
Slinky: An Adaptive Protocol for Content Access in
Disruption-Tolerant Ad Hoc Networks

Vikas Kawadia, Niky Riga, Jeff Opper
{vkawadia, nriga, jopper@bbn.com}

Raytheon BBN Technologies

Dhananjay Sampath
dsampath@juniper.net

Juniper Networks

ABSTRACT
The topology of tactical MANETs may vary from well con-
nected to severely disconnected. Applications using the client-
server paradigm often do not perform well in such environ-
ments, because they rely on the underlying MANET rout-
ing protocols to provide connectivity between arbitrary end-
points, which is often infeasible in tactical MANETs. We
consider content-based networking as an alternative paradigm
to operate tactical MANETs. Content based networking causes
information to flow based on its content rather than the iden-
tities of endpoints. The network assumes responsibility
for positioning information so that it is easily accessible.
This model, rather than the classical client–server model, is
naturally suited to dynamic and disruption-tolerant tactical
MANETs.

We present Slinky, an adaptive protocol for content access
in disruption-tolerant ad hoc networks, in particular tactical
MANETs. Slinky relies on the community structure inher-
ent in most networks. It consists of a distributed scheme to
detect dynamic communities in the network, and a scheme
to replicate content across the communities. Slinky does not
use any underlying network-wide routing, global topology
or geographical information that is often unavailable in tac-
tical MANETs. Slinky is an adaptive and efficient content
access protocol that can adapt to a wide range of mobility
scenarios. We demonstrate the performance of Slinky in a
few tactically relevant scenarios.

1. INTRODUCTION
Tactical networks, whether used for military or for

disaster relief operations, are required to operate in
areas without access to fixed network infrastructure.
The network topology can vary from well connected to
severely disconnected. Protocols in tactical MANETs
need to be tolerant to such disruptions in network con-
nectivity, and cannot rely on end-to-end connectivity
for transferring data. Legacy network protocols that
rely on end-to-end connectivity clearly do not work well
in such tactical MANETs. Disruption tolerant routing
protocols [19] that allow for long term storage at inter-
mediate nodes alleviate only part of the problem. This
is because they still try to use the network as simple
bit-pipes – agnostic to the meaning of bits they carry.

Applications written over such networks often use the
client-server paradigm. Such mode of operation creates
severe inefficiencies in tactical MANETs. For exam-
ple, rare contact opportunities may be wasted trying to
transmit multiple copies of essentially the same infor-
mation but the network has no ability to see that. The
fundamental primitive assumed in traditional network
design – the ability to communicate with end-points – is
hard to provide in tactical MANETs and DTNs because
connectivity cannot be guaranteed.

Content based networking is an alternative paradigm [8]
which is particularly appropriate for tactical MANETs.
The fundamental primitive provided by content net-
works is the ability to access a piece of content. Infor-
mation is routed and stored based on its content rather
than the identities of endpoints. The network—not the
endpoints—manage the topological location and storage
of the information. What matters is that a user can get
the content and be sure of its validity, the intermedi-
aries are irrelevant. The content is decoupled from its
producer and it can be retrieved from any node that has
a valid copy. This benefit is particularly noticeable in
tactical MANETs and DTNs where the producer is of-
ten not even reachable. Content networking also allows
efficient usage of network resources. Since every router
in the network is content-aware, a set of bytes generally
does not have to travel a given link more than once. A
content network is in essence a distributed data store,
which is an appropriate model for developing novel ap-
plications, both tactical and civilian, that can work even
in the face of disruptions. Examples include a real-time
traffic information system using a network of vehicles,
a system to find available parking spots, a network to
assist in disaster recovery etc.

In this work we present Slinky, a content networking
protocol that is designed to operate in DTNs and tacti-
cal MANETs. Slinky exploits the fact that real ad hoc
networks often have an inherent community structure,
i.e., the network can be divided into groups of nodes
such that intra-group connections are much stronger
than inter-group connections [13]. This is especially
true in tactical MANETs where although the network

1

is often partitioned, it usually has islands of well con-
nected nodes corresponding to military hierarchy. Our
scheme is based on discovering such “community struc-
ture” in the network, and placing copies of the content
in these communities ensuring high availability of the
content to all nodes, as shown in Figure 1. A content
generated by the dark node in the lower left is replicated
throughout the network so that each community stores
a copy. The communities overlap, like rings of a slinky,
so that content can spread from one community to the
next. Note that the communities reflect the topological
structure of the network graph and not the social con-
nections between nodes. Given that the network graph
is time-varying, we are interested in communities that
reflect the history of connectivity rather than the in-
stantaneous topological snapshot.

Our decentralized dynamic community formation al-
gorithm uses only local topological knowledge, i.e., ev-
ery node needs to know only the network graph within a
small number of hops around it. Global topology knowl-
edge is not required. It is robust to nodes disappearing
since there is no node which exclusively holds the com-
munity information. The community structure is dy-
namic and adapts to the network topology as described
in Section 3.3. If the network remains static for a long
period of time, the number of communities approaches
the number of disconnected components. On the other
hand, extreme random mobility causes communities to
be of very small size.

Another key component of our solution is the place-
ment of content in the communities and responding to
queries. Each node in a community stores a fraction of
all published content, we use a consistent hash function
to assign content to nodes (see Section 3.4.1). Given
a key, any node can determine the nodes storing the
corresponding content in the community with a local
computation. If the community structure changes due
to mobility, nodes responsible for storing a content may
change and content may need to be re-distributed. The
use of a consistent hash function reduces the movement
required as explained in Section 3.4.1.

Slinky is a novel content access protocol, especially
suited for tactical MANETs. In Section 2, the basic
problem is described. Slinky is presented in detail
in Section 3. Simulation results provided in Section 4
confirm that Slinky achieves high availability for a low
overhead in a range of tactically relevant scenarios.

1.1 Related work
Content Distribution Networks (CDNs), such as Aka-

mai, and peer-to-peer systems(P2P), such as Bittorrent,
are overlays deployed in the Internet enabling content
delivery. CCNX [8] is an effort towards a network that
will natively support content. Distributed Hash Ta-
bles [1] are an enabling technology for content networks,
popular in the Internet. DHTs for ad hoc networks

Figure 1: High level illustration of Slinky
functionality showing the discovered community
structure and replication of a content item pub-
lished in the lower left to all communities.

have been studied previously. Ekta [16] integrates the
Pastry DHT and the DSR routing protocol for ad hoc
networks while CrossROAD [5] integrates Pastry with
the OLSR routing protocol. MADPastry [23] considers
physical proximity when integrating Pastry with ad hoc
network routing. Virtual ring routing [2] provides both
point-to-point routing and DHT functionality. Another
set of approaches tackle the problem of object location
in ad hoc networks using geographical information, ex-
amples of which include [17]. We do not assume that
geographical information is available, which is the case
if some of the nodes are indoors. GPS systems are also
vulnerable to jamming in tactical environments. Most
of the approaches summarized above do not explicitly
address network disruptions and disconnections, which
are common in tactical MANETs.

Several schemes have been proposed for routing in
DTNs; see [19] for a survey. Even though content ac-
cess can be implemented as an overlay on a routing
protocol, its performance will probably be worse than
schemes explicitly designed for content dissemination.
We focus on such schemes and associated community
detection schemes relevant to our work. Hui et.al. [7]
present algorithms for distributed community detection
in DTNs for a range of scenarios. Polat et. al [15] for-
malize the message ferrying capability as a generalized
connected dominating set problem. Chuah et. al [3]
study the impact of connector nodes in a DTN pub-
sub system. Costa et. al. [4] present a socially aware
pub-sub system for DTNs. Data replication protocols
in dynamic ad hoc networks such as [9, 12] are also rel-
evant to our work. Slinky does not make any assump-
tions about query patterns or available content servers,
unlike many of the schemes surveyed here. For further
details on data replication in ad hoc networks, we refer
the reader to the exhaustive survey [6].

2. PROBLEM DESCRIPTION
Slinky is a content networking protocol that provides

two basic primitives: publish and query. The pub-

2

lish(content, key) operation stores the content at
one or more nodes in the network, and the query(key)

operation fetches it from one of those nodes. For sim-
plicity, we assume that a key uniquely identifies a con-
tent. In other words, content and queries are matched
by exact comparison of keys. Thus our content net-
work provides a service similar to that provided by a
Distributed Hash Table [1]. The problem is in essence
one of designing a cost effective mapping (potentially
time-varying) that assigns every piece of content to a
set of nodes so that it is available to any node that
might query for it. A piece of content is considered to
be available to a node if it is stored at a node that is
currently reachable. In effect, we are assuming that the
time to retrieve a content from a node in the same con-
nected component is negligible compared to the latency
of retrieving from a node in another component. Avail-
ability is obviously maximized by flooding content to
all nodes. However, in order to scale to large networks
and to be able to handle a lot of content, it is important
to use the network resources efficiently. Thus, we are
interested in a mapping that reduces the use of network
resources, while guaranteeing content availability.

The fundamental problem is to place replicas so as to
minimize access latency. Versions of this problem have
been studied for wireless ad hoc networks by Tang et.
al. [21] and Nuggehalli et. al [14] and even for networks
without disruptions, the problem is NP-hard. We con-
sider a simplification by focusing on the disconnected
latency, which we define as the time needed to access a
piece of content from a different component by waiting
for partitions to heal, at least temporarily. The other
component of latency, connected latency, is the time to
retrieve the content from a node that is in the same
component as the querying node. Our approximation
is that connected latency is much smaller than the dis-
connected latency, which is a reasonable assumption in
many practical scenarios.

2.1 Potential Approaches
We describe some straight-forward approaches for the

content placement problem. In a pure push scheme con-
tent is pro-actively disseminated to all nodes. This is
also known as stateful flooding or epidemic routing.
Given sufficient contact opportunities between nodes
and channel bandwidth, availability is high. However,
the overhead in terms of bits transmitted in the net-
work is also high. On the other extreme are pure pull
schemes, where content is requested directly from the
content publisher. This obviously depends on an under-
lying routing protocol with global topology information
and content location knowledge at each node. Thus,
the cost of control messages is high as the nodes ex-
change information to keep their topology and content
location information up-to-date. Moreover, this scheme
is not robust to network disconnections. Hybrid push-

Figure 2: Overview of Slinky forwarding

pull schemes combines the push-based behavior of epi-
demic with the pull-based strategy. Here, content from
the publisher is replicated onto some subset of other
nodes. Then a querying node needs to only discover
and contact the closest node which has a replica of the
content. Availability and the bits transmitted depend
on the strategy used to spread the content during the
push step. The Slinky protocol is such a hybrid scheme.

3. THE SLINKY PROTOCOL
Slinky has two main components: community detec-

tion and content placement in the communities. We
first describe our community detection algorithm. In
this algorithm nodes form groups and the groups adapt
their size based on the underlying community structure.
Thus, the groups reflect the long-term community struc-
ture of the evolving network and not the structure of the
current snapshot only. The group formation algorithm
(Section 3.2) runs on a faster timescale than the group
adaptation algorithm (Section 3.3). Both protocols rely
on a scoped topology discovery mechanism which we de-
scribe in Section 3.1. We place a copy of each published
content in every group. The copy is assigned to a node
within each group using consistent hashing as described
in Section 3.4.1. Before we describe our scheme, we in-
troduce some necessary definitions and concepts.

A group gj is defined by a reference node called the
group-center (cj), and a group radius, rj . Any node at
most rj hops away from the group-center cj is defined to
be a member of group gj . A group-center announces it-
self and its group-radius to nodes in its lj-hop neighbor-
hood, where lj is called the locality radius and lj > rj .
Nodes determine membership in groups by listening to
these messages and using their local view of the net-

3

work topology. We use the term club (Ci) to denote
the set of all the groups that node i belongs to. These
definitions (along with others to be introduced later in
Section 3.4) are illustrated in Figure 2 which shows the
network around node i. In the picture, node i belongs to
two groups, the union of which is its club, Ci. We also
show the locality, Li, of node i which is defined as the li-
hop neighborhood of i. Notice that node i can see other
group-centers in its locality but does not belong to their
groups. This is because for such a group-center ck, node
i’s distance form ck is more than rk hops. Figure 2 also
shows the publishing mechanics of an item p at node i.
Consistent hashing is used for content placement inside
a group (Section 3.4), which requires every node in a
group to know of all other members and a way to reach
them. In Slinky, we achieve this by requiring each node
i to build and maintain a view of its li hop topology,
where li is big enough to include all members of its club
Ci. Since two members of a group gj could be up to
2rj hops away from each other, this implies that node
i needs to set its li to be at least twice the maximum r
of all the groups in its club, i.e., li ≥ max(2rj) for each
gj in Ci. We set li = maxj(2rj + 1) to enhance content
propagation from nodes at the edge of the network.

3.1 Locality discovery
As described above, each node needs to construct its

li hop view of the network topology, called the locality
Li. Formally, Li is the induced subgraph of nodes at
most li hops away from node i. Global topology discov-
ery in link state routing protocols in ad hoc networks
works by having each node send information about its
one-hop neighbors to all nodes in the network. This in-
formation is sent in link state advertisements (LSAs)
when a link to a neighbor changes. To limit scope
and prevent looping, LSAs include a time to live (TTL)
value which is decremented at every hop and the LSA
is not forwarded after its TTL reaches 0. We can do
much better (in terms of overhead) than global topol-
ogy discovery since each node needs to discover only its
locality, however note that the diameter of the locality
graph is node dependent. We have designed a topology
discovery protocol which enables each node to specify
the number of hops of the surrounding network that it
needs to discover, which in our case is a node’s locality
radius, li. We call our scheme locality discovery. The
key insight in locality discovery is that a node i has to
send its LSAs far enough so that it reaches all nodes
who want to discover node i. In other words, a node
has to set the TTL value based on the locality radii of
other nodes. Thus our LSAs include l along with the
TTL. Also, a node has to ensure that its LSAs reach all
nodes in its locality graph. A node i sets its TTLi based
on its li and received ljs as per the rule given in the Up-
dateTTL procedure in Algorithm 1, which provides the
pseudocode for locality discovery.

Algorithm 1 Locality Graph Discovery

procedure LocalityDiscovery(li)
UpdateLocalTTL()
if set of 1-hop nbrs or TTLi changed then

OriginateLSA(li, TTLi)
end if
if LSA received then

LSA.TTL← LSA.TTL− 1
if LSA.TTL > 0 then

OneHopBroadcast(LSA)
end if
UpdateLocalityGraphDatabase(LSA)

end if
end procedure
procedure UpdateLocalTTL

TTLi ← li
for node j in my locality graph do

if Distance(i, j) is unknown or i = j then
TTLi ← max(TTLi, lj)

else if Distance(i, j) ≤ lj then
TTLi ← max(TTLi, Distance(i, j))

end if
end for

end procedure

3.2 Group formation
The goal of the group formation algorithm is to en-

sure that every node belongs to at least one group while
minimizing the total number of groups in the network
since fewer groups means fewer copies in the network.
The group-radii are chosen so that each group encom-
passes a “stable” region. Notions of stability and strate-
gies to choose and adapt r are described in Section 3.3.
In this section we assume, that r is given and potentially
different for different groups.

A formal definition of this problem is: Given the set
of nodes V in the network, and a radius r per node,
compute the minimum set of nodes D ⊆ V , so that
∀vi∈ V, ∃dj ∈ D s.t. distance(vi, dj) ≤ rj .

Nodes in set D are the group-centers we defined ear-
lier. Also, notice that in the case where r is the same
for all nodes this problem reduces to the minimum r-
dominating set problem, which involves finding the min-
imum set of nodes such that every other node is at most
r hops away from at least one node in the set. The
problem is known to be NP-complete. There are solu-
tions [20, 11] for approximate distributed computation
of the minimum r-dominating set, but most of them re-
quire synchronous communication where messages are
exchanged in rounds. In a dynamic environment these
type of algorithms yield a high message overhead espe-
cially when there are frequent topology changes that re-
quire dynamic adaptation of the dominating set. Slinky
employs a distributed adaptation of the greedy algo-
rithm described below.

3.2.1 Greedy algorithm
This is a centralized algorithm where the whole graph

is known. This greedy algorithm based on [22] uses the
notion of coverage – a node vi is covered if it is a member

4

GC

PGC

GM

Group

Center

 Potential

Group Center

 Group

 Member

 Extra

Group Center

 ti
mer e

xpire
s

 r-nbrhood covered

r-nbrhood uncovered

 ti
mer e

xpire
s

XGC

all nodes in r-neigborhood are

members of at least 2 groups

at least 1 node in
r-neighborhood is

member of only 1 group

 Final state

 Transient state

Figure 3: State transition diagram for group for-
mation

of at least one group, else the node is uncovered. Let
Uri(vi) be the set of nodes in Vri(vi) that are uncovered
where Vri(vi) is the ri-hop neighborhood of node vi.
These are the set of nodes that will be covered if vi ∈ D.

At every step, the greedy algorithm adds the node
that will cover the maximum number of uncovered nodes,
to the set D. After all nodes are covered, D is not guar-
anteed to be minimal because of non-uniform radii. As
a last step, the algorithm removes nodes from D, until
the set is minimal.

The greedy algorithm maintains five sets of nodes. U :
the set of all uncovered nodes in the network. PGC: the
set of potential group-centers, i.e., nodes with Ur(vi) >
0; GC: the set of group-center nodes, it is initially
empty. XGC (Extra group-centers): the set of group-
centers that do not affect the coverage of other nodes.
That is, even if they were not group-centers all the nodes
would still be covered. GM (Group Members): the set
of nodes that are covered but are not group-centers.

At every step, the greedy algorithm computes all the
sets and chooses the node in PGC with the highest
value for |Uri(vi)| to move it to GC. All nodes with
Uri(vi) = ∅ are moved to GM . It also moves the node
with the smallest group from XGC to GM . Notice that
at most one node can be moved from XGC to GM
for U to remain unaffected. The algorithm terminates
when both U and XGC are empty. This algorithm will
converge after at most 2|V | steps, since at each step the
set U becomes smaller by at least one element. After U
is empty XGC can have at most |V | elements, and in
each step XGC also looses at least one element. In the
end GC is the desired set D.

3.2.2 Distributed version of the greedy algorithm
Slinky uses a distributed version of the greedy algo-

rithm described above. In the distributed algorithm,
every node makes a decision about its own state as de-
picted in Figure 3, where the states represent the corre-
sponding sets in the greedy algorithm. The decision is
based on states of nodes in its locality graph. In the cen-
tralized version, the algorithm is executed in steps, i.e.,
only one node decides on its group-center status at each

step. Also note that the order of choosing group-centers
nodes does not matter, even if we were to choose nodes
at random the algorithm would converge and result in
a minimal GC. In order to guarantee convergence in
the distributed version, only one node at a time should
decide on its state and this decision should be relayed
to its neighbors, before the next node makes a decision.
In Slinky we probabilistically guarantee this with the
use of random timers.

All nodes start in the PGC state and set a timer,
Tpgc, based on the value of |Uri(vi)|. If the timer ex-
pires and |Uri(vi)| > 0, the node moves to the GC state
and sends out an announcement to nodes in its locality.
Nodes annotate their local graph with the group-center
status of other nodes. Every node uses its view of its
li hop topology, to compute |Uri(vi)| locally. However,
the node cannot determine the group membership for
all nodes in Vri(vi), which might result in overestimat-
ing |Uri(vi)|, which can only lead to increased |D|, but
does not affect the convergence, or the correctness of
the protocol.

The value of the timer, Tpgc, is inversely proportional
to |Ur(vi)|, so that nodes with high |Ur(vi)| are likely
to decide sooner: Tpgc = α

|Uri
(vi)| + rand(0, 2β)) ∗ τri ,

where α is a constant that is proportional to the maxi-
mum degree in the network, β is a random jitter, and τri
is the ri-hop propagation delay. Every node in theXGC
state also sets a timer, Txgc, where Txgc = α

|Vr(vi)| +

rand(0, 2β)) ∗ τri , If the timer expires, the node moves
to GM state and sends out an announcement to nodes
in its locality. The value of the timer pushes nodes
with larger |Vri(vi)| to decide sooner. Here we diverge
from the greedy algorithm since choosing nodes with
higher |Vri(vi)| will achieve faster convergence but not
necessarily smaller number of groups. The timers are
proportional to the propagation delay to probabilisti-
cally ensure that the messages will be delivered to the
r hop neighborhood before the next timer expires and
thus providing statistical guarantees of convergence.

We point out a few properties of the group formation
protocol which make it suitable for decentralized oper-
ation in DTN environments. The group-centers do not
keep track of their members, rather the group mem-
bership is implicitly determined by nodes listening to
announcements from group-centers. There are no ex-
plicit join/leave messages. Group-centers are reference
nodes to define a group, and do not keep any special
state.

The group formation algorithm does not cause net-
work wide adjustments or ripples in node states in the
case of a local change. To see this, note that when the
network has stabilized all nodes are in one of the final
states (GC orGM), Figure 3. If a topology change hap-
pens, some nodes might transition to one of the tempo-
rary states (XGC or PGC). A node in the XGC state

5

will either go back to GC which does not cause a new
announcement, or it will go to the GM state and send
out an announcement. The XGC → GM transition
does not affect the coverage of any node. Thus, the only
transition the announcement can cause at other nodes is
XGC → GC which does not create new announcements
and hence no state changes. Hence, nodes that are in
XGC state cannot cause a ripple effect. On the other
hand, a node in the PGC state will either move back to
the GM state which does not cause an announcement or
it will move to the GC state and send out an announce-
ment. Then nodes in GM and XGC are not affected
by the new group-center. Nodes in PGC, if affected,
will go back to GM without sending an announcement.
Nodes in GC might move to XGC but we have already
proven that nodes in XGC won’t cause a ripple effect.
Hence, there are no network wide adjustments in state
due to a topology change.

3.3 Group adaptation
In this section, we present the algorithm used by

group centers to dynamically decide their group radius,
r. There are various trade-offs to consider since different
group sizes provide different benefits. Increasing r re-
duces the replication in the network while increasing the
topology maintenance cost as the nodes have to main-
tain their locality graph for larger l. Although the topol-
ogy maintenance cost is constant per node if the net-
work is static, it increases sharply with mobility. Also
if there is high level of inter group mobility, i.e., nodes
moving in and out of groups, the overhead of maintain-
ing a copy of each content per group increases (Sec-
tion 3.4.3). Thus, the benefits attained from higher val-
ues of r are quickly outweighed by the cost of maintain-
ing a larger topology and more dynamic groups. These
observations lead to an adaptation scheme that is based
on the change in the locality of a group-center.

Every node measures the stability of it’sm-hop neigh-
borhood, for each m between 0 and l. This computation
is based only on the node’s locality graph. Let σt(m) be
a function that estimates the stability of a nodes’ m-hop
neighborhood at time t. Let Nt(m) be the set of nodes
in the m-hop neighborhood at time t. The stability is
computed as follows:

σt(m) = αJ(Nt(m), Nt−1(m)) + (1− α)σt−1(m),

where J(A,B) =
A ∩B
A ∪B

(1)

The function J(A,B), called the Jaccard Index [18],
is a measure of the similarity between two sets. We
thus maintain an exponentially weighted moving aver-
age of the similarity of the nodes in the locality over
time. Each node then adjusts its group radius to the
maximum value of m for which the stability is above
a given threshold. To dampen oscillations in group ra-

dius adaptation, we use two thresholds, whigh and wlow,
where whigh > wlow. The threshold whigh is used when
increasing the value of r, while wlow is used when de-
creasing the values of r. The use of thresholds reduces
frequent changes in the group radii.

Group adaptation occurs at a much slower timescale
than group formation. This timescale separation allows
group formation to converge between group changes.
The stability metric also provides feedback to the group
formation algorithm to converge faster or defer changes
when the topology is unstable. It does so by providing
a sensible initial value of group radius r for nodes that
become group-centers. The stability is also considered
when a group-center is deciding whether to stop being
one. If the locality is rapidly changing then it is sen-
sible for the group to maintain its structure until things
settle down. Group adaptation relieves the network de-
signer of the tricky problem of figuring out a good value
of r for all nodes in the network at all times.

3.4 Content placement and querying
In this section, we describe how content is placed in

the groups and how the queries are performed.

3.4.1 Content placement and forwarding
A straightforward scheme for content placement is to

designate a node as the content-server for the group
which stores all content. However, the content-server
is a critical point of failure and also a bottleneck for
communication and storage. Instead, we distribute the
content storage over all nodes in a group by mapping
content to nodes using consistent hashing [10]. Consis-
tent hashing has the important property that addition
or removal of a bucket — each node is a bucket in this
case — does not significantly change the mapping of
keys to buckets. Thus, the use of consistent hashing
helps reduce the redistribution of content due to mo-
bility. Consistent hashing also provides load balancing
as the distribution of content over nodes approaches
uniform as the amount of content stored increases.

Consistent hashing within a group is similar to that of
overlay DHT systems like Chord [1]. Essentially, both
keys and node identifiers are mapped into a common
virtual space and the node whose identifier is closest to
the key in this space is responsible for storing the corre-
sponding content. In most overlay DHTs, the responsi-
ble node is reached by routing in the virtual space; each
node forwards the request for a key to a node whose
identifier is closest to the key. The problem is simpler
in Slinky since each node can compute the responsible
node locally and reach it via the shortest path based
on the locality graph. When a content is published
at a node, it forwards it for storage to the responsi-
ble nodes in the groups it belongs to. However, in order
to maximize availability the content needs to reach the
responsible nodes in all groups in the network. Since

6

a node may have only a partial view of the network, it
is probably unable to determine the responsible nodes
in groups outside its club. In our scheme, respon-
sible nodes not only store the content, but they also
forward it to a few nodes in their locality. These
nodes, called booster nodes, forward only to responsi-
ble nodes in their groups. As seen in Figure 2, when not
i publishes a piece of content p, booster nodes help in
propagating p to all responsible nodes in the network.

The pseudocode for content forwarding is given in
Algorithm 2.

Algorithm 2 Content Forwarding and Query Processing
procedure ProcessContent(c)

if AmResponsibleFor(c) then
if c is not already in my Store then

Store(c)
Send(c,GetBoosterNodeList)
Send(c,GetSourceOfMatchingQueries(c))

end if
else

Send(c,GetResponsibleNodes(c))
end if

end procedure
procedure ProcessQuery(q)

if AmResponsibleFor(q) then
Send(GetMatchingContent(q), Source(q))

else
Send(q,GetResponsibleNodes(q))

end if
end procedure

A responsible node selects booster nodes from its lo-
cality in such a way that the content is likely to spread in
all directions. A heuristic which achieves this is choos-
ing an l

2 dominating set from the nodes in the locality

which are at least l
2 hops away from the responsible

node as booster nodes. This ensures that booster nodes
are spread apart and are in the “outer” part of the lo-
cality to be able to see more neighboring groups. A
responsible node forwards the content to booster nodes
only if it is not already storing it. The spreading termi-
nates once every node responsible gets the content. We
formalize the argument in Lemma 1.

Lemma 1. Slinky content forwarding is free of infi-
nite loops.

Proof. In stateful flooding, nodes store an item and
forward it to their neighbors only when they first re-
ceive it. They also synchronize their stores with new
neighbors as the topology changes. Thus any item goes
on any edge at most once. The storage provides the
obvious loop-freedom.

Now consider the case when only a subset of nodes
have storage. Denote by S the set of nodes that have
storage and by S the set of nodes that do not have
storage. Modify the forwarding rule so that a node in
set S can forward messages only to nodes in S. Only
nodes in S synchronize content among themselves when
there is mobility. Since nodes in S are allowed only to
forward to nodes in S, the nodes in S can be considered

as edges from the perspective of forwarding. Thus each
content is transmitted at most once between nodes in
S and the modified strategy is free of infinite loops.

In the case of Slinky, the sets S and S are dependent
on the content. The responsible nodes for a content
form the set S and the booster nodes are the nodes
without storage, i.e., S. Thus, forwarding for any given
content is free of infinite loops.

3.4.2 Querying
We now describe how the stored content is retrieved.

Content is only retrieved from the local club. Since each
group uses consistent hashing this simply involves send-
ing the query to the nodes responsible for that content.
The responsible node stores the query until it gets the
content or it discovers that the source of the query has
moved away. The source also needs to store and regen-
erate the query if it becomes a member of new groups
as the topology changes. The pseudocode for querying
is give in Algorithm 2. Since queries are only forwarded
to responsible nodes within the club and are not prop-
agated network wide, there is no issue of them getting
into infinite loops.

Algorithm 3 Adjusting to Topology changes

procedure TopoAdjustment(i)
if a node j joins group g in Ci then

SynchronizeStore(j, g)
end if
if a node j leaves group g in Ci then

Delete(queries sourced by j)
end if
if a group-center ck appears in Li then

if i belongs gk then
SynchronizeStore(members of gk, gk)
ProcessQuery(queries sourced by i)

else
ProcessContent(all stored content)

end if
end if
if node i leaves group g then

SynchronizeStore(members of g, g)
end if

end procedure
procedure SynchronizeStore(nodelist, g)

for n in nodelist and all stored content c do
if IsResponsibleForInGroup(n, c, g) then

Synchronize(c, n)
end if

end for
end procedure

3.4.3 Adjusting to topology changes
Topology changes may cause the responsible nodes in

a group to change necessitating movement of some con-
tent and queries. Nodes are often able to exchange con-
tent with new responsible nodes since they might still
be in the locality which is larger than a node’s club.
Algorithm 3 provides the pseudocode for content and
query exchanges that may be required. In our scheme,
content is offered only by nodes who are no longer re-
sponsible for it. Note that due to the use of consistent

7

hashing, most of the content that a node is not responsi-
ble for after a topology change is reassigned to just two
nodes: its prior neighbors in the virtual space. Nodes
exchange summary vectors before actually exchanging
the content to save transmissions if the target node al-
ready has the content. As an optimization, when stor-
age is available nodes store content even if they are not
responsible for it. Regarding queries, only the source
forwards queries to responsible nodes when it joins a
new group. The adjustment procedure described in this
section tries to ensure that all responsible nodes have
the content they should even as the topology changes.
We emphasize that exchanges needed are limited due to
the use of consistent hashing as a consistent hash func-
tion changes minimally upon changes in its range [10].

3.5 Heterogeneous networks
A group is a well-connected set of nodes where the

intra-group communication cost is low. In hetero-
geneous networks however, where there might be high-
delay or low data-rate links, mere connectivity is insuffi-
cient to identify the best groups. Examples include tac-
tical networks with satellite links, or with links formed
via expensive high power radios. To respect these op-
erational constraints, frequent use of these links should
be avoided. Slinky achieves this by excluding such links
from the group formation and adaptation algorithms,
ensuring that they are not used for intra-group commu-
nication while still using them for content forwarding.
Section 4.1 shows how Slinky efficiently uses these links.

4. EVALUATION
We evaluate Slinky using a custom discrete-event,

packet-level simulator. The network is modeled as a
time varying graph. We model network details like
link data-rates, medium access contention, radio prop-
agation models etc. by link delays and loss rates. The
propagation delay of links is set to 0.05s with a jitter
of 0.001. Content and queries are generated randomly
on the nodes. A content is 100 KB on average, whereas
all other messages are 1 KB. We do not implement all
the details of the locality discovery for simplicity. We
assume that the timescale of local topology discovery is
much faster than the timescale that the network changes
and estimate the cost of topology discovery.

Table 1: Description of evaluation scenarios
Parameters Lakehurst UAV

Nodes 40 101
Duration (secs) 10200 3000
Trace type Real Synth.
Content items published 1000 1000
Number of queries 3000 3000
Avg. content generation interval (s) 3 2
Avg. query generation interval (s) 1.5 0.5
Content generation start time 100 100
Query generation start time 100 100

We compare Slinky with Epidemic and Single-copy
schemes on diverse scenarios of tactical importance. Epi-
demic is a pure-push scheme that tries to place a copy of
all content to each node; similar to Slinky with group ra-
dius of 0. Single-copy stores one copy of each content in
every connected component; similar to Slinky but with
group radius fixed to the visible network diameter.

4.1 Lakehurst scenario
This is a tactical scenario with heterogeneous links

based on real mobility traces. The traces were col-
lected during experiments conducted for the DARPA
Control-Based MANET program. The data set repre-
sents 40 nodes organized into three company teams and
is mapped to terrain areas in Lakehurst, NJ.

In the scenario the company teams maneuver from
a rally point to an objective using two primary routes
over a three-hour period. There are six leader nodes
which have high range radios and can communicate
with other leaders, as shown in Figure 4a. The lead-
ers are colored darker. The links between the leaders
have a delay which is 1000 times the delay of a regular
link. This heterogeneous network has some long-links,
which Slinky can handle as described in Section 3.5.
The nodes start out as a well connected component and
over the course of the experiment disburse into teams,
often disconnected from each other, and re-gather at
the end of the experiment. We add random content
and query generation on to the real mobility trace. The
parameters chosen are listed in Table 1.

Figure 4b shows the cumulative distribution function
of the retrieval latency for the three algorithms. Re-
trieval latency is defined as the time needed to get a
published content to a node who has generated a query
for that content. Slinky does almost as well as Epi-
demic, retrieving almost 80% of the content almost in-
stantly. Single-copy takes much longer as it may need
to access the content across the long links. Figure 4c
shows that the overhead of Slinky is far less than that
of Epidemic. Slinky is able to achieve the latency of
Epidemic at an overhead only slightly larger than that
of Single-copy.

4.2 UAV scenario
Next we evaluate the performance of Slinky on an-

other common tactical scenario where an unmanned
aerial vehicle (UAV) is flying between groups of sol-
diers which are otherwise disconnected, as shown in
Figure 6a. The UAV acts as a data-mule carrying data
between the components. There are four components
of sizes 10, 20, 30 and 40 nodes respectively. We used
synthetic traces for this scenario as real traces are un-
available. The parameters chosen are listed in Table 1.

The performance of Slinky’s group adaptation scheme
is illustrated by time evolution of the stability metric

8

(a)

0 1585 3170 4755 6340 7925 ∞

Retrieval latency(secs)
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 re

tr
ie

va
ls

 (c
um

ul
at

iv
e)

Cumulative distribution function of retrieval latency

Epidemic

SingleCopy

Slinky

(b)

0 2000 4000 6000 8000 10000 12000
Time in secs

0

1

2

3

4

5

6

Nu
m

be
r o

f K
ilo

By
te

s(
cu

m
ul

at
iv

e)

1e7 Total KiloBytes transmitted in the network

Epidemic

SingleCopy

Slinky

(c)

Figure 4: Performance comparison of Slinky, Epidemic and Single-copy for the Lakehurst scenario.

(a)

0 432 865 1297 1729 2162 ∞

Retrieval latency(secs)
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 re

tr
ie

va
ls

 (c
um

ul
at

iv
e)

Cumulative distribution function of retrieval latency

Epidemic

SingleCopy

Slinky

(b)

0 500 1000 1500 2000 2500 3000
Time in secs

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f K
ilo

By
te

s(
cu

m
ul

at
iv

e)

1e7 Total KiloBytes transmitted in the network

Epidemic

SingleCopy

Slinky

(c)

Figure 6: Performance comparison of Slinky, Epidemic and Single-copy for the UAV scenario.

Figure 5: Stability metric for the UAV scenario.

for the data-mule node and for a typical static node as
shown in Figure 5. The grey band depicts the thresh-
olds, whigh and wlow, described in section 3.3, and
there is a line for the stability metric for each value of
r, 0 ≤ r ≤ l, where l is the locality radius. Note that
for r = 0, the stability metric is always 1 as the set of
nodes is the node itself. For the static nodes, the sta-
bility metric remains above the high threshold for all r
whereas for the data-mule it is much lower, hence its
group-radius stays 0 and it remains a group by itself.

We compare the retrieval latency and overhead of the
three schemes. Epidemic incurs huge overhead as shown
in Figure 6c, which would be problematic in bandwidth-
limited scenarios. Single-copy, on the other hand, does
not propagate the data between components and man-
ages to retrieve only about 30% of the queried content as
shown in Figure 6b. Slinky gets the best of both worlds
by satisfying almost 90% of the queries while keeping
the overhead almost as low as Single-Copy; Figure 6c.
Slinky’s capability to adapt makes it useful in diverse
scenarios of practical utility.

5. CONCLUSIONS
The content networking model allows one to be robust

to disruptions in network connectivity because of the de-
coupling it provides between producers and consumers
of information. We have presented, Slinky, a scalable
protocol for content access in tactical MANETs and
disruption-tolerant ad hoc networks. The key feature
of the protocol is its ability to adapt to disruptions and
topology changes in the network. As we have demon-
strated, adaptation enables Slinky to run efficiently on
diverse network scenarios, without any prior configu-
ration. Slinky has good scalability properties since it
relies only on local topology information and localized

9

changes in topology do not cause network wide ripples.
The core content networking layer that we provide en-
ables powerful new applications for tactical MANETs
and other mobile ad hoc networks that need to be dis-
ruption tolerant.

Acknowledgements
This work was sponsored in part by DARPA through
Air Force Research Laboratory (AFRL) Contract FA8750-
07-C-0169. The views and conclusions contained in this
document are those of the authors and should not be
interpreted as representing the official policies, either
expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

Research was also sponsored by the Army Research
Laboratory and was accomplished under Cooperative
Agreement Number W911NF-09-2-0053. The views and
conclusions contained in this document are those of the
authors and should not be interpreted as representing
the official policies, either expressed or implied, of the
Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwith-
standing any copyright notation here on.

6. REFERENCES
[1] H. Balakrishnan, M. F. Kaashoek, D. R. Karger,

R. Morris, and I. Stoica. Looking up data in p2p
systems. Commun. ACM, 46(2):43–48, 2003.

[2] M. Caesar, M. Castro, E. B. Nightingale,
G. O’Shea, and A. Rowstron. Virtual ring
routing: network routing inspired by dhts. In
SIGCOMM, pages 351–362, 2006.

[3] M. Chuah and A. Coman. Identifying connectors
and communities: Understanding their impacts on
the performance of a dtn publish/subscribe
system. In CSE ’09, pages 1093–1098. IEEE
Computer Society, 2009.

[4] P. Costa, C. Mascolo, M. Musolesi, and G. P.
Picco. Socially-aware Routing for
Publish-Subscribe in Delay-tolerant Mobile Ad
Hoc Networks. IEEE Journal On Selected Areas
In Communications (JSAC), 26(5):748–760, 2008.

[5] F. Delmastro. From pastry to crossroad:
Cross-layer ring overlay for ad hoc networks.
IEEE PerCom, pages 60–64, 2005.

[6] A. Derhab and N. Badache. Data replication
protocols for mobile ad-hoc networks: a survey
and taxonomy. IEEE Communications Surveys &
Tutorials, 11(2):33–51, 2009.

[7] P. Hui, E. Yoneki, S. Y. Chan, and J. Crowcroft.
Distributed community detection in delay tolerant
networks. In MobiArch, pages 1–8, 2007.

[8] V. Jacobson, D. K. Smetters, J. D. Thornton,
M. F. Plass, N. H. Briggs, and R. L. Braynard.
Networking named content. In CoNEXT, pages

1–12, 2009.
[9] Z. Jing, W. Yijie, L. Xicheng, and Y. Kan. A

dynamic adaptive replica allocation algorithm in
mobile ad hoc networks. In IEEE PerCom, pages
65–69, 2004.

[10] D. R. Karger, E. Lehman, F. T. Leighton,
R. Panigrahy, M. S. Levine, and D. Lewin.
Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the
world wide web. In STOC, pages 654–663, 1997.

[11] F. Kuhn and R. Wattenhofer. Constant-time
distributed dominating set approximation. In
PODC, pages 25–32, 2003.

[12] C. A. La, P. Michiardi, C. Claudio,
C. Carla-Fabiana, and M. Fiore. A lightweight
distributed solution to content replication in
mobile networks. In IEEE WCNC 2010, Sydney,
Australia, 2010.

[13] M. E. J. Newman. Modularity and community
structure in networks. Proceedings of the National
Academy of Sciences, 103(23):8577–8582, 2006.

[14] P. Nuggehalli, V. Srinivasan, and C. Chiasserini.
Energy-efficient caching strategies in ad hoc
wireless networks. In MobiHoc, page 34, 2003.

[15] B. Polat, P. Sachdeva, M. Ammar, and E. Zegura.
Message ferries as generalized dominating sets in
intermittently connected mobile networks. In
MobiOpp, 2010.

[16] H. Pucha, S. Das, and Y. Hu. Ekta: an efficient
dht substrate for distributed applications in
mobile ad hoc networks. Sixth IEEE Workshop on
Mobile Computing Systems and Applications,
pages 163–173, 2004.

[17] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin,
R. Govindan, and S. Shenker. GHT: A geographic
hash table for data-centric storage. In Proc. of the
1st ACM Intl. workshop on Wireless sensor
networks and applications, pages 78–87, 2002.

[18] G. Shakhnarovich, T. Darrell, and P. Indyk.
Nearest-neighbor methods in learning and vision:
theory and practice. MIT Press, 2005.

[19] J. Shen, S. Moh, and I. Chung. Routing Protocols
in Delay Tolerant Networks: A Comparative
Survey. In ITC-CSCC, pages 1577–1580, 2008.

[20] M. Spohn. Using dominating sets to improve the
performance of mobile ad hoc networks. PhD
thesis, UC Santa Cruz, 2005.

[21] B. Tang, H. Gupta, and S. Das. Benefit-based
data caching in ad hoc networks. IEEE Trans. on
mobile computing, 7(3):289–304, 2008.

[22] V. V. Vazirani. Approximation Algorithms.
Springer, 2004.

[23] T. Zahn and J. Schiller. DHT-based unicast for
mobile ad hoc networks. IEEE PerCom, 2006.

10

