever Venus receives a mutating file-

system call, it will examines the process group ID of the caller. If the

ID equal to the value of ReexecTid, the call is an effect of the replayed

user operation, and the effect should be tagged with the replaying session.

– Synchronization between the parent and the child. The re-executor

should proceed to re-executing the application only after Venus has begun

the replaying session. Venus can begin the replaying session only after

fork, since it knows the process group ID of the re-executor only after

that. However, fork does not guarantee whether the parent process

(Venus) or the child process (the re-executor) runs first. Therefore, an

explicit synchronization is needed between the two processes. This is done

by the following arrangement. Immediately after fork, the re-executor

suspends itself awaiting a signal from Venus. Venus wakes up the re-

executor by sending it a signal after it has begun the session.

– Waiting for the re-executor to finish. Venus must wait for the termination

of the re-executor before it can proceed to the next validation phase. It uses

a loop combined with the non-blocking waitpid system call to poll for

the termination of the re-executor.

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 85

The waiting period is bounded by a parameter. Venus cannot wait

indefinitely since the re-executor may erroneously involve in an infinite

loop. Venus will kill the re-executor if it runs for too long. The parameter

is a constant in the current implementation, but it may be changed to a

client-specified variable in the future.

– Restoring of execution context. As shown in the pseudo code, the

re-executor restores the execution context before really executing the

application. The current working directory is set by using the chdir

system call, the file-creation mask is set by using the umask system call,

the environment-variable list and the command-line argument list are set

when invoking the execve system call, and the user identity is set by

using the setuid system call. The re-executor also puts itself into its own

process group by using the setpgid system call.

4.2.4 Validation

In the validation phase, the portion of CML that is resulted from the replaying of the

user operation (the new CML) is adjusted and checked against the reference CML.

The surrogate adjusts the status information of the records in the new CML to their

counterparts in the reference CML. It also checks that the records in the new CML

is identical to their counterparts in the reference CML. The two tasks are performed

in one routine (AdjustAndCheck). The return value of the routine indicates whether

the replayed user operation is accepted or rejected. The former indicates that the new

CML is identical to the reference CML, so the surrogate can reintegrate the new CML

with the server in the next phase. The latter indicates that the two CMLs are different,

so the surrogate should abort the new CML in the next phase. The routine contains a

loop in which CML records are adjusted and checked one by one, but before entering

the loop, the surrogate performs the following two tasks:

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 86

1. Marking the records of the new CML and counting their number. Records

of the new CML are tagged with a common reintegration identifier, so that they

can be atomically committed or aborted in the next reintegration/aborting phase.

The number of the records in the new CML is also counted. If the number does

not match with its counterpart of the reference CML, the surrogate rejects the

replayed user operation immediately, as the two CMLs will never be the same.

2. Temporary Filename Renaming. This is a step to fix any possible non-

repeating side effects. It will be discussed in more detail in Section 4.3.2.

After that, the routine will enter the main loop. For each record, the following three

steps are performed:

1. Locating the corresponding reference CML record. The corresponding

record in the reference CML is located. In the following discussion, the term

“two records” refers to the record in the new CML and the corresponding record

in the reference CML.

2. Checking the contents. Except the status information that will be adjusted in

the next step, the contents of the record is compared to that of the reference

record. For example, for a chown record, the value of the owner field of the

two records are compared. Any mis-matches in the comparison cause the user

operation to be rejected.

However, there is one important exception for the container file of the store

record. For this field, the MD-5 fingerprints of the two records are compared.

Recall that the client does not ship the container files of the store records, but

only their fingerprints, to the surrogate. Otherwise, the network traffic required

will be amounting to value shipping.

If the fingerprints of the two records differ, a naive approach would be to reject

the replayed user operation immediately. However, the re-generated file of the

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 87

replayed user operation may already be very similar to the original file. They

may be so similar that the former can be transformed to the latter by using a

procedure of error correction. Therefore, instead of rejecting the replayed user

operation immediately, the surrogate will make an attempt to error-correct the re-

generated file using the parity blocks sent in by the surrogate. The details of this

error-correction procedure will be given in Section 4.3.1. Another fingerprint

comparison will follow the error-correction procedure to see if the procedure

succeeds in correcting the re-generated file.

3. Adjusting status information. The following three fields on the two records

will always differ, because they are generated in a time-dependent manner. The

value of the new CML record is restored to take the value of the reference record.

(a) Modification time. The local system time when the mutation happens.

(b) The fids of child objects in the three object-creation records: create,

mkdir, symlink. Note that the fids will appear in both the CML record

and the file-system object descriptors of the created object.

(c) Store ID. It is the ordered pair <host,uniquifier>. It is globally

unique and is locally generated by Venus at the time of local mutation. It is

used for concurrency control by Coda (Sections 2.2.3 and 2.3.3).

4.2.5 Reintegration/Aborting

After having made a conclusion on whether the replayed user operation is accepted

or rejected in the validation phase, the surrogate proceeds to the reintegration/aborting

phase. The two possible outcomes are handled differently: the surrogate reintegrates

the new CML with the servers if the operation is accepted, but it aborts the current

attempt of operation shipping if the operation is rejected. The details are provided in

the following.

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 88

Reintegration If the replayed user operation is accepted, the surrogate will proceed

to reintegrate the new CML with the servers on behalf of the client. Like

an ordinary reintegration, the surrogate reintegrates the new CML with all

servers in the volume’s AVSG (accessible volume storage group, Section 2.2.1).

It also collates the responses from the servers, and construct an update set

(Section 2.2.4), which is used by both the servers and the surrogate for keeping

track of which servers have performed the reintegration successfully. Note,

however, that Venus on the client also needs the update set for keeping track

the same information. Therefore, the surrogate will forward the update set

to the client in the reply of the UserOpPropagate RPC in the subsequent

finalization phase.

Aborting If the replayed user operation is rejected, the surrogate will proceed to

abort the current attempt of operation shipping. This includes discarding all the

records in the new CML and discarding from the local cache all the file-system

objects that have been mutated by the rejected user operation. Note that the

surrogate does not need to undo any mutating operations that have performed

on these objects, because it can fetch the unmodified versions of them from

the server when these objects are next referenced (remember that the surrogate

replays user operations in the write-disconnected mode). After the aborting of

the current attempt of operation shipping, the rejected user operation does not

have any lasting effects.

4.2.6 Finalization

After the reintegration/aborting phase, the surrogate enters into the finalization phase.

Some steps of this phase are performed on the surrogate, and some other steps are

performed on the client. The surrogate performs the following steps:

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 89

ESURR_TIMEDOUT /* no reply from the surrogate */
ESURR_REEXEC_REJECTED /* re-exec did not produce same mutations */
ESURR_INVAL /* invalid value specified */
ESURR_FAIL /* re-execution failed */
ESURR_NOTOKEN /* user has no token on the surrogate */
ESURR_REEXEC_TIMEDOUT /* replaying process took too much time */

Figure 4.13: Error Returns of the UserOpPropagate RPC

� Marking the end of the replaying session. The global variable ReexecTid

is reset to null, indicating the end of the replaying session.

� Re-connecting the volume to the server.

� Re-enabling the volume for reintegration and application-specific resolver.

� Leaving the volume. The surrogate make the user leave the volume by releasing

the write lock that it holds.

� Replying the UserOpPropagate RPC.

The reply of the UserOpPropagate RPC starts the finalization phase on the

client. The actions taken by the client depends on the result of the RPC:

1. The RPC reply indicates a success. This happens when all phases of the

operation shipping stage have completed successfully. In this case, the client

locally commits the shipping stage. Local commitment includes updating

objects’ states, such as version vectors, clearing the dirty bits for objects, and

discarding all CML records of this round.

2. The RPC reply indicates an failure, or there is no reply. An error in any

phase of the shipping stage causes the stage to fail. Figure 4.13 lists the various

possible error returns of the RPC. The client thus sets the flag SrgRejected

for all the CML records of the current round. These records will therefore be not

eligible for operation shipping – they will be value shipped in the next round of

reintegration.

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 90

It is possible that a reintegration completes successfully at the servers, but

the response of the UserOpPropagate fails to arrive at the client in spite of

retransmission. This can happen when there is an untimely failure of the surrogate or

the communication channels. The existing Coda mechanism of ensuring atomicity of

reintegrations is used here to handle this kind of failures [30, page 87], and it proceeds

as follows. The client presumes a reintegration has failed if it does not receive a

successful response from the surrogate, and it will retry the reintegration. At the same

time, the server retains the information necessary to detect whether a record has already

been reintegrated earlier. If a client attempts such an improper retry, the server will

reply with the error code EALREADY (operation already in progress). From the error

code, the client knows that the records have already been successfully reintegrated in

a previous attempt, and it will simply locally commit the records.

4.3 Non-repeating Side Effects

In an early stage of this project, we expected the re-executions of most non-interactive

applications can produce an identical result as the original execution. We had such

an expectation because we are focusing on applications that perform deterministic

tasks, such as compiling binaries or formatting texts. It was also because we had

excluded applications such as games and probabilistic search that are randomized in

nature. However, to our surprise, many common applications exhibit non-repeating

side effects. They do not produce an identical result on re-execution, instead, their

results are different to the originals in some non-critical ways. Non-repeating side

effects are also called re-execution discrepancies in this thesis.

So far two types of such side effects have been observed:

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 91

Applications that put time stamps in output files

rp2gen stub generator for use with the RPC2 package

ar software library archive builder

latex text formatter and typesetter

Applications that use time-dependent names for temporary files

ar software library archive builder

Figure 4.14: Applications that Exhibit Non-repeating Side Effects

Different applications that exhibit non-repeating side effects.

1. time stamps in output files

2. time-dependent names for temporary files

Figure 4.14 lists the applications that are known to exhibit these side effects. A naive

approach is to reject the re-execution of these applications. Unfortunately, this implies

that many common applications cannot be used with operation shipping, and severely

limits the usefulness of operation shipping. A better approach is to find some ways to

suppress the side effects. The following two sub-sections explain the handling of the

two side effects.

However, note that not all side effects can be suppressed. For example, if an

application has a side effect outside of the system, such as sending an email message

during each execution, then its side effects probably cannot be suppressed. In this

case, the best solution is to let the users to decide whether they still want to use the

operation shipping application given the non-repeating side effects. This can be done

by the policy module of the logging shell. It can allow the users to selectively enable

or disable applications for logging.

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 92

0000000 367 002 001 203 222 300 034 ; \0 \0 \0 \0 003 350 033
0000020 T e X o u t p u t 1 9 9 9 .
0000040 1 2 . 0 2 : 0 7 0 2 213 \0 \0 \0 001 \0
0000060 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

(a)

0000000 367 002 001 203 222 300 034 ; \0 \0 \0 \0 003 350 033
0000020 T e X o u t p u t 1 9 9 9 .
0000040 1 2 . 0 2 : 0 7 0 3 213 \0 \0 \0 001 \0
0000060 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

(b)

Figure 4.15: Dumping Two DVI files in Octal Format

The “octal dump” of the first 64 bytes of the output DVI files of two different executions of the LATEX
program. Each line shows 16 bytes, displayed in either a printable form if the byte is printable, in
its ASCII code in octal if the byte is not printable, or as n0 if its ASCII code is zero. The leftmost
column is the offset of the first byte in the line. Note that two time-stamp strings “1999 12
02:0702” and “1999 12 02:0703” appear in the two files respectively (located on 27th to
41th bytes).

4.3.1 Side Effects Due to Time Stamps

4.3.1.1 Time Stamps

LATEX, a text formatter, for example, puts time stamps in the output file. Figure 4.15

shows the “octal dump” of the first 64 bytes of two output files, which are produced by

two executions of the LATEX program. The output files are in the DVI format. In each

file, the 27th to the 41th bytes is a time-stamp string. For example, the strings for the

two files are “1999 12 02:0702” and “1999 12 02:0703” respectively. Note

that the two 179-Kbyte files are identical except the 15-byte time stamps.

Therefore, the file produced by a re-execution is slightly different to the file produce

by the original execution, and the two files have different fingerprints. Our first

implementation detected such difference and rejected all re-executions of the LATEX

program.

The time stamps are seldom used by users. Many users are not even aware of the

existence of the timestamps. To them, the slight discrepancy is just an artifact of re-

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 93

execution and can be tolerated. However, the design philosophy of our system is that

the file system must not compromise correctness. It assumes that the time stamps are

very important to some users for some reasons. Therefore, without a better solution,

rejecting all re-execution of the LATEX program is necessary though undesirable.

4.3.1.2 Design Alternatives

Several solutions have thus been proposed so that our file system does not need to

reject re-executions unnecessarily because of the minor re-execution discrepancies.

The first solution is to advice users to run the application in a hypothetical special

mode if they want the updates to be shipped by operation. In the special mode, the

application does not put a time stamp in output files. However, this solution is not

favorable as it sacrifices transparency in two fronts: (1) the user needs to remember

to use the special mode if operation shipping is desired; and (2) the application must

have such a special mode, otherwise it has to be modified to add the special mode.

Incidentally, none of the three applications listed in Figure 4.14 has the hypothetical

mode.

The second solution observes that applications get the time-stamp values from the

gettimeofday system call. It proposes that the kernel on the client could remember

the time value that an application made the system call, and Venus ships the time as

a part of the operation log. On the surrogate, the kernel could reply with the same

time value when the re-executing application made the system call again. Obviously,

this requires modification of the behavior of the kernel, either by directly modifying

the kernel proper, or by modifying the shared library, which serves as the intermediate

layer between applications and the kernel. This idea is not very elegant and looks scary

to most computer users.

The third proposed solution uses some application-specific post-processors. A

post-processor is a small program that knows the behavior of an application; and it can

extract the time stamp from the output file, either from a fixed offset, or by recognizing

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 94

some patterns that surround the time stamp (some applications, such as rp2gen, do not

put time stamps in fixed offsets.). It then tells Venus the value of the time stamp. Venus

ships the value as a part of the operation log. The surrogate, after re-execution, invokes

a counterpart of the post-processor and replaces the time stamp in the re-generated

output file. In this approach, the logging shell will be slightly more complex. It needs

to keep a table of applications and application-specific post-processors, and invokes

the latter when the former finishes execution. The major disadvantage of this solution

is that each application needs to have a specific post-processor.

None of the proposed solutions are as elegant and practical as the finally adopted

solution, which is presented in the next sub-section.

4.3.1.3 Fixing Time Stamps by Error Correction

We can view the slight discrepancies in the original file and the re-generated file as if

they are “noises”. They are minor differences, and the exact location of the differences

are not known to the file system. This view point suggests that we can use the technique

of forward error correction [12, 16] to correct the noises.4

The file system, therefore, does the following. Venus on the client computes an

error-correction code for each updated file that is to be shipped by operation. The

Reed-Solomon code is used in the current implementation (Section 4.3.1.4). Venus

then packs the code as a part of the operation log. This is done in the requesting phase

of shipping stage. The Reed-Solomon code operates on a fixed length data block, and

produces a parity block for each data block. A file bigger than the data-block size is

chopped into multiple data blocks, and has multiple parity blocks.

In the validation phase, Venus on the surrogate uses MD-5 fingerprints to check

if a re-generated file is the same as that of the original. If they are different, it

invokes the error-correction routine. The routine uses the parity blocks sent in from

the client to correct the “errors” in the data blocks. Note that unlike the solution of
4This idea was first suggested by Matt Mathis of Pittsburgh Supercomputer Center.

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 95

application-specific post-processor, the routine does not know the exact locations of

the errors. After the error-correction step, Venus makes another comparison on the

MD-5 fingerprints to determines if the corrected file is the same as the original.

Note that here the technique of forward-error correction is used in a novel way.

Conventionally, mostly in communication systems, a sender sends both the data blocks

and the parity blocks; whereas in this case, the client sends only the parity blocks

but not the data blocks – the data blocks are instead re-generated by an re-execution

on the surrogate. Conventionally, forward-error correction code is used to correct

communication errors, whereas in this case, the code is used to correct re-execution

discrepancies. Figure 4.16 illustrates the differences.

4.3.1.4 Reed-Solomon Codes and the Chosen Parameters

The current implementation uses the Reed-Solomon code (R-S code) for forward

error correction. R-S codes are block codes (other examples of block codes are

Cyclic Redundancy Check codes, Hamming codes, etc), and they operates on symbols

alphabets of more than two values. The alphabet sizes are usually powers of 2 and

are written as GF (2m). A R-S block has a size one less than the alphabet size. For

example, a R-S code over GF (256) will have a block size of 255 symbols, or 2040

bits. The number of data symbols in a R-S codeword can be chosen according to the

desired error correction ability. To correct up to E errors in a block, 2E parity symbols

will be needed, and the rest in the block will be the data symbols. [16]

The prototype file system uses the following parameters for the Reed-Solomon

code. The symbol-alphabet size is 16 bits, so the block size is 65,535 symbols

(or 131,070 bytes). We desire that our code can correct up to 16 errors in each

block, so 32 parity symbols (64 bytes) are needed, and there are 65,503 data symbols

(131,006 bytes) in the block. It is common to denote the code that we choose as

a (65535; 65503) block code over GF (216). With these parameters, the additional

network traffic due to the parity block is quite small (32

65503
= 0:049%).

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 96

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

������������

��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

(a)

(b)

Sender Receiver

Data

Parity

Data with
Noise

Parity

Corrected
Data

Client Surrogate

Data

Parity

CorrectedData with
Data

Time Stamp

Noise

FEC

FEC

Noisy Communication

Channel

Weak
Network

A file created
by an user op.

A file re-generated
by an user op.

Both the data
and the parity

are sent

Only the parity is sent
Parity

Time Stamps

Figure 4.16: Use of Forward Error Correction

(a) The conventional use of forward error correction. (b) The use of
forward error correction in fixing re-execution time stamps. Note that a
file may actually be chopped into multiple data blocks. In that case, each
data block has a corresponding parity block.

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 97

4.3.1.5 Limitation and Future Extensions

Some re-execution discrepancies may involve not only byte changes but also

length changes. For example, consider the case when an original execution and

the re-execution writes a 4-byte time stamp “9:17” and a 5-byte time stamp

“14:49”respectively. The Reed-Solomon code does not correct error with length

changes. This is one of its limitations.

However, the idea of using forward error correction can be generalized to the use

of any application-independent post-processors, which are some small programs that

can fix re-execution discrepancies. For example, it is possible to use a binary delta

algorithm like the “rsync” algorithm [60]. The “rsync” algorithm‘ can handle length

changes, but it needs a much larger overhead in network traffic. A possible future

extension of the system is to allow multiple post-processors to be used at the end of

re-execution.

4.3.2 Side Effects Due to Temporary Files

4.3.2.1 The problem

The program ar is an example of an application that uses temporary files. Figure 4.17

shows the two CMLs on the client and the surrogate after the execution and re-

execution of the following user operations:

ar rv libsth.a foo.o bar.o.

The user operation builds a library file libsth.a from two object modules foo.o

and bar.o.

Note that ar used two temporary files sta09395 and sta16294 in the two

executions. The names of the temporary files are generated based on the identity

numbers of processes executing the application, and hence they are time dependent.

The validation procedure might naively reject the re-execution because the name fields

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 98

Create sta09395

Store sta09395

Remove libsth.a Remove libsth.a

Rename sta16294

Store sta16294

Create sta16294

Original Execution Re-execution

Rename sta09395
 to libsth.a to libsth.a

Figure 4.17: CMLs of Two Executions of ar

of the two records are different.

4.3.2.2 Solution: Temporary-file Renaming

Temporary files appear only in the intermediate steps of the execution. They will either

be deleted or renamed at the end, so their names do not affect the final file-system state.

An application uses temporary files to provide execution atomicity. For example, ar

writes intermediate computation results to a temporary file, and it will rename the file

to the target filename only if the execution succeeds. This measure is to ensure that the

target file will not be destroyed accidentally by a futile execution.

If a temporary file is created and subsequently deleted during the execution of a user

operation, its modification records will be deleted by the existing identity cancellation

procedure (Section 2.3.2). They will not appear in the two CMLs and will not cause

naive rejections of re-execution.

However, if a temporary file is created and subsequently renamed during the

execution of a user operation, its modifications records will be present in the CMLs,

and will cause our validation to reject the re-execution.

The solution adopted in the operation-shipping file system is to use a procedure of

temporary-file renaming to compensate for the side effect. This procedure is done in

the early validation phase (Section 4.2.4).

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 99

The idea of the temporary-file renaming is to scan the two CMLs and identify all

the temporary files as well as their final names. We identify temporary files by the fact

that they are created and subsequently renamed in a user operation. For each temporary

file used by the surrogate, our file system determines the temporary file name N used

by the client in the original execution. It thus renames the temporary file to N . In our

ar example, the temporary file sta16294 will be renamed to sta09395.

4.4 Complication with Cancellation Optimization

The technique of cancellation optimization performed on the CML has been proven to

be a very useful technique. It can save log space on a client. The log space includes

the persistent storage in both the recoverable virtual memory and the local Unix file.

Both of them are scarce resource particularly during a long disconnection period. It

can also save network traffic and reintegration work load. Section 2.3.2 gives a brief

description of the techniques. More details can be found from [18, page 123–136].

Unfortunately, the need of validation for operation shipping is in conflict with

cancellation optimization. Section 4.4.1 explains why there is a conflict, and

Section 4.4.2 gives a solution to the problem.

4.4.1 Dilemma: to cancel or not to cancel?

Cancellation optimization is a log transformation. It shortens a CML by canceling

some records. Without special consideration about operation shipping, it could cancel

any records including those records that are associated with a user operation. However,

canceling these records present a difficulty for validating the user operation when it is

being replayed. The reason is the following.

Recall from Section 4.2.4 that there are two comparisons in the validation phase.

First, there is a comparison on two CMLs: (1) the new CML, which is generated

by a replayed user operation on the surrogate, and (2) the reference CML, which is

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 100

sent from the client to the surrogate. The client prepares the reference CML in the

requesting phase by packing all CML records of the user operation. Now, cancellation

optimization may have canceled some of these records, so the client cannot prepare a

complete reference CML. The result is that the surrogate detects that the two CMLs

differ, and rejects the replayed user operation. Second, there is a comparison on the

fingerprints of the container files of the store records. The fingerprints for the client’s

container files are computed also in the requesting phase. Again, the container files of

those canceled store records are gone with the records, so the client cannot computes

their fingerprints nor their Reed-Solomon parity blocks. The result is that the surrogate

will not have enough information for validation.

Rejecting a replayed user operation just because some of its records were canceled

is an artifact introduced by the optimization. The replayed user operation is indeed

repeating, just that some information is lost, and it cannot be accepted in the validation

phases. The user operation has to use the fall-back mechanism of value shipping. In

other words, cancellation optimization is in conflict with operation shipping. Being

careless, there seems to be a dilemma: if we want the advantage of the optimization,

then we lost the advantage of operation shipping; if we do not want the interference

caused by the optimization, then we lose all its advantages.

Before going further into the discussion, a clarification must be made here. There

are indeed two types of cancellation optimization in this context: intra-user-operation

and inter-user-operation cancellations. Only the latter is in conflict with operation

shipping. When a canceled record and the canceling record are from the same

user operation, it is an intra-user-operation cancellation; when they are not from the

same user operation, it is an inter-user-operation cancellation. Intra-user-operation

cancellation does not cause problems for operation shipping since it happens on both

the original execution and the re-execution. Inter-user-operation cancellation causes

problems since it may have happened on the client but may have not yet happened on

the surrogate.

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 101

In the following discussion, without other qualifier, the term “cancellation

optimization” refers to inter-user-operation cancellation optimization. Also, the record

being canceled is a record that is eligible for operation shipping. Other records are

canceled in the ordinary way as they do not need the special handling.

4.4.2 Solution: Keeping Information in Ghost Records

The solution to the dilemma is the following new procedure of cancellation

optimization. On the one hand, Venus allows cancellation optimization to happen,

but, on the other hand, it keeps the necessary information around so that a successful

validation is possible. The validation phase need three types of information: (1) the

reference CML, which contains the thin part of the original CML; (2) the fingerprints

of container files; and (3) the parity blocks of the container files. Note in particular that

the container files themselves are not needed.

Therefore, when canceling a CML record, Venus marks the record as a ghost

record rather than throwing it away. Ghost records are used to keep the three

pieces of information stated above. They are totally ignored by the value-shipping

reintegration mechanism. On the other hand, they are important for the operation

shipping mechanism. In the requesting phase, the reintegrator treats them as if they

are ordinary records.

Ghost records are not kept forever. They are only kept until the user operation

is shipped and finalized. They are thrown away no matter the operation shipping is

successful or not. If the shipping is successful, all the CML records, ghost and ordinary,

are thrown away as a final step of local commitment. If the shipping is not successful,

Venus throws away any ghost records but marks the SrgRejected flags for other

ordinary records. The ghost records are discarded since there will be no further attempt

of operation shipping for the user operation. The ordinary records are not discarded

yet, as they will be value shipped in the next round of reintegration.

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 102

Now lets study the effect of the new procedure. First, in terms of the space saving

for the log storage. Keeping ghost records reduces the effectiveness of cancellation

optimization. Recall that a CML has a thin part and a think part. The thin part is

stored in the recoverable virtual memory, and comprises everything of the log except

the container files; the thick part comprises the container files, which are kept as local

Unix files. Now the new optimization procedure saves space in the thick part but not

in the thin part. There are space saving in the thick part since, as before, the container

files of a canceled store record need not be kept. There are no space saving in the

thin part since a canceled record is still physically kept in the log – it is just marked

as a ghost. In fact, there are even new overhead in the thin part, since additional fields

must be added to keep the fingerprint and the parity blocks of a ghost store record.

In the current implementation, this additional overhead is from 88 bytes to 664 bytes

per store record. 5

Second, recall that log-storage spacing is not the only benefits of cancellation

optimization, which allows saving also in other aspects: network traffic, reintegration

latency, and file-server workload. These savings are all preserved by the new

optimization procedure. This is because for the value-shipping reintegration

mechanism, the reintegrator ignores all the ghost records. Therefore, they do not incur

reintegration traffic, nor do they increase the reintegration latency or server workload.

Third, most importantly, the new procedure expands the set of useful replayings of

user operations. That is, more updates can be shipped by operation rather by value,

and this implies a huge saving in both network traffic and reintegration latency.

In summary, the new procedure preserves both useful techniques: cancellation
5Sixteen bytes for the MD-5 fingerprints, one to ten 64-byte parity blocks, four bytes for a pointer

pointing to the separately stored parity blocks, and four bytes for the number of parity blocks. Note

that, to bound the size of the additional overhead, Venus keeps only at most ten parity blocks. For files

larger than ten data blocks, the eleventh blocks onwards will not be error corrected. This bound does

not impose much problem in practice, since re-execution discrepancies (such as time stamps) usually

appears in the early part of a file.

CHAPTER 4. APPLICATION-TRANSPARENT OPERATION SHIPPING 103

optimization and operation shipping. There is a small price to pay for the slight

overhead in the thin part of the CML, but the gain is that more updates can be sent

by operation shipping.

4.5 Chapter Summary

This chapter presents the design and implementation of the file system, which is an

extension of Coda, that supports application-aware operation shipping. There are two

main stages involved: logging and shipping. The logging stage happens on a client,

and it encompasses the activities that establish an association between a high-level user

operation and the low-level file-system updates that it generates. The shipping stage

involves three parties: the client, the surrogate, and the server. The client ships the user

operation to the surrogate, which then attempts to re-generate the same set of low-level

file-system updates by replaying the user operation. If the surrogate succeeds, it can

reintegrate the updates with the file server on behalf of the client; otherwise, the client

falls back to reintegrate the updates with the server directly, using the existing value

shipping mechanism.

Besides, there are two interesting lessons learned in the course of developing the

file system. The first lesson is that even though a replayed user operation does not re-

generate the same set of updates as the original execution, it is possible to do something

to fix the re-execution discrepancies. Two techniques have been proposed: a novel

use of forward error correction for fixing discrepancies due to time stamps, and the

technique of temporary-file renaming for fixing discrepancies due to temporary files.

The second lesson is that, if not paying special attention to the records associated

with user operations, cancellation optimization would render many user operations not

shippable by operation. A new procedure, using the concept of ghost CML record, is

thus designed and implemented.

Section 6.2 will show the performance gain of operation shipping.

Chapter 5

Application-aware Operation Shipping

The previous chapter has studied application-transparent operation shipping; this

chapter takes the idea further and discusses application-aware operation shipping. The

following are the two main research questions in this discussion:

1. What is the right architecture for application-aware operation shipping?

2. How difficult is it to enable an existing interactive application to log and replay

user operations?

The answer to the first question is that there are indeed two design alternatives. The

first alternative is simpler and it supports re-execution in the one-shot style; the second

alternative is more complex and it supports re-execution in the iterative style. They

imply different granularities of update propagation. The meanings of the three terms

will be discussed in this chapter.

In this thesis work, simplicity is favored. So the design and implementation of the

prototype are built around the first alternative. However, usage experience accumulated

in the long run may suggest that the second alternative is better. For completeness, this

chapter will cover both design alternatives. Of course, it will first discuss why there

are the two alternatives.

104

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 105

For the second question, a popular image application – the GNU Image

Manipulation Program (the GIMP) – is used as a case study. It has been extended

to add the capabilities of operation logging and replaying. The needed modification on

the program has been found to be moderate. This answer is favorable as it indicates

that operation shipping will have a higher chance of being accepted by the users.

This chapter begins with an analysis of the problem model. In Section 5.1, it

presents several basic concepts and then explains why there are two design alternatives

for the architecture. It then discusses the two alternatives one by one in Section 5.2

and Section 5.3. The design and implementation of the prototype is based on the first

design alternative, and they are discussed also in Section 5.2. The extension of the

GIMP is also presented in the same section.

5.1 Analyzing the Problem

In this section, the alternatives for designing a mechanism for application-aware

operation shipping will be presented. However, before we can go into the discussion,

we should first understand the nature of interactive applications and their application-

specific commands.

5.1.1 Logging and Replaying Processes

When an interactive application is involved in application-aware operation shipping,

there are two processes executing the application. The first one is the process of the

original execution of the application on the client, and is called the logging process. Its

role in operation shipping is to log the user operations while the user is working with

the application. The second one is the process for re-executing the application on the

surrogate, and is called the replaying process. Its role in operation shipping is to replay

the logged user operations. (In fact, as explained in Section 5.1.4.2, there can be more

than one replaying processes for one logging process.)

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 106

5.1.2 One-shot and Iterative Execution Styles

The lifetime of a process which executes an application is called an application

session. It is the duration between the moment the application is started by the exec

system call to the moment the application terminates using the exit system call.

There is a fundamental difference between the execution styles of non-interactive

applications and interactive applications. In this thesis, the two styles are called the

one-shot style and the iterative style. They are defined in the following.

In the one-shot execution style, there is exactly one user operation per application

session. Non-interactive applications execute in this style – the user operation is the

invocation command of the applications. A non-interactive application terminates with

the finishing of the performing of the user operation.

On the other hand, in the iterative execution style, there can be more than one

user operations per application. Interactive applications execute in this style. After

an interactive application is invoked, it is sitting in an idle loop for most of the

time, waiting for some user operations to be issued. These user operations are some

application-specific commands. When a command is issued, the application performs

the task specified by the command, and returns to the idle loop when it finishes

performing the task. It remains in this idle-perform-idle loop until the user explicitly

instructs it to exit.

The logging process of an interactive application always executes in the iterative

style, but the replaying process may executes in either the one-shot or the iterative

style. The latter is a design decision to be made by the designers of the mobile file

system and the application. Section 5.1.4.2 will explain that the design decision is

tightly coupled with the design decision regarding propagation granularity.

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 107

S1

S1,S2,S3,S4,S5:
in-memory states

O1

O2

S2

O3

O4

S3

S4

S5

O1,O2,O3,O4: application-
specific command

Time

A Process Executing
an Interactive Application

Figure 5.1: Application-specific Commands and In-memory States of a Process

This figure illustrates the interdependency between application-specific
commands and in-memory states of a process. The result of executing
a command depends on the in-memory state, but at the same time, the
command changes the in-memory state.

5.1.3 Application-specific Commands

Recall from Section 3.3 that there are two different types of user operations for the

two operation-shipping mechanisms. For application-transparent operation shipping,

the user operations that are useful are invocation commands of non-interactive

applications. For application-aware operation shipping, the user operations that are

useful are application-specific commands.

To prepare for the coming discussion, two concepts related to application-specific

commands are introduced here:

In-memory state of a process. The execution context of an application-specific

command includes not only the process environment, as that of in the case for an

invocation command of a non-interactive application, but also the in-memory state of

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 108

the process executing the application. Also, the in-memory state and the command are

interdependent on each other. That is, the result of executing a command depends on

the in-memory state, but at the same time, the command changes the in-memory states.

This is illustrated in Figure 5.1. For a replaying command to be repeating, it is critical

to restore the in-memory state before executing the command. We will see why this

issue is important in Section 5.1.4.2,

Two types of application-specific commands. Application-specific commands

can be further classified into two types: editing and saving commands. An editing

command changes only the in-memory state of the running process, it does not induce

any mutating file-system operations. On the contrary, a saving command does induce

file-system mutations. The distinction of whether or not a command induce mutations

is important, as will be explained in Section 5.1.4.1.

5.1.4 Design Considerations

5.1.4.1 Granularity of Update Propagation

For interactive applications, there will be more than one application-specific

commands per application session. For the purpose of operation shipping, these

commands are put into command groups that will be used as the basic unit of update

propagation. Now, there is a design question on the granularity of command groups.

Two different approaches are possible. The first approach puts all commands into

a single command group; the second approach puts the commands into multiple

command groups.

The question on grouping commands is also a question on the granularity of

update propagation. In the first approach, update propagation will happen only after

the application has exited; whereas in the second approach, update propagation may

happen much earlier than the moment of exiting the application. Therefore, the former

is called propagation-after-exit, and the latter is called early-propagation.

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 109

O1

O2

O4

O5

O6

O7

O8

O3

O1

O2

O4

O5

O6

O7

O8

O3

a) propagation-after-exit b) early-propagation

application
session

logging
session application

session

logging
session

commands
O1,O2,O4,O5,O6,O7: editing

O3, O8: saving commands

command
groupcommand

group

time

Figure 5.2: Two Different Granularities of Command Grouping

This figure shows the two approaches of grouping application-specific commands of an
application session: (a) In the propagation-after-exit approach, all commands are put into
one command group. (b) In the early-propagation approach, the commands are put into
multiple command groups.

The two approaches will be discussed in turn in the following. They demand two

different re-execution styles, as discussed in Section 5.1.4.2.

Propagation after exit. In this approach, all commands in an application session

are put into one command group. That means we can make the whole application

session as one logging session (Figure 5.2a). There are two main advantages for this

approach.

First, the logging and shipping mechanisms for this approach is simpler, because

the restoration of replaying contexts for individual commands is easy, and the one-shot

re-execution style can be used. The meaning of the two concepts will be discussed in

Section 5.1.4.2.

Second, cancellation optimization is more effective that the early-propagation

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 110

approach. This is because more commands can cancel log records of previous

commands as intra-operation cancellations rather than inter-operation cancellations.

Recall from Section 4.4.2 that the cancellation optimization proceeds in two flavors:

intra-operation cancellations proceed in the traditional way, whereas inter-operation

cancellations proceed by keeping ghost CML (client-modify log) records. The latter is

less effective than the former since there is no saving in the storage space for the thin

part of the CML.

On the other hand, this approach suffers from several disadvantages. First, the

semantics of saving commands of an application is changed. The mutating effects

of them will be propagated only after the application exits, since, as discussed in

Section 4.1.3, individual updates of a logging session will be eligible for updates only

after the session terminates. In other words, the users are required to change their

working habits – at the moment that they want their updates be eligible for propagation,

they have to explicitly exit the application.

Second, in this approach, the logging sessions tend to be of longer duration, and

the chance that they will be rejected is higher. This is because when more commands

are involved, the chance is higher that some of them are non-repeating.

Third, the longer the duration of a logging session, the higher the chance that a

breaking condition may happen and make the user operation not eligible for operation

shipping. Recall from Section 4.2.2 that one of the breaking conditions is that the

records of a user operation in the CML are interleaved by some other records that are

not associated with the same user operation.

Despite the disadvantages, the approach of propagation-after-exit fits very well

with the simpler mechanism of one-shot re-execution. So it is important in practice.

Indeed, the prototype system designed and implemented in this thesis uses this

approach.

Early propagation. Unlike the approach of propagation-after-exit, this approach

puts commands of an application session into multiple command groups, that means

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 111

update propagation can be done earlier than the moment of exiting the application.

The way of grouping is to recognize those saving commands, which will serve as

the dividers. The grouping algorithm proceeds as follows. Suppose an application

sees a sequence of commands, O1; O2; : : : ; Om, the application examines, in the same

order, the commands one by one. If the current command Oj is a saving command,

then Oj, together with all the previous Oi, i < j, that are not yet marked for any

command groups, will be marked for group Gj . The logging session of a command

group is the duration encompassing the execution of the saving command, so that all

the mutating file-system call induced by the command will happen within the logging

session. Figure 5.2b illustrates how commands are grouped, and how each saving

command is encompassed by a logging session.

A user issues the saving command when he or she wants to “write something to the

file system.” The logging application recognizes the command as a divider and forms a

new command group. The preceding editing commands are also needed for the group

since they help to transform the in-memory state to one that is written to the file system

by the saving command.

There are several advantages for the approach of early-propagation. First, the

semantics of saving commands are honored. Second, the chance that a command group

is rejected is smaller. Third, the chance that a breaking condition may happen to a user

operation is smaller.

However, in this approach, there are more than one logging sessions per application

session. This demands a more complicated mechanism of operation logging and

shipping. The difficulty will be discussed in the next sub-section.

5.1.4.2 Re-execution Styles

Recall that non-interactive applications and interactive application run in two very

different styles. A non-interactive application runs in the one-shot style, and there

is only one user operation per application session – the invocation of the application;

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 112

whereas an interactive application runs in the iterative style, and there are many user

operations per application session.

Now, given the fact that a logging instance of an interactive application executes

in the iterative style, should the replaying counterpart run in the iterative style too?

In fact, there are two alternatives for the re-execution style: one-shot and iterative.

The two alternatives are strongly coupled with the two design alternatives regarding

propagation granularity, and they will be examined one by one in the following.

One-shot Re-execution. This is a simpler style. When Venus on the surrogate

receives a user-operation log, it spawns a replaying process. The replaying process

replays the user operations stated in the log and terminates upon finishing the replaying.

When Venus receives another user-operation log, it spawns another replaying process.

This style matches pretty well with the propagation-after-exit approach described

in the previous sub-section. In Section 5.2, a prototype designed and implemented

using this style will be presented.

However, this style does not match well with the early-propagation approach. The

reason is due to the problem of restoration of replaying contexts, as explained in the

following.

Figure 5.3 illustrates the problem. On the left there is a logging instance of an

application in which a user performed two groups of commands: G1 and G2. To

support early-propagation, the client ship the two groups to the surrogate in two

batches. Suppose the surrogate re-executes the command groups in the one-shot style,

as shown on the right of the figure. When G1 arrives at the surrogate, Venus will spawn

a replaying process P 0

1
, which will replay the command group and then terminate

immediately. When G2 arrives later, Venus will spawn another process P 0

2
to replay

G2.

Recall from Section 5.1.3 that the result of an application-specific command

depends on the in-memory state of the process, and that the command also transforms

the in-memory state of the process. For example, in the logging process shown in

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 113

G1,G2: application-
specific command
group

Replaying Process

S’3

G1

G2

G1

G2

Logging Process

S1

S3

S1

S2

S’2

P’2

P’1

P1
S2

S1,S2,S3,S’2,S’3:
in-memory statesTime

S’2 = S2
?

Figure 5.3: Problem of Restoration of Replaying Context

This figure illustrates the problem of restoring relaying context. If, on
the surrogate, the two command groups G1 and G2 are replayed by two
different processes P 0

1
and P 0

2
, the in-memory state S2 resulted from the

replaying of G1 will be gone as P 0

1
terminates, and P 0

2
will be replaying

G2 with a different in-memory state S0

2
.

Figure 5.3, the result of G1 depends on the in-memory state S1, but G1 will also

transform the state to S2.

Now, consider the replaying of G2 on the surrogate. It can produce the same result

as the original only if it is replayed with the same context. That is, S 0

2
should be the

same as S2. However, in general the two contexts are not the same, since S2 is reached

only after the execution of G1. Therefore, here we have a problem of restoration of

replaying contexts.

Two solutions are proposed to solve the problem. The first solution is to restore

contexts by an artificial load command. The application is programmed in such

a way that the second replaying process P 0

2
will insert an artificial load command

(Figure 5.4a). The hope is that G1 may have written something to the disk, by

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 114

S1

S2

S’2

G1

Load

G2

S"2

S"3

P’1

P’2

Replaying Process

G1,G2: application-
specific command
group

a) Restoration by
Artificial Load

S1

S2

S’2

G1

G1

G2

S"2

S"3

P’1

P’2

Replaying Process

Replaying from Start in-memory states
S1,S2,S3,S’2,S’3 ...b) Restoration by

G1

G2

Logging Process

S1

S3

S2

P1

Time

Figure 5.4: Two Proposed Solutions to the Problem of Restoration of Replaying
Contexts

This figure illustrates the two proposed solutions to the problem of
restoration of replaying contexts: (a) restoration by inserting an artificial
load command, (b) restoration by replaying from the start. The original
logging process is shown on the left as a reference.

loading them the replaying context can be restored. However, this solution will not

work when the applications does not write all of its in-memory states to disk. Such

loss of information is in fact very common. For example, when the GIMP saves an

image, it does not save some auxiliary layers supporting the editing of the image.

Another example is that the GIMP may perform lossy compression (such as the JPEG

compression) when it saves an image. Reloading the same image from the disk does

not get back the same in-memory state.

The second solution is to restore contexts by replaying from the start. That is, to

get S2 that is needed by the replaying of G2, P 0

2
replays G1 (Figure 5.4b). However,

since G1 has been ran once by P 0

1
, it may have changed the state of the machine that

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 115

G1,G2: application-
specific command
group

G1

G2

S1

S3

P1
S2

Replaying ProcessLogging Process

S1,S2,S3:
in-memory states

G1

G2

S1

S3

P’1
S2

Time

Figure 5.5: Iterative Re-execution Style

This figure illustrates the idea of re-execution in the iterative style. When
the replaying process finishes replaying G1, it will not exit but will sit in
an idle loop waiting for more command groups to come. The in-memory
state S2 is thus retained.

even G1 cannot recompute S2. For example, if G1 consists of loading a file F from the

file system, changing F by some ways, and then save F to the file system, re-running

G1 will load the modified version of F .

Both of the previous two solutions are not very clean. In general, to support early

propagation, the proper re-execution style is the iterative style. The reason is explained

in the following.

Iterative Re-execution. Figure 5.5 illustrates the idea of iterative re-execution.

When the replaying process finishes replaying G1, it will not exit. Rather, it will return

to an idle loop waiting for more command groups to come. Since the process does not

exit, the in-memory state will be retained. To support this, the replaying process is not

spawned upon the receiving of an application-specific command group. Rather, it is

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 116

pre-arranged and sits in an idle loop waiting for the arrival of command groups.

This re-execution style demands a different architecture of operation-shipping

mechanism than that is demanded by one-shot re-execution style. A surrogate needs

to export two different types of services for its client. The first is for the setting

up and shutting down of the replaying process, and the second is for the replaying

of application-specific command groups. Note that, in contrast, for the one-shot re-

execution style, the two types of services are lumped into one. That is, when a client

requests the replaying of a command group, it is also requesting the spawning of a

replaying process.

Apart from enabling the approach of early-propagation, the iterative re-execution

style has another advantage. That is, the overhead involved in the replaying of

a command group will be smaller, because the surrogate needs not spawn a new

replaying process every time a new command group is to be replayed.

The next two sections will discuss the two design alternatives based on the two

re-execution styles.

5.2 Design Alternative 1: One-shot Re-execution Style

This design alternative needs a simpler design than the other design alternative.

It supports pretty well the approach of propagation-after-exit, although it does not

support quite well the approach of early-propagation. In favor of simplicity, the

prototype implemented with this thesis is based on this alternative.

An popular image program – the GNU Image Manipulation Program (the GIMP)

– is selected as an example application. The details of the extension needed for the

logging and replaying of user operations are also discussed in this section.

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 117

VIOC_BEGIN_OP fs_begin_op (char *command,
char **args,
char **env,
char *cwd,
mode_t umask);

VIOC_END_OP fs_end_op (pgid_t pgid);
VIOC_PUT_APP_OPLOG fs_put_app_oplog (char *srcfilename);
VIOC_GET_APP_OPLOG fs_get_app_oplog (char *destfilename);

Figure 5.6: Interface for Application-aware Operation Shipping - Design Alternative 1

The left column of this figure shows the four ioctl commands needed
for supporting application-aware operation shipping. The right column
shows the four corresponding convenient functions and their arguments.
Comparing to Figure 4.3, Two new ioctl commands are added to support
the putting and getting of application-specific operation logs.

The following discussion will be divided into two parts: the part on the file-system

side, and the part on the application side. Not surprisingly, the extension needs to be

done on the file-system side is relatively simple, and most of the works need to be

done is on the application side. The two parts will be discussed in the following two

subsections.

5.2.1 The File-system Side

The extension for the support of application-aware operation shipping is quite simple.

The existing mechanism for the support of application-transparent operation shipping

can be largely reused, with the following two exceptions.

First, on top of the VIOC BEGIN OP and the VIOC END OP commands, two

more ioctl commands are needed. They are for the “putting” and “getting” of

the application-specific operation log (Figure 5.6). The idea is the following. The

application understands the application-specific commands, but the file system does

not. Also, it is the replaying instance of the application who replays the commands,

not the file system. Therefore, the application and the file system have different

responsibilities. The application is responsible to prepare the application-specific

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 118

A Logging Instance
of an Interactive

Application

File System on
a Weakly-Connected

Client

O1

Om

V1

V2

Vn

VIOC_BEGIN_OP

VIOC_END_OP

A Logging Session

An Application
Session

O2

Time

VIOC_PUT_APP_OPLOG

Figure 5.7: Logging of Application-specific Commands - Design Alternative 1

This figure shows how the logging instance of an interactive application
makes use of the VIOC PUT APP OPLOG to tell the file system about the
application-specific operation log.

operation log on the client, and to interpret the log and replay the commands that

are stated in the log on the surrogate. The file system is responsible to forward the

log from the client to the surrogate. The application and the file system interact with

each other using the “putting” and “getting” commands. The logging process of the

application puts the log to Venus on the client (Figure 5.7), and the replaying process

gets the log from Venus on the surrogate (Figure 5.8).

Second, in application-transparent operation logging, the two ioctl commands

VIOC BEGIN OP and VIOC END OP are issued by a logging shell. However, here,

they are issued by the application itself. This change is a reflection on a difference in

philosophy regarding the applications. For application-transparent operation logging,

we do not want to modify the application at all; whereas for application-aware

operation logging, the application needs to be modified anyway.

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 119

another
round

of reintegration

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

re
pl

ay
in

g
se

ss
io

n

fork

SIGUSR2

validation phase

finalization phase

request
phase

finalization

V’1

V’2
.
.

V.’m

child terminated

File System
on Client

File System
on Surrogate

File Server

ViceReintegrate

reply

sigsuspend

exec

reintegration/aborting phase

ViceReintegrate

ReexecTid = pid

ReexecTid = 0

Interactive
application

reply

UserOpPropagate

reply

phase

setpgid

pg
id

 =
=

 p
id

replay phase

VIOC_GET_APP_OPLOG

Time

Figure 5.8: Shipping Application-specific Commands - Design Alternative 1

This figure shows how the replaying instance of an interactive application
makes use of the VIOC GET APP OPLOG to retrieve from the file system
the application-specific operation log.

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 120

5.2.2 The Application Side: Using the GIMP as a Case Study

How difficult would it be to extend an existing interactive application so that it can log

and replay user operations? This section presents some experience on extending one

particular application: the GIMP.

5.2.2.1 GIMP Background

The GNU Image Manipulation Program, or the GIMP, is an open-source program that

is suitable for tasks such as photo retouching, image composition and image authoring

[3, 22]. It is a very popular program, particularly in the Linux community. Many

professional graphical designers are using it everyday. Figure 5.9 shows a screen shot

of the application in action.

There are two main reasons for choosing the GIMP as a case study for this project.

First, by nature, the GIMP works with image files. These files are typically large

(say, larger than 64 Kbytes), and are difficult to be shipped across weak networks.

Second, the GIMP is an open-source program, that means everyone has much freedom

in obtaining its source code and extending it.

5.2.2.2 Application Structure

The internal structure of an existing application affects how easy it is to add operation-

logging and operation-replaying facilities. Ideally, the application should have a clean

decoupling of the following two functionalities: user interface and internal functions.

The user interface is handled in some command-accepting modules, and the internal

functions are handled in some command-executing modules. A clean decoupling

means that there are confined and well-defined interfaces between the two types of

modules. It is often found in Modern applications, since it allows a greater flexibility in

the design of the user interface, facilitates the implementation of undoing and redoing

commands, and facilitates the support for scripting.

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 121

Figure 5.9: GIMP in Action

The upper two windows are two images being edited by the GIMP, the
lower left window is the DB Browser, which allow the user to browse the
functions exported via the procedure database, the lower right window is
the main window with the tool palette.

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 122

--
Name: file-jpeg-load
Blurb: loads files of the jpeg file format
In: run_mode INT32 Interactive, non-interactive

filename STRING The name of the file to load
raw_filename STRING The name of the file to load

Out: image IMAGE Output image
--
Name: gimp-color-balance
Blurb: Modify the color balance of the specified drawable
In: image IMAGE the image

drawable DRAWABLE the drawable
transfer_mode INT32 Transfer mode: (SHADOWS(0,

MIDTONES(1), HIGHLIGHTS(2))
preserve_lum INT32 Preserve luminosity values at each

pixel
cyan_red FLOAT Cyan-Red color balance:

(-100 <= cyan_read <= 100)
magenta_green FLOAT Magenta-Green color balance:

(-100 <= magenta_green <= 100)
yellow_blue FLOAT Yellow-Blue color balance

(-100 <= yellow_blue <= 100)
--
Name: gimp-brightness-contrast
Blurb: Modify brightness/contrast in the specified drawable
In: image IMAGE the image

drawable DRAWABLE the drawable
brightness INT32 brightness adjustment

(-127 <= brightness <= 127)
contrast INT32 contrast adjustment

(-127 <= contrast <= 127)
--
Name: file-jpeg-save
Blurb: saves files in the jpeg file format
In: run_mode INT32 interactive, non-interactive

image IMAGE input image
drawable DRAWABLE Drawable to save
filename STRING The name of the file to save the

image in
raw_filename STRING The name of the file to save the

image in
quality FLOAT Quality of saved image

(0 <= quality <= 1)
smoothing FLOAT Smoothing factor for saved image

(0 <= smoothing <=1)
optimize INT32 Optimization of entropy encoding

parameters
--

The three columns in the list of input and output arguments are the name of arguments, type of
arguments, and a brief description of the arguments, respectively.

Figure 5.10: Examples of some Exported Functions

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 123

The GIMP, for example, indeed has such a clean decoupling. The model that

the GIMP uses is called the procedure database (PDB). Each internal function has

a well-defined interface. It is registered to the PDB upon the startup of the application.

The interface allows it to be called by some other internal functions, such as a user-

interface handling routine, or by some external functions, such as plug-ins and scripts.

Figure 5.10 lists some functions that are exported via the PDB.

5.2.2.3 Experiences

I found that the effort needed to extend GIMP for operation logging and replaying is

very reasonable. It took only three months of work to make an initial prototype to

work. 1 The extended GIMP can run in two special modes: oplog and reexec. In

the oplog mode, the prototype can log some GIMP-specific commands, write them

on a GIMP-specific operation log, and pass it to the file system. In the reexec mode,

the prototype can get the GIMP-specific operation log from the file system and replay

the commands stated on the log. The prototype re-executes in the one-shot style, so it

will exit immediately when it finishes replaying all the commands stated on a log.

The modification needed is moderate, but it does not involve major changes in the

internal logic of the application. Each GIMP command being logged needs a few lines

of straightforward code for operation logging. Currently, 30 different commands can

be logged. The number represents about one sixth of the total number of different types

of commands that can be performed in the GIMP. Figure 5.11 lists the commands that

can be logged and replayed by the prototype.
1 The prototype is based on the mainstream version 1.0.2. The source code is available for download

from [2].

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 124

User Operation Explanation
anchor anchor (pin) a layer to an image
apply canvas add a canvas texture to an image
auto-stretch contrast automatically stretch contrast of an image (in RGB space)
auto-stretch HSV automatically stretch contrast of an image (in HSV space)
blur blur an image by random displacement of pixels
brightness/contrast change the brightness/contrast of an image
bmp load load a file in the bmp format
bmp save save a file in the bmp format
color balance change the color balance of an image
colorify make an image looks like it is being viewed thru’ colored class
cubism transform an image into cubist art
desaturate remove colors from an image
emboss carves a three-dimensional look to an image
equalize equalize the color value of an image
file new create a new image
gaussian blur (IIR) Gaussian blur (IIR)
gaussian blur (RLE) Gaussian blur (RLE)
gradient map map the image with an active gradient map
hue-saturation modify the hue, lightness, and saturation of an image
invert invert the color value of an image
jpeg load load a file in the jpeg format
jpeg save save a file in the jpeg format
levels modify the intensity levels of an image
move move a layer to a new position
mosaic convert an image into a collection of tiles
normalize normalize the contrast of an image
oilify oil painting effect
posterize creating an indexed image
text add text to an image
threshold threshold an image

Figure 5.11: GIMP commands that can be logged and replayed by the prototype

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 125

(define (script-fu-oplog-reexec)
(let*

(; declaring local variables
(theImage_1)
(theLayerDrawable_2)
(theLayerDrawable_3)

) ; end of local variables
(set! theImage_1 (car (file-jpeg-load 1
"gibralter2.jpg" "gibralter2.jpg")))

(set! theLayerDrawable_2 (car
(gimp-image-get-active-layer theImage_1)))

(set! theLayerDrawable_3 (car (gimp-text-ext theImage_1
theLayerDrawable_2 263.000000 571.000000
"Gibralter" 0 1 15 0
"*" "helvetica" "*" "*" "*" "*" "*" "*")))

(gimp-layer-translate theLayerDrawable_3 23 0)
(gimp-floating-sel-anchor theLayerDrawable_3)
(file-jpeg-save 1 theImage_1 theLayerDrawable_2 "

/coda/usr/c.clement/tmp/test2/t31.jpg" "t31.jpg"
1.000000 0.000000 1)

)
)

Figure 5.12: An Example GIMP-specific Operation Log

This figure shows a portion of an example GIMP-specific operation log.
It records the following user operations. The user loaded a jpeg file name
“gibralter2.jpg”. He then added a text string “Gibralter”, moved the text
layer to the lower right corner of the image, and anchored the layer. Finally,
he saved the annotated image to another file called “t31.jpg”. The log was
automatically generated by the extended GIMP, but it was slightly edited
(with long lines split into shorter lines) for better presentation in the figure.

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 126

The GIMP-specific operation logs are actually GIMP’s scripts using the Scheme

language. The GIMP has the scripting facility that allows experienced users to write

scripts for repetitive tasks. Normally, the scripts are created by users, but our prototype

constructs the scripts automatically and uses them as application-specific operation

log. Figure 5.12 shows an example of such a log.

Section 6.3 will present a quantitative evaluation of the performance of the

extended GIMP working with the operation shipping Coda.

5.3 Design Alternative 2: Iterative Re-execution Style

The key idea of the second design alternative is to support early propagation. A new

command group is formed when the user issues a saving command. The group will

serve as a unit of propagation and will be shipped to the surrogate for replaying. To

maintain the in-memory state, replaying processes execute in the iterative style. This

requires a more complicated mechanism on the file system.

The mechanism is not yet implemented. The reason is that simplicity is favored

in this thesis work, so the first design alternative (the one using one-short re-

execution style) was selected as the model for implementing the prototype. The more

complicated mechanism will be implemented only when usage experience indicates

that the simpler mechanism is not good enough.

Nevertheless, for completeness, a design of the more complicated mechanism is

outlined in this section. It helps to identify the key features needed, and can serve as

a roadmap for future work. Figure 5.13 shows an overview of the mechanism, and the

following two sub-sections will discuss the design in detail.

C
H

A
PT

E
R

5.
A

PPL
IC

A
T

IO
N

-A
W

A
R

E
O

PE
R

A
T

IO
N

SH
IPPIN

G
127

VIOC_BEGIN_REPLAY2

VIOC_BEGIN_REPLAY2

VIOC_BEGIN_REPLAY2

fork/exec

unblock (O2)

unblock (null)

VIOC_END_REPLAY2

VIOC_END_REPLAY2

unblock (O1)

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

File System
on Client

File System
on Surrogate

VIOC_END_OP2

O11

O1m

S1

VIOC_BEGIN_OP2

VIOC_END_OP2

StartReplayApp

UserOpPropagate2 (<O2, cksum(V2)>)

EndReplayApp
reply

O1m

O21
O2p
S2

O21

O2p

V11

V1n

V21

V2q

VIOC_BEGIN_OP2

VIOC_BEGIN_APP

VIOC_END_APP

S2

Logging Process

Replaying Process

UserOpPropagate2 (<O1, cksum(V1)>)

reply

O11

S1
finalization

finalization

V’11,...,V’1n

V’21,...,V’2q

validation/reint

validation/reint

replaying session

replaying session

logging session

logging session

Figure
5.13:

O
verview

of
the

M
echanism

of
A

pplication-aw
are

O
peration

Shipping

U
sing

the
Second

D
esign

A
lternative

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 128

VIOC_BEGIN_APP2 fs_begin_app2 (char *command, char **args,
char **env, char *cwd,
mode_t umask,
struct timeval *timeout,
short optimistic);

VIOC_END_APP2 fs_end_app2 ();
VIOC_BEGIN_OP2 fs_begin_op2 (char *srcfilename);
VIOC_END_OP2 fs_end_op2 ();

Figure 5.14: Logging Interface - Design Alternative 2

The left column of this figure shows the four new ioctl commands added
to support operation logging in the mechanism of application-aware operation
shipping using the second design alternative. The right column shows the four
corresponding convenient functions and their arguments.

5.3.1 Logging

Figure 5.14 shows the new logging interfaces. This interfaces decouples application

sessions from logging sessions, such that there can be multiple logging sessions per

application session.

A logging process should make a VIOC BEGIN APP2 command upon start up.

The command is used to instruct the surrogate to set up a replaying process. Three

groups of information are passed with the command: (1) the starting command

(command); (2) the process environment – the command-line arguments (args),

the environment-variable list (envp), the current working directory (cwd), and

the file-creation mask (umask); and (3) the two policy arguments timeout and

optimistic. The first policy argument controls how long the replaying process

can be left idle – Venus on the surrogate will garbage collect any replaying process

that has been idled for more than the timeout value, and the second policy argument

controls whether the file system should continue to attempt operation shipping if some

previous operations of the same application session have failed.

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 129

The logging process should make a VIOC END APP2 command immediately

before it terminates. The command instructs the surrogate to shutdown the replaying

process.

When the logging process receives a saving command, it knows that it is about

to make some mutating file-system calls. Therefore, it will carry out the following

four steps. First, it constructs an application-specific operation log. On the log, all

the application-specific commands of the current command group are stated. The

log is physically a local file. Second, it starts a logging session with the file system

using the ioctl command VIOC BEGIN OP2. The application-specific operation

log is passed to the file system along with the command. Third, it executes the saving

command. Since the file system is in a logging session, it can associate all the mutation

file-system calls in the session with the command group. Fourth, when the saving

command is done, the logging process ends the logging session using the ioctl

command VIOC END OP2.

5.3.2 Shipping

Figure 5.15 shows the RPC interface exported by surrogates for supporting

application-aware operation shipping. StartReplayApp2 is used to set up the

replaying process, EndReplayApp2 is used to shut down the replaying process.

During the application session of a replaying process, there can be multiple

UserOpPropagate2 RPCs, each requesting the replaying of a command group.

When a StartReplayApp2RPC arrives at a surrogate, Venus will spawn a child

process for re-executing the specified application. The process will re-execute in the

iterative style. That is, it will have a main idle loop. Most of the time, the process sits

in the loop waiting for command groups to come. When a command group arrives, the

process will replay the commands specified in the application-specific operation log.

When it finishes the replaying, the process will return to the idle loop. (In contrast, a

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 130

StartReplayApp2 (IN RPC2_String pathname,
IN RPC2_Integer n_argv,
IN RPC2_CountedBS argv_buf,
IN RPC2_Integer n_envp,
IN RPC2_CountedBS envp_buf,
IN RPC2_String cwd,
IN mode_t umask,
IN vuid_t vuid,
IN VolId VolumeId,
OUT pgid_t pgid_replay,
OUT RPC2_Integer uniqufier_replay);

UserOpPropagate2 (IN pgid_t pgid_replay,
IN RPC2_Integer uniqufier_replay,
IN RPC2_CountedBS cksum_buf,
IN RPC2_Integer ref_cml_size,
IN RPC2_Ingeger app_oplog_size,
OUT ViceVersionVector updateSet);

EndReplayApp2 (IN pgid_t pgid_replay
IN RPC2_Integer uniqufier_replay);

Figure 5.15: RPC Interface for Application-aware Operation Shipping - Design
Alternative 2

A surrogate exports three RPCs (remote procedural calls) to the weakly-connected client.
StartReplayApp2 is used to set up a replaying process, which will re-execute in the
iterative style, EndReplayApp2 is used to shut down the replaying process. During an
application session of a replaying process, there can be multiple UserOpPropagate2
RPCs, each requesting the replaying of a command group.

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 131

VIOC_BEGIN_REPLAY2 fs_begin_replay2 (char *destfilename);
VIOC_END_REPLAY2 fs_end_replay2 ();

Figure 5.16: Interface for Replaying Operations - Design Alternative 2

The left column shows the two new added ioctl command added to support operation
replaying for Type-2 user operations. The right column shows the two corresponding
convenient functions and their arguments.

replaying process that re-executes in the one-shot style will terminate when it finishes

the replaying of a command group.) The replaying process will terminate only when

the RPC EndReplayApp2 arrives.

The interface exported by Venus to the re-executing application is shown in

Figure 5.16. Once started, a replaying process uses the command

VIOC BEGIN REPLAY2 to tell Venus that it is ready to accept a new command group

for replay. It will be blocked until Venus has the information for the next command

group (which is sent in from the client via the UserOpPropagate2 RPC). When

the replaying process is unblocked, an application-specific operation log will have

been written to the file specified by destfilename, and Venus will have entered

into a replaying session (Section 4.2.3. The process interprets the log, and replays

the command stated on the log. The last command in the command group is a saving

command, and it induces mutating file-system calls. Since Venus is in a replaying

session, the effect of the mutating file-system calls will be associated with the current

replaying session. Finally, the process finishes the replaying of the command group, it

ends the replaying session by using the VIOC END REPLAY2 command.

Upon the end of a replaying session, Venus will proceed into the validation,

integration, and finalization phases as in the the case of application-transparent

operation shipping.

CHAPTER 5. APPLICATION-AWARE OPERATION SHIPPING 132

5.4 Chapter Summary

This chapter studies the two research questions regarding application-aware operation

shipping. The first question is on the architecture needed. We found that there are two

design alternatives: one supports the re-execution in the one-shot style, and the other

supports the re-execution in the iterative style. The two styles of re-execution have

different implications on the granularities of update propagation: the former supports

propagation-after-exit, but the latter supports early-propagation. We favour simplicity

in this work and has adopted the first alternative.

The second question is on the programming effort required to extend an existing

application to add the capability of operation logging and replaying. To this end, a

popular image application – the GIMP – is chosen as a case study. A prototype of

an extended GIMP has been implemented, in which about one sixth of the commands

can be logged and replayed. The programming effort required has been found to be

moderate.

Section 6.3 will present the performance gain of operation shipping using the

extended GIMP as an example.

Chapter 6

Evaluation

Three realistic prototypes have been designed, implemented, and evaluated to

demonstrate the feasibility and benefits of operation shipping. These prototypes are

extended from three existing systems: the Coda File System, the Bourne Again Shell

(bash), and the GIMP. The bash shell is chosen as an example interactive shell that

works with Coda in application-transparent operation shipping; the GIMP is chosen as

an example interactive application that works with Coda in application-aware operation

shipping.

This chapter begins with a brief discussion on the implementation status of the

prototypes, and then it discusses the quantitative results for application-transparent

and application-aware operation shipping in the two subsequent sections.

6.1 Implementation Status

The prototype file system is an extension of Coda, and is maintained as a branch off

the mainline code. By using the CVS system (Concurrent Versions System) [58], the

new developments in the mainline branch [11] are merged into the prototype from

time to time. The prototype was first developed based on the mainline version 4.2.4

in December 1997. The new developments in the mainline versions 4.4.3 (May 98),

133

CHAPTER 6. EVALUATION 134

4.6.3 (September 98), 5.2.2 (May 99), and 5.2.4 (June 99) are merged into the prototype

subsequently on the dates indicated in the brackets.

The prototype is developed and tested on the Linux platform. However, no Linux-

specific features are used in developing the prototype, so porting it to other platforms

should be easy.

All the extensions needed for supporting operation shipping have been added only

to Venus, the user-level cache manager on the client side. There have been no changes

needed in neither the server nor the kernel.

The most primitive version of the prototype was functional in early 1998, but

it blindly rejected all re-executions with non-repeating side effects. The problem

was solved in summer of the same year. Also, the initial prototype supported only

application-transparent operation shipping. Support for application-aware operation

shipping using the one-shot re-execution style was added in early 1999. The interaction

of operation shipping with cancellation optimization was addressed in summer 1999.

Operation shipping needs the co-operation between the file system and some

entities. There are two cases. The first case is application-transparent operation

shipping. The entity is an operation-logging interactive shell (the file system serves

as the replaying entity). An extended version of the GNU Project’s Bourne Again

Shell (bash) was implemented in early 1998 to add the operation logging capability.

The modification needed is very minor. Only a few lines of code are needed.

The second case is application-aware operation shipping. The entity is an

interactive application that has operation-logging and operation-replaying capabilities.

In this work, the GNU Image Manipulation Program (the GIMP) is chosen as an

example application. An extended version of the GIMP was implemented in early

1999.

The source code of all the three prototypes can be downloaded from [2].

CHAPTER 6. EVALUATION 135

6.2 Application-transparent Operation Shipping

Size
Test Name Nature NF (KB) SE1 SE2
T1 rp2gen callback.rpc2 RPC2 stub generator 5 27.5 �
T2 rp2gen adsrv.rpc2 RPC2 stub generator 5 76.3 �

T3 yacc parsepdb.yacc compiler compiling 1 23.5
T4 c++ -c counters.cc -o counters.o compiling 2 26.0
T5 c++ -c pdlist.cc -o pdlist.o compiling 2 62.4
T6 c++ -c fso daemon.cc -o fso daemon.o compiling 2 265.3
T7 c++ parserecdump.o -o parserecdump linking 1 23.0
T8 ar rv libdir.a ... library building 1 70.2 � �
T9 ar rv libfail.a ... library building 1 363.1 � �

T10 tar xzvf coda-doc-4.6.5-3-ppt.tgz extracting files 5 269.5
T11 make coda (in coda-src/blurb) compiling/linking 3 69.9
T12 make coda (in coda-src/rp2gen) compiling/linking 10 237.1
T13 tar cvf update.tar ... packaging files 1 60.2
T14 sgml2latex guide.sgml translator 1 41.8
T15 sgml2latex rvm manual.sgml translator 1 270.0
T16 latex usenix99.tex text formatter 3 93.4 �

Figure 6.1: Selected Tests and Applications for Application-transparent Operation
Shipping

Sixteen tests were run using nine applications with real-life files. In this table, NF
means number of files that were updated. Some of the applications exhibited non-
repeating side-effects due to time stamps (SE1) and temporary files (SE2). They
are marked by bullet points (�) in the table, and have to be handled by the novel
techniques discussed in Section 4.3.

This section answers the following three questions related to application-

transparent operation shipping:

1. Can operation shipping be used transparently with common non-interactive

applications?

2. What is the extent of network-traffic reduction that can be achieved by using

operation shipping?

3. What is the extent of elapsed-time reduction that can be achieved by using

operation shipping?

CHAPTER 6. EVALUATION 136

The experimental setup will be described in the next sub-section. Answers to the above

questions will follow in the subsequent three sub-sections.

6.2.1 Experimental Setup

The client, the surrogate, and the server machine used in the experiments were

a Pentium 90MHz, a Pentium MMX 200MHz, and a Pentium 90MHz machine

respectively. All three machines were running the Linux operating system (kernel

version 2.0.35). The network between the surrogate and the server was a 10-Mbps

Ethernet. The bandwidths of the client–surrogate network and the client–server

network varied in different tests, and the Coda failure emulation package (libfail

and filcon) [49] was used to emulate different network bandwidths on a 10-Mbps

Ethernet.

Sixteen different tests were performed. In these tests, nine different common non-

interactive applications were involved (Figure 6.1). The input files for each tests were

real-life files found in our environment. The tests were selected such that the data size

in each test was close to one of the three reference sizes: 16, 64, and 256 Kbytes. The

data size is defined as the total size of the files updated by an operation. The 16 tests

were labeled as T1; T2; � � � ; and T16 respectively.

6.2.2 Transparency to Applications

This thesis does not claim that operation shipping can be used transparently with all

non-interactive applications. For example, it is anticipated that operation shipping

probably cannot be used with the -j <n> mode of GNU Make, which runs n jobs in

parallel. However, so far all the nine selected applications can be used transparently

with operation shipping. Three of them exhibit non-repeating side effects, but these

side effects can be handled by the techniques discussed in Section 4.3.

CHAPTER 6. EVALUATION 137

6.2.3 Network Traffic Reduction

Traffic Traffic Traffic
Test Nature by value- by operation- reduction

shipping shipping by operation-
(Kbytes) (Kbytes) shipping

Lv Lop Lv=Lop

T1 rp2gen 28.7 2.0 14.4
T2 rp2gen 77.5 1.9 40.8
T3 yacc 23.7 1.0 23.7
T4 c++ -c 27.1 1.9 14.3
T5 c++ -c 63.4 1.8 35.2
T6 c++ -c 266.3 2.0 133.2
T7 c++ 23.9 2.0 12.0
T8 ar 70.2 1.9 36.9
T9 ar 364.0 2.2 165.5
T10 tar x 271.8 4.7 57.8
T11 make 71.6 2.3 31.1
T12 make 242.0 5.9 41.0
T13 tar c 60.2 1.0 60.2
T14 sgml2latex 42.0 1.0 42.0
T15 sgml2latex 270.3 1.1 245.7
T16 latex 94.1 1.4 67.2

Figure 6.2: Network Traffic Reductions by Application-transparent Operation
Shipping

In column 5, the network traffic reduction factors, Lv=Lop are listed, where Lv and Lop

is the network traffic by value shipping and by application-transparent operation shipping
respectively.

6.2.3.1 Methodology

For each test, both value shipping and operation shipping were used to propagate the

updated files, and the traffic volume of each case was measured. Both the file data and

the overhead were included in the traffic. In particular, for operation shipping, all fields

in the operation logs: command, command-line arguments, current working directory,

environment list, file-creation mask, meta-data, fingerprints, and so on, were counted

towards the traffic.

CHAPTER 6. EVALUATION 138

2 1.9 1 1.9 1.8 2 2 1.9 2.2 4.7 2.3 5.9 1 1 1.1 1.4

28.7

77.5

23.7 27.1

63.4

266.3

23.9

70.2

364

271.8

71.6

242

60.2
42

270.3

94.1

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16

Experiments

0

75

150

225

300

375

T
ra

ff
ic

 (
K

by
te

s)

Traffic for update propagation

V

O

Figure 6.3: Network Traffic for Value Shipping and Application-transparent Operation
Shipping

This figure depicts the data presented in Figure 6.2. There are two bars for each test. The
left bar (in light gray color) indicates the network traffic for value shipping (V); the right
bar (in dark gray color) indicates the network traffic for application-transparent operation
shipping (O).

6.2.3.2 Results

In Figure 6.2, the traffic reduction is shown. Traffic reduction is defined as Lv=Lop;

where Lv and Lop are the traffic volumes required for the update propagation by

value shipping and by operation shipping respectively. The same data is graphically

illustrated in Figure 6.3.

The traffic reductions achieved by operation shipping were very substantial. In

13 out of the 16 tests, the reduction exceeded a factor of 20. The highest reduction

factor was 245.7 (T15); the smallest reduction was 12 (T7). In other words,

operation shipping reduced the network traffic volumes by one to nearly three orders

of magnitude.

The dramatic traffic reduction came from the fact that the traffic volumes required

for operation shipping were all very small – from 1.0 Kbytes to 5.9 Kbytes.

CHAPTER 6. EVALUATION 139

Therefore, the larger the traffic volume required for value shipping, the larger the

traffic reduction factor that can be achieved by operation shipping. These results

confirm the observation stated in Chapter 1 of this thesis: “Big file, small operation.”

(Section 1.5.1)

6.2.4 Reduction of Elapsed Time

The previous section has shown that operation shipping can achieve very substantial

traffic reduction. However, since operation shipping involves replaying of user

operation and computation of fingerprint and forward-error-correction code, there are

some computational overheads involved. It is interesting to see if the elapsed time of

reintegration is also reduced correspondingly.

6.2.4.1 Methodology

For each test, both value and operation shippings were used to propagate

the updated files, and the elapsed time of reintegration of each case was

measured. The elapsed time is the time to complete the respective procedures for

reintegration: IncReintegrate or PartialReintegrate for value shipping,

and IncReintegrateViaSurrogate for operation shipping (Section 4.2.2). For

the latter, the elapsed time comprises the time for shipping the operation log, re-

executing the operation, and other overheads, such as checking the fingerprints and

error correction. Since the elapsed time depends heavily on the network bandwidth, it

was measured under three different network bandwidths: 9.6, 28.8, and 64.0 kilobits

per second. Each test was repeated three times.

6.2.4.2 Results

Figure 6.4 shows the elapsed time for value shipping (Tv) and operation shipping (Top)

under the three different network conditions. Figure 6.5 shows the speedup, which is

CHAPTER 6. EVALUATION 140

Elapsed time (msecs)
Data size 9.6-Kbps 28.8-Kbps 64-Kbps

Test Nature (Kbytes) Tv Top Tv Top Tv Top
T1 rp2gen 27.5 27,921 8,282 9,666 6,404 4,539 5,637

(312) (73) (8) (50) (20) (37)

T2 rp2gen 76.3 71,937 9,322 24,294 7,358 11,416 6,706
(27) (61) (39) (9) (133) (90)

T3 yacc 23.5 22,025 3,215 7,563 2,364 3,506 2,049
(31) (60) (13) (34) (0) (9)

T4 c++ -c 26.0 25,112 5,098 8,683 3,491 4,164 2,928
(64) (31) (38) (88) (176) (107)

T5 c++ -c 62.4 59,144 7,546 19,899 5,927 9,591 5,377
(254) (48) (51) (12) (93) (43)

T6 c++ -c 265.3 257,143 15,645 88,274 13,877 39,167 13,181
(23,989) (82) (8,418) (92) (233) (9)

T7 c++ 23.0 22,218 4,425 7,637 2,874 3,599 2,297
(27) (27) (12) (30) (12) (20)

T8 ar 69.3 65,473 5,613 22,059 4,104 10,571 3,646
(58) (21) (77) (25) (343) (138)

T9 ar 363.1 345,241 13,143 118,929 11,634 55,725 10,944
(24,172) (142) (7,402) (74) (3,472) (91)

T10 tar x 269.5 247,674 12,825 85,041 9,448 39,954 8,448
(327) (156) (276) (96) (182) (60)

T11 make 69.9 67,113 8,839 22,723 6,793 10,633 6,115
(580) (79) (354) (25) (142) (30)

T12 make 237.1 224,135 22,272 77,279 18,098 36,256 17,085
(2,452) (132) (73) (39) (293) (396)

T13 tar c 60.0 55,355 3,674 18,826 2,978 8,802 2,602
(36) (8) (33) (92) (7) (74)

T14 sgml2latex 41.8 38,602 5,433 13,160 4,648 6,209 4,439
(15) (18) (12) (25) (87) (235)

T15 sgml2latex 270.0 245,709 13,780 83757 12852 39414 12600
(266) (103) (162) (42) (32) (107)

T16 latex 93.4 86,619 8,522 29,429 7,194 13,869 6,243
(30) (646) (54) (669) (49) (39)

Figure 6.4: Elapsed Time for Value Shipping and Application-transparent Operation
Shipping.

Elapsed time, in milliseconds, for update propagation using value shipping (Tv) and
application-transparent operation shipping (Top) under three different network conditions.
Figures are means of three runs. Figures in parentheses are the standard deviations.

CHAPTER 6. EVALUATION 141

defined to be the ratio Tv=Top. Figure 6.6 depicts the same information in graphical

form.

The speedups obtained by operation shipping were substantial. They were the most

substantial in the 9.6-Kbps network. Eight out of the 16 tests were accelerated by a

factor exceeding 10. The maximum speedup was 26.3 (T9); the minimum speedup was

3.4 (T1). In the other two networks, the speedups ranged from a factor of 1.4 (T4 and

T14, 64-Kbps) to 10.2 (T9, 28.8-Kbps). (There was one exception: test T1 was slowed

down when using operation shipping at 64 Kbps.)

Beside speeding up propagation, operation shipping has another advantage. That is

the elapsed time of update propagation is much less sensitive to the network condition

than that of value shipping. This can be seen from the elapsed-time–bandwidth curves.

Figures 6.7 and 6.8 show the curves for T1 and T9 respectively. In both figures, the

curves for value shipping are steep (sensitive to bandwidth) whereas the curves for

operation shipping are flat (not sensitive to bandwidth). These two tests are particularly

interesting since they are the tests with the minimum and the maximum speedup

respectively. The curves for other tests show similar trends.

CHAPTER 6. EVALUATION 142

Data size Speedup (Tv=Top)
Test Nature (Kbytes) 9.6 Kbps 28.8 Kbps 64 Kbps
T1 rp2gen 27.5 3.4 1.5 0.8
T2 rp2gen 76.3 7.7 3.3 1.7
T3 yacc 23.5 6.9 3.2 1.7
T4 c++ -c 26.0 4.9 2.5 1.4
T5 c++ -c 62.4 7.8 3.4 1.8
T6 c++ -c 265.3 16.4 6.4 3.0
T7 c++ 23.0 5.0 2.7 1.6
T8 ar 69.3 11.7 5.4 2.9
T9 ar 363.1 26.3 10.2 5.1
T10 tar x 269.5 19.3 9.0 4.7
T11 make 69.9 7.6 3.3 1.7
T12 make 237.1 10.1 4.3 2.1
T13 tar c 60.0 15.1 6.3 3.4
T14 sgml2latex 41.8 7.1 2.8 1.4
T15 sgml2latex 270.0 17.8 6.5 3.1
T16 latex 93.4 10.2 4.1 2.2

Figure 6.5: Speedups for Update Propagation by Using Application-transparent
Operation Shipping - Table

Speedups for update propagation under three different network speeds: 9.6 Kbps, 28.8
Kbps, and 64 Kbps. Speedup is defined as the ration Tv=Top.

CHAPTER 6. EVALUATION 143

9600 28800 64000

bandwidth (bps)

0

4

8

12

16

20

24

28

sp
ee

d-
up

Speed-up
for update propagation

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

Figure 6.6: Speedups for Update Propagation by Using Application-transparent

Operation Shipping - Graph

This figure illustrates the data presented in Figure 6.5.

CHAPTER 6. EVALUATION 144

0 10000 20000 30000 40000 50000 60000 70000

bandwidth (bps)

0

5000

10000

15000

20000

25000

30000

el
ap

se
d

tim
e

(m
se

cs
.)

T1: rp2gen callback.rpc2
elapsed time for update propagation

V

O

Figure 6.7: Elapsed Time vs. Bandwidth for Test T1

0 10000 20000 30000 40000 50000 60000 70000

bandwidth (bps)

0

50000

100000

150000

200000

250000

300000

350000

el
ap

se
d

tim
e

(m
se

cs
.)

T9: ar libfail.a
elapsed time for update propagation

V

O

Figure 6.8: Elapsed Time vs. Bandwidth for Test T9

CHAPTER 6. EVALUATION 145

6.3 Application-aware Operation Shipping

This section answers the following three questions related to application-aware

operation shipping using the GIMP as an example application:

1. Can operation shipping be used with common user operations that a user may

perform with the GIMP?

2. What is the extent of network-traffic reduction that can be achieved by using

operation shipping?

3. What is the extent of elapsed-time reduction that can be achieved by using

operation shipping?

These three questions are very similar to those posed in the previous section. However,

the previous section studies these questions with application-transparent operation

shipping; whereas this section studies the questions with application-transparent

operation shipping.

The experimental setup will be described in the next sub-section. Answers to the

above questions will follow in the subsequent three sub-sections.

6.3.1 Experimental Setup

Both the hardware and the software have been slightly upgraded when compared with

those used in Section 6.2. This is because the two sets of experiments were performed

at different periods of time. In this set of experiments, the client, the surrogate, and

the server machine used were a Pentium MMX 200MHz, a Pentium II 300MHz, and

a Pentium 90MHz machine respectively. All three machines were running the Linux

operating system (the client and the surrogate were using kernel version 2.2.5, and the

server were using kernel version 2.0.34).

Like in the tests described in Section 6.2, the network between the surrogate

and the server was a 10-Mbps Ethernet. The bandwidths of the client–surrogate

CHAPTER 6. EVALUATION 146

network and the client–server network varied in different tests, and the Coda failure

emulation package (libfail and filcon) [49] was used to emulate different

network bandwidths on a 10-Mbps Ethernet.

Eleven tests, labelled as T30; T31; : : : ; and T40 were selected for evaluating the

performance. They represent some tasks that a user may perform with the GIMP, and

each of them comprises a number of GIMP-specific interactive commands. Figures 6.9

and 6.10 give the details of the tests.

6.3.2 Applicability of Operation Shipping

Operation shipping is applicable for a user operation when either of the following

two conditions is true: (1) the user operation, when replayed on the surrogate, is

repeating (i.e., the replayed operation is producing exactly the same values as its

original execution); or (2) the replayed user operation is not repeating, but the replaying

discrepancy can be fixed by some handling techniques (Section 3.4).

Among the eleven tests that were selected for evaluating the performance of

application-aware operation shipping, it was found that operation shipping cannot be

used with T40. This is because one of the function “blur” used by the test needs a

random seed for the blurring algorithm, and it is implemented in such a way that it gets

the random seed from the current time value. Upon replaying, the blur function gets a

different current time value and thus a different random seed. So it is not repeating on

the surrogate. Unlike the non-repeating time stamp that was studied in Section 4.3.1,

the random seed has a global effect on the whole image, so the replaying discrepancy

cannot be fixed by techniques such as forward error correction.

Note that the requirements for application transparency are different in the two

types of operation shipping. For application-transparent operation shipping, the

applications are not expected to be modified to cater for the need of operation

shipping; whereas for application-aware operation shipping, the applications are

CHAPTER 6. EVALUATION 147

Test Name and Description Size (KB) NR

T30 Embossment: 243.8
load korea7.jpg (157.7 KB),
invoke emboss plug-in (azimuth=73.4, elevation=57.7,
depth=20)
save as t30.jpg

T31 Annotation: 184.6
load gibralter.jpg (90.3 KB),
add a text string “Gibralter”,
move the text string layer to the lower right corner of the image,
anchor the text layer,
save as t31.jpg

T32 Color inversion: 128.7
load france1.neg.jpg (128.6 KB),
invert the colors of the image,
save as t32.jpg

T33 Color adjustment: 260.9
load monterey.jpg (240.9 KB),
change color balance (Cyan-Red=52, Magenta-Green=20,
Yellow-Blue=0),
change brightness and contrast (brightness=9, contrast=60),
save as t33.jpg

T34 Conversion to the BMP format: 951.6
load coppermt.jpg (129.5 KB),
save as t34.bmp

T35 Gradient Map: 118.2
load hk003.jpg (80.1 KB),
choose “Default” as the active gradient map,
map the contents of the image with the active gradient map,
save as t35.jpg

Figure 6.9: Selected Tests for Application-aware Operation Shipping (to be continued)

This and the next table list the eleven tests selected for evaluating the performance
for application-aware operation shipping. The column labelled “Size” gives the
output file size of the test. A bullet point (�) in the column labelled “NR” indicates
that the replayed user operation is not repeating on the surrogate.

CHAPTER 6. EVALUATION 148

Test Name and Description Size (KB) NR

T36 Canvas Effect: 305.2
load france15.jpg (155.8 KB),
add a canvas texture map to the image (direction=”Top-right”,
depth=4),
save as t36.jpg

T37 Mosaic Effect: 284.2
load morocco3.jpg (88.4 KB),
convert the image into a collection
of tile (tile size=15.0, tile height=4.0, tile spacing=1.0,
tile neatness=0.65, light dir=135.0, color variation=0.2,
anti-aliasing, color averaging,
hexagon tiles, smooth surface, black/white grout color),
save as t37.jpg

T38 Oil Painting Effect: 350.2
load kuleuven1.jpg (216.7 KB),
modify the image to resemble an oil
painting (mask size=7, RGB algorithm),
save as t38.jpg

T39 Poster Effect: 71.0
load sjapan2.jpg (109.7 KB),
posterize the image (levels=3),
save as t39.jpg

T40 Blurring: 58.3 �
load swiss8.jpg (109.8 KB)
blur the image by applying a 3x3 blurring convolution kernel,
to the image (randomization percentage=50, repeat count=1),
save as t40.jpg

Figure 6.10: Selected Tests for Application-aware Operation Shipping (continued)

The previous and this table list the eleven tests selected for evaluating the
performance for application-aware operation shipping. The column labelled “Size”
gives the output file size of the test. A bullet point (�) in the column labelled “NR”
indicates that the replayed user operation is not repeating on the surrogate.

CHAPTER 6. EVALUATION 149

already modified to add operation logging and replaying capabilities. Therefore, the

solution to the problem of non-repeating blur function is simple: the function can be

modified to have a repeating behavior. This can be done by having an option for the

invoker of the function to supply the random seed (via the PDB interface). Once the

function is modified, the logging GIMP can logged the random seed used in the original

execution, and the replaying GIMP can supply the logged value of random seed when

it is replaying the blur function on the surrogate.

The needed modification for the blur function is conceptually straightforward but

has not been carried out. Test T40 was thus excluded from the test set. In the following

performance-evaluation experiments, only Test T30 - T39 were used.

6.3.3 Network Traffic Reduction

6.3.3.1 Methodology

For each test, both value and operation shippings were used to propagate the update

files, and the traffic volume of each case was measured. Both the file data and

the overhead were included in the traffic. In particular, for operation shipping,

the application-specific operation log and all fields in the operation log (command,

command-line arguments, current working directory, environment list, file-creation

mask, meta-data, fingerprints, and so on) were counted towards the traffic.

6.3.3.2 Results

In Figure 6.11, the traffic reduction is shown. Traffic reduction is defined as Lv=Lop;

where Lv and Lop are the traffic volumes required for the update propagation by value

shipping and by application-aware operation shipping respectively. The same data are

graphically illustrated in Figure 6.12.

Similar to the experiments for application-transparent operation shipping

(Section 6.2.3.2), this set of experiments found that very substantial traffic reductions

CHAPTER 6. EVALUATION 150

were achieved by application-aware operation shipping. The reductions all exceeded

a factor of 30. The highest reduction factor was 396.6 (T34); the smallest reduction

factor was 33.9 (T39). In other words, operation shipping reduced the network traffic

volumes by one to nearly three orders of magnitude.

Like its application-transparent counterpart, application-aware operation shipping

achieved the dramatic traffic reductions because the traffic volumes required for

operation shipping were so small. In these experiments, they ranged from 2.1 Kbytes

to 2.4 Kbytes. Therefore, the larger the traffic volume required for value shipping, the

larger the traffic reduction factor that can be achieved by operation shipping.

Traffic Traffic Traffic
Test Name by value- by operation- reduction

shipping shipping by operation-
(Kbytes) (Kbytes) shipping

Lv Lop Lv=Lop

T30 Embossment 244.0 2.1 116.2
T31 Annotation 184.8 2.3 80.3
T32 Color inversion 128.9 2.1 61.4
T33 Color adjustment 261.1 2.3 113.5
T34 BMP conversion 951.8 2.4 396.6
T35 Gradient Map 118.4 2.1 56.4
T36 Canvas 305.4 2.2 138.8
T37 Mosaic 284.4 2.3 123.7
T38 Oil Painting 350.4 2.2 159.3
T39 Poster 71.2 2.1 33.9

Figure 6.11: Network Traffic Reductions by Application-aware Operation Shipping

In column 5, the network traffic reduction factors, Lv=Lop are listed, where Lv and Lop is the
network traffic by value shipping and by application-aware operation shipping respectively.

CHAPTER 6. EVALUATION 151

2.1 2.3 2.1 2.3 2.4 2.1 2.2 2.3 2.2 2.1

244

184.8

128.9

261.1

951.8

118.4

305.4
284.4

350.4

71.2

T30 T31 T32 T33 T34 T35 T36 T37 T38 T39

Experiments

0

200

400

600

800

1000

T
ra

ff
ic

 (
K

by
te

s)

Traffic for update propagation

V

O

Figure 6.12: Network Traffic for Value Shipping and Application-aware Operation
Shipping

This figure depicts the data presented in Figure 6.11. There are two bars for each test. The left bar
(in light gray color) indicates the network traffic for value shipping (V); the right bar (in dark gray
color) indicates the network traffic for application-aware operation shipping (O).

CHAPTER 6. EVALUATION 152

6.3.4 Reduction of Elapsed Time

The previous section studies the traffic reduction of application-aware operation

shipping; this section studies the elapsed time reduction. Note that the user operations

in this series of experiments are the invocation of some image-manipulation functions,

which in general are quite computationally intensive. Therefore, it is interesting to see

if shipping these operations still give performance improvements over value shipping

in term of the elapsed time of update propagation.

6.3.4.1 Methodology

For each test, both value shipping and application-aware operation shipping were used

to propagate the updated files, and the elapsed time of reintegration of each case was

measured. The elapsed time is the time to complete the respective procedures for

reintegration: IncReintegrate or PartialReintegrate for value shipping,

and IncReintegrateViaSurrogate for operation shipping (Section 4.2.2). For

the latter, the elapsed time comprises the time for shipping the operation log, the

creation of the re-executing GIMP process, the replaying of the user operations, and

other overheads, such as checking the fingerprints and error correction. Since the

elapsed time depends heavily on the network bandwidth, it was measured under three

different network bandwidths: 9.6, 28.8, and 64.0 kilobits per second. Each test was

repeated three times.

6.3.4.2 Results

Figure 6.13 shows the elapsed time for value shipping (Tv) and operation shipping

(Top) under the three different network conditions. Figure 6.14 shows the speedup,

which is defined to be the ratio Tv=Top. Figure 6.15 depicts the same information in

graphical form.

Likes its application-transparent counterpart (Section 6.2.4.2), application-aware

CHAPTER 6. EVALUATION 153

operation shipping achieved very substantial speedups in the experiments. The

speedups were the most substantial in the 9.6-Kbps network. Eight out of the ten tests

were accelerated by a factor exceeding 10. The maximum speedup was 48.8 (T34);

the minimum speedup was 8.8 (T39). In the other two networks, the speedups ranged

from a factor of 1.7 (T30, 64-Kbps) to 21.9 (T34, 26.8-Kbps).

Also, application-aware operation shipping has the advantage that the elapsed time

of update propagation is much less sensitive to the network condition than that of value

shipping. Figures 6.16 and 6.17 show the elapsed-time–bandwidth curves for T30 and

T34 respectively. From both figures, we can see that the curves for value shipping

are steep (sensitive to bandwidth) whereas the curves for operation shipping are flat

(not sensitive to bandwidth). T30 and T34 are the two tests with the minimum and the

maximum speedup respectively. The curves for other tests show similar trends.

CHAPTER 6. EVALUATION 154

Data Elapsed time (msecs)
size 9.6-Kbps 28.8-Kbps 64-Kbps

Test Name (Kbytes) Tv Top Tv Top Tv Top
T30 Embossment 243.8 226,487 22,852 76,640 21,662 34,285 20,300

(613) (52) (325) (353) (74) (2,028)

T31 Annotation 184.6 171,485 8,333 58,267 6,767 25,927 6,064
(471) (562) (890) (305) (23) (570)

T32 Color 128.7 119,853 7,650 40,566 6,223 18,090 5,701
inversion (84) (560) (261) (285) (3) (299)

T33 Color 260.9 242,607 11,757 82,303 10,395 36,679 10,377
adjustment (177) (590) (383) (568) (65) (273)

T34 BMP 951.6 889,491 18,228 317,380 14,467 134,009 14,587
conversion (11,550) (1,550) (32,531) (16) (608) (1,172)

T35 Gradient 118.2 113,546 7,830 37,278 6,253 16,670 5,728
Map (5,198) (591) (468) (591) (67) (583)

T36 Canvas 305.2 286,422 10,052 95,924 8,418 42,881 8,024
(5,124) (315) (150) (269) (65) (489)

T37 Mosaic 284.2 263,713 16,876 90,062 16,013 39,888 15,646
(356) (306) (380) (870) (9) (286)

T38 Oil 350.2 324,745 19,519 110,228 18,051 49,167 17,417
painting (156) (41) (23) (300) (44) (154)

T39 Poster 71.0 66,179 7,506 22,531 5,788 10,059 5,260
(144) (281) (69) (14) (86) (7)

Figure 6.13: Elapsed Time for Value Shipping and Application-aware Operation
Shipping.

Elapsed time, in milliseconds, for update propagation using value shipping (Tv)
and application-aware operation shipping (Top) under three different network
conditions. Figures are means of three runs. Figures in parentheses are the standard
deviations.

CHAPTER 6. EVALUATION 155

Data size Speedup (Tv=Top)
Test Name (Kbytes) 9.6 Kbps 28.8 Kbps 64 Kbps
T30 Embossment 243.8 9.9 3.5 1.7
T31 Annotation 184.6 20.6 8.6 4.3
T32 Color inversion 128.7 15.7 6.5 3.2
T33 Color adjustment 260.9 20.6 7.9 3.5
T34 BMP conversion 951.6 48.8 21.9 9.2
T35 Gradient Map 118.2 14.5 6.0 2.9
T36 Canvas 305.2 28.5 11.4 5.3
T37 Mosaic 284.2 15.6 5.6 2.5
T38 Oil painting 350.2 16.6 6.1 2.8
T39 Poster 71.0 8.8 3.9 1.9

Figure 6.14: Speedups for Update Propagation by Using Application-aware Operation
Shipping - Table

Speedups for update propagation under three different network speeds: 9.6 Kbps,
28.8 Kbps, and 64 Kbps. Speedup is defined as the ratio Tv=Top.

9600 28800 64000

bandwidth (bps)

0

10

20

30

40

50

sp
ee

d-
up

Speed-up
for update propagation

T30

T31

T32

T33

T34

T35

T36

T37

T38

T39

Figure 6.15: Speedups for Update Propagation by Using Application-aware Operation

Shipping - Graph

This figure illustrates the data presented in Figure 6.14.

CHAPTER 6. EVALUATION 156

0 10000 20000 30000 40000 50000 60000 70000

bandwidth (bps)

0

50000

100000

150000

200000

250000

el
ap

se
d

tim
e

(m
se

c.
)

T30: Embossment
elapsed time for update propagation

V

O

Figure 6.16: Elapsed Time vs. Bandwidth for Test T30

0 10000 20000 30000 40000 50000 60000 70000

bandwidth (bps)

0

200000

400000

600000

800000

1000000

el
ap

se
d

tim
e

(m
se

c.
)

T34: BMP conversion
elapsed time for update propagation

V

O

Figure 6.17: Elapsed Time vs. Bandwidth for Test T34

CHAPTER 6. EVALUATION 157

6.4 Chapter Summary

This chapter presents the implementation status of the prototypes. It also presents

the quantitative evaluations of application-transparent and application-aware operation

shippings. The evaluations were based on controlled experiments. They demonstrated

the huge performance gain that can be achieved by both types of operation shippings.

The performance gain has three aspects:

� The network traffic required for shipping an update is dramatically reduced.

� The elapsed time required for shipping an update is substantially reduced.

� The elapsed time required for shipping an update is much less sensitive to the

network condition.

The first aspect means the mobile file system will be less intrusive to weak

networks. The scarce network bandwidth of the weak networks can be saved for other

uses, such as the World-Wide-Web or electronic mails. The second aspect means a

smaller reintegration latency. The third aspect means the file system can hide from the

users more effectively the unpleasant facts of the weak network conditions.

Chapter 7

Related Work

To the best of my knowledge, this is the first work that attempts to propagate file

updates by operations. However, some techniques used in this work resemble the

techniques that were used in some previous research works. This chapter discusses

these techniques in Section 7.1.

This thesis addresses the issue of how to propagate large updated files across a

weak network. The proposed solution is not the only possible one to address the issue.

Section 7.2 discusses some of the alternative solutions.

7.1 Related Work

7.1.1 Use in Databases

The idea of operation-based update propagation has been used in the database

community [36]. This dissertation is distinctive in the sense that the same idea is

being applied in a different context: distributed file systems. There are three main

differences. First of all, logging and shipping of operations in our case has to be done

at a level higher than the low-level file system operations (such as write), which

are not compact enough and are not appropriate for operation shipping. Therefore,

158

CHAPTER 7. RELATED WORK 159

a co-operation between the file system and a logging entity in the user space is

needed. Second, several new concepts are required in the context of distributed file

system: replaying of user operations on the surrogate, adjustment of status information,

validation of replayed operations, and the handling of non-repeating side effects, etc.

Third, in our system, operation shipping is only one of the mechanism for update

propagation, and the existing mechanism of value shipping are retained as a fallback

mechanism. Therefore, it can attempt operation shipping more boldly – if there is a

failure, the file system can just fall back to value shipping.

7.1.2 Directory Operations

Prior to this work, logging and shipping of directory operations have been implemented

in Coda [53, 52]. In fact, the Coda client-modify log can be viewed as an operation log

for directories and a value log for files. When a directory is updated on a Coda client

(e.g., a new entry is inserted), instead of shipping the whole new directory to the server,

the client ships only the update operation (e.g., the insertion operation). Directory

operations are more like database operations, since they can be mapped directly to

insertion, deletion, and modification of directory entries. This work is distinctive, since

it extends the idea of operation logging and shipping to also file updates. Also, the

operations of concern are no longer file-system operations but user operations.

7.1.3 Re-executions

Several previous research projects have made extensive uses of re-executions, such as

for fault tolerance [6] and load balancing [8]. In the former case, a process P can be

backed up by another process Pb. If P crashes, then Pb will repeat the execution of

P from a recent checkpoint, and will thereafter assume the role of P . In the latter

case, a process can migrate to another host to reduce the load imposed on the original

host. In this work, re-executions are used to re-produce some file modifications that

CHAPTER 7. RELATED WORK 160

are identical to those produced by the original executions.

7.1.4 Isolation-Only Transactions

A previous Coda project has implemented a mechanism for re-execution of operations

[24] [25]. It addresses the update conflicts that may happen in optimistically controlled

replicas. It proposes that a user can declare a portion of execution as an Isolation-Only

Transaction (IOT). If an update conflict happens, Coda will re-execute the transaction.

This work focuses on performance improvement rather than transactional guarantee.

Also, in this work, re-executions take place in a different host (the surrogate), whereas

re-execution of IOTs take place in the same host. This implies that we must handle the

case when a re-execution does not produce the same result as the original execution.

7.2 Alternative Solutions

7.2.1 Delta Shipping

The idea is to ship only the incremental difference, which is also called the delta,

between different versions of a file. It has been proposed by many people and is

currently being used as a general mechanism [60] or in specific systems including file

systems [14], web proxies [29], file archives [26], and source-file repositories [58, 40].

It is possible to compute deltas not only for text files but also for binary files. For

example, the rsync algorithm [60] is a binary-delta algorithm. When shipping a file,

the sending host suppresses the shipping of some blocks of data if they are found to be

present on the receiving host already. It determines whether they are already present on

the receiving host by using the checksum information supplied by the receiving host.

The algorithm exploits a rolling checksum algorithm so that the blocks being matched

can be started at any offset, not just multiples of block size.

Delta shipping has several limitations. First, a newly-created file has no previous

CHAPTER 7. RELATED WORK 161

version. Second, the effectiveness of delta shipping largely depends on how similar

the two versions of a file are, and how those incremental differences are distributed

in the file. In pathological case, a slightly changed file may need a huge delta. This

can happen, for example, when there is an global substitution of string in a text file, or

when there is a global brightness or contrast adjustment in an image file. In general,

we believe operation shipping can achieve a larger reduction of network traffic.

On the other hand, delta shipping does not involve re-execution of applications

and pre-arrangement of surrogate clients, as operation shipping does. Therefore, it

is simpler in terms of system administration. I believe delta shipping and operation

shipping can complement each other in a distributed file system. In particular, delta

shipping can be used when the file system has to use value shipping, probably because

of a lack of user-operation information or a replayed user operation is rejected.

7.2.2 Data Compression

Data compression reduces the size of a file by taking out the redundancy in the file.

This technique can be used in a file system [14, 4] or a web proxy [29]. However, the

reduction factors achieved by data compression may be smaller than that of operation

shipping. The following is a comparison of the traffic reductions that can be achieved

by operation shipping and data compression.

Methodology. The gzip utility, which uses the Lempel-Ziv coding (LZ77), was

chosen as a representative data-compression implementation. It was used to run against

the updated files of the 16 tests in Section 6.2. The total size of the compressed files

gave the estimated traffic volume of value shipping with data compression Lv;gz. By

dividing the uncompressed total file size Lv by Lv;gz, an estimated traffic reduction by

data compression can be obtained.

Result and Discussion. Figure 7.1 compares the traffic reduction by operation

shipping (Lv=Lop) with the estimated traffic reduction by data compression (Lv=Lv;gz).

CHAPTER 7. RELATED WORK 162

Estimated
Traffic Traffic traffic

Test Nature by value reduction reduction
shipping by operation by data
(Kbytes) shipping compression

Lv Lv=Lop Lv=Lv;gz

T1 rp2gen 28.7 14.4 4.8
T2 rp2gen 77.5 40.8 8.1
T3 yacc 23.7 23.7 4.4
T4 c++ -c 27.1 14.3 3.4
T5 c++ -c 63.4 35.2 3.5
T6 c++ -c 266.3 133.2 3.7
T7 c++ 23.9 12.0 2.8
T8 ar 70.2 36.9 3.2
T9 ar 364.0 165.5 4.6
T10 tar x 271.8 57.8 3.8
T11 make 71.6 31.1 2.8
T12 make 242.0 41.0 3.0
T13 tar c 60.2 60.2 6.0
T14 sgml2latex 42.0 42.0 3.0
T15 sgml2latex 270.3 245.7 3.8
T16 latex 94.1 67.2 2.7

Figure 7.1: Comparing the Traffic Reduction by Operation Shipping and Data
Compression

This table compares the traffic reductions that can be achieved by operation
shipping with that are estimated to be achieved by data compression. The
16 tests are the same as those listed in Figure 6.1. The fourth column,
traffic reduction by operation shipping, is obtained from Figure 6.2.

CHAPTER 7. RELATED WORK 163

The former is obtained from the result in Section 6.2.3, and the latter is obtained using

the methodology stated above.

The estimated traffic reductions by data compression ranged from 2.7 to 8.1,

substantially smaller than that achieved by operation shipping, which ranged from 12.0

to 245.7. This is not surprising, since, as we know, operation shipping exploits the

semantic information of the user operations, whereas data compression operates only

generically on the files. Therefore, it is very natural that the former can achieve higher

reduction than the latter.

Nevertheless, like delta shipping, data compression has the advantages that it does

not involve re-executions of applications and pre-arrangements of surrogate clients.

Therefore, it can complement operation shipping, and be used to enhance the value

shipping mechanism in a file system.

7.2.3 Logging Keystrokes

A file system may log keystrokes and mouse clicks, ship them, and replay them on the

surrogate. As such, it may be transparent to an application even if the application

is interactive. However, I am pessimistic about this approach, because it is very

difficult to make sure the logged keystrokes and mouse clicks will produce the identical

outcome on the surrogate machine. Too many things can happen at run-time that could

cause the keystrokes to produce different results.

7.2.4 Operation Shipping without Involving the File System

Can we use operation shipping without involving the file system? We can imagine

that someone may design a meta-application that logs every command a user types,

and, without involving the file system, remotely executes the same commands on a

surrogate machine. For the following reasons, I believe such a system would not work.

First, if the file system had no knowledge that the second execution was a re-execution,

CHAPTER 7. RELATED WORK 164

it would treat the files produced by the two executions as two distinct copies, and would

force the client to fetch the surrogate copy. Second, it might even think that there was

an update/update conflict. Finally, it cannot ensure the correctness of the re-execution.

Therefore, I believe that the file system plays a key role in useful and correct operation

shipping.

Chapter 8

Conclusions

Mobile computing imposes a number of challenges to system designers. Traditional

distributed file systems were designed with the assumption that the computers in

the systems are connected by pretty good networks, mobile computing breaks this

assumption. Therefore, designers must find ways to adapt a distributed file system to

the new mobile computing environment.

This dissertation has studied in depth one such adaptation. It has re-thought about

the traditional wisdom that files should always be shipped by their contents (value

shipping). In response to the challenge of mobile computing, I have proposed an

alternative that the file system can ship instead the operations that have been performed

on the files (operation shipping). The traditional wisdom makes a lot of sense when the

distributed file system works with only strong networks, but it needs a re-visit when

the distributed file system has to work with also weak networks.

The concept of operation-based update propagation is conceptually simple. But

the real question is whether it can indeed be used in the specific context: distributed

file systems. This work has provided an affirmative answer to the question by

really designing, implementing, and evaluating such a file system. Along the way,

we have experienced a few surprises: that of non-repeating side-effects, that of

the complication with cancellation optimization, and that of the design alternatives

165

CHAPTER 8. CONCLUSIONS 166

regarding re-execution styles and propagation granularities for application-aware

operation shipping. I believe these are all valuable experiences to the designer

community.

A number of research questions were posed in Chapter 1. They have already

been answered by various chapters in this dissertation. Here, a quick summary of

the answers is given:

1. How are user operations logged? What kind of user operations can be logged?

Who are responsible for logging them?

User operations are logged by a co-operation between the file system and a

logging entity in the user space. There are two types of user operations that can

be logged. The first is an invocation command of a non-interactive application,

and the second is an application-specific command of an interactive application.

For the first type of user operations, the high-level logging entity is an interactive

shell; for the second type of user operations, the high-level logging entity is the

concerned application itself.

2. How are user operations re-executed? Will server scalability be hampered?

User operations are re-executed on a surrogate client machine that is strongly

connected to the server. The scalability of the server will not be hampered as the

re-execution load is delegated to the surrogate client.

3. How about the correctness of the update propagation? What should the file

system do if the re-execution does not re-generate the same file?

The correctness is ensured by the four-step mechanism described in Section 3.4.

The key steps are that the surrogate uses fingerprints to ensure the re-generated

files are the same as the originals, and that if they are not the same, the file

system will fallback to use value shipping to propagate the updated files. Further,

if the re-generated files are different from the originals in some minor ways, it

CHAPTER 8. CONCLUSIONS 167

is possible to use the techniques of forward error correction and temporary-file

renaming to fix the minor re-execution discrepancies.

8.1 Contributions

The top-level contribution of this thesis is the substantiation of the claim that is

stated in Chapter 1. That is, “operation-based update propagation is a feasible and

beneficial mechanism in a mobile file system.” The claim is substantiated by the design,

implementation, and evaluation of three realistic prototypes. At the next level of detail,

the following specific contributions have been made:

� Surrogate. The concept of the surrogate, which helps to preserve server

scalability, has been proposed. The prototype file system has been designed

around the concept. (Section 3.2)

� Validation and Fallback Mechanism. A four-step validation mechanism and a

fallback mechanism have been designed and implemented in the prototype file

system. Through the two mechanisms, the correctness of update propagation can

be ensured. (Sections 3.4 and 4.2)

� Application-transparency for Non-interactive Applications. Most non-

interactive applications have been identified as being transparent to operation

shipping; they need not be aware of operation shipping while being involved in it.

Experiments have been done to confirm their transparencies. The transparencies

imply that operation shipping is backward compatible with these application.

(Sections 3.5 and 6.2.2)

� Design Alternatives for Application-aware Operation Shipping. The properties

of interactive applications have been analyzed. It has been found that they

execute in the iterative style (in contrast, non-interactive applications execute in

CHAPTER 8. CONCLUSIONS 168

the one-shot style), and that update propagation can be done with two different

granularities: propagate-after-exit and early-propagation. Also, it has been found

that there are two design alternatives for application-aware operation shipping.

In favor of simplicity, the first alternative has been adopted in the design and

implementation of the prototype file system; also, for completeness, the second

alternative has also been studied extensively. (Sections 5.1, 5.2, and 5.3)

� Techniques for Fixing Non-repeating Side Effects. The phenomenon of non-

repeating side effects has been identified. It prevents some common applications

from being used with operation shipping. Two techniques have thus been

proposed to fix these side effects: a novel use of forward-error-correction code

for fixing side effects due to time stamps, and the technique of temporary-file

renaming for fixing side effects due to temporary files. Both techniques have

been implemented and incorporated into the prototype file system. (Section 4.3)

� Re-enabling the Use of Cancellation Optimization with Operation Shipping. It

has been found that cancellation optimization interferes with operation shipping.

The former wants to delete CML (client-modify log) records so as to reclaim

storage space and reduce reintegration work load; the latter wants to keep the

records for validation. This complication has been addressed and solved by using

the concept of ghost CML records; cancellation optimization has thus been re-

enabled for use with operation shipping. The solution has been incorporated into

the prototype file system. (Section 4.4)

� Operation Shipping Coda. The Coda File System has been extended to add the

support for operation shipping. This exercise has demonstrated that the idea

of operation shipping can indeed be incorporated into an existing file system.

(Chapters 4 and 5)

CHAPTER 8. CONCLUSIONS 169

� Operation-logging Interactive Shell. The Bourne Again Shell (bash) has been

extended, as an example interactive shell, to add the capability of operation

logging. It can thus work with the extended Coda for application-transparent

operation shipping, in which most non-interactive applications can be involved

transparently. The extension has demonstrated that the needed modification for

operation logging is trivial. (Sections 4.1.3.2)

� Extended GIMP. The GNU Image Manipulation Program (the GIMP), as

an example interactive application, has been extended to add the capability

of operation logging and replaying. After the extension, it can work

with the extended Coda to demonstrate the feasibility of application-aware

operation shipping. The needed modification has been found to be moderate.

(Sections 5.2.2)

� Qualitative Evaluation. The feasibility of operation shipping has been

demonstrated with experiments. For application-transparent operation shipping,

all of the selected non-interactive applications could be used transparently for

operation shipping, and three of them have demonstrated that the techniques for

fixing non-repeating side effects are effective; for application-aware operation

shipping, all except one of GIMP commands can be operation shipped, and

the exception can be remedied by minor modification of the GIMP software.

(Sections 6.2.2 and 6.3.2)

� Quantitative Evaluation. Both application-transparent and application-

aware operation shipping have been quantitatively evaluated using controlled

experiments. In both cases, the evaluations have demonstrated the following

three benefits of using operation shipping: (1) the network traffic for update

propagation can be dramatically reduced, (2) the elapsed time for update

propagation can be substantially reduced, especially when the network is slow,

and (3) the elapsed time for update propagation becomes much less sensitive to

CHAPTER 8. CONCLUSIONS 170

the network condition. (Sections 6.2 and 6.3)

8.2 Future Work

This work can be improved or extended in a number of ways. In the following, nine

suggestions are made. They are, in fact, suggestions of two different scopes. The

first five are relatively minor enhancements or extensions to the current work: flexible

logging policies, application profiles, dynamic decision, more interactive applications

as case studies, and handling time stamps that change in lengths. The last four are more

major undertakings: incorporation of other traffic reduction techniques, re-execution

in the iterative style, shared surrogate, and downstream operation shipping.

8.2.1 Flexible Logging Policies

The current logging shell uses the most straightforward policy for operation logging

(and hence shipping). That is, all user operations performed with the shell are logged.

However, the users may not want all applications be involved in operation shipping.

For example, they may know a priori that the replayed operations are not going to be

repeating – because, say, the application is randomized in nature. Another example is

that they know a priori that the application involved has unwanted side effects – such

as sending an email message on every execution.

Currently, the users can work around this simple-minded policy; they can switch to

use an ordinary shell when they do not want their operations to be logged. However,

this breaks user transparency and is tedious in the long run. Therefore, a minor

improvement for the logging shell is to add a policy module to support more flexible

logging policies. With the module, the users can selectively enable or disable an

application from operation shipping.

CHAPTER 8. CONCLUSIONS 171

8.2.2 Application Profiles

The preceding idea can be further generalized; the shell can allow the users to provide

some hints about the properties of the applications via an application profile. As we

know, applications have different properties that affect whether some steps are indeed

needed for operation shipping. For example, LATEX puts time stamps in their output

files, but sgml2latex does not; therefore, the former needs error correction code

for fixing the re-execution discrepancies, but the latter does not. Another example is

that the output files of some applications can be handled more effectively by other

traffic-reduction techniques (Section 8.2.6), such as delta shipping (for instance, the

applications are randomized in nature, or they are too compute-intensive to be re-

executed).

With these hints, the file system can uses more optimized procedures for output

files of different applications. Note that, to provide these hints, the users do not

need accesses to the source code of the applications, nor do they need to modify

the applications, because they can provide these hints from observing the external

behaviors of the applications. In other words, the operation shipping mechanism is

still transparent and backward compatible to these applications. Also note that the file

system should tolerate wrong hints; in the worst case, only the performance of update

propagation should suffer, but the correctness should not be compromised.

8.2.3 Dynamic Decision

As explained in Section 4.2, the current version of our prototype attempts operation

shipping for a record whenever it is eligible for operation shipping. This is in fact a

static approach. It assumes that the connectivity between a mobile client and its server

is always weak. In real life, however, a mobile client may have occasional strong

connectivity. During that time, as explained in the Appendix A, value shipping is more

efficient than operation shipping. One possible future work is to incorporate the cost

CHAPTER 8. CONCLUSIONS 172

model detailed in Appendix A so that a mobile client dynamically decides whether it

should use operation shipping or value shipping for a record.

8.2.4 More Interactive Applications as Case Studies

Due to time limitation, only one interactive application – the GIMP – is studied in this

work. My experience with the GIMP is that operation logging and replaying facilities

are reasonably easy to add, and there is no need to make a lot of changes in the internal

logic of the application. It will be very interesting to see if the same experience can be

said to other interactive applications.

Furthermore, there are some applications that the general public does not have

access to the source code. The two popular office-automation software packages on

Linux and Unix – Applixware and StarOffice – are good examples. Is it possible

to add operation logging and replaying capabilities even when the source code is

not available? If it is possible, then we need not wait for the vendor to recognize

the importance of mobile computing in general and operation shipping in particular.

Satyanarayanan, Flinn and Walker’s recent work on Visual Proxy has demonstrated

that they can add capabilities to some applications without having source code [50].

Whether their idea can be used with operation logging and replaying is an interesting

question to explore.

8.2.5 Handling Time Stamps That Change Length

In Section 4.3.1.3, the technique of forward error correction is proposed to fix the

non-repeating side effect due to time stamps. The technique has solved the problem

effectively. However, it is also known to have a limitation. That is, forward error

correction cannot correct errors that change the length of the data block.

Some applications write time stamps in a form that involves length changes. We

need other techniques to fix side effects of this kind. Some binary-delta algorithms,

CHAPTER 8. CONCLUSIONS 173

such as the rsync algorithm, are good candidates for us to consider.

8.2.6 Incorporation of Other Traffic Reduction Techniques

In Section 7.2 the techniques of delta shipping and data compression have been

discussed. They both have some disadvantages as well as advantages when compared

to operation shipping. Therefore, they can serve as complements for operation

shipping. It is possible to build a file system in such a way that all three techniques are

incorporated. The file system can choose dynamically the most appropriate techniques.

Also, combined with the idea of application profiles (Section 8.2.2), the file system can

use the hints provided the users while selecting the right techniques.

8.2.7 Re-execution in the Iterative Style

As discussed in Section 5.1, the prototype in its current state supports only the one-

shot re-execution style. In this style, user operations performed to an application are

propagated only after the application process has exited. An interesting future work

is to explore re-executions in the iterative style, which support the finer-grain early-

propagation approach. There are three advantages: (1) the semantics of individual

saving commands are honored, and the users does not need to change their working

habits; (2) replayed command groups will have a higher chance to be repeating, since

the probability that the whole group is repeating increase as the number of commands

in the group decreases; and (3) the logging sessions will be of shorter durations, and

the chances for breaking conditions to happen are smaller (a breaking condition makes

a user operation not eligible for operation shipping). Section 5.3 has an outline of the

design.

CHAPTER 8. CONCLUSIONS 174

8.2.8 Shared Surrogate

This work assumes that each weakly-connected client has a dedicated surrogate. A

justification for this assumption is given in Section 3.2.3. The most important reason

is that many users already own their second personal computers that can be configured

as the surrogates. Therefore, the use of dedicated surrogates does not imply extra

investments in hardware. However, there are other users who do not own a second

personal computers that can be configured as the surrogates. For example, many

college students can use their notebooks to access the campus networks in their

colleges, but they do not own some machines on the campus networks that can serve

as the surrogate machines. For this kind of users, they may need to have some shared

surrogate machines. There are at least two interesting research questions. First, is

it possible for one machine to instantiate multiple different execution environments?

What is the best model to achieve this? Second, how should the shared surrogate

handle concurrent requests of re-execution from multiple weakly-connected clients?

What is the right level of concurrency control?

8.2.9 Downstream Operation Shipping

This work addresses update propagation in one direction only: from client to server.

However, files are also being transferred in the reverse direction – that is, from server

to client. Is it possible to use the idea of operation shipping also in this direction?

In the following, operation-based update propagation in the former direction is called

upstream operation shipping, and that in the latter is called downstream operation

shipping.

Downstream operation shipping may be useful in the following scenario. Suppose

a client – let us call it the Writer client – updates a file F , and later another client

– let’s call it the Reader client – references the file, then Reader needs to fetch the

file from the server. The traditional way of fetching the file of course is to transmit

CHAPTER 8. CONCLUSIONS 175

the contents (value) of the file from the server to the Reader. However, if Reader is

weakly connected, the server may find that it is more easy to transfer to Reader an

operation log of how F was updated by Writer.

In general, upstream operation shipping is important when a weakly-connected

client is primarily a producer of data, whereas the downstream operation shipping is

important when the client is primarily a consumer of data.

This thesis considers upstream operation shipping first because of the following

three reasons. First, upstream operation shipping is the simpler of the two cases.

Second, it itself is an important enough problem in real life. Third, many weak links

are asymmetric: usually there are higher bandwidth in the downstream direction than

in the upstream direction. For example, a 56K modem can transmit data at 56 Kbps

downstream but only at 28.8/33.6 Kbps upstream [1]. Another example is the ADSL

modem, which can transmit data at 640 Kbps-2 Mbps downstream but only 64 Kbps

upstream [9].

Nevertheless, the downstream operation shipping should be an interesting research

problem. There are at least the following issues that need to be addressed. First,

Writer must prepare an operation log in anticipation of a downstream operation

shipping. However, how does Writer know that there will be a need of downstream

operation shipping? Should Writer always prepares operation logs for every file that

it updates?

Second, similarly, should the server always keeps operation log for every object

that it hosts? For how long should these operation logs be kept?

Third, in the case of upstream operation shipping, the client can nominate a

surrogate to replay the user operations. However, in the case of downstream operation

shipping, the client itself has to replay the user operations. Also, the replaying

mechanism is more complicated. This is because the replaying has to be done in

the middle of the servicing of an object’s file-system read request, which triggers the

downstream operation shipping.

CHAPTER 8. CONCLUSIONS 176

Fourth, in the case of upstream operation shipping, the update propagation is done

in the temporal order of updates. However, in the case of downstream operation

shipping, the references to the files can be in an arbitrary order. When a user operation

is to be replayed on Reader, some of the read-from files by the user operation may

not yet be present on Reader, so the server needs to ship also all these read-from files.

This has two complications: (1) these read-from files may be so bulky that they are

even more difficult to ship than the referenced file F , (2) some of the read-from files

may be shippable by operation, and we shall have a complicated situation in which a

downstream operation shipping triggers another downstream operation shipping.

8.3 Final Remarks

Should we force the users to adapt to a mobile computing environment, or should we let

the file system to adapt to the environment? Without an efficient update propagation

scheme, users would have to adapt their behaviors to the unpleasant weak network

environment. For example, a user would be forced to bring her mobile computer to

her office so that it can reintegrate with the server more effectively with the availability

of a strong network. Another user would choose to work on the local file system on

his mobile computer; he would manually replay his operations on the DFS when he

wants to share his results with others. A third user would be forced to keep her dial-up

network connected for hours after she has finished her work, so that her updates can be

trickle through the slow network.

The goal of my work is to save mobile users from these user adaptations. The ideal

of mobile computing is to let users to carry out their work everywhere they go, without

having to worry about the constraints imposed by the environments. With this work, I

hope we are one more step closer to this ideal.

Appendix A

Cost Model

In the following, the cost model of value shipping and that of operation shipping will

be presented. For each case, there are two different costs involved: network traffic and

elapsed time.

Value Shipping

Assuming the overhead is negligible, the network traffic is

Trafficv = L; (A.1)

where L is the total length of the update files.

The elapsed time is

Tv = L=Bc; (A.2)

where Bc is the bandwidth of the network connecting the client to the server.

177

APPENDIX A. COST MODEL 178

Operation Shipping

The network traffic is

Trafficop = Lop; (A.3)

where Lop is the length of the operation log.

The elapsed time is Top. The latter is composed of four components:

1. the time needed to ship the operation log (Lop=Bc),

2. the time needed for re-executing the operation (E),

3. the time needed for additional computational overhead (Hop) such as computing

checksum information and encoding and decoding of forward-error-correction

codes, and

4. the time needed to ship the updated files to the servers. There are two cases

for this last component. If the re-execution passes the validation (accepted),

the updated files will be shipped from the surrogate (the time cost will be L=Bs,

whereBs is the bandwidth of the network connecting the surrogate to the server);

if the re-execution fails the validation, the updated file will be shipped from the

client (the time cost will be L=Bc).

The following equation summarizes the time costs involved:

Top =

8
><
>:

Lop=Bc +E +Hop + L=Bs if accepted

Lop=Bc +E +Hop + L=Bc if rejected
(A.4)

Comparing the Costs

We can now compare the costs involved with the two types of update propagations.

Operation shipping is more favorable than value shipping only in certain conditions.

APPENDIX A. COST MODEL 179

First, operation shipping saves network traffic if the operation log is more compact

than the updated files (Lop < L).

Second, it speeds up the update propagation (Top < Tv) if the following five

conditions are true:

1. the re-execution is accepted,

2. the operation log is compact (Lop � L),

3. the re-execution is fast (E � L=Bc),

4. the time needed for additional computational overheads is small (Hop � L=Bc),

and

5. the surrogate has a much better network connectivity than the client (Bs � Bc).

Bibliography

[1] 56K modem FAQ. Available from

http://www.24hoursupport.com/56k.html.

[2] http://www.cse.cuhk.edu.hk/ clement/source code/.

[3] http://www.gimp.org.

[4] D. Bachmann, P. Honeyman, and L. Huston. The Rx Hex. In Proceedings of the

First IEEE Workshop on Services in Distributed and Networked Environments,

Prague, Czech Republic, Jun 1994.

[5] M. G. Baker, J. H. Hartmann, M. D. Kupfer, K. W. Shirriff, and J. K. Ousterhout.

Measurement of a Distributed File System. In Proceedings of the Thirteenth ACM

Symposium on Operating Systems Principles, Oct 1991.

[6] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle. Fault Tolerance

Under UNIX. ACM Transactions on Computer Systems, 7(1), February 1989.

[7] G. Bozman, H. Ghannad, and E. Weinberger. A Trace-Driven Study of CMS File

References. IBM Journal of Research and Development, 35(5-6), Sep-Nov 1991.

[8] F. Douglis and J. Ousterhout. Transparent Process Migration: Design

Alternatives and the Sprite Implementation. Software–Practice and Experience,

21(8):757–785, August 1991.

180

BIBLIOGRAPHY 181

[9] ADSL Forum. Office web site. Available from

http://www.adsl.com.

[10] Free Software Foundation. BASH. Available from

http://www.gnu.org/software/bash/bash.html.

[11] The Coda Group. Coda File System. Available from

http://coda.cs.cmu.edu.

[12] A. Houghton. The Engineer’s Error Coding Handbook. Chapman & Hall, 1997.

[13] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan,

R. N. Sidebotham, and M. J. West. Scale and performance in a distributed file

system. ACM Transactions on Computer Systems, 6(1), December 1988.

[14] Airsoft Inc. Powerburst – The First Software Accelerator That More Than

Doubles Remote Node Performance. Available from

http://www.airsoft.com/comp.html, Cupertino, CA, USA.

[15] A. D. Joseph, J. A. Tauber A. F. deLespinasse, and M. F. Kaashoek D. K. Gifford.

Rover: A Toolkit for Mobile Information Access. In Proceedings of the 15th

ACM Symposium on Operating Systems Principles, Copper Mountain Resort,

Colorado, USA, Dec 1995.

[16] P. Karn. Error Control Coding, a Seminar handout. Available from

http://people.qualcomm.com/karn/dsp.html.

[17] M. L. Kazar, B. W. Leverett, O.T. Anderson, V. Apostolides, B. A. Bottos,

S. Chutani, C. F. Everhart, W. A. Mason, S.-T. Tu, and E. R. Zayas. Decorum File

System Architectural Overview. In Proceedings of the Summer 1990 USENIX

Technical Conference, June 1990.

[18] J. J. Kistler. Disconnected Operation in a Distributed File System. PhD thesis,

Carnegie Mellon University, School of Computer Science, 1993.

BIBLIOGRAPHY 182

[19] J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File

System. ACM Transactions on Computer Systems, 10(1), February 1992.

[20] P. Kumar. Mitigating the Effects of Optimistic Replication in a Distributed File

System. PhD thesis, Carnegie Mellon University, School of Computer Science,

1994.

[21] P. Kumar and M. Satyanarayanan. Flexible and Safe Resolution of File Conflicts.

In Proceedings of the USENIX Winter 1995 Technical Conference, New Orleans,

LA, USA, Jan 1995.

[22] O. S. Kylander and K. Kylander. GIMP: The Official Handbook. The Coriolis

Group, Also available from

http://manual.gimp.org, 1999.

[23] L Lamport. LATEX: A Document Preparation System. Addison-Wesley Publishing

Company, 2nd edition, 1994.

[24] Q. Lu. Improving Data Consistency for Mobile File Access Using Isolation-

Only Transaction. PhD thesis, Carnegie Mellon University, School of Computer

Science, May 1996.

[25] Q. Lu and M. Satyanarayanan. Improving Data Consistency in Mobile

Computing Using Isolation-Only Transactions. In Proceedings of the Fifth IEEE

HotOS Topics Workshop, Orcas Island, WA, USA, May 1995.

[26] J. MacDonald. Versioned File Archiving, Compression, and Distribution.

submitted for the Data Compression Conference, an earlier version is available

from http://www.XCF.Berkeley.edu/˜jmacd/xdelta.html, 1998.

[27] T. Mann, A. Birrell, A. Hisgen, C. Jerian, and G. Swart. A Coherent Distributed

File Cache with Directory Write-Behind. ACM Transactions on Computer

Systems, 12(2), May 1994.

BIBLIOGRAPHY 183

[28] H. Mashburn, M. Satyanarayanan, D. Steere, and Y. W. Lee. RVM: Recoverable

Virtual Memory, Release 1.3. School of Computer Science, Carnegie Mellon

University, Available from

http://coda.cs.cmu.edu/doc/html/rvm manual.html, 1997.

[29] J.C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy. Potential benefits

of delta encoding and data compression for HTTP. In Proceeding of the ACM

SIGCOMM’97, 1997.

[30] L. B. Mummert. Exploiting Weak Connectivity in a Distributed File System. PhD

thesis, Carnegie Mellon University, School of Computer Science, 1996.

[31] L. B. Mummert, M. R. Ebling, and M. Satyanarayanan. Exploiting Weak

Connectivity for Mobile File Access. In Proceedings of the 15th ACM Symposium

on Operating Systems Principles, Copper Mountain Resort, Colorado, USA,

December 1995.

[32] L. B. Mummert and M. Satyanarayanan. Large Granularity Cache Coherence

for Intermittent Connectivity. In Proceedings of the 1994 Summer USENIX

Conference, Boston, MA, USA, Jun 1994.

[33] M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching in the Sprite Network

File System. ACM Transactions on Computer Systems, 6(1), Feb 1988.

[34] B. Noble and M. Satyanarayanan. An Empirical Study of a Highly Available

File System. In Proceedings of the 1994 ACM SIGMETRICS Conference on

Measurement and Modeling of Computer Systems, Nashville, TN, USA, May

1994.

[35] J. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze, M. Knupfer, and J. G.

Thompson. A Trace-Driven Analysis of the UNIX 4.2 BSD File System. In

BIBLIOGRAPHY 184

Proceedings of the Tenth ACM Symposium on Operating Systems Principles,

Orcas Island, Washington, USA, Dec 1985.

[36] K. Patersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers.

Flexible Update Propagation for Weakly Consistent Replication. In Proceedings

of the 16th ACM Symposium on Operating Systems Principles, Saint-Malo,

France, October 1997.

[37] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, and D. Hitz. NFS

Version 3 Design and Implementation. In Proceedings of the Summer 1994

USENIX Technical Conference, Jun 1994.

[38] J. Peek, T. O’Reilly, and M. Loukides. UNIX Power Tools. O’Reilly &

Associates, 1993.

[39] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G. Thiel. A

Network Transparent, High Reliability Distributed System. In Proceedings of the

Eighth Symposium on Operating Systems Principles, Pacific Grove, CA, USA,

Dec 1981.

[40] The FreeBSD Documentation Project. CVSup: in FreeBSD Handbook. Available

from

http://www.freebsd.org/handbook/cvsup.html.

[41] R. Rivest. The MD5 Message-Digest Algorithm, Internet RFC 1321. Available

from http://theory.lcs.mit.edu/˜rivest/publications.html, April 1992.

[42] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design

and Implementation of the Sun Network File System. In USENIX Summer

Conference Proceedings. USENIX Association, June 1985.

BIBLIOGRAPHY 185

[43] M. Satyanarayanan. A Study of File Sizes and Functional Lifetimes. In

Proceedings of the 8th ACM Symposium on Operating Systems Principles,

December 1981.

[44] M. Satyanarayanan. Integrating Security in a Large Distributed System. ACM

Transactions on Computer Systems, 7(3), Aug 1989.

[45] M. Satyanarayanan. Scalable, Secure, and Highly Available Distributed File

Access. Computer, 23(5), May 1990.

[46] M. Satyanarayanan. The Influence of Scale on Distributed File System Design.

IEEE Transactions on Software Engineering, 18(1), Jan 1992.

[47] M. Satyanarayanan, editor. RPC2 User Guide and Reference Manual. School of

Computer Science, Carnegie Mellon University, Jul 1995.

[48] M. Satyanarayanan. Fundamental Challenges in Mobile Computing. In Fifteenth

ACM Symposium on Principles of Distributed Computing, Philadelphia, PA,

USA, May 1996.

[49] M. Satyanarayanan, M. R. Ebling, J. Raiff, and P. J. Braam. Coda File System

User and System Administrators Manual. School of Computer Science, Carnegie

Mellon University, August 1997. version 1.1.

[50] M. Satyanarayanan, J. Flinn, and K. R. Walker. Visual Proxy: Exploiting OS

Customizations without Application Source Code. Operating Systems Review,

33(3), July 1999.

[51] M. Satyanarayanan, J. Howard, D. Nichols, R. Sidebotham, A. Spector, and

M. West. The ITC Distributed File System: Principles and Design. In

Proceedings of the Tenth ACM Symposium on Operating Systems Principles, Dec

1985.

BIBLIOGRAPHY 186

[52] M. Satyanarayanan, J. J. Kistler, P. Kumar, and H. Mashburn. On the Ubiquity

of Logging in Distributed File Systems. In Third IEEE Workship on Workstation

Operation Systems, Key Biscayne, FL, USA, Apr 1992.

[53] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and

D. Steere. Coda: A Highly Available File System for a Distributed Workstation

Environment. IEEE Transaction on Computers, 39(4), April 1990.

[54] M. Satyanarayanan, J. J. Kistler, L. B. Mummert, M. R. Ebling, P. Kumar, and

Q. Lu. Experience with Disconnected Operation in a Mobile Environment.

In Proceedings of the USENIX Symposium on Mobile & Location Independent

Computing, Cambridge, Massachusetts, USA, Aug 1993.

[55] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. Steere, and J. J. Kistler.

Lightweight Recoverable Virtual Memory. ACM Transactions on Computer

Systems, 12(1), Feb 1994. Corrigendum: May 1994, Vol. 12, No. 2, pp. 165-

172.

[56] B. Schneier. Applied Cryptography. John Wiley & Sons, Inc., second edition,

1996.

[57] A. Silberschatz and P. B. Galvin. Operating System Concepts. Addison-Wesley,

5th edition, 1998.

[58] Cyclic Software. Concurrent Versions System (CVS). Available from

http://www.cyclic.com/.

[59] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H.

Hauser. Managing Update Conflicts in a Weakly Connected Replicated Storage

System. In Proceedings of the 15th ACM Symposium on Operating Systems

Principles, Copper Mountain Resort, Colorado, USA, Dec 1995.

BIBLIOGRAPHY 187

[60] A. Tridgell and P. Mackerras. The rsync algorithm. Technical Report TR-CS-96-

05, The Australian National University, Available from

http://samba.anu.edu.au/rsync/, June 1996.

