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Preface

Ultimately unleash the incredible potential and the creative power of interactive three-
dimensional computer graphics with 3D for the masses!

The great promises of 3D technology range from rapid prototyping and computer aided
industrial design over intuitive graphical interfaces to far-fetched concepts such as virtual
reality and cyberspace. We are entertained by interactive movies and games in cinema-like
quality and our everyday life is fundamentally changed by innovative ways of presenting
and selling goods and products in 3D over the internet. All this seems to be in range, if not
already becoming a standard. And, of course, the whole industrial workflow is now com-
pletely digital and 3D, with high-tech companies collaboratively designing their future
products by exchanging masses of highly sophisticated, compatible and inter-operable
virtual prototypes every day.

Or is this only a myth?

The truth is in any case that 3D technology is not at all used as much as it could. In-
terestingly, this is not a matter of limited hardware ressources, as today practically every
newly sold computer has built-in support for interactive 3D. But still it is rarely the case
that average computer users express their ideas about shape with the aid of a digital com-
puter. – This thesis tries to analyze the reasons for this situation, and it identifies the shape
description problem as one fundamental issue.

The initial spark of inspiration for a solution came from a very fruitful idea of Prof. Dieter
Fellner, the maintenance of semantic information. This is a generally applicable concept
with many incarnations, and it has stimulated much of the work in the computer graphics
groups first at the university of Bonn, then in the newly founded institute of computer
graphics at the technical university in Braunschweig.

Semantic information about shape is at the heart of generative modeling. A very con-
crete result of the presented research on shape descriptions is the Generative Modeling
Language. It is even of practical use: The illustrations in the technical part of this the-
sis, 327 diagrams and 877 OpenGL screenshots, have been created exclusively using the
GML. This thesis contains altogether 1616 little images, which may be a bit excessive.
Some collegues have pointed out that it can be read very much like a comic strip. This is
probably true.

I am very much aware of, and grateful for, the powerful support from our group, from its
past and present members. I am also particularly proud and grateful that Prof. Fellner has
given me the long-time support and his encouragement to pursue one idea.

Diese Arbeit ist meiner Familie gewidment – meiner Frau Miriam, deren stille Heiterkeit
und milder Spott manche Zeile begleitete, und meinen Kindern Finn, Paula und Karl, die
stets aufpassen daß ihr Vater mit beiden Beinen auf dem Boden bleibt. Danke für Eure
Geduld!

Braunschweig, den 15. Juli 2005 Sven Havemann
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Chapter 1

Introduction

1.1 The Shape Description Problem

None of the existing methods for describing the shape of three-dimensional objects is entirely satisfactory. These methods
can be roughly divided in two classes. The first, much larger, class follows the ‘list of primitives’ approach. It describes
three-dimensional objects and whole scenes composed of them as a – flat or hierachil – agglomeration of elementary
geometric objects: Points, triangles, NURBS-Patches, spheres, cubes, blended blobs, and many others.

The second class is the class of procedural shape representations. It comprises a variety of different methods that may
be less known, since none of them could gain general acceptance: Shape grammars and L-systems, functional composition,
physically based simulations, shape programming languages, and several others. Also the proprietary scripting facilities
provided by all modern software packages for procedural modeling and CAD fall into this class. The question why
primitives still dominate today leads to a deep and important fundamental problem, the shape description problem:

“What is the right way to describe the shape of a three-dimensional object?”

Compared to the large body of literature on the different possibilities to represent the surface of 3D objects in a computer,
only much fewer research was dedicated to this more general question. So far the only answer is ‘it depends’: When
scanning, points are better, and CAD always uses NURBS. So the answer is technology driven, rather than following
a thorough understanding of the ‘nature of shape’, especially of man-made shape. Many simple questions are still left
unanswered that could give rise to more powerful shape representations as well as to more efficient modeling tools:

• How comes shape into existence? How is shape created, constructed, conceived?

• How does an artist or builder proceed? Which are the elements he or she combines in the first place?

• Which factors make that a shape can be recognized? Which are irrelevant and, thus, just artifacts?

• What is the ‘real shape’? What constitutes a shape class?

• Which objects are considered ‘the same’ by most people in all cultures?

• What is the ‘essence’ of a spoon, a chair, or a wind shield wiper?

• What is the shortest possible precise description of a shape? Of a whole shape class? And how are both related?

These questions are very general which makes them very hard to tackle. Sceptical fellow beings use to argue that solving
these problems would also imply a solution of much harder problems, ranging from automatic shape matching to artificial
intelligence, depending on the person’s respective background. This may be true; it is also true, though, that the fact that
these problems were completely ignored for the longest time has brought 3D to the limits it currently has to struggle with.
This will be illustrated in the next section; but it will also be shown that indications exist that maybe a completely new
type of 3D technology is currently rising.

The objective of this thesis is not to solve the difficult problem of shape understanding. The goal is rather to provide a
prerequisite for understanding shape, namely a – hopefully – general method to represent on a higher level of abstraction
a shape that is already understood. This reflects the two tightly related aspects of the shape description problem: First,
to find a methodology to formalize the description of shape and second, to assemble concrete shape descriptions for any
given shape or shape class. The different aspects of shape description are now illustrated with a number of examples.

1



2 CHAPTER 1. INTRODUCTION

1000 chairs. This is the title of a very interesting book from Charlotte and Peter Fiell [FF97]. It contains indeed a
collection of one thousand chairs from different times and different countries and, in particular, different styles. The
variety of chairs is just amazing. It immediately leads to the fundamental question of how to characterize ‘a chair’.

The easy answer is the general answer: Anything a person can sit on. Indeed can a fallen tree or a stone in the right
size be used as a chair. This is not a chair in the strict sense, however: A chair is usually manufactured for its purpose, it
is movable, etc. But every attempt to give a more precise description of the shape of a chair seems to rule out all too many
feasible chairs. After all there is a great difference between a comfortable armchair and a barstool.

An answer on an intermediate level on the scale between too general and too restrictive is an abstract one: The essential
geometry of a chair is determined by exactly five points on its right half. They are mirrored to the left half to produce
another five points, since chairs are symmetric. The five points are: two where the chair touches the ground, two that
determine the right side of the seat, and one for the top right of the backrest (see Fig. 1.34 later on).

Architecture. There are millions of buildings in the world, and every single one of them is essentially unique. Even if
two houses may be the same when they are built, they cease to be identical over time, as they are altered, remodeled, and
converted. All buildings are nevertheless immediately recognizable as buildings. The reason is, of course, that they are all
composed of more or less the same elements: Walls, doors, windows, and a roof.

A human observer can in most cases derive the purpose of a building alone from its shape. A church, a school, a
university, a palace, a residential or an office building, they all have distinct shape properties. Architecture is a domain
where also different levels of abstraction are used in parallel, and in the most natural ways. Architects use two-dimensional
drawings for communication, usually orthogonal sections or views of the building (front, top, side view). On the highest
level of abstraction, for city planning, individual houses are represented only as simple blocks.

But even when allowed to make only two dozen pencil strokes a good architect is able to convey the purpose of a
building in a drawing. A very abstract view on architecture reveals the main methods to create a building from a number
of simple box-like shapes: attachment and containment are the techniques at work when modeling with boxes.

Art nouveau and the issue of styles. What are the distinct constituents of a style? Art noveau, also called Jugendstil or
Art 1900, is a good example because it is a style that suddenly appeared, was very fashionable and trendy for some time,
and gradually disappeared in the thirties. Art nouveau has penetrated all domains of shape, from architecture to clothing,
sculpture as well as furniture, and the things of everyday life. So for each imaginable item there is an ‘art nouveau-
version’: simple spoons and lamp shades, but also the various buildings from Antoni Gaudi in Barcelona, Spain – they
all count as art nouveau. The most mystical fact is that all items that belong to this style are immediately recognizable as
such. Art noveau exhibits also another interesting feature, the development from art to craftsmanship. At a certain point,
a skilled craftsman has ‘understood’ a style, and can faithfully reproduce it. A style is no item on its own; the distinct
property of a style is that it can be applied to an item. It is a transformation that, given a shape, turns it into another.

System shapes. The domain of architecture brings in also another aspect, namely shapes that are composed of individual
elements that fit together. Whereas these elements are created individually for most houses, the trend is to compose houses
of customizable parts that can be manufactured more efficiently in an industrial assembly-line fashion.

One step beyond customizable shapes are system shapes made of a family of interoperable elements. They can be
put together in various ways, very much like pieces of a construction kit, such as the famous Lego pieces [Leg]. System
furniture for instance features shelve units that can be combined to line a wall in various ways; the same approach is
pursued with success for cupboards, sofa elements, and kitchen furniture. Examples for system shapes from many other
domains exist, just to mention the myriads of system toys, including also toy motor racings and toy railways.

The distinct property of customizable parts and system shapes, and the main reason for their great success, is that they
radically reduce the degrees of freedom. Two Lego pieces can not be put together in arbitrary ways. They have to be axis
aligned, and there is a regular grid of positions for the small hills, the studs, to snap together, as shown in Fig. 1.1.

The family of industrial shapes. Perhaps the most distinct example of a shape family with continuous degrees of
freedom is the screw. Its primary parameters are the length and radius of the bolt, and the slope and the depth of the
thread. The screw is also the basis for the most successful family of system shapes. Since the 19th century it is used for
the assembly of all complex constructions in industrial engineering. Nearly all consumer products contain screws, since
whenever attached parts are to be disassembled again there is no reasonable alternative to using them.

Today most industrial assemblies as well as consumer products are planned with the aid of computers. The basic
operations are still the same: Parts are created by casting metal or plastic, they are treated by bending, milling, drilling
holes, cutting, and welding, and the finished parts are finally assembled with screws. This is an example of a set of
operations that is extremely well supported by high-end CAD and CAM tools because of its great practical and commercial
importance. But it is by no means the only operator set one might reasonably want to create shapes with.
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Figure 1.1: Lego pieces.

Variations: Continuous vs. discrete. Lego pieces can be snapped together only at discrete positions. Strictly speaking
there is only a finite number of different models that can be built with a given set of Lego pieces. This is in harsh
contrast to, e.g., the unlimited number of shapes that are possible with a piece of clay. Most interestingly, it is just this
radical limitation of degrees of freedom that lets Lego unleash children’s creativity and motivates them to realize the
shapes they imagine. The mechanisms of iterative shape design could certainly be studied very well systematically with
the observation of children playing Lego: Right after finishing one shape they get the idea for the next modification by
inspecting the shape they have just created.

Considering a Lego piece as a parametric object it is clear that its inner dimensions are not arbitrary: the pieces need
to snap together reliably. The position of the studs is fixed, and their radius must be compatible with the width of the
wall. Figs. 1.1 (c) and (d) show two different solutions to this problem. They suggest that there is a whole continuous
1-parameter-family of possible Lego pieces. The wall width is the free parameter here, which was varied, and the radii of
the top and bottom studs are the dependent parameters.

Shape dependencies. This mechanism identifies one important, if not the principal, constituent of man-made shape:
Dependencies. This is the terminus technicus for a whole number of meta-descriptions of shape: Proportion, symmetry,
regularity, style, etc. – all these concepts have one principle in common, which is that ‘something’ is determined by
‘something else’.

The proportions of a greek temple determine how its width relates to its height and to the height of the columns as
well as their distance from each other. Cars are symmetric, so car hull designers always design only one half of the hull.
The bricks in a wall or on the pavement, the keys of a keyboard, the steps of a stairway, and innumerable other examples
of man-made shape, they all exihibit striking regularity. They all contain sub-objects that are arranged not randomly, but
according to some guiding rule. A style can be regarded as a set of a few high-level rules that permit to deduce many local
decisions which are, thus, no longer free: the selection of colors, the absence or presence of decoration and ornaments,
the choice of patterns and materials, all this is pre-determined by the choice of a style.

Technical constraints. Numerical and physically-based simulations, finite elements, statics, material properties, manu-
facturing methods, or simply cost – such hard constraints reduce the number of ‘free shape parameters’ even further, in
addition to the aforementioned artistic principles. Both areas cannot be cleanly separated, though: One quality that makes
a good artist or designer is his or her ability to transform a technical constraint into an artistic or design principle. The
round arch is a central ingredient of the romanesque style – but it is also simply an extremely stable form of an arch.

According to the aforementioned measure, many ancient designers were extremely good, because so many ancient
styles are made of transformed constraints. A notable example, which will also be further elaborated in section 5.4, is
the Gothic style. It is an amazingly rich shape domain that is produced from only a limited shape vocabulary: All Gothic
constructions are made of compass and ruler. The banal reason is that only then the plans could be reliably scaled from a
small piece of paper to 1:1. The same constructions were simply executed with a larger compass and ruler.

The variation of rules as a general design principle. Two sources for shape dependencies have been identified so far:
Aesthetic design and technical constraints. The notion of ‘dependency’ used here is a very general causal relation: It states
that one shape ‘property’ is the consequence of another. In other contexts this may be called a design rule. It was also
argued that defining rules is a central part of design in general. As a consequence a shape description method can only be
adequate when it is capable of representing shape rules and dependencies between shapes. This is also the deeper reason
for the fact that a list of primitives can never be an adequate method to describe shape.

The rule variation conjecture states that the same mechanism is at work also on the next higher level of abstraction:
that not only objects vary as the result of applying a rule, but that also rules vary as the result of applying a ‘meta-rule’.
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Figure 1.2: Structural similarity: The linear sequence as a fundamental mechanism of shape assembly.

Figure 1.3: Structural similarity. Buildings in the Wilmerdingstrasse in Braunschweig, erected 1890-1900.
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Figure 1.4: Structural similarity. The radially symmetric sequence as a fundamental mechanism of shape assembly.

Figure 1.5: Structural similarity. Despite their diversity all Wilmerding buildings share some essential properties.
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The sequence as an abstract shape generation pattern. The images on the previous two pages shall illustrate the
hypothesis that shape design is to a large extent rule design. Rules are the basis for creating patterns.

The first step to decipher a rule is to discover an abstract pattern that a collection of everyday shapes has in common,
for instance the linear sequence. Most of the examples in Fig. 1.2 are actually fences. Some of them contain a horizontal
sequence of vertical elements; others are two such sequences intertwined or nested, and sometimes a systematic variation
is applied to the individual elements. Others yet are made of a massive piece, and distributed are holes rather than elements.
And finally, when it is possible to create a horizontal sequence of items, it should as well be possible to create a vertical
sequence of horizontal sequences – which results in a regular grid of items.

The second step is the discovery that a linear sequence can be applied as well radially as, e.g., the collection of hubcaps
in Fig. 1.4 suggests. A hubcap can be understood as a completely regular linear sequence of items, only transformed to
fit on a circle. It is even more regular than the fences because of the necessity that the center of gravity is exactly in the
center of the circle. Note here again the nice contrast between distributing items or holes.

Building facades as multiple nested sequences. The most complicated examples, and a rich source for a whole number
of different design principles, are the images of façades in Figs. 1.3 and 1.5. It is most interesting to examine how each of
the six displayed houses develops its own distinct style. All of them are different, but they also exhibit striking similarity;
for instance they are all symmetric, they are four stories high, and they all vary their styles from floor to floor. Not the
ground floor but the first floor has the richest decoration. The horizontal symmetry is twofold: The right and left halves of
the facade are symmetric, but the window columns are also grouped in pairs. Note that most houses have eight columns,
and note the different forms of pairwise grouping. – The overall structure is determined by all sorts of nested sequences.

Textual shape descriptions. To describe shape textually is a frightening task. The reader might imagine a person right
in front of a highly complicated shape, such as a crumbled up handkerchief, or a Gothic cathedral. The man is equipped
only with a type-writing machine, with which he is urged to produce an unambiguous description of the shape he is facing.
The description may contain only text, in any human or formal language, but no images or drawings. It has to be, however,
so exact that it would permit to faithfully reproduce the shape under consideration.

This scenario describes another version of the shape description problem. Computers are machines for symbol ma-
nipulation, a computer program transforms input to output. Concerning 3D shapes, the output might be a rendered image,
which is nothing but a regular grid of samples of the surface. – But what is the input?

The task of designing a 3D file format is to define a suitable formal language for expressing shape descriptions. The
scenario makes the requiremens of such a language immediately clear: The person perceiving a shape, understanding a
shape, now wants to express his or her idea of the shape. Even if the formal language is hidden behind a graphical user
interface, it has to capture the whole description when it is used as a file format. So what counts is the language.

There is, of course, a big difference between a crumbled up handkerchief and a Gothic church: The handkerchief is
usually not consciously formed. For the construction of the church, though, it was necessary that many individuals share
the same very precise idea of a not yet existing shape. – How did they receive it? And how was the plan executed?

Other forms of shape communication. One might argue that the simplest way to derive a formal language is to sys-
tematically review existing examples of textual shape descriptions. Yet remarkably few such descriptions exist that are
precise enough. Shape is most often described only by alluding to prior knowledge. When talking about a specific chair
it is assumed that general knowledge about chairs is readily available and can be referred to, so that only the specific new
properties need to be formulated explicitly. The computer does not have this implicit knowledge, though.

One might argue that text is inappropriate for describing shape. The primary communication channel for shape is via
drawings, sections, plans and images. But they all share the same problem with text, although this fact is more effectively
hidden away: To read a 2D plan requires implicit prior knowledge about shape. A 2D plan is not an unambiguous
description of a 3D shape, 2D plans are merely coded suggestions that appeal to human imagination. A computer can
not process the front, side, top plans of any complex 3D object automatically and reconstruct it. And even if, this does
not solve the essential problem of any artifact description method that only alludes to the ‘real thing’: What are the ideas
behind the plan? What are the design rules that the plan is derived and instantiated from? Which plans are ‘similar’?

Procedural models deserve a procedural representation. This claim summarizes what has been discussed so far. It
was attempted to underpin the eminent importance of rules in the process of shape creation. Rules are present in every
shape around of us. Rules and dependencies correspond to the natural way human beings communicate about shape: This
is just as long as this one, that is attached, and this is the same as that except for this and that.

It is evident the mentioned facts are highly relevant for the definition of suitable digital file formats for three-dimensional
shapes. The discussion so far remained on a rather abstract level; in the next section it shall be concretized. It shows that
the theoretical shortcomings of the ‘list of primitives’ approach indeed result in very concrete practical problems.
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1.2 Review of Applied Shape Design and Interactive Computer Graphics

The previous section has discussed different aspects of the shape description problem on a more theoretical level. Of
course it has also very practical aspects since whenever shape is generated, designed, acquired, transmitted, or used, it
always has to be described. One very important aspect was not mentioned so far, though: When using a digital computer
to design shape one would also like to see this shape. So there is a tight relation between shape design and interactive
rendering. With current technology this is all too often a one-way-road: first the design, then the visualization. This is the
source of many problems, as will be shown in the following.

This section has two objectives. Its primary purpose is to summarize roughly the current state of 3D technology,
and especially to highlight its relation to the problem of shape description. These considerations shall motivate the new
solution proposed in this thesis, which is for the time being referred to as the generative or the GML approach. It will be
de-mystified in section 1.6 and, of course, explained in detail in the remaining chapters.

Interactive visualization is a new quality of 3D. First of all there are two fundamentally different ways to present
computer-generated imagery, namely as pre-rendered films or as interactive visualization. Offline rendering can make use
of all possible rendering features. It may employ time-consuming techniques such as raytracing and radiosity to faithfully
approximate the global illumination in the scene in every frame. The computation of a single image of a movie production
typically takes hours to complete, which is why whole render farms are employed for this purpose.

Interactive visualization, on the other hand, requires that at least 20 images are rendered per second. This means that
the computer has got only 50 milliseconds, or less, to generate the whole image. With 20 fps, frames per second, a feeling
of fluent interactivity emerges. With lower frame rates the latency between user interaction and visual feedback gradually
leads to a perceived loss of control and precision of motion.

The difference between offline and online rendering is not only a quantitative one. Theorists use to argue that what
really matters for the quality of algorithms and data structures are complexity classes; there is no such thing as Moore’s
law for Turing machines. But at some point also a quantitative increase may suddenly turn into a qualitative change,
simply because something becomes possible that was not possible before. For computer graphics, this situation arose
around the year 2000, when high-end 3D hardware became affordable all of a sudden. At the same time the CPU speed
surpassed the 1 GHz barrier, and substantial computing resources became available per frame. Today each and every
newly sold computer is equipped with powerful 3D hardware, even office computers and cell phones. This remarkable
development was stimulated by the games industry, which has since then gained great commercial significance.

The 3D software crisis. The usefulness of 3D goes far beyond computer games. But so far no other, more serious, killer
application has unleashed the undeniable potential of 3D on a mass-market scale. Using 3D has of course become much
simpler for larger and smaller companies. It is employed whenever possible in product design, advertising, special effects
etc. But all these are primarily offline techniques, where 3D technology is used as a device for creating stunning movies.

The fundamentally new quality of computer-generated 3D, compared to a movie, is that the user can influence the
non-existing, virtual, world that is presented to him. The communication is no longer one-way, the consumer can now
feed back to the multimedia experience. Interactive 3D was deemed to change the way people interact with computers;
but Web3D (3D on the internet) and VRML as its most prominent technology, have failed to do so. What was the reason?

One problem might be that it is not fully understood what it means to interact with a 3D scene. The new quality
of interaction might also require qualitatively new approaches, since the old approaches no longer scale: Low-level
interaction is tedious. More powerful interaction is more efficient and, thus, reduces the cost. And only when 3D becomes
cheaper and more powerful it will be applied also by non-expert users in more application areas than today.

Separation of modeling from viewing. The situation for visualization and interactive rendering today is characterized
by a fundamental dichotomoy, the separation of the model creation from the interactive visualization. Unfortunately the
same type of technology is employed for creating movies as well as for interactive 3D. In either case the proceeding is
basically the following:

1. Modeling – either by shape acquisition (real shapes) or by manual modeling (synthetic shapes)

2. Export – to some 3D interchange file format

3. Rendering – to either to create a movie (offline rendering) or by interactive techniques (online rendering)

A computer can generate images only when it has something to display. The 3D objects that make up the scene need to
be somehow transferred to a digital form. They can either be existing real objects, or they are imaginary synthetic objects.
Correspondingly there are basically two methods to obtain digital shapes: shape acquisition and shape modeling.
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1.2.1 Shape Acquisition

The term 3D scanning suggests that shape acquisition is a standard method that can be applied ‘out of the box’; that it
works reliably, fast, and automatically, very much like a fax machine. Indeed a prominent scanning initiative initiated
by Mark Levoy at Stanford, USA, enthusiastically started with the idea of a ‘3D fax machine’ [3DF94]. As it turned out
soon, the truth is that 3D scanning is a very complicated craft. To obtain good result requires substantial efforts which is
also witnessed by, e.g., the vast experiences of the group from Roberto Scopigno in Pisa, Italy [BCF∗04, CCG∗04]. The
following are the practically most relevant methods, ordered according to hardware cost:

• Photogrammetry is the reconstruction of shape from multiple photographs. This involves to reliably identify
corresponding feature points in the images. The disparation permits to infer the relative depth of each feature point.
This technique is inexpensive and it works with digital photos as well as with video sequences. Disadvantages are
the low precision and the density of the resulting point cloud are not very high, and that not all objects exhibit
distinguishable feature points [PGZF01, LCZ99].

• Structured light is typically employed under controlled lighting conditions for acquiring smaller-scale objects that
can be put, e.g., on a turntable. Specific patterns are projected on the object using, e.g., a digital video projector,
and then a series of photographs is taken. Since the pattern is known, as well as the orientations of projector and
camera, a dense grid of points on the surface can be accurately reconstructed, roughly up to one million per scan,
with sub-millimeter accuracy.

• Laser-range scanning proceeds by radiating a grid of laser rays from a sophisticated device that measures, for
each ray, the time until the reflected light returns. A range of different devices exist which, in a single scan, can
measure up to several million points with high accuracy. The resulting regular grid of points provides also implicit
connectivity. Problems are very reflective and translucent materials that reflect no light at all, or different rays at
once, to the device, as well as noisy and scattered surfaces such as hair, tree leafs, and also windows.

More specialized approaches for shape acquisition include computer tomography (MRT,CT) for capturing volumetric
data, as routinely used in medicine, and taking explicit surface samples, e.g., with a haptic feedback devices such as the
phantom device and other measuring systems. They are especially important in industry for checking finished parts. –
Most objects can not be acquired with a single scan. Multiple scans from the same object need to be further processed by

• scan registration, i.e., transformation into one coordinate frame in a compatible way, and
• integration into a common mesh, which involves removal of outliers and a re-meshing step.

When the scan was inappropriately planned it may then be that parts of the surface are missing. Furthermore all optics-
based acquisition methods suffer from the fact that only visible portions of the surfaces can be scanned; cavities and
occluded parts always lead to holes in the mesh.

What is the point? The implications and inherent limitations of 3D scanning become obvious when comparing it to its
2D analogon, digital photography. A scan is a frozen grid of samples from the surface of a three-dimensional object. It
can be understood as some form of multi-view photograph, since computer graphics permits to synthesize an unlimited
number of new views from a scanned 3D object. This property makes 3D scanning ideal for documentation and archival
purposes, very much like photos, since it is a decent recording of the state of an object’s surface at a certain time.

Scanning is a ‘blind’ process. The the raw scan points are arranged in a regular grid, very much like the pixels in a
photo. It makes no difference whether scanning a piece of jewelry or a table top, even though the geometry of the latter
could be perfectly represented by one quadrangle instead of a million triangles. This is a drawback but also a feature of
the method: All the small local imperfections in the table are faithfully represented in the data. This leads to a practical
problem, namely the huge size of the scanned datasets, which is even increasing as the precision of the hardware advances.
Methods were developed for the reduction of mesh sizes [IG03]. The size of a scanned 3D dataset, however, depends on
the question how the data are represented and is, thus, directly related to the shape description problem.

The use of a scan, and shape matching. What is a scan good for beyond archival? The fact that a scanned object can
be interactively inspected very strongly suggests to most users that its shape is now captured by the computer. This is not
so: A scanned desk lamp has lost its ability to move, a scanned screw has become one with the object it attaches. Scanned
toy cars have their wheels fixed forever; even the cup on the table becomes one with the table when scanned.

Most objects are not flexible or have hidden mechanics. But the segmentation problem is serious: A single triangle
does not know whether it belongs to a door, to a window, etc. It may sound like a strong statement but it is probably true
that that to recover semantic information from a scan is a prerequisite for any further non-trivial shape manipulation.
Of course there is a whole range of possibilities to retrieve semantic information, in accordance with all the different levels
of shape description, from local shape features to the function a 3D object serves. The re-usability of scanned data is a

http://www.sensable.com
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problem. It is very difficult to retrieve, e.g., only the chairs from a large set of scanned interiors. This involves to solve the
shape matching problem, which can be stated simply as: Given a shape, find all similar shapes. Attempting to solve the
problem in this very general form is of course somewhat naïve. Accordingly the results are still rather limited [NK03].
This is another indication for the depth of the shape description problem. Shape matching involves to answer the question:
What is a chair?

1.2.2 Shape Modeling with Procedural Modelers

The main device for creating synthetic shapes on a computer is 3D modeling software, also called a modeler. High-
end modeling software is usually extremely complex, provides many pages full of features, and comes with numerous
manuals and tutorials that demonstrate how to create virtual, i.e., non-existing, sceneries. Modeling software can be
roughly divided in two classes: Procedural modeling tools are more targeted at movie creation, while CAD modelers are
for high-precision industrial shape design.

There is a bit of confusion in the nomenclature: The term modeler denotes in some cases the modeling software, and
in other cases it means the person operating this software, i.e., the user of a modeler. In order to avoid this confusion the
operator is called artist or designer in this thesis, which appear to be the terms more and more used in the literature.

Fully fledged allround 3D modeling and animation packages are targeted at creative 3D shape artists for creating
motion pictures. The typical application areas are (i) fully digital animated movies and cartoons, and (ii) short special
effects sequences (SFX department) to be overlaid with filmed real scenes (compositing). While originally employed as a
substitute for film takes that are difficult to realize, SFX have become ubiquitous today in commercials and advertising.
Shape design, which is the focus of this thesis, is only one among several aspects of the digital film workflow. 3D Software
is typically arranged more like a virtual film set or a 3D film studio, which involves the following modules:

• Shape modeling is the process of creating the shapes of all the objects in a digital scenery. Typically this comprises
buildings as well as furniture, vehicles, and vegetation, but also physical phenomena such as water, rain, fire, etc.
Surface models of animals and characters are attached to skeletons, sets of bones, to control the shape deformations.
The models are created using procedural tools, consequently all models are procedural models.
• Material assignments determine the look of the virtual world. Materials with complex reflectance properties can

be defined with shader networks. Materials may comprise also textures, which requires texture coordinates on the
surface. Detail textures can be applied to add small-scale high-frequency surface details to enhance the shape.

• Animation is the definition of motions in the scene. All of the object and material parameters can usually be
animated, i.e., they may vary as a function of time. Each scalar parameter is typically animated using an editable
spline curve, i.e., three of them for the three channels (x,y,z) of an animated position (or rotation).
• Rendering finally is the process of image generation. It can be very time-consuming, but it works usually fully

automatically in batch mode. High-end productions employ whole rendering farms for computing, e.g., the global
illumination in a scene, which is basically an O(n2) problem for n surface patches (or triangles).

Usability is key for artists who are operating the same software for hours and weeks: Swift interaction, navigation,
selection modes, access to tools, configurability of menus and keyboard/mouse behaviour etc. are vital. The general
approach to shape modeling of the different packages are very similar, only the (long) feature lists vary from software to
software. The artist needs to get acquainted with all the features of the chosen tool. To some extent, this experience can
also outweigh the deficiencies of the software: Rather than switching over to a new, optimal, software all the time, artists
apparently prefer to stick to their favorite modeling software that they know so well.

The forward modeling style. The name ‘procedural modelers’ comes from the approach to shape modeling these tools
have in common. Artists successively apply sophisticated modeling tools to alter a shape. The shape is changed until it
matches the the ideas of the artist and the specifications. Whenever the specifications change, however, the shape is further
deformed and manipulated until it matches again. This is fundamentally different from a parametric modeling style where
only the appropriate modeling feature is updated to accomodate the desired changes. More complicated shapes therefore
require decent planning, which parts are to be created first, then refined, etc. Modeling and sculpting are crafts that simply
require much practical experience.

To some extent the market is dominated today by the two high-end packages 3D Studio Max from Kinetix and Maya
from Alias. Some of the modeling tools with wider spead use are listed in the table in Fig. 1.7. They can be compared
through downloading trial versions. It is worthwhile to have a decent look at their feature lists: Most artists admit that in
practice they use only a small fraction of their favorite tool’s modeling functionality. –

The author’s personal recommendation for a 3D sketching tool for casual users is not in the table. It is called Sketchup,
available from www.sketchup.com, and it is rather ‘lean and mean’. Sketchup has few but well-chosen modeling opera-
tions, an interesting approach for interactive handling, is easy to learn and use, and it yields very clean meshes.

file:www.sketchup.com
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1 nurbsCube −p 0 0 0 − ax 0 1 0 −w 1 − l r 1 − hr 1 −d 3 −u 1 −v 1 −ch 1 ;
2 c i r c l e −c 0 0 0 − nr 0 0 1 −sw 360 − r 0.2 −d 3 − ut 0 − t o l 0.01 −s 8 −ch 1 ;
3 move − r 0 0 0 . 6 ;
4 c i r c l e −c 0 0 0 − nr −1 0 1 −sw 360 − r 0.1 −d 3 − ut 0 − t o l 0.01 −s 8 −ch 1 ;
5 c i r c l e −c 0 0 0 − nr 1 0 0 −sw 360 − r 0.2 −d 3 − ut 0 − t o l 0.01 −s 8 −ch 1 ;
6 move − r 0 . 6 0 0 ;
7 pro jec tCurve −ch true − rn fa lse −un true −t o l 0 . 0 1 " nurbsCi rc le1 " " le f tnurbsCube1 " ;
8 pro jec tCurve −ch true − rn fa lse −un true −t o l 0 . 0 1 " nurbsCi rc le3 " " frontnurbsCube1 " ;
9 l o f t −ch 1 −u 1 −c 0 − ar 1 −d 3 −ss 1 − rn 0 −po 0 − rsn true " le f tnurbsCube1→pro ject ionCurve1_1 " \

10 " nurbsCi rc le2 " " frontnurbsCube1→pro ject ionCurve2_1 " ;
11 t r im −ch on −o on −rpo o f f − l u 0.1 − l v 0 . 1 leftnurbsCubeShape1 project ionCurve1_Shape1 ;
12 t r im −ch on −o on −rpo o f f − l u 0.1 − l v 0 . 1 frontnurbsCubeShape1 project ionCurve2_Shape1 ;
13 expression −s " nurbsCi rc le1 . t r ans la teY = nurbsCi rc le3 . t r ans la teY " −o nurbsCi rc le1 −ae 1 −uc a l l ;
14 expression −s " nurbsCi rc le1 . scaleX = 1/ nurbsCi rc le3 . scaleZ " −o nurbsCi rc le1 −ae 1 −uc a l l ;

1 polyCube −w 1 −h 1 −d 1 −sx 1 −sy 1 −sz 1 −ax 0 1 0 − t x 1 −ch 1 ; / / c reate po ly cube
2 po l ySp l i t −ch on −s 1 −sma 0 −ep 7 0.5 −ep 6 0 . 5 pCubeShape1 ; / / s p l i t face make edge
3 se l ec t − r pCube1 . e [ 1 4 ] ; / / se l ec t and
4 move − r −y 0 . 5cm ; / / move edge
5 polyCreateFacet −ch on − t x 1 −s 1 −p −0.5 0 .25 0.25 −p −0.5 0.25 −0.25 \
6 −p −0.5 −0.25 −0.25 −p −0.5 −0.25 0 . 2 5 ; / / c reate plane
7 dup l i ca te − r r ; / / dup l i ca te and
8 move − r 1 0 0 ; / / move
9 po lyUn i te −ch 1 pCube1 polySurface1 polySurface2 ; / / combine faces

10 polyMergeFacet −ch on − f f 5 − s f 7 polySurfaceShape3 ; / / make hole
11 polyMergeFacet −ch on − f f 4 − s f 7 polySurfaceShape3 ; / / make hole
12 se l ec t − r polySurface3 . v t x [ 8 : 9 ] ; / / se l ec t and
13 polyChamferVtx 1 0 . 2 5 0 ; / / chamfer ve r t i c e s
14 polySoftEdge −a 0 −ch 1 polySurface3 polySurface3 . e [ "∗ " ] ; / / make a l l edges hard
15 polySubdiv ideFacet −dv 2 −m 0 −ch 1 polySurface3 . f [ 3 ] ;
16 se l ec t − r polySurface3 . f [ 1 8 ] polySurface3 . f [ 2 1 ] polySurface3 . f [ 1 2 ] polySurface3 . f [ 1 5 ] ;
17 polyExtrudeFacet −ch 1 − k f t 0 −pvx 0 −pvy −0.5 −pvz 0 − t x 0 − t y 0 − t z 0 − rx 0 − ry 0 − rz 0 \
18 −sx 1 −sy 1 −sz 1 − ran 0 − d i v i s i o n s 1 − t w i s t 0 − taper 1 − o f f 0 − l t z −ws 0 \
19 −l t x 0 − l t y 0 − l r x 0 − l r y 0 − l r z 0 − l s x 1 − l s y 1 − l s z 1 − l dx 1 − l dy 0 − l dz 0 \
20 −w 0 −gx 0 −gy −1 −gz 0 − a t t 0 −mx 0 −my 0 −mz 0 −sma 3 0 \
21 polySurface3 . f [ 1 2 ] polySurface3 . f [ 1 5 ] polySurface3 . f [ 1 8 ] polySurface3 . f [ 2 1 ] ;
22 s e t A t t r " polyExtrudeFace1 . l o ca lT r ans l a t e " −type double3 0 0 0 . 1 ;

Figure 1.6: Examples of the Maya Embedded Language (MEL) from Alias/Wavefront. The code was generated
by Maya in background during an interactive modeling session of Matthias Richter. The code generation feature
is supposed to facilitate the authoring of shape families and re-usable shapes. Parameterized shapes can also be
manipulated with interactive gizmos, but only within a running Maya. – Note the compactness of a procedural
shape description versus the unlimited number of shapes it can produce.

The first example (images a-d) creates a NURBS cube into which a NURBS pipe is inserted. The pipe connects two
circles that are trimmed out of the cube sides. The height and radius of the circles can be controlled interactively
with an arrow gizmo using expressions. Note the (implicit) numbering of the created entities, which is one of the
obstacles encountered when trying to write re-usable MEL scripts.

The second example demonstrates mesh modeling on the half-edge level in a MEL script. It creates the little
house in image (e) from a cube whose top face is split by inserting an edge which is subsequently moved (lines
1-4). The opening is inserted by trimming out a quad (lines 5-11). Extrusion is a very important modeling tool
because of its versatility. This is documented by the great number of options for it in line 17 where the four feet
are extruded. Note the use of explicit face indices 12, 15, 18, and 21 in the generated MEL code, and compare this
to the considerations in section 1.2.3 concerning the persistent naming problem.
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Maya www.alias.com AutoCAD www.autodesk.com
3D Studio Max www.discreet.com Dassault Catia www.3ds.com
Houdini www.sidefx.com Pro/Engineer www.ptc.com
Rhinoceros www.rhino3d.com SolidWorks www.solidworks.com
Cinema4D www.maxon-computer.com UGS SolidEdge and NX www.ugs.com
Lightwave www.newtek.com MicroStation www.bentley.com
Caligari truespace www.caligari.com
SoftImage XSI www.softimage.com

Figure 1.7: Typical procedural modeling tools (left) and high-end CAD systems (right) in use today.

1.2.3 Shape Modeling with Parametric CAD Software

Software for computer-aided design (CAD) differs from procedural modeling tools in that it provides very high, guaran-
teed precision, and it integrates seamlessly with the industrial workflow in the context of computer-aided manufacturing
(CAM). It is very important to assert that the modeled objects are indeed manufacturable. Another distinct high-end fea-
ture is product data management (PDM). It is concerned with versioning, product life cycle management (PLM), metadata
administration, and all the other services necessary for maintaining manufacturable industrial products composed of many
different parts: Data need to be brought consistently from the design to the CNC-milling-machine, individual parts from
different sources must be assembled for digital mockups (DMU), and PDM/PLM also has to assert that the part database
is consistent with the printed documentation.

The high-end CAD market is firmly dominated by the ‘major CAD companies’ listed in Fig. 1.7 to the right. They
provide high-end functionality at a high-end price; but they usually offer good conditions for academic and educational
institutions. The very remarkable thing about these software packages is that probably the vast majority of all consumer
products in the world is designed using one of them, as was pointed out by Ari Rappoport during SMI 2004 [SR04].

Parametric design is still new to some. Since the late 1980’s and early 1990’s a veritable revolution took place in
high-end CAD, namely the introduction of parametric design. This novel and innovative approach originated from the
Pro/Engineer system from Parametric Technologies (listed in Fig. 1.7, also see the wikipedia article [wikb]). Due to its
enormous success the method was quickly adopted by the other major CAD vendors. Today all high-end CAD packages
support parametrics in one form or the other. – Rappoport further explained, and complained, that the advent of parametric
design has been largely ignored by the academic community. No systematic research takes place, no decent comparison of
approaches, and it appears that the possibilities of this new field of design are not explored, except, since it is a multi-billion
dollar market, by commercial companies. Most computer graphics professionals from academia admit that they have no
or very limited practical experience with high-end modeling/rendering software packages. Developing new algorithms is
much more en vogue than to reflect on the existing approaches. Shape modeling is sometimes disregarded as being a craft
rather than a subject to science. Furthermore it is extremely tedious to compare feature lists of modeling packages. There
is the risk of doing only software studies, and generalizability is an issue there. Of course there are many interesting detail
problems. But do they indicate shortcomings of the general approach or just of the particular software?

Another reason for the reluctance of academia might be the variety of different proprietary approaches. Although the
basic idea is the same, each tool apparently realizes parametric design in a slightly different fashion. There are also many
different words for it. Sometimes it is labeled ‘variant’ or ‘variational’ design, other tools call it ‘mechanical CAD’ or
‘associative design’. In any case, the idea is that every part created, every shape feature, and every modeling operation
knows about its dimensions and its relation to other parts. The degrees of freedom (DOF) can be iteratively fixed by
defining relations, constraints, until the whole assembly is fixed. This process is supposed to resemble the way machines
are constructed in practice: When attaching a part to another with a screw, only a single rotational DOF remains.

Associative design is similar to the process of dimensioning where little labels are set into a 2D drawing to say how
thick the wall is, how far the centers of two holes are apart, etc. Dimensioning is a creative process since, in order to
keep the drawing readable, only the essential dimensions are conveyed in a plan. So part of the design process is to find
out which dimensions are the essential ones. This information can be exploited by doing the reverse, i.e., to derive the
distance of the holes from the dimensions specified by the user.

Intelligent 3D components are another form of parametric design that can be primarily found in software for rapid ar-
chitectural prototyping (house planning software). It usually comes with a component database providing, e.g., a staircase
that automatically adapts when the distance between floors, the floor height, is changed. The same applies to windows
and doors that adapt to wall thickness, respect inner walls, etc. The great problem is only that the parts database is
pre-fabricated so that it is not possible to add user-defined intelligent 3D components to the parts database.
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Background on parametric modeling. Parametric design has not been completely ignored by the academic community,
of course; a bit of material exists. A good entry point is the Handbook of CAGD, especially the chapters 20, Solid Modeling
from V. Shapiro and 21, Parametric Modeling from C. M. Hoffmann and R. Joan-Arinyo [Sha02, HJA02]. They list about
one hundred papers on parametrics, many of them by researchers who are very close to the production industry.

Shapiro points out that “parametric families of solids is a widely accepted, but poorly understood, notion”; Hoffmann
and Joan-Arinyo assist in saying that “there is no satisfactory definition of the term variational class of solids”. These
statments support the hypothesis from the introductory section 1.1, which discusses the shape description problem in the
wider context of man-made shape: A formal definition of a shape class can only be satisfactory when it captures the
human concept of shape design as rule design.

The main components of industrial parametrics are features, representing geometry, and constraints, representing
relations between feature parameters.

Constraint-based modeling. The vision is that a designer can make a quick sketch of a machine part using standard
geometric primitives like lines, circles, etc. In a second step, the sketch is converted to a technical drawing as the designer
specifies how the primitives relate to each other, e.g., that a circular arch is connected to a line segment so that both have
the same tangent. Accordingly, there is a large number of possible constraints. They can be roughly partitioned into four
classes: (a) geometric constraints such as parallelism, tangency, symmetry, coaxiality, concentricity, perpendicularity,
distance, angle, (b) equational constraints such as, e.g., torque, (c) semantic constraints that assert the validity of a
construction, and (d) topological constraints: attachment, containment, incidence, connectivity. The constraints define a
constraint graph where edges relate parameters of geometric primitives. The remaining free parameters are supposed to
be determined by employing automatic constraint analyzers. Some dimensions are the result of others (‘length overall’),
or can be derived by some reasoning (automatic constraint solvers).

One problem of constraint-based modeling is that realizable drawings may not be over- or under-constrained. Con-
straint solving involves inference and numerics which makes it not very transparent. Users report that small parameter
changes sometimes lead to unexpected, discontinuous results in parametric modeling systems.

In the context of the introductory section 1.1 another, perhaps more fundamental, objection to constraint-based model-
ing arises. Constraints can only relate feature parameters that exist in the parametrization offered by the modeling system.
But the great difficulty, and the key to a re-usable shape description, is just to determine the ‘right’ parametrization of a
given shape in every situation. There is an unlimited number of ways to parameterize a simple rectangle, or a box. As
pointed out by Pratt in [Pra04], reparametrization is key: The STEP standard defines a circle in 3D using (a) midpoint,
axis, and radius. But some parametric modelers offer also parametrizations through (b) three points, (c) tangency to three
other circles, (d) tangent to two other circles plus radius, etc. This problem can only be solved when the system allows
the designer to define new parametrizations.

Feature-based modeling. This is the alternative to constraint-based modeling. Feature-based design is an enhancement
of its predecessor, variant design, where objects are described with symbolic statements like BLOCK(w,h,d). The 3D object
is created as a side effect of evaluating the statement. The advantage is that parameters can be replaced by arbitrarily
complex expressions, and the modeling statements can be embedded in some kind of scripting language environment.
Apparently this approach was first pursued in 1982 by Brown with his PADL-2 system [Bro82].

The term feature is used in various contexts, so it is defined only rather sloppily as a generic shape with which
engineers associate certain properties or attributes and knowledge useful in reasoning about a product [HJA02], 21.5.1.
The constituents of a feature are (a) generic shape (B-rep etc.), (b) behaviour (attributes like parameter ranges etc.), (c)
engineering significance (information to downstream applications etc.). Feature models can be constructed (a) a posteriori
by grouping and annotating objects in an existing geometric model, (b) by automatic feature recognition, or, (c) as a design
methodology, called design by features, which is the predominant method for shape design in a feature-based parametric
modeler. Ideally the features are shape templates from a library of application-oriented, user-defined features.

Another issue concerns the question of how to represent shape features. Two general approaches exist; the declara-
tive representation uses again geometry plus constraints, whereas the procedural representation describes explicitly how
to build a feature, instead of the implicit description specifying a set of conditions the feature has to fulfill. But as
Hoffmann/Joan-Arinyo state (with respect to variant design), “design as programming is less desirable than giving the
designer visual tools and deriving, from a visual design process, a flexible and intuitive parametric design” [HJA02], 21.4.
This code generation problem is of great practical importance, and it will re-appear several times in this thesis.

The problem of generating different views on the same model. The same model may be used in different contexts,
which also require different geometry; the design view, for instance, is different from the manufacturing view. A simple
example is a through-hole in a part which is then divided in two holes by inserting a supporting feature into the middle of
the hole. In reality, though, the supporting feature is not added, but is simply not removed when the hole is created by a
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CNC milling machine ([HJA02], Figs. 21.2, 21.3). More complicated examples occur, e.g., in the automotive industry. For
a car there is (a) the design manipulation view, exterior and interior, (b) the design review model, optimized for interactive
visualization, (c) the model for crash test simulations, (d) the model for the virtual wind tunnel, plus several others. All
these models of the same object differ not only in the level of geometric detail, but they also put different emphasis on the
various parts that make up the car. The difference is of a semantic rather than just a geometric nature.

The problem of changing views is again directly related to the shape description problem: When talking about different
views of the same car, this raises immediately the question what ‘the car’ actually is. It would be ideal, of course, if there
was one ‘master model’ from which the other views can be derived, so that changes are immediately propagated and
conflicts can be resolved in the master model. But how can these derivation rules be described?

The persistent naming problem and the picking problem. The problem of persistent naming can be stated simply as
follows: What is a part? – Whenever applying a modeling operation, a feature, or a constraint to a model, it is necessary
to unambiguously refer to the location on the model where it is to be applied. Typically this is done by, e.g., interactively
selecting a vertex, an edge, or a face using a 2D pointing device, a mouse. The advantage of parametric design is that
model parameters can still be edited, and the model is simply re-generated accordingly. Now the question is: Where is the
selected vertex, edge, or face? It may be that one, or several, or even no entity at all correspond to the original one when
the model is re-generated in response to the parameter change.

According to Shapiro, the persistent naming problem reduces mathematically to the difficult problem of indexing
the connected components of an implicitly represented set [Sha02], 20.7.1. According to Hoffmann/Joan-Arinyo, the
persistent naming problem is not solvable in a general way [CCH96]. They propose a more modest approach, namely to
postulate that any ‘successful semantics’ for parametric shape design must fulfill two properties:

• Model instantiation must be continuous, i.e., small edits should yield small changes, and
• it must be persistent, i.e., after returning to the original parameter values the original design should reappear.

In the context of the shape description problem, the problem of persistent naming is very much also a picking problem.
It is most likely that a designer has reasons for picking exactly a particular entity. This means that there is some underlying
rule. If the designer only picks an edge but does not tell the rule, the software can only speculate about it, which is just
the reason for the insufficient stability of the selection after re-evaluation: A particular step of a stairway might have been
selected because it is the 14th step, or because it was at height 2.5 meter, or because the staircase approaches a wall, etc.
The selection rule itself, and not only a particular selection, needs to be included in the shape description.

Intricacies of CAD model exchange. A serious practical problem is caused by incompatible proprietary parametrics.
As it is explained by Michael J. Pratt, who provides valuable background on the problem in his SMI04 paper [Pra04], the
typical CAD exchange standards, STEP and IGES [ste94, IGE96], were defined before the advent of parametrics. When
creating an intelligent part X in Catia it loses its intelligence when loaded into SolidWorks; the same is true for all other
combinations. Only a ‘frozen’ instance x of X can be exported to SolidWorks. This is desastrous, of course, when creating
a digital mockup, a complete digital assembly of a whole new machine composed of many parametric parts. In case the
parts come from different companies and are created with different tools, the complete assembly can not use parametrics
any more for adjustments. Parameter changes can only be done in the source systems, and the changed instances need to
be exported again to STEP or IGES as a ‘dumb’ model, without any parametrics, to send them to the mockup facility.

“In recent years the manufacturing industry has become increasingly fustrated by the fact that, despite an
impressive level of superficially successful STEP model exchanges, it is usually extremely difficult to use a
transferred model for any application that requires it to be modified in the receiving system.” – [Pra04]

The Parametrics Group in Working Group 12 of ISO TC184/SC4 [TC1] is trying to extend the STEP exchange standard to
incorporate parametrics. The approach pursued is to require a set of basic modeling tools, features, and constraints, to exist
in every modeling tool, so that a minimum of functionality can always be transferred to the target system. The problem,
though, is that the ‘same’ sophisticated modeling tools and features behave slightly differently on the various systems.
This concerns in particular the persistence of selections. In order to facilitate a correct interpretation of a selection in
the receiving system, the procedural parametric description of an intelligent part is transmitted together with the ‘dumb’
instantiantion as a mesh (B-rep). This way the receiving system can compare its own interpretation of the parametrics
with the interpretation of the source system. Pratt comments on this approach as follows:

“The method described was proposed by a translator developer. It is admittedly not elegant, but is reported
to be more reliable than any other approach that has been tried. It is possible that it will not meet all future
needs encountered in the transfer of procedural models, but experience shows that it certainly handles simple
cases.” – [Pra04]
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Quest3D www.quest3d.com Halflife www.valvesoftware.com
Virtools www.virtools.com Quake www.idsoftware.com
Right Hemisphere www.righthemisphere.com Unreal www.epicgames.com
Director www.macromedia.com Farcry www.crytek.com

Figure 1.8: 3D Presentation software and commercial game engines.

Even without the complications through parametrics the exchange of CAD data between different software packages is a
delicate issue. Since the programs are simply working differently it is often not clear, e.g., which tolerances correspond to
each other in the source and target systems. The tolerance of a curve is, after all, determined by the numerical properties
of the evaluation algorithm. Every NURBS curve, for instance, can equally be represented by a sequence of Bézier curves,
at least in theory. But will both curves also have the same tolerances? – One might argue that this is a matter of programs
conforming to standards. But STEP as well as IGES are very blown up standards since they had to represent the features
of the different high-end CAD programs. Consequently many model im-/exporters implement them only partially.

The difficulties of model conversion have in any case stimulated a new lucrative market for specialized CAD conver-
sion tools. Another solution, often pursued by bigger companies, is to simply acquire licenses of all major CAD packages.
Due to the outrageous costs this is not a feasible solution for smaller companies. Autodesk, the vendor of AutoCAD, has
reported a turnover of more than one billion dollars in 2004 [Vog05].

1.2.4 Online Rendering: Interactive 3D

As mentioned before there are two fundamentally different ways to present computer-generated imagery, pre-rendered
films and interactive visualization. The advantage of films is that the author, the director, has complete control about
what the audience sees, and about the moment when it is seen. Takes can be shot from perfectly chosen viewpoints, it is
possible to show animated processes with excellent timing and rehearsal. The audio and video tracks are in perfect sync,
so that, e.g., the spoken explanation in a documentary fits with the images that are shown.

The advantage of interactive presentations. Every user, also called visitor, of a virtual 3D world can choose the depth
and length of explanations according to personal preferences. Interactive presentations can be more engaging since by
definition they keep the level of involvement higher; at the risk, of course, that technicalities distract from the content.
Interactive 3D stimulates the play instinct, and users typically try to explore the 3D world systematically, to discover all
the possibilities for triggering actions, and to find out about the available interaction modes.

The downside is that authoring of good interactive presentations is very demanding and also somewhat involved and
tedious. In principle every possible aspect of the interaction must be anticipated by the author, so that the system can react
appropriately in response to the visitor’s action. Interactive 3D is interesting only if the author has defined enough things
to discover. This is also related to the issue of interactive storytelling.

The technical requirements for realtime 3D are demanding as well. With 20 fps the computer has less than 50 millisec-
onds to generate one image. This is usually possible only with decent pre-processing of the 3D data which involves, e.g.,
pre-computing the global illumination, hierarchical space partitioning, definition of cells and portals, and the reduction of
the polygon count of the 3D models. Newer modeling tools also permit for low-poly modeling. It is important to keep
in mind that, unless the viewer motion is explicitly restricted, a 3D model can be interactively explored from all possible
sides. A model for offline rendering, though, needs to be detailed only where it is visible, very much like a film set.

The next question is which software environment to choose for presenting the 3D content. Possible options include:

• Commercial software for interactive 3D presentations
• Standard 3D viewers for standard 3D formats, e.g., for Web3D
• Abusing commercial game engines
• 3D Engines, open source or commercial, available as applications or as software libraries

Commercial 3D presentation software. Pre-fabricated solutions for the professional presentation of virtual worlds do
exist. They are mainly targeted at (a) product design and (b) VR training applications. They do not include a modeler
but permit to import externally created models into the VR authoring application, providing export plugins for the major
modelers. The VR software distinguishes between the static environment and dynamic objects that may move in the scene.
The motion of dynamic objects may be pre-defined (animations), based on rules (‘artificial intelligence’) for ambient
motion such as vegetation or swarms and flocks of animals or crowd simulations, or triggered by events and visitor actions,
of course (‘behaviour’). These actions and the responses to them are defined in the VR authoring application typically by
creating a behaviour graph, basically a network of event callbacks, sometimes combined with a state machine.
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Authoring tools are optimized for productivity. Great efforts were taken to avoid VR authors typing in literal program
source code. Following an 80:20 approach a good-looking, fluent virtual world with standard behaviour is created with a
few mouse clicks. But only to walk about in a virtual 3D environment is quickly considered boring by most visitors. Inter-
esting VR requires an engaging plot with a more complicated story book and, thus, a complex event network. Examples
of state-of-the-art 3D presentation software are Virtools and Quest3D, listed in Fig. 1.8. They permit to create interactive
3D worlds on the level of small computer games without programming.

One fundamental problem is sustainability: Creating interesting 3D animations is very cost intensive because of the
reasons already mentioned. An animation created with Virtools, however, can only be played in Virtools. There is no
exchange standard for responsive 3D worlds, not even to speak of issues such as long-time archival. Transience is a
serious problem. This is indicated, e.g., by the fact that the preferred way to deploy content created with Quest3D is as a
binary computer program that can be executed (only) on current versions of MS Windows.

VRML as a VR exchange standard for Web3D. The general interoperability of interactive 3D was enthusiastically
expected from the Virtual Reality Modeling Language (VRML) file format standard [VRM97]. With the rise of the internet
during the 1990’s and the new possibilities for information exchange through the world wide web a 3D internet, Web3D,
was deemed to be in reach. Unfortunately, it turned out that the VRML approach from 1997 was maybe a little bit too
naïve, for a number of reasons, some of which are:

• VRML is very restricted with respect to low-level shape representations; it does not have NURBS or Bézier curves
or surfaces, or other free-form patches. It is too sloppy in terms of precision to be used as a CAD standard.

• In one way or the other every general 3D exchange standard has to cope with the problems mentioned before
that IGES and STEP have to struggle with. In particular this concerns the issues of transmitting high-level shape
dependencies and procedural information about the shape construction process, as well as annotations (3D markup).

• Despite its name VRML is not a modeling language. The modeling functionality in VRML is restricted to sweeping
a polygonal profile along a polygonal axis (Extrusion), then there are heightfields and indexed geometry. But there
is no viable way to change the connectivity of a mesh that is stored as an indexed face set (IFS) in a VRML file. For
VRML, these modeling primitives are opaque objects, i.e., their internals cannot be accessed. Data access is limited
to the pre-defined fields of each node type, such as the width and height fields of the Cylinder geometry node.

• Interactive VR requires three different languages to (a) define the VRML world, (b) define events by programming
suitable callback functions in VRMLScript or JavaScript, and (c) possibly expand the VRMLscript functionality
using PROTOs through the External Authoring Interface (EAI). Extensions are inevitable for more serious appli-
cations that require, e.g., a connection to a database to place an order. All source files for (a), (b), and (c) must be
consistent, and they need to be kept in sync during development, which is extremely costly.

• The VRML standard comprises the scene description language but not a run-time environment. Similar as with
HTML, the problem is that different VRML browsers display the content in different ways. Authoring a consistent
VR world with VRML+Scripts+EAI-Extensions is a big investment, but a decent quality and a defined behaviour
on the client side can still not be guaranteed. It depends on the quality of the VRML browser installed there.

• The state of the VRML scene graph is not part of the standard. Even if the ensemble VRML+Script permits the
interactive manipulation of the scene graph, there is no standard way of saving the result of the manipulation as, e.g.,
an updated scene graph. This is desastrous for all commercial applications where the client expresses his wishes by
manipulating a 3D scene, as in a furniture configurator, etc.

• VRML is a dead end: There is a strict separation between the VRML authoring application on the one hand and
the VRML viewer on the other. Even worse, the authoring tool for VRML, the world builder, restricts itself to
importing externally created meshes. This ruins any possibility to ever realize a feed-back from the VR world, that
is interactively explored on the client side, back to the shape creation process, that takes place way before in the
modeling application.

The successor of VRML is Extensible 3D, X3D, also administrated by the Web3D consortium [X3D04]. X3D is basically
VRML in XML syntax, which remedies another drawback of VRML, its complicated syntax that lead to fragile parsers.
XML is also the bridge from X3D to other standards from the world wide web consortium (W3C), such as SVG for 2D
drawings [SVG03]. Despite its re-design and modularization X3D pursues the same fundamental approach as VRML
and, thus, inherits most of its problems. The advantage of X3D over VRML was considered so negligible that still today
many tools have a VRML export but not exporter to X3D. The fact that VRML is a dead end is also a feature that can
be exploited for knowledge protection: A tesselated shape stored as IFS in VRML can not easily be used for any serious
further shape processing without applying a bit of reverse engineering. – The wider adoption of X3D appears to be
accelerating only recently, as 3D visualization is used more and more in industry for downstream applications.

http://www.w3c.org
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Newer 3D file formats for downstream applications. In 2000 the following proprietary approaches for internet-based
3D visualization existed1. Soon after 2000, when the internet hype was followed by disillusionment, some of the com-
panies disappeared, and others got merged and realized new business models that are less hyped but more sound. In any
case it is interesting to consider the question why these companies, and Web3D in general, failed to be a great success:

• Metastream is a proprietary compressed file format for the progressive transmission of high-quality triangle models
rather than complete scenes. Comprises model encoder and free downloadable viewer for product visualization.
• Blaxxun Contact is a tool for multi-user virtual worlds with member accounts, chat, message boards, avatar sup-

port, object ownership and trading, etc. The business idea was to create 3D shopping malls where customers could
walk about. The BS contact, one of the standard VRML viewers, now belongs to bitmanagement.

• Nemo is a VR authoring software which introduced the concept of behaviour graphs, with hundreds of pre-defined
behaviours that can be connected with routes to define the response to events without programming.
• Parallelgraphics offers the Cortona viewer with a number of much-needed extensions to VMRL, such as splines

and NURBS. The proprietary authoring application offers advanced scripting capabilities for 3D user manuals.
• Superscape offered the e-Visualizer as a very good-looking software renderer implemented in Java. Its great ad-

vantage is that it requires no installation procedure on the client side, and it works on any platform. The file format
is proprietary and it contains, e.g., subdivision surfaces for curved surface parts.

To orbit around a single consumer product or to visit a 3D world without any purpose or challenge is apparently not very
attractive. Visually and semantically richer, i.e., more expensive, VR can only be justified when it brings a concrete benefit,
such as in VR-based training, where students can not spoil expensive machinery (flight simulator), and design reviews in
industry or architecture: To build a real prototype for a design review is even more expensive than the visualization model,
and it takes longer to build.

The new trend is to exploit and re-use the original CAD models as a source to derive information for the other product-
related stages, called downstream applications: Printed manuals with automatically generated non-photorealistic illustra-
tions and exploded views, interactive animations for assembly and disassembly, maintenance training lessons, archival,
product history, feeding information systems for facility management in architecture, emergency plans, etc. Consequently
two of the the newer 3D file format initiatives to support downstream applications and interactive visualization were
initiated by the CAD industry.

The first initiative is JT Open, released by the JT Open consortium under the leadership of Unigraphics, now UGS
[JTO04]. It provides a downloadable interactive viewer that integrates also into office applications. Despite its name
the initiative is not open, and technical specifications are only available to members. The special feature is that JT
Open apparently permits to store also parametric information such as part/sub-part relations etc. The other initiative,
Universal 3D (U3D), comes from Intel, RightHemisphere, Adobe, and others. It permits to integrate 3D data directly
into .pdf documents [U3D04], the viewer is integrated with the Acrobat Reader. The U3D specification, which is publicly
available, contains also optimized rendering primitives called CLOD-meshes (for continuous level-of-detail, see section
4.1.6).

Besides visualization both formats appear to retain the option to attach higher-level, parametric information to the
entities in the scene. This flexibility permits to provide also future downstream applications with appropriate annotated
data. It is doubtful, though, whether either of the formats will mature to the point where they permit to exchange intelligent
parts between CAD systems. This would imply to solve the problems which STEP is working on since quite some time.

Commercial game engines. Only with the additional thrill of killing virtual enemies 3D has had its breakthrough on
the mass market. Collaborative virtual worlds have become extremely popular in the gaming scene. The most distinct
expression of the new sub-culture are LAN-parties where dozens or hundreds of gamers meet for a weekend to form
combat groups fighting against each other in cyberspace with ego-shooter types of games. Today computer games are the
‘killer application’ that drives the further development of 3D hardware and software. Games are marking the high-end
of interactive 3D to the point that high-end graphics workstations are using today graphics hardware that was originally
developed for gaming. The leading handful of cutting-edge computer games (see Fig. 1.8, right) are published primarily
to promote the respective underlying game engines, which are the main source of revenues for these companies.

Remarkably, the static environment in most games is so static that even with the biggest guns it is not possible to
shoot holes through the walls. The reason is that games heavily rely on pre-processed optimizations. Computing the
global illumination, hierarchical space partitioning, cell-and-portal visibility, analyzing critical paths, etc., is all very time
consuming, but it is indispensable for maintaining the mandatory 20 fps. – The revolutionary innovation of Halflife II,
released in 2004/2005, is that for the first time it is possible to heavily affect the static environment in an ego-shooter.

There is a trade-off between flexibility and quality: The changes to the game scenery may not invalidate the costly
pre-processing. But a changeable game world is a technical ingredient that can make a game much more interesting, and

1presented in a tutorial on 3D on the Web on the WWW9 conference in Amsterdam in 2000, together with Leif Kobbelt and Wolfgang Heidrich
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Coin clone of SGI OpenInventor Irrlicht game engine, shader support
OpenSG scene graph engine, cluster support Crystal Space game engine, shader support
OpenSceneGraph scene graph engine OGRE game engine, many features
Genesis 3D WildTangent open source release jMonkey Engine game engine in Java

Figure 1.9: Popular open source 3D engines, general purpose as well as for games.

his greater influence on the world makes the player virtually feel more powerful, which leads to greater engagement. –
Examples of this principle include popular games from the simulation genre:

• Parameterized car configurators make racing games more appealing with individually styled cars,
• the game The Sims permits to build up the every-day environment for a family of simulated characters,
• in the Tycoon series it is possible to put together railroad networks, or rollercoasters, and
• in SimCity the player can influence the evolving urbanization of a simulated developing society

by creating streets, buildings, infrastructure, and everything that makes up a complete city.

Changeability is the biggest asset of digital 3D. The complete changeability of all three-dimensional entities, may they
represent solid objects or animated characters, vegetation, furniture or industrial CAD datasets, is the greatest advantage
of the digital cyberspace and the virtual reality produced by a computer. This fact has been noted before [Gib84, the99],
but current software approaches, from computer games to Web3D, still do not realize this potential sufficiently.

The central question is: What is the meaning of changeability with respect to three-dimensional shapes? Better
understanding of high-level shape descriptions seems necessary in order to make descriptions more easily changeable.

The most advanced concepts available today for creating, editing, and improving shape are those in parametric CAD
systems for professional industrial design. To increase the level of changeability in computer games it may therefore be
advisable to integrate parametrics into 3D games. Parametrics open the door to powerful high-level changes to simulated
geometry. But in computer games usability is key, and parametrics for games must be different from those for CAD. It
is very inspiring to imagine in which ways parametric shape design might have to be adapted in order to make it usable
for games: Tools and parameters must be obvious, intuitive, responsive, and not too many of them may be offered at a
time. Shape modeling can probably benefit also drastically by adopting principles from game design. Furthermore the
availability of full shape modeling capabilites in a game engine would pose interesting technical challenges as it would
require partial updates of the pre-processed data, and to selectively redo the whole pre-processing pipeline at runtime.

3D Engines. The number of available 3D engines is absolutely amazing. The 3D engines database alone lists around
200 of them, commercial and free [Dev], see Fig. 1.9. Around 900 open source projects whose description contains
the keyword 3D rendering are hosted on sourceforge, and 400 of them contain also 3D modeling [Sou]. The different
projects vary greatly in purpose as well as in degree of maturity and developing activity. Some engines exist that can be
accessed on a high level using a scripting language, and others are only software libraries to facilitate the development of
applications on top of the two principal low-level 3D graphics APIs, DirectX and OpenGL [Dir, WND97].

Despite this apparent variety all the approaches share the same fundamental problem, the separation of modeling
from rendering. There are open source modeling packages like Blender or OpenCascade on the one hand, and dedicated
rendering engines like OpenSG or Java3D on the other. They offer a number of importers for the most common formats;
imported models are treated as anonymous objects, only with a bounding box, that can be inserted into a scene graph.

No sustainable file formats and no interoperable 3D software. It is an interesting question why, despite all the avail-
able tools, 3D is still not use as much as it could; why, for instance, not every software that has to do with real-world items
can also show the location of these items in their respective contexts. Why is not every storekeeping application provided
with an abstracted 3D interface to the individual shelves? When this is a productive means to keep track of huge virtual
stores in a computer game, why should it not help in practice? – A diligent review of various software applications might
very well reveal a huge number of options where 3D could greatly increase productivity.

Why not simply use the solid modeling library OpenCascade together with the scenegraph engine OpenSG to provide
business and office applications with a 3D visualization? Because there is no single such combination that fits for all
purposes. Two key properties are characteristic for 3D:

• The applicability of modeling+rendering for a great variety of different purposes, and
• the fact that interactive 3D resembles more executing an application, than playing an audio or video sequence.

The fractionization of 3D approaches, positively pluralistic, has become an obstacle today because the link between them
is missing: There is no general way to exchange interactive scenes, and the different ‘3D-players’ are not inter-operable.

http://www.coin3d.org/
http://irrlicht.sourceforge.net/
http://www.opensg.org/
http://crystal.sourceforge.net
http://openscenegraph.sourceforge.net/
http://www.ogre3d.org/
http://www.genesis3d.com/
http://www.jmonkeyengine.com/
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1.3 Modeling in Computer Graphics

The term modeling is used in computer graphics research not only for techniques concerning interactive shape design.
Articles from three different research areas are labeled with the same keyword ‘modeling’:

• shape representations are low-level methods to store surfaces or volumes in a digital computer,
• shape processing creates, converts between, and improves on these low-level representations, and
• shape design is on new ways for authoring or retouching shape more or less interactively.

Two other highly active areas of modeling are animation and simulation. They are less relevant for this thesis, though.

1.3.1 Low-Level Shape Representations: Lists of Primitives

In computer graphics, three-dimensional solid objects are usually described only in terms of their surface. The surface is
sufficient for rendering images as long as the light cannot enter the object, i.e., the material is not transparent or translucent
(like marble). For this reason a great number of different methods have been devised to represent in a digital computer
two-dimensional surfaces embedded in three-space. It is important to note that on the lowest level shape is almost always
represented by enumerating some sort of geometric shape constituents, or atomic shape elements. They are subsequently
referred to as geometric primitives, and will now be shortly described.

The following list gives a rough impression of the variety of common low-level shape representations. It is not meant
to be exhaustive or as a complete taxonomy, but just to highlight the kinds of data structures and operations that are
typically employed. They are also at the heart of all commercial, procedural or parametric, modeling systems.

• Constructive Solid Geometry (CSG)

Parameterized solids such as box, cone, sphere, cylinder, etc. are the leafs of the CSG tree. Its inner nodes represent
Boolean set operations: union, intersection, difference. This corresponds nicely with the objects and operations
used for building machines in classical engineering. CSG was enthusiastically employed since the 1970s, until
more and more freeform shapes were used in engineering, which are difficult to represent with finite CSG trees.

A CSG object can be represented in a straightforward way by a binary tree. It is built by setting primitives into the
scene. Successively a pair of objects is selected and a set operation is applied to combine them into one.

• Boundary representations (B-reps)

The closed surface of a solid, its boundary, can be partitioned into segments, the surface patches. Adjacent patches
meet along a common border curve, which induces on the surface the structure of an abstract graph that is locally
planar: the B-rep. Its vertices, edges, and faces have an attached embedding that maps them to 0D points, 1D
curves, and 2D patches embedded in three-space. The abstract B-rep can in principle be combined with any method
to represent patches and border curves, as long as it permits to keep the surface consistent (closed, orientable, ...).

The B-Rep graph is represented by enumerating the connectivity of vertices, edges, and faces, i.e., the incidence
relation. Sets of operators exist that permit to build up a B-rep successively, and to apply local modifications to
the graph as well as to its embedding. A B-rep can also be created by converting from, e.g., a CSG tree. Different
possibilites exist to represent the geometric embedding (patches). This is explained in detail in chapter 2.

• Parametric patches: Splines, NURBS, Bézier tensor product surfaces, Hermite-, Coons patches, etc.

Parametric freeform patches are smooth mappings R
2 → R

3, which makes it simple to generate explicit surface
points, but difficult to test whether a given point in R

3 belongs to the surface. The fundamentals of representing
parametric surface patches date back to the 1960’s and 1970’s. As the surface of most objects consists of more than
one patch it is most important to assert that adjacent patches meet smoothly along their borders. This was the reason
for developing the theory of geometric continuity (see the book from Gerald Farin [Far02]).

Smooth patches are typically represented by a couple of control points (control vertices, CVs). They use to be
arranged in a regular grid, triangular or quadrilateral (tensor-product patches). The CV grid is a convenient fashion
of storing the coefficients of piecewise polynomial (or rational) functions. Basic operations are to split a patch in
two, to stitch two patches together, and to add a row or column of CVs using degree elevation.

• Triangle meshes (simplicial complexes, triangle soups)

The simplest patch type is a linear surface, a plane, as specified by three points in R
3. Since triangles are so simple,

more of them are needed, usually many more. But any type of surface can be converted to a triangle mesh simply
by sampling and connecting nearby sample points. A triangle mesh is typically represented by a list of vertices and
a list of index triplets, one for each triangle. A set of triangles floating in space, a triangle soup, is the ‘smallest
common denominator’ of a surface. Triangle meshes are the dominant surface representation today because
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• the graphics hardware is optimized for rendering triangles at high speed, and
• shape acquisition, 3D scanning, usually produces dense triangle meshes.

Starting from a generic base mesh (tetrahedron), a triangle mesh can also be built up iteratively: A vertex split
applied to a vertex turns it to a pair of vertices connected by an edge, unfolding one triangle on either side of it.

• Point clouds

Points are gradually superseding triangles as the dominant low-level shape representation. They are even more basic
and simpler to create than triangles. The resolution of a point cloud can be adjusted by simply “forgetting” some
of the points, without the overhead of maintaining triangle connectivity. The original work from Pfister, who found
a way to render point clouds efficiently [PG04], has triggered enormous research interest, and a wealth of efficient
techniques for storing, processing, transmitting, and rendering point clouds have been developed [PG04, ADG∗03].

A point cloud is represented by a long list of coordinate triplets. The surface normals are not stored explicitly but
derived from the cloud by principal component analysis (PCA) of the local covariance matrix of the surface points.

• Implicit surfaces

An implicit surface is defined by a function R
3→ R that permits to check whether a point belongs to the surface.

The surface is defined as the zero-set of the function. Every surface can be converted to implicit form, for instance
as the signed distance function: It is > 0 above and < 0 below the surface. Generating explicit points on the surface
is more difficult than with parametric patches, but it is usually simpler to intersect a ray with a surface when it is in
implicit form (e.g., a sphere).

Implicit representations include metaballs, points with a spherical exponential power field blending close spheres
together, and also the blend tree where, similar to a CSG tree, implicit primitives in the leafs are successively
combined by various possible blending functions [BBB∗97]. Many other implicit representations exist, just to
mention radial basis functions, the partition of unity implicits, and skin surfaces [CBC∗01, OBA∗03, CDES01]

• Volumetric Models

Similar to implicit functions, volumetric objects are defined by a density function R
3→ R. It can be interpreted as

the opacity of the volume, like the density of tissue recorded by computer tomography. The regular sampling of
a volumetric function is memory intensive: A subdivided cube with 6n2 quads on its surface contains n3 volume
elements (voxels) in its interior. Density values can also be mapped to different colors. To render a volume requires
for each pixel to integrate this color/density along the ray through the volume. With programmable graphics hard-
ware this is possible at interactive rates [EKE01]. Hierarchical or irregular (tetrahedral) volume meshes can be more
memory efficient with variably varying data. They can be ray traced using graphics hardware as well [WMKE04].

Besides regular or irregular sampling, volumetric models can also be synthesized by combining implicit/density
functions. A notable example is the F-rep framework that offers a number of volumetric primitives, for instance
trivariate (volumetric) patches [PA04, SPS04], that can be combined in different ways, e.g., using set operations.

• Multi-resolution surfaces, progressive meshes, and subdivision surfaces

The shape representations presented so far all consist of certain geometric primitives together with shape operations
to manipulate the primitives. The operations may also be applied in a very schematic way: A quadrangle is replaced
by four smaller quads simply by inserting and connecting a vertex on every edge and face. Similarly a triangle can
be replaced by four smaller triangles. Schematic repetition of refinement operations permits to predict the structure
of the result; when suitably defined, a smooth surface results in the limit. – By re-sampling a given triangle mesh,
the triangles can be piecewise re-arranged to resemble a multiply subdivided mesh. This subdivision connectivity
then permits to “undo” the refinement, i.e., to coarsen the surface, and to refine it again when needed.

But note that the operations of any shape representation can be applied schematically. In a similar fashion, it is
possible to define multiresolution CGS trees, B-reps, patches, point clouds, implicits, or volumes. Such generalized
multiresolution shapes are sometimes also called progressive.

• VRML as an example of a scene graph

A scene graph is a tree whose nodes are shapes or affine transformations. Further node types are material, camera,
light source, background texture, and also behaviour related types such as sensor and interpolator. A node is defined
by a number of fields, whose values can be a single number, a string, 3D vector, node, etc., or a whole array, such
as the vertex positions and indices of an IFS or the children of a transformation. By using DEF/ROUTE the value
of a timer can be routed to an interpolator node that smoothly and periodically interpolates between two sets of 3D
positions of an indexed face set representing, e.g., a swimming fish. With DEF/USE the same node can be inserted
multiple times in the scene graph (reference objects), which turns it effectively into a DAG.
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Shape descriptions: Objects versus operations. One way to look at shape is the database view: Any given 3D object,
in either of the shape representations mentioned above, could easily be stored in a relational database. Every type of
geometric primitive, point, triangle, or NURBS patch, can be mapped to a database record containing only a few Booleans,
integers, floats, and strings. A list of such records, a database table, can represent any 3D object then. – Unlike the record
entries in an address database, however, entries in the records of a shape database are usually not independent. Entries in
different records are related by rules, but these rules are not represented in the database: A cloud of points on a sphere or
a number of coplanar triangles can be represented much more efficiently.

The last example, VRML, illustrates that the (hierarchical) database concept is indeed used in computer graphics.
VRML goes beyond a simple relational table, though: The DEF/ROUTE concept permits to relate fields of different nodes
by expressions, so that dependencies can be explicitly formulated. But unfortunately, VRML is inconsequent in that it
does not permit to express those dependencies that are needed so much: shape dependencies.

A solution comes from an alternative view that emphasizes the importance of the shape operations over the data
records. This is illustrated by the example of multiresolution surfaces which, with enormous success, replace data by
sequences of operations. A multi-resolution surface is not a static piece of data; it is data plus an algorithm to coarsen or
refine the surface resolution. This dynamification of static data was the catalysator for a whole class of new algorithms to
analyse and process shapes.

1.3.2 Shape Processing

The variety of existing shape representations from the last chapter suggests that each of them has its strengths and weak-
nesses. The representation is chosen as a function of the data available, their purpose, and the available algorithms.
Furthermore all kinds of conversions are possible, and needed, from the triangulation of (implicit) iso-surfaces to the local
implicitization of point clouds. This leads to the very hot research area of geometry processing. It is just as rich as it
is interesting as, e.g., documented in the proceeding of the Symposium on Geometry Processing that was held 2003 in
Aachen, Germany:

• accurate re-sampling with guaranteed Hausdorff distance, or with mesh regularization [BO03, SG03]
• signal processing on surfaces, multiresolution analysis, and mesh encoding [BM03, SCOT03]
• data structures for non-manifold meshes and abstract simplicial complexes [FH03]
• recovering features: repairing scanning artefacts on chamfered sharp edges (creases) [AFRS03]
• point clouds: statistical rendering, and ray intersection using a local distance field [KV03, AA03]
• conformal surface parametrizations that preserve angles and scale distances [GY03]
• voxelization by computing the distance field with respect to the max-norm (l∞-norm) [VKK∗03]
• mesh repair by hole filling, re-triangulation, and fairing [Lie03]
• alternative surface representations: geometry images as a form of shape textures [LHSW03, SWG∗03]

The use of shape features in geometry processing. It is important to realize that all methods for shape processing
implicitly speculate about the ‘true shape’ of an object. Some of the methods are solely based on phenomena (‘most
objects exhibit flat surface regions’), and others are technology driven: Shape features are those shape elements for which
there is a chance to recognize them automatically, like flat parts, sharp creases, regions with constant curvature, etc. But
things like symmetry or linear sequence can be features of a shape as well; but since they are more abstract they are much
more difficult to find and, when found, more difficult to store.

The difficulties of shape recognition in general have been mentioned in the context of shape matching. One area where
feature recognition is applied very successfully, however, is reverse engineering. It uses a feature extraction process that
partitions the shape into surface segments. These features are then mapped to corresponding features in a parametric
modeling system, and then the frozen scanned 3D object gains its life back: Holes for bolts can be slightly moved, the
radius of the bevel can be adjusted, etc. [Kre00]. The fact that reverse engineering works well for industrial engineering
is obviously tightly related to the fact that this domain uses only the aforementioned limited set of modeling operations.
But note that, still, parametrics capture only part of the design intent: To recognize a ‘bevel’ feature in a mesh is fine, but
it would even be greater to find out that two different bevels have the same radius.

Signal processing on surfaces. A point of view that can be very useful for mesh processing is to understand a surface
as a two-dimensional signal. The 2D signal processing approach is especially successful for image processing, where the
discrete cosine transform (DCT) is an efficient device for the transformation of an image into the frequency domain. In
frequency space much higher compression ratios can be achieved with respect to the same visual degradation [jpe00]. Also
local retouche tools such as Gaussian smoothing, edge detection, and embossing are based on signal processing. Signal
theory was also the theoretical device that enabled the great success of digital audio and the compact disc (CD). Fast
digital signal processing (DSP) chips permit to apply all kinds of audio effects, from flanger and ... to coding/decoding.
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The signal processing view has also its limits, though. This is revealed just by the analogy between shape and images
or audio: There is a difference between music and an audio signal, which is very much like the difference between
shape and a surface signal. Music is not composed by enumerating audio samples; there is an unlimited number of
different arrangements, or cover versions, of the ‘same’ song. Both aspects are also reflected on the technical level, as the
difference between MIDI signals and sound samples: The audio signal is a complex mixture of the sound from different
musical instruments, and each of the instruments is steered by a stream of musical notes arriving (in case of electronic
instruments) over the MIDI bus. And it is just this ensemble of all notes for all instruments, the musical score, written
down by a composer, which determines the identity of a piece of music.

From music back to shape, signal processing on geometry permits to apply retouche tools and editing effects to a
shape. But this does not reveal the shape either: Effects are applied only to improve an already existing signal. Shape
is created physically using tools like hammer and chisel, saw and drill, welding and casting. The analogon to MIDI on
shapes would be the commands sent to a digital shape tool, e.g., a CNC milling machine. It is therefore interesting to see
which shape editing tools have been developed.

1.3.3 Interactive Shape Design

The previous subsections have provided the prerequisites for designing shape interactively: Methods to store volumes and
surfaces in a digital computer, and tools to operate on and to process, i.e., manipulate, these surfaces. From a formal point
of view sculpting only means to edit the geometric and topological relations between shape primitives. But from an artistic
point of view all that is perceived is the editing operations; the details of the underlying low-level shape representation are
completely irrelevant for the artist. Interesting is only which kinds of editing operations it supports, and the features and
properties of the resulting surfaces.

Interactive shape design therefore implies a change of perspective: Not the representation of shape is important but
what can be done with it. The emphasis on shape operations is an immediate consequence of design as a process where
a designer is searching her way through design space, i.e., the space of all possible solution shapes. – This is of course
directly related to the shape description problem from the introduction: Which sort of operations would permit to go very
straight the way from problem to solution in design space, for a particular class of shapes?

In the following a rough overview will be given over the variety of existing techniques for shape design. The main
reason for this variety is, of course, that all such approaches need to integrate three different things: A shape representation,
shape operations, and a design metaphor. This makes for a great number of possible combinations.

Volumetric sculpting and digital clay. The fundamental dichotomy between the continuous and the discrete is part of
the history of shape design from its very beginning: Probably even the first humans have used both stones and clay to give
shape to their ideas. In any case, a piece of clay is perceived as one of the most basic methods for creating shape.

A digital clay metaphor is the idea behind the Kizamu system [PF01]. It uses an adaptively sampled distance field
(ADF), essentially a large octree (up to level 10) of distance values. They can be integrated to obtain a continuous distance
field to a surface. The distance function permits, e.g., a sculpting tool to follow the surface in a prescribed distance. Tool
paths are Bézier curves, which can therefore be edited, and also scripted, and re-played in high accuracy. – The ADF very
much smoothens out sharp edges of meshes converted to this volumetric representation.

Marie-Paule Cani and her collegues focus on practical volumetric sculpting in [FCG99], also using an implicit surface
defined by a regular volumetric grid. Their emphasis is on the sculpture metaphor and the tools for sculpting: Material
deposit with a virtual toothpaste, a (soft) eraser to remove material, a (soft) surface painter, and futhermore small objects
for imprinting stamps on the surface. To support design exploration, 200 undo-steps are supported, by storing each time a
snapshot of the complete model in a separate file: There is no reasonable set of invertible elementary operations.

Another volumetric grid approach is from Hong Qin and Jin Hua. The implicit surface is given through a trivariate
scalar-valued B-spline s(u,v,w) =

∑l−1
i=0

∑m−1
j=0

∑n−1
k=0 αi jkBi(u)Cj(v)Dk(w) with a grid of control scalars αi jk. The surface

can be evalued fast enough for haptic feedback with the high haptic frame rate of at least 1000 Hz. Sculpting on the level
of individual volume cells with a PHANToM device becomes possible with this approach, on the price of heavy aliasing
artifacts. The detailed editing operations resemble very much three-dimensional bitmap editing: A chiseling operation to
locally add/remove one or two voxel layers (embossing), volumetric copy and paste, and inflation and deflation of one
surface voxel layer. Moving and bending on volume cells can be thought of as ‘voxel switching macros’.

The great problem of regular volumetric grids is that aliasing artifacts are unavoidable, e.g., when converting a mesh to
it. Axis-aligned cubic boxes are fine, but a regular pentagonal prism is a problem; worst are slight rotations of axis-aligned
shapes. Aliasing can be alleviated by using a surface representation with built-in smoothing, which is the motivation for
employing the level set method as did Museth et al. [MBWB02]. The surface is then the result of a partial differential
equation (PDE) from a speed function defined on about 2563 ≈ 16 M voxels. To reduce aliasing artifacts the implicit
function is converted back to a mesh using marching cubes on a denser grid.
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Alternative volumetric approaches. One way to avoid the aliasing issue is by a hybrid representation combining the
precision of meshes and the blending power of implicit surfaces. The surface flow from Duan, Hua, and Qin [DHQed]
embeds a mesh in a distance field and solves a local PDE iteratively for smoothing and blending shapes. The distance field
nevertheless permits for the usual volumetric operations such as drilling, sketching, cutting, and even Boolean operations.

Consequent pursuit of this idea leads to directly warping the space that the model is embedded in. Chua and Neumann
use in [CN00] a volumetric free-form deformation (FFD) with a grid of 4 · 4 · 4 = 64 spline CVs that define a mapping
R

3→ R
3. They also propose a hardware-supported evaluation of the spatial deformation, which was not yet possible in

2000, but should be no problem today with the programmable vertex and pixel shaders.
Another variation of this idea is to use only local space warps for shape modeling. The ingenious Twister approach

from Llamas, Kim, Rossignac et al. [LKG∗03] introduces one single well-defined operation that can simultaneously
translate, twist (screw), and bend a shape. It has two very intuitive parameters, namely a start and an end coordinate
frame plus a radius of influence; the latter defines the extend of the space deformation leading from one frame to the other.
Plausibility and predictability are considered more important than, e.g., physical correctness. Interactively executed warps
can be logged, scripted, and replayed offline in higher precision. As input device one – or two, for a two-handed twist –
Polhemus trackers are used for a grab-and-drag metaphor with a moving tripod gizmo.

An alternative to warping space is to use volumetric primitives. The idea of Pizer and Thall is to reverse the process of
skeletonization and to use it for modeling [PT00, TPF00]. The medial axis of a solid object is the locus of the midpoints of
all maximal spheres inscribed in the object (see section 4.5.5). The M-rep representation employs essentially this skeleton
for shape modeling, attributing a sphere radius to each skeleton point. Supported medial axis primitives are quad grids,
tubes, and slices plus distance to the boundary.

A simpler set of volumetric primitives is introduced by Edelsbrunner and Cheng, namely skin surfaces [Ede99,
CDES01], superficially similar to Blinn’s metaballs [Bli82]. A skin surface is specified through a finite set of weighted
points (i.e., spheres) that are combined to a single surface by a tangent continuous implicit blend. A skin surface is free
of self-intersections and maintains a consistent overall topology. Every closed surface can be approximated efficiently
with a skin surface, although sharp edges (creases) pose a certain problem. The skin varies continuously with points and
weights, which is a very desirable property. Efficient skin triangulation algorithms exist.

Particle- and point-based techniques. The classical article on direct shape manipulation with oriented particles is
[WH94] from Witkin and Heckbert from 1994. The problem is that primitive shapes such as (implicit) super-quadrics are
controlled by equations with un-intuitive parameters. Particles have a dual use here: They are generated for rendering
the implicit shape, but they can also be used as gizmos for interactively pulling and pushing points on the surface to the
desired form, for instance to adjust the ends of an implicitly defined cylinder.

This idea was extended in 2002 by Hart, Bachta and others [HBJF02]. They note that moving a particle on the surface
can have different meanings, e.g., to move or to scale the shape. They propose a set of adapters, each of which specifies
a way of accomodating a position change of a surface particle by changing some parameters in the implicit equation. –
They also note that ‘implicits are slippery’: pulling a particle is simpler than pushing it. In a subsequent article Su and
Hart present a programmable particle system C++-framework as a ‘Renderman for particles’ [SH05]. They differentiate
between attributes (data), behaviours (motion), and shader (rendering) of a particle type. Examples include particles that
wander towards shape singularities, silhouette particles, meshing particles, and clustering particles.

The Skin approach from Markosian et al. [MCCH99] uses conventional polyhedral objects (spheres, boxes, cylinders,
meshes) as skeletons. They guide the interactive growing of a combined particle/subdivision surface that approximately
keeps at a certain distance from the (union of the) skeleton elements. Besides guiding the growth the user can adjust the
offset distance from skeleton elements, and he may draw/edit crease curves in the surface.

The modern form of oriented particles are point clouds. A good overview of the techniques related to point clouds
is given by Kobbelt and Botsch in [KB05]: The local covariance matrix from the k-nearest neighbours to determine the
surface normal, elliptical and EWA splats for rendering, moving least squares (MLS) with a Gaussian filter kernel as a
smooth local surface approximation, resampling and particle repulsion, volumetric FFD for sculpting, and many more.

Modeling operations for point clouds are exemplified in Pointshop3D from Zwicker et al. [ZPKG02]. The idea behind
it is a Photoshop for point clouds, and correspondingly the central concept is a brush, a selected rectangular surface patch
to work on. The operations are filtering, carving, normal displacements, direct surface painting, and applying a texture.
The technical foundations are a fast surface resampling method and a ‘minimum distortion’ parametrization.

The idea to treat point clouds like bitmap images is further elaborated by Pauly et al. in [PKKG03b]. The MLS
method defines a surface locally by fitting a reference plane that minimizes the sum of the squared distances from points
in the cloud, weighted by a Gaussian kernel. This permits to (locally) derive a signed distance function to the surface
and together with a kd-tree this even allows for closest point queries: Which surface point is closest to a given p ∈ R

3?
This, in turn, is the basis not only for collistion detection and interactive Boolean operations, but also for all sorts of local
deformation tools that can even resolve surface self-intersections. – Updating a kd-tree is a problem, though.
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Simulations and physics-based sculpting. One strand of research is concerned with the idea that a faithful, or at least
plausible, simulation of the physical reality would make for more intuitive shape modeling. In 1995 Hong Qin presented
dynamic nurbs [QT95] as a free-form representation with built-in physical properties. Users are urged to formulate design
intent as forces, explicitly incorporating time, so that the surface can converge to the desired shape. The idea was later
extended to FEM-based dynamic subdivision [MQV98, MQV00]. The finite element method (FEM) was directly built in
to interpolatory butterfly subdivision so that the surface deformes in an intuitive way when applying forces to CVs.

The Dynasoar approach, which stands for DYNAmic Solid Objects of ARbitrary topology, was developed by Qin and
McDonnel. It takes the idea further by integrating a mass-and-spring system with volumetric Catmull/Clark subdivision
solids [MQW01, MQ02, McD03]. The problem with direct volumetric sculpting is the large number of degrees of free-
dom. Physical simulation (in principle) permits to change many DOFs at a time, and Qin and McDonnel argue that in
some sense the ‘right’ parameters are exposed to the user. Modeling is done with a rope tool to pull surface points, but
also with more conventional volumetric extrusion and cell removal with an option to fixate parts.

Subdivision surfaces furthermore offer the possibility to spread the simulation over multiple scales. Finite elements
are combined with hierarchical multiresolution subdivision solids by Capell et al. in [CGC∗02]. They integrate the kinetic
and potential energy per volume cell to obtain elastic deformable trivariate solids of the McCracken/Joy (catmull/clark)
type. They are interested on pure simulation (falling rubber duck), so there are no modeling operations as such.

A large body of research on deformable models is motivated by surgical simulations. Brown et al., for instance, use a
direct (non-tetrahedral) volumetric mass-spring system to simulate viscoelasticity [BSB∗01], together with a sphere tree
to detect collisions of the deforming surfaces. The primary surgical modeling operation is to cut tissue, which requires
resampling along the cut, and sewing tissue together. Both operations are supported by this approach. The precise target
application is microsurgery, where very small instruments are manipulated indirectly. This implies that no force feedback
needs to be simulated, which would be great hurdle due to the required high ‘haptic frame rate’. Haptic feedback is
possible only with a consequent multi-resolution approach such as, e.g., presented by Debunne et al. in [DDCB01]. They
manage multiple quasi-uniform tetrahedral meshes, at different levels of resolution, which are quickly synthesized at the
position where the surgery tool touches the tissue. The highly optimized volumetric meshing scheme unfortunately makes
neighbourhood variations, i.e., cutting tissue, very complicated. They are not supported by this approach.

Editing fair triangle meshes and multiresolution surfaces. The classical article on variational sculpting with triangle
meshes is [WW94] from Witkin and Welch in 1994. They developed a toolbox with basic techniques, e.g., for fairing
the surface by minimizing the principal curvatures, a local parametrization scheme, and a resampling method to assert the
quality of the triangulation. Modeling is done with external shape controllers, e.g., a sphere, or a cylindrical offset tool
to create pipes. Topology changes, surface cut and merge, is done along curves embedded in the surface. Each modeling
step is followed by a fairing step to maintain a fair surface quality and good triangle aspect ratios.

With the advent of multiresolution analysis and ‘signal processing on meshes’ it became possible to differentiate
frequency bands on a surface. A natural way to exploit this for modeling leads to the concept of multiresolution mesh
modeling. Major papers are [ZSS97] from Zorin et al. and [KCVS98] from Kobbelt et al. The latter permits to manipulate
and deform a base mesh, and to re-apply the details from the simplification hierarchy, while the first uses smoothing and
then subdivision to obtain a finer resolution to apply small-scale detail to. Such techniques were the basis for the normal
meshes approach for patch-wise rendering of displaced surfaces from Guskov et al., and then to the representation of shape
as geometry images from Gu, Gortler, and Hoppe [GVSS00, GGH02]. Both representations can be rendered efficiently
using programmable graphics hardware.

In the context of modeling, the multiresolution idea was further explored by Kobbelt et al. in the ‘lava lamp’ approach
[KBS00]. It uses a two-band representation where the low frequency part can be manipulated with a number of control
ellipsoid over which a thin membrane is spanned. Its triangulation is identical to the triangulation of a simplified shape,
to which the detail coefficient can be readily re-applied. This was further elaborated by Kobbelt and Botsch in [BK04] for
fair multiresolution modeling with boundary constraints. A closed path in the mesh defines the region of interest (ROI).
Within the ROI the mesh can be edited directly by pulling a handle, attached to a selectable handle region, with adjustable
stiffness and boundary smoothness via sliders, and fullness/pointedness through the size of the handle region.

Another way to use multiresolution for modeling is by shape templates on different scales. In their article [LLS01]
Litke, Levin, and Schroeder fit a low-resolution Catmull/Clark surface (standard mannequin head) to a high-resolution
input mesh (laser-scan of a head) by quasi-interpolation, which yields a Catmull/Clark surface with detail coefficients. The
correspondence allows to manipulate the high-res triangle mesh by manipulating the low-res subdivision control mesh.
Applications are embossing, by changing detail coefficients only locally, and progressive transmission of the details while
the smooth subdivision surface is already being displayed. In [BMBZ02] Biermann et al. have shown that in a similar
fashion also cut + paste editing of multiresolution surfaces is possible. They point out the problem to determine which
displacements from the source region constitute the actual feature: A carving on a curved surface should be flattened out,
and a writing on rock is hard to distinguish from the noisy rock surface.
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Sketch-based techniques. With respect to usability, technology-driven modeling approaches are very questionable,
where the user is urged to create and manipulate shape by directly editing the DOFs of the low-level shape representation.
A notable example are NURBS and the extensive CV-editing they require.

In the article [ZHH96] on their classical SKETCH approach, Zeleznik and his collegues point out the “dichotomy
of how easy it is to depict a 3D object with just a pencil and paper, and how hard it is to model the same object using
a multithousand dollar workstation.”. Consequently, they propose to use multi-stroke gestures for modeling CSG-like
assemblies of primitives such as cylinder, cube, etc. Placement constraints are to be suggested in the drawing so that the
design intent can be inferred automatically by the computer. But ambiguities are still the main problem of this approach
and, thus, Zeleznik and his collegues propose to extend the set of basic gestures by additional context-sensitive gestures,
whose effect depends on the object the cursor is over.

There is again a raising interest in the long-standing research domain of sketch-based techniques. This is documented,
e.g., by the First Eurographics Workshop on Sketch-Based Interfaces and Modeling 2004 in Grenoble [HPS04]. Varley
et al., for example, pointed out there the fact that also “CAD engineers write ideas on paper”. CAD is good for the
exact realization of an idea, but not for developing ideas in the first place. They also mention some classical problems of
sketch-based methods: At junctions, which lines come nearer, which go farther? Which edges are supposed to be parallel
in 3D? Which lines are convex/concave? Even if results are acceptable with agglomerations of CSG-like primitives, the
general approach is difficult to extend so that it handles also curved free-form geometry. Varley et al. propose to first draw
polyhedral objects, and then to draw freeform curves on top of them in a second stage [VTMH04].

The Teddy system from Igarashi et al. [IMT99] lets first-time users create free-form models within minutes. Its
minimalistic user interface does not provide CVs or WIMP-style controls (for Window, Icon, Menu, Pointer). Instead it
uses only multi-stroke gestures. Genus 0-objects are created by drawing their silhouette that is automatically inflated. The
same way extrusions are added and cavities are dug. Parts can be cut away, edges may be sharpened or smoothed out, and
the whole shape can be bent relative to a reference stroke. – The system from Karpenko et al. [KHR02] uses not a mesh like
Teddy but inflates closed strokes in the image plane with variational implicits (’blobs’). The depth of a blob can be adjusted
by dragging its shadow on the ground. Implicit blobs can be smoothly blended while still maintaining a discrete ‘blob
hierarchy’. This permits for hierarchical animations and for operations like mirroring a sub-graph (’symmetrization’).

A reduction of a shape to a few essential pencil strokes is the goal of non-photorealistic rendering (NPR). Nealen et
al. therefore note that shape sketching can be understood as ’inverse NPR’ [NSACO05]. This suggests an interpretation
of pencil strokes as a contour (silhouette), or as a feature line (crease) within the surface. Strokes can therefore be used in
their system for a (multiresolution) deformation of the object silhouette (which acts as the reference stroke), to sketch a
sharp crease, or to sketch a smooth ridge/ravine in the surface.

Surface drawing, tangible interfaces Deemed as even more intuitive than sketch-based modeling is direct drawing of
shape in space. The hypothesis is that spatial manipulation enhances shape understanding. The Surface Drawing approach
from Schkolne et al. [SPS01] uses see-through glasses, a cyberglove, and tangible devices with a free 3D surface painting
metaphor: The hand is for drawing surface strokes and moving them, a pair of kitchen tongs for scaling, an eraser tool
is of squeezable rubber, and a flexible magnet tool deforms. Extensive user studies have revealed that to some extent,
precision modeling and intuitive handling are opposites: Obtaining precision requires more complicated tools. Drawing
a straight line in free space is more difficult than on a table. – Wong, Lau, and Ma also employ a cyberglove and use it
for surface editing with a magic B-spline control hand [WLM00]. The palm of the hand is modeled as a parametric patch
which is then projected on an object, so that the hand deformation directly translates to an object deformation.

The FreeDrawer (Avango) toolkit from Wesche and Seidel [WS01] attempts at obtaining CAD-like precision by
reducing the number of DOFs. The user can not draw surfaces but only a network of curves in space using a tracked
stylus. The basic modeling operation is to attach a new curve to an existing curve, and to edit (smooth/sharpen/move)
a curve within an adjustable 1d-ROI using a ‘flat-iron metaphor’. The curve network is interpolated with a ‘Kuriyama’
surface (n-sided blend), to which a Catmull/Clark surface is fitted. This assures a smooth transition between adjacent
patches. Tool selection is done with an innovative arrow-direction 3D popup menu.

Surface drawing is also possible without tangible tools, as demonstrated by the Relief system from Bourguignon et al.
[BCCD04]. In the spirit of shape from shading they consider the image plane as a height field to paint on: A closed stroke
path defines the ROI for drawing, and the shading controls the (relative) depth: black pushes, white pulls the surface.
Absolute depth is propagated from the existing surfaces within the ROI. A problem seems to be the missing continuous
feedback: Apparently it is difficult to obtain a smooth surface with discontinuous strokes. An attempt to alleviate this is
by a frisket mode for masking out depth-irrelevant regions of the existing surface.

Another solution to this problem is proposed by Lawrence and Funkhouser [LF03], namely to paint only the velocity
of the depth rather than the depth value itself. This permits to use different colors to specify displacements in different
directions: a propagating velocity in surface normal direction, an advective velocity in a constant direction, and a curvature
dependent velocity again in normal direction, but in a speed that is proportional to the local surface curvature.
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A completely different, or maybe complementary, way to tackle the 3D interface problem is to compensate for the
shortcomings of the tangible interface hardware by advanced graphical means. This leads to research in 3D graphical
user interfaces (3D-GUI). A classical example is the approach from Grimm et al. [GP95] of a GUI for solid modeling.
She points out the inconsistency of adjusting the parameters of 3D operations with a 2D WIMP-style GUI (sliders, curve
editors, program code). Much better is to use advanced gizmos, i.e., whole parameterized sub-constructions, that can adapt
themselves to the location where the operation they stand for is to be applied. Grimm also notes some basic principles of
3D tool design. This is, most notably, (i) that an object and a tool gizmo should exist in the same space, (ii) that a gizmo
provides suggestive handles, and (iii) that the effect of the operation should follow the expectations of the user rather
than verbatim the tool parameters: A falsely located/oriented slider in 3D is just as pointless as a 2D slider; intransparent
parameters do not automatically become clear just because the controls live in 3D.

Boolean operations and the interactive assembly of complex objects. The choice of the particular representation
for solid objects has great impact on the computational cost for CSG. A representation that allowed for interactive CSG
already in 1997 was presented by Rappoport and Spitz in [RS97]. Interestingly, their decomposition of polyhedral solids
into convex differences aggregates (CDA) has also been extensively used in recent computer games. In games terminology
a CDA is a set of brushes. Each brush consists of a positive cell and, possibly, a number of negative cells. Each negative
cell of a brush needs to be contained within the positive cell. A cell is just a convex solid polyhedron, i.e., the intersection
of a finite number of half-spaces, each defined by an oriented plane in 3D. A brush can simply be rendered using the
OpenGL stencil buffer to mask out negative faces contained within the faces of the positive cell.

The CDA is obtained from a special form of CSG tree, one that contains only convex polyhedra. It can be re-arranged
in a way that every negative cell is the intersection of two convex polyhedra. Crucial for interactivity is the fact that
such an intersection can be computed very efficiently via the convex hull of the dual polyhedron, as demonstrated by
Preparata and Shamos: The vertices (a,b,c) of the dual polyhedron are obtained from the brush plane equations in the
form ax+by+cz = 1. The intersection points are the plane equations of the convex hull of these vertices, transferred back
to the primal space via basically the same mapping [PS85]. – A particularly appealing option with interactive CSG is that
once the tree is set up, the resulting aggregate shape can be re-computed offline with higher-resolution primitives.

A more fashionable shape representation is the point cloud. Interactive Boolean operations were presented by Adams
and Dutré in 2003 [AD03]. They sort the surfels (surf ace elements) into an octree for a fast in/out/intersecting classifica-
tion with respect to the respective other object. Along sharp creases the surface is resampled to improve the crease quality.
For the difference and intersection of a helix and a mannequin head, each with about 350 K surfels, they report a rate of 2
fps on a P4 1.6 GHz with a Geforce 4.

A more comprehensive framework of techniques for shape cut-and-paste is modeling by example presented by Funk-
houser et al. in 2004 [FKS∗04]. It comprises (i) interactive segmentation of 3D surfaces, (ii) shape-based search to find
3D models with parts matching a query, and (iii) the composition of parts to form new models. Their technique is easy
to learn and able to produce highly detailed geometric models. It permits, e.g., to repair a statue with a missing arm by
cutting an arm from another statue, and gluing it to the first, in a predicable, intuitive way. The idea is that the conceptual
design for new models comes from the user, while the geometric details are provided by the models in the database.

Procedural shape modeling. Many shapes are generated by distinct, recognizable creation rules, e.g., from the repeti-
tion of the same environmental or genetic dispositions. This has implications for the design, for instance, of vegetation:
No one would reasonably build a tree by modeling every twig and leaf. Trees are generated instead automatically with
grammars and L-systems. Tree growth can be influenced, though. Prusinkiewicz et al. have shown extremely interesting
results with the growth of a bush that was constrained to remain within the surface of, e.g., a cow shape [PJM94].

Other shapes that are obviously procedural in nature are rock, berry, mushrooms, and tentacles. Velho et al. have
generated them algorithmically with modified subdivision surfaces [VPBY02]. To certain seed structures they apply a
few times subdivision rules with detail displacements, followed by the original rules to obtain a smooth surface. Crucial is
to define/obtain the detail coefficients properly, e.g., by computing offsets from a smooth surface to a fine input mesh by
quasi-interpolation. Surface characteristics can also be mixed: With a surface characteristics painting system one might
create a berry with a rock-like surface – or vice versa. With lazy evaluation it becomes even infinitely zoomable.

Procedural shape synthesis has recently received much attention because programmable graphics hardware permits
to synthesize detail just at the very last stage of output, i.e., during vertex transformation or even rasterization. Great
results can apparently be achieved by inflating triangles to triangular prisms that are then volumetrically raytraced by
a pixel shader. The surface mesostructure (fine scale surface geometry) can be rendered with generalized displacement
maps presented by Wang, Tong, Lin, Hu, Guo, and Shum in 2004 [WTL∗04]. Their great feature is that they support also
non-heightfield mesostructure, such as chain links or rough tree bark, and this even with global illumination. – Lacz and
Hart have already presented the first results of their efforts to port great parts of an L-system for generating plants on a
GPU, following a parallelized turtle graphics approach [LH04].
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1.3.4 Generative Shape Design

The previous sections could only briefly survey the impressive wealth of innovative ideas, of the stunning creativity as well
as the sound engineering that have been invested in representing and processing shape, as well as in shape design, during
the last twenty years of computer graphics research. So much is solved, but still there appears to be a feeling that 3D
graphics has not yet ‘taken off’ the way it deserves. Quite remarkably, the sub-title of the Eurographics 2005 conference
is The evolution of graphics: Where to next? – Nobody knows, of course, but indications exist that procedural techniques
for generating and manipulating shape are among the candidates for a new major mainstream strand in computer graphics.

The attribute ‘procedural’, however, is a bit vague, since this term is used in too many different contexts. An attribte
that is a bit less vague is ‘generative’ which, in the context of shape, can be informally defined as follows.

Definition 1.1 (Generative Shape and the Principle of Information Unfolding)
A shape is generative if it has a representation that is not only a list of geometric primitives, but which follows the principle
of information unfolding. This means that the shape can be appropriately described by comparably few high-level data,
from which a great number of low-level data (e.g., geometric primitives) can be generated, possibly even on demand.

Yet why should procedural, or generative, techniques become increasingly popular and gain importance over time?
The reason is that they trade processing time for data size. Instead of unfolding and pre-computing data, data are unfolded
from ‘compressed’ data only at runtime. This is possible only when decent computing resources are available – which is
guaranteed by Moore’s law to be the case sooner or later. Generative techniques have great advantages since they

• make complex models manageable since they allow to identify the high-level shape parameters
• rely on sufficient hardware resources since the user will want to tweak the powerful high-level parameters
• are extremely compact to store transmit as only the process itself is described, not the processed data
• allow for model-based reconstruction which always gives much better results than a blind search, as they
• make the similarity of modeling and programming explicit –

which inevitably raises a fundamental issue of describing shape, namely the nasty code generation problem

The research on generative techniques is a bit heterogeneous and can not be unambiguously discriminated. The reason
is that almost all ideas in computer graphics have certain generative aspects. As an example, consider the primitive box
expressed in VRML as Box { size 2.0 2.0 2.0 }. This is a generative description since it is unfolded to a mesh with 8 vertices,
12 edges, and 6 faces, usually converted again for display, e.g., to 12 triangles. – But of course some contributions stress
the generative aspect more than others. A concise description of a box is great, but a pile of boxes has not more structure
than a soup of triangles. From this point of view a box is not a generative shape, but only a shape primitive.

Procedural Lego. There are ways, however, to combine boxes that do have more structure than a cube soup. The
solution is to follow the ‘psychology’ (the hidden structure) of cubes, which leads right away to – Lego.

In 2000 Anderson et al. have presented tangible Lego-like bricks as a novel input device for 3D modeling [AFM∗00].
The bricks have connectors and built-in electronics to communicate their connectivity online to a computer. It can not
only display the model currently being built, but it can also interpret the model. With the help of an underlying PROLOG
database typical shape configurations such as walls and windows can be detected, and even also slanted roofs: One row of
bricks is set back by one stud with respect to the row below. Only by detecting and recognizing such structure it becomes
possible to not render the bricks, but to replace them by a plausibly simulated roof.

Recently Oh and Stürzlinger focused on supporting users building Lego models in a conventional desktop environment
[OS04]. As mentioned in 1.1, Lego gains its efficiency through the limitation of DOFs. Brick placement for instance is
constrained by the regular rectangular stud grid: No suitable fitting studs, no brick placement. This structural information
can be exploited for developing smarter strategies for interactive brick placement, e.g., by suggesting only plausible
positions when dragging a new brick into (over) the model. Smart selection modes can take into account the direction
of a mouse stroke gesture with respect to the orthogonal model CS. An important issue is automatic group selection: A
wall should be movable as a whole, not only brick by brick. With intelligent group selection by mouse strokes, to find a
plausible new position for a whole group of bricks being moved can be a challenge, e.g., when re-arranging a floor plan.

Interactive Lego and the linear sculpting complexity problem. The problem with interactive Lego is that it does not
scale: Every single brick needs to be placed. It shares this problem with all other sculpting approaches. It is only the case
that with Lego, the problem becomes very distinct. Smart techniques can drastically reduce the placement time. But for
any complicated Lego model the construction time will still be proportional to the number of bricks in the model. This
problem can be called the linear sculpting complexity problem: The amount of shape information added to a model is only
linearly proportional to the number of interaction steps performed by the user. – Michelangelo had the same problem, by
the way, since when creating a statue he could remove marble only very slowly, chisel stroke by chisel stroke.
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How can the situation be improved? Note that there is one way to create bricks more efficiently, namely the replication
of identical parts in a copy-and-multiple-paste fashion. To escape from the linear complexity trap, this facility needs to be
generalized to the generation of slight variations of a part, instead of only being able to generate identical duplicates.
How to realize such shape variations, or variable shapes, is far from obvious, though.

• Placement macros might help to build a whole house, including walls and a roof, from only a ground polygon.
Unfortunately, there are many ways to build a house. There are even many ways to build the same shape.

• Two-way macros: A brick must retain the information that it was placed by a wall macro. Otherwise the wall can
not be edited, since editing involves to remove the previously placed bricks.

Two-way macros directly lead to the fundamental persistent naming problem: What if the user chooses to modify one
brick of the wall, and then the wall is changed again?

Grammar-based modeling in architecture. Since the 1950’s, when Noam Chomsky published his theory on generative
linguistics, there has been a strong link between the attribute ‘generative’ and grammars in general. Interestingly, Jeff
Heisserman (from Boeing) used grammars for instance in his work on Generative Geometric Design from 1993/94 to
create the boundary representation of a particular type of domestic houses, the ‘Queen Anne houses’ [HW93, Hei94].
His approach uses a (somewhat opaque) combination of first-order logic reasoning (room_adjacent_to_kitchen), ‘solid
grammars’, Euler operations, and combined operations made from them (detail_window).

Besides linguistics and computer science, generative (shape) grammars have a long-standing history in architecture
since the early 1970’s when Stiny, Mitchell and Gips did their pioneering work [SG72, SM78]. Their ideas are still
influential in computer-oriented architecture today, as documented by the yearly conferences of the eCAADe association
[eCA], also see the respective summaries from Chase and from Flanagan [Cha03, Fla03].

In the context of computer graphics, grammar-based architectural models are especially valuable for filling urban
landscapes in a plausible way, for instance for movie special effects. In 2001, Parish and Müller have demonstrated the
automatic generation of the model of a whole city [PM01]. The input to the system is a set of (bit)maps describing
the characteristic properties of the different urban areas. These properties (downtown/suburb, population density, etc.)
influence the application of parametric rules that further differentiate the city, such as the division of quarters into blocks,
the street layout, the building height and style etc. – In their "Instant Architecture" paper from 2003, Wonka, Wimmer et
al. have concentrated on detailing the facades of individual buildings, for which they introduced another flavor of shape
grammars [WWSR03]. They treat a facade as a rectangular area that is successively partitioned into non-overlapping
rectangular sub-areas (floors, window columns, windows), each of which carries certain symbolic attributes. In the very
last step these boxes are replaced by previously modeled geometric models read from a database 2.

One issue with grammars is controllability. To define a grammar is only an indirect way of designing shape. Especially
for non-expert users it is difficult to estimate in advance the effect of a certain set of shape replacement rules. Sometimes
inconsistent results (doors in the 2nd floor etc) are obtained for reasons that are felt to be obscure by some users. As with
all generative techniques it may be that a given rule set behaves falsely only under very specific circumstances, which
makes a facility for grammar debugging mandatory.

Quasi-generative approaches. The Procedural Approach to Authoring Solid Models from Cutler et al. [CDM∗02] is
often quoted, e.g., by reviewers, as a major reference for generative shape. This may be due to the title. But in fact it
proposes a heterogenous input format for a volumetric FEM-simulation, rather than a set of shape generating functions.
The VRML-like scripting language permits (a) to load a volume from a file, (b) to wrap volumes with volumetric layers of
material, and (c) to define C++ functions ‘inline’ for custom force or particle functions, which are compiled and linked to
the FEM-simulator at runtime. The script language apparently does not support any procedural elements (parameterized
shapes, procedures, loops, conditionals), so every material layer requires a few lines of code in the script. As the size of
the description is proportional to the number of layers, the description is subject to the linear complexity trap.

Jianer Chen and Ergun Akleman have developed a series of shape generation tools in their research on Topological
Mesh Modeling, e.g., in [ACS02]. Their focus is on mesh modeling tools rather than on shape description languages.
Similar as with the present thesis, they have started from a representation for 2-manifold meshes (based on ‘graph rotation
systems’) with a closed and sufficient set of only two mesh generating functions, CreateVertex and InsertEdge, plus the
inverse operators (their meshes do not support rings, though, see Fig. 4.18). Chen and Akleman have experimented much
with patterns of repeated applications of these operators. They found that this leads quite naturally to, e.g., subdivision
surfaces and high-genus modeling. Examples of higher-level shape generation tools include (a) the multi-segment curved
handle as a pipe-like tunnel between two faces, (b) rind modeling, which can be imagined as turning a wireframe model
into a mesh by replacing each wire-edge by a pipe, (c) a variety of exotic subdivision schemes to smoothen a shape, and
(d) to smoothly blend two shapes by issuing a single InsertEdge, followed by a suitably chosen subdivision scheme.

2Wonka and Müller are currently combining both approaches. Stunning first results on Transformations in Design are shown on Siggraph 2005.
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Shape description languages: PLaSM and HyperFun. These are probably the principal shape description languages
today, each with a vibrant, active user community, and a long record of more than ten years of continuous development.
However, neither PLaSM nor HyperFun have become mainstream so far, nor a widely accepted standard. PLaSM was
presented by Paoluzzi et al. in 1995 [PPV95] where, remarkably, Snyder’s GENMOD from 1992 is cited along with
Adobe’s PostScript as generative techniques among ‘related work’. – PLaSM is a functional programming language,
originally based on the very high-level language FL from Backus. It provides a number of libraries with shape operators,
many of which can be applied to both 2D and 3D objects. This is because the underlying shape representation uses a
decomposition into convex cells which permits using, e.g., Boolean operations in a dimension-independent manner. The
shape operations are closed in the space of polyhedral complexes [BBC∗99, PPS04].

Despite its expressiveness, its functional power, and many other conceptual advantages of PLaSM, only few references
to it can be found in the literature. This may be due to the fact that (a) FL is very different from conventional imperative
languages like C/C++, and that (b) PLaSM requires designers to program their shapes. Furthermore, PLaSM code is not
easy to generate automatically; so it may be that PLaSM is a classical example for the great impact of the code generation
problem. – The PLaSM interpreter is originally written in Scheme, which is another functional language that is also the
built-in scripting language of the Emacs text editor, of the AutoCAD 3D CAD program, and the GIMP for bitmap editing.
PLaSM is open source, it has no runtime engine but offers an export to VRML (3D models), and SVG and Flash (2D
models). A visual front-end to PLaSM has recently become available as well [Pao].

The F-rep/HyperFun project was started by G. and A. Pasko and others under the supervision of T.L. Kunii at Aizu
university in Japan in the early 1990’s [PASS95, PA04]. HyperFun is the scripting language for functionally represented
shape, i.e., F-rep. Commonly it is known as implicit surfaces, but on the F-rep homepage it is pointed out that strictly
speaking, an implicit function f (x,y,z) = 0 defines a z-value for a given (x,y)-pair, which is different from the iso-surface
f (x,y,z) = 0. Due to the generality of iso-surfaces, F-rep can in principle incorporate many sub-representations, from
algebraic surfaces to CSG solids and articulated bodies – many of which have indeed been integrated over the years. Great
results have been achieved in application areas from volumetric sculpting to cultural heritage, surface reconstruction, and
web-based shape modeling with the HyperFun applet.

A conversion of F-reps to meshes is expensive, and interactive inspection and parameter changes are a bit slow, as
well as the VRML-conversion of large models; but work on generating optimized triangulations exists [KAP∗03]. An
alternative is using POVray since functional surfaces are well suited to raytracing. – The HyperFun language, although
much closer to mainstream languages, still requires programming for shape design, and the widespread use of F-rep is
presumably impeded by the code generation problem, just as PLaSM’s is.

Functional programming and generative animations. Fran is a framework for describing virtual worlds as functional
reactive animations presented by Conal Elliott and Paul Hudak in 1997 [EH97]. Elliott is one of the developers of a
famous earlier framework, TBag, that facilitates writing animations in the programming language Clos [ESYAE95]. Clos
is similar to C++, but it has a ‘multiple dispatching’ facility that permits to dynamically add member functions to a class
at runtime, which is used in TBag to provide objects with behaviours. Another idea from functional languages used in
TBag is that values are immutable (’referential transparency’): When setting a:=expression, then whenever a is used this
is identical to using expression in the same place. Advantages are that there are no side effects and that expressions can
be better optimized; the drawback is, of course, an increased memory footprint.

Fran is even more functionally oriented than TBag as it uses the purely functional language Haskell developed by
Hudak. The design of Fran was considered so promising that an earlier version of it was even proposed (by Microsoft) as
a candidate to become version 2 of VRML [Ell96]. Unfortunately the alternative proposal, Moving Worlds, a slightly pol-
ished version of VRML 1.0, was accepted as VRML 2.0. – Despite its potential for shape design, Fran/ActiveVRML does
not provide any advanced modeling operations. It focuses instead on aspects related to interactivity, such as behaviours,
events, and it emphasized the continuity of time.

What is interesting about functional languages is that the description of a virtual worlds is usually much shorter than
with other types of languages. The reason might simply be that virtual worlds are functional, i.e., to use a functional
description is just the adequate approach. Note that the present thesis examines a similar idea for generating shape. –
Elliott has recently even demonstrated functional programming on the graphics hardware (GPU) with Vertigo, a Haskell-
embedded language for procedural surface modeling, shading, and texture generation [Ell04].

The fact that the graphics hardware nowadays converges towards Turing completeness, to full programmability with
loops and conditionals, has most probably a deeper reason. Elliott points out that “functional programming is a natural fit
for computer graphics simply because most of objects of interest are functions”. As examples he lists parametric surfaces,
implicit surfaces, height fields, spatial transformations, vector images (as opposed to raster images), animations, lights,
and shaders; the latter can even be understood as higher-level curried functions. – Vertigo, unlike Fran/ActiveVRML, is
indeed targeted at procedural shape modeling. Elliott has chosen the composition of parametric curves and surfaces to be
the primary device for shape synthesis, which yields very similar results as Snyder’s GENMOD.
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Shape semantics through metadata and ontologies. Symptomatic for the feeling in the shape community may be the
Aim@Shape project. It was initiated in 2004 as a Network of Excellence (NoE) in framework 6 of the EU-IST programme
(Information Society Technologies). Its purpose is to stimulate research that brings shape and semantics closer together,
by distinguishing three three different levels of shape knowledge [Aim04]:

• geometric – such as a scan of humand hand, resulting in a point cloud or triangle mesh,
• structural – the hand as an abstract hierarchy of bones and fingers, and
• semantic – the segmentation of the scan into fingers, associated with bones for animation.

In order to represent a particular interpretation of shape the goal is the “association of a specific semantics to structured
and/or geometric models through annotation of shapes, or shape parts, according to the concepts formalised by the
domain ontology.” (research programme on [Aim04]). The problem the Aim@Shape project is going to solve can probably
be stated also in very simple terms as: What is the result of shape recognition?

Technologies to be used are primarily metadata for shape markup, and ontologies, which are a sophisticated device
for defining complex classifications, in the simplest case sub-class relations like “a truck is a car”. Also methods exist
to define a correspondence between different ontologies, which is useful, e.g., when translating a text from one human
language to the other, since all languages tend to have their own hierarchy of notions and meanings. – It will be very
interesting to see how the idea of ontologies can be transferred to the domain of three-dimensional shape.

Fundamental reasoning in “A Generative Theory of Shape”. A slighty different view on shape semantics is taken by
Michael Leyton in his stimulating and inspiring book from 2001 [Ley01]. Leyton dares to take the very important step
from shape design to shape understanding, following a classical inductive approach: Generalizing a number of significant
phenomena he postulates an underlying general theory. Then he attempts to verify the applicability of his theory on
examples in a number of fields, as diverse as art and architecture, music, mathematics, physics, psychology, computer
science, mechanical design and manufacturing, as well as CAD. As Michael Pratt puts it:

“Leyton is also a cognitive psychologist, whose experiments have convinced him that shape is perceived
dynamically rather than statically. In the case of a square, for example, the eye follows one edge, and then
intuitively perceives that the subsequent edges are the result of applying the members of a trasformation group
successively to the initial one.” – [Pra04]

A fundamental hypothesis of his work is the assumption that intelligence always implies to maximize two capabilities:

• transfer of actions used in previous situations to new situations, and
• recoverability of the sequence of operations that have produced a certain state (or a particular shape)

This means that in Leyton’s eyes geometry equals memory. He puts this view in direct opposition to the Erlangen ap-
proach from Felix Klein, who defines geometry as the study of invariants under transformation. Leyton objects that this
way transformations are ‘memoryless’: they leave the shape unchanged, at least exactly those portions of it that are con-
sidered the shape constituents. This impedes the recoverability of operations and, consequently, also the transfer of these
operations to other shapes. – Leyton, on the other hand, regards shape as some sort of memory storage for operations:
The square is the result of rotating a straight line, and the line is the result of a pen constantly moving into one direction.
Yet of course such a decomposition is not unambiguous, which may be another problem.

Snyder’s pioneering work on Generative Modeling. John Snyder presented the GENMOD approach in a paper on
Siggraph 1992 and, in the same year, in his book entitled “Generative Modeling for Computer Graphics and CAD”, which
is unfortunately out of print today [SK92, Sny92]. GENMOD is an interpreted, C-like language for writing operators to
compose parametric functions, seen as general mappings R

m → R
n of type MAN, which stands for manifold. Every

operator receives one or more MAN objects as input and produces one MAN as output. An example is the profile product
operator shown in Fig. 1.10. It combines two manifold objects, two 2D curves, into a two-dimensional surface embedded
in 3D, which is also of type MAN:

profileProduct : (R→ R
2)× (R→ R

2)−→ (R2→ R
3)

The parametric surface inherits its two scalar input parameters ’secretly’ from the two curves; they are not explicitly
mentioned. The fact that any MAN object with the correct dimensionality can be used for recombination to produce
new MAN objects is the important closure property of generative models. Snyder defines a generative model as a shape
that is created by the continuous transformation of another shape, the generator. So GENMOD realizes two levels of
mappings: A manifold MAN is a mapping between geometric spaces, and an operator is a mapping between manfolds.
But GENMOD is not a functional language, so there are no further meta-levels for creating higher-order mappings or
functions. This consideration shows also that higher-order functions would only be a straightforward extension of the
generative calculus. Unfortunately this requires a different language paradigm.
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MAN p ro f i l eP r oduc t (MAN cross ,
MAN p r o f i l e )

{
MAN px = cross [ 0 ] ∗ p r o f i l e [ 0 ] ;
MAN py = cross [ 1 ] ∗ p r o f i l e [ 0 ] ;
MAN pz = p r o f i l e [ 1 ] ;
MAN p = concatenate ( px , py , pz ) ;
RETURN p ;

}

Figure 1.10: Profile product in GENMOD. Parametric surfaces of type MAN are assembled in a C-like language
(a). The profile curve (c) is scaled and swept vertically according to the scale curve (b) to produce a surface (d).

The strength of GENMOD, and its most innovative and novel contribution, is that it shifts the attention from surface
primitives to reasoning about the assembly of 3D objects, very much in the spirit later proposed by Leyton. The built-in
low-level operators can be combined to create custom versions of all the modeling tools that are usually pre-defined in
procedural modelers, from sweeping to lofting, rail products, and all sorts of intersections and reparametrizations.

Like all generative approaches GENMOD encourages to write re-usable operators. It is an interesting experience to
realize, when writing an operator to model a particular shape, that one is going to solve a certain modeling sub-problem
again that is very, very similar to a problem one has solved sometimes before. The immediate reflex is to wonder whether
and how the operator for the old solution can be extended to cover also the new problem. This way shape modeling
becomes a puzzling problem, as James Kajiya expresses enthusiastically in the foreword to Snyder’s book:

“Before this work, I thought about a shape as a collection of polygons, or a sculpted surface. But that
view is very limited. With a sculpted surface there’s really no difference between a spoon shape and a chair
shape; it’s all a matter of positioning the control points in the right places. But a spoon shape has an inner
logic, shared by all spoons – and that logic is completely different from that of a chair.

John and I have spent many hours trying to discover the logic of different everyday shapes. It’s an
intellectually challenging and exciting endeavour, one that is quite pleasurable when one hits on the right
logic of a shape. Because of this, shapes are no longer just inscrutable lumps, but a series of puzzles –
sometimes easy and sometimes difficult.”

From the point of view of modeling GENMOD has only two drawbacks: With PLaSM and HyperFun it shares the code
generation problem, i.e., modeling requires programming. Second, it provides many tools for creating parametric patches,
but it offers no support for stitching several patches together to create manifolds in the mathematical sense.

Under the hood: interval analysis. Every MAN object supports three recursive operator methods:

• evaluation y = f (x), x ∈ R
m, y ∈ R

n

• inclusion function Y = � f (X) : x ∈ X ⇒ f (x) ∈ Y , where X and Y are intervals, and
• differentiation for constrained minimization and root finding

The inclusion function is realized by interval arithmetic, which is the second focus of Snyder’s book. It is of central
importance since it permits to reliably invert a function, i.e., to determine for a given y the set of all points x inside
a source interval X that evaluate to f (x) = y, basically by recursively splitting the source interval. This way a high-
level operator SOLVE can be realized, and together with the differentiation method also another very important operator,
MINIMIZE. Both are very flexible, but can also be very expensive to evaluate. They can be employed for constraint solving,
ray intersection, implicit functions and isosurfaces, for computing the intersection curve between two surfaces as well as
to determine self-intersections of one surface, to parameterize a curve by arclength, and many more.

The particular innovation of GENMOD on the technical level is therefore that the program output can be dynamically
queried. The output is not an image or model, but a set of MAN objects that can be evaluated to produce an image, e.g., by
raytracing (solving for a ray-surface intersection), or a model by sampling the surface. The inclusion function permits to
bound the region in space where a particular surface will appear. This is a provably unsolvable question with procedural
shapes in general (Halteproblem [Tur36]). Only for special cases like iterated function systems it can be solved [LH03].

This GENMOD notion of two-way shape assembly permits for quite advanced methods of shape design, such as for
instance exact shape recovery from noisy range data, as demonstrated by Ramamoorthi and Arvo [RA99]. Their method
iteratively searches the best fit for the construction parameters of a generative shape template to mimic a given point
set. Their system is even capable of automatically choosing the right path in a hierarchy of more and more detailed shape
templates. This produces reasonable results even when given the wrong template hierarchy, e.g., for fitting a bowl template
to a banan shape, or vice versa.
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1.4 Short List of Difficult Problems with Current 3D Technology

The following list is not exhaustive but illustrative. It highlights the most important practical consequences of the shape
description problem from section 1.1, both for the practical computer graphics presented in section 1.2 and for the aca-
demic computer graphics from the last section 1.3. A potential solution to these problems is going to be sketched in the
next section 1.6.

The Semantic Gap between a Shape and its Meaning

Consider a comparison between a scanned page of text and a 3D scanned historic amphora. One A4 page produces 8.7
million pixels when scanned at 300 dpi. These pixels are not used, of course, to describe the content or the structure of
the document. Instead, the text is extracted using OCR (optical character recognition). The scanned pixel image, except
illustrations, is usually discarded since it is just an artifact, and it contains no useful information. Remarkably, OCR does
not work by matching only individual characters. The recognition rate is greatly improved using semantic information, a
dictionary and a catalogue of common syllables – which is nothing but model-based recognition.

Unfortunately, such a canonical method to process the amphora does not exist. Assuming a diameter of 500 and a
height of 1000 millimeters, a laser scanner produces more than 1.5 million points on its surface for a millimeter-spaced
grid, i.e., to assert a sampling density of (only) 25.4 dpi. A faithful record of all the traces history has left on the surface
may be of great interest to researchers – but the most important fact about it is that it is an amphora. The extraction of
such semantic information from the scanned dataset is possible only if (i) the computer has got a general description of
amphorae, and (ii) it is possible to determine whether a given scanned model conforms to it.

The Modeling Bottleneck

All kinds of complicated spatial agglomerations and relationships can be made clear with instructive 3D models. But 3D
can be used only when there is something to display. Creating 3D models is very cost intensive. The fundamental problem
is the low degree of automization in shape design. Ironically, the highly engineered domain of 3D modelling still requires
enormous amounts of manual intervention to create appealing shapes. The main problems with interactive modeling are:

• Scalability: An interactive tool can be applied a hundred times, but not a hundred thousand times.
• Repeatability: Slightly different models require re-doing the same work slightly differently again and again.
• Re-Usability: The solution to solved modeling problem can not be re-used for soling similar problems.
• Changeability: Changing specifications require to further modify the end product of the modeling process.
• Inter-Operability: Solutions to modeling problems can not be exchanged between different modeling tools.

Especially the academic approaches to interactive design shape, presented in section 1.3.3, suffer from these problems.
For this reason industrial shape design employs interactive tools only when they are carefully embedded into parametric
modeling systems, such as the major CAD packages, presented in section 1.2.3.

Parametric modeling has also its limits. Note, for example, that the modeling history can sometimes be insufficient:
Larger, structural, changes require not only to change the parameters of operations, but also the sequence of operations
itself. Constraint-based modeling shares scalability problem: No loops or conditionals are available; only the parameters
of a feature are subject to constraints, and not the presence of a feature itself.

Procedural parametric shape design may solve this, but it implies the code generation problem in the user interface:
Not all good artists are also good programmers.

Model File Sizes

Shapes become ever more complicated and more detailed. The increase in shape complexity is higher than the increase
in hardware capabilities and, more seriously, it sooner or later renders obsolete all 3D methods and software approaches
that do not scale. The classical answers to the complexity problems are lossless mesh compression and lossy mesh
simplification, comparable to the difference between the image file formats JPG and PNG [jpe00, png04]. While they may
be ideal for scanned models, they have drawbacks for synthetic models, as will be further explained in section 4.1.6:

• Simplification breaks the modeling history: No more changes are possible to simplified shapes at runtime
• Simplification breaks symmetry: Similar parts are simplified differently
• Loss of semantic information: Attached metadata are not preserved throughout the process
• No reduction of shape complexity order: The compressed size is still linear in the size of the input mesh
• Feature-based simplification needs to speculate about the nature and importance of shape features.
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Digital Libraries of 3D objects

The aforementioned problems become even more drastic when a great number of 3D models is to be managed consistently
in a model repository or in a product database. Numerous slight variations of similar parametric models are difficult to
manage with traditional database approaches, where 3D models are usually treated as anonymous binary large objects
(blobs). Emerging standards for attaching meta-information for downstream applications (JT Open, U3D) suffer from
proprietary notions a part. Exchange of ‘living’ parametric models is not possible with present technology.

Professional systems for product data management (PDM) are custom tailored to specific modeling systems, which is
why large CAD companies are steadily turning into large PDM companies. They can exploit the inherent semantic and
structural information within the respective proprietary CAD format, so that changeability and re-use are possible within
this closed world: A CAD system knows that a door is a door, because the door was created with it.

In a broader context a product database can be seen as a digital library containing 3D models. But for the usual
primitive-based shape representations (points, triangles, nurbs, etc. as from 1.3.1) it is hard if not impossible to realize
the mandatory services required from a digital library: markup, indexing, and retrieval. On primitive-based shapes the
retrieval problem leads immediately to the general shape matching problem which is so hard to solve because it is directly
related to the shape description problem. Searching for doors or chairs in a triangle soup is very difficult.

Virtual Worlds are Too Static

Shape modeling is a complicated field with its own tools and approaches, and software for interactive 3D is complex also.
Furthermore interactive 3D visualization requires decent preprocessing, which breaks the modeling history. Both factors
lead to the situation that shape modeling and visualization are decoupled. The fundamental dichotomy between modeling
and viewing may be one of the greatest problems of 3D today. A number of very unfortunate situations arise from the fact
that regular viewers do not have modeling capabilities:

• Paper notes at a design review: Power walls are high-definition projection systems, primarily used in industry,
that permit a whole group of designers to discuss details of, e.g., a new building or a new car. Agreed shape changes
have to be noted on paper, though. They can not be immediately executed since the link back from the visualization
system to the modeler is missing. The inability to try out continuous parameter changes collaboratively leads to
insufficient sampling of the design continuum and, thus, possibly to sub-optimal results.

• No on-line object edits: Complicated spatial relationships, such as for instance in a car engine, can be made clear
by an animated three-dimensional engine model with moving parts. An animated model is much better than a static
model. For complicated shape relationships, as for instance the proportions of buildings, being able to move parts
is not enough. Shape animation is what is needed to demonstrate how one shape design evolved from another.

• Animated characters in computer games: Deforming things are interesting things. The static surroundings, which
can not even be deformed with the biggest guns, are merely the backdrop for the animated creatures in games. How
much more interesting games were possible with more deformable shapes, or even editable shapes.

3D can not be used ‘Out of the Box’

It is hardly possible to create 3D content without being an expert user. It is not possible for average people to simply
create a shape of an everyday object. – As opposed to creating beautifully styled text documents or to setting up a more
complicated spreadsheet.

Shape can not be simply exchanged between normal users in a way that it remains editable across different systems.
The situation concerning file formats and data exchange is completely fragmented. Proprietary solutions exist, but lossless
conversion between formats is not possible due to a diversity of shape and scene representations. Despite the availability
of graphics hardware and substantial processing power the use of 3D is impaired by the lack of suitable software support.

The diversity of tools both for creating and for displaying 3D content is, although favorable in principle, becoming
more of an obstacle for the further development of 3D technology: For a novice user there is no obvious way to proceed,
and the selection of one technology, which is an investment of time and money, often rules out the use of another. For
a software company or an application developer who is not specialized in 3D there is no easy way to integrate a 3D
visualization module into an application being developed. As a consequence, 3D computer graphics can not be used ‘out
of the box’ – neither by individuals nor by companies.
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1.5 Development of the Generative Mesh Modeling Approach

The new method for describing 3D objects proposed in this thesis is the result of a lengthy development process. The
chapters to come will only describe the result of this process, the method itself. Some of its properties and features
may be slightly irritating at first. But the underlying design decisions were all influenced by the experiences during the
development period. It may therefore be worthwhile to briefly outline the whole enterprise, and some of the inevitable
detours, in this section. –

Generative modeling is about describing the process of generation itself, and not only its end product.

Initial experience at the KHM/Cologne. The first encounter with the problem of insufficient model semantics and the
inflexibility of 3D modeling was at the High School of Arts & Media, the Kunsthochschule für Medien (KHM) in Cologne,
Germany. A profiled artist, a guest researcher from Holland, who was going to get acquainted with the 3D modeler
Softimage, had the problem of positioning two spheres in a way so that they touched. She found a practical solution to
this problem by positioning the spheres close to each other, zooming in, positioning them even closer, zooming further
in, adjusting, etc., until she found the spheres were sufficiently close. As a student of computer science my immediate
reaction was to point out that this high-performance workstation was indeed capable of computing the positions of two
spheres that are in contact. So although this problem was obviously trivial to solve, to tell the computer to solve it was
not. A suitable constraint had apparently not been foreseen by the programmers of the software, and it turned out to
be surprisingly difficult to teach the program such wisdom. The problem became really annoying a little later when the
number of spheres had to be increased very much: Manual 3D modeling does not scale.

My diploma thesis on generative modeling. On the bookshelf of my tutor D. Schwabe there was one book with a
fascinating solution to the problem of expressing the dependency between shapes, Generative Modeling from John Snyder.
When my advisor Prof. Girod left the KHM I changed back to Bonn to the newly founded computer graphics group of
Prof. Fellner. Generative modeling became the the subject of my diploma thesis and the result was a C++ framework to
create generative shapes in the spirit of Snyder’s GENMOD with only a few lines of C++ code. Fig. 1.12 (1b,c) shows a
tool to generate a surface from input parameters c0 . .c3 that are continuous space curves. They are evaluated at the same
u-value to produce four points for a Bézier curve that generates a surface point when evaluated for v. The difference to a
tensor product surface is that any parametric curve can be used as input c0 . .c3. This permits, e.g., to create a normal blend
tool (see 1.12 1d,e) that expects two parametric surfaces s0(u,v),s1(u,v) and two 2D curves p0(t), p1(t). It applies the
Bézier blend to the four curves s0 ◦ p0, (s0 +normals0)◦ p0, (s1 +normals1)◦ p1, s1 ◦ p1. Based on the same underlying
tool a tangential blend can be realized as well (1.12 2d,e). C++ has the advantage of being object oriented. The concept
of shape operators maps nicely to a class hierarchy with inheritance of default methods, e.g., for numeric differentiation,
that can be over-written with more efficient specialized methods. The disadvantage is that modeling requires not only
programming, but even compiling; there is no such thing as a C++ interpreter.

Although C++ is the right language for programming shape operators, it turned out that it is not the right language for
programming with shape operators. A surface operator, e.g., a bi-rail blend or the profileProduct from section 2 can be
seen as a higher-level function. This point of view is not only of academic, but also of practical value. Very much at the
end of the diploma period I tried out implementing some basic shape operators in the pure functional language Haskell,
as an exercise to a course on functional programming I had taken. Very surprisingly, with only 14 KB of Haskell code the
expressiveness (but not the more sophisticated numerics) of the much larger C++ solution could be realized. The surface
examples in Haskell are shorter than those in C++, as is documented in my diploma thesis (in German) [Hav97].

The project “Verteilte Vermittlung und Verarbeitung Digitaler Dokumente” (V 3D2). In 1998 the German Research
Foundation (Deutsche Forschungsgemeinschaft, DFG) followed a proposal from Prof. Fellner to initiate a new research
focus concerning the emerging field of Digital Libaries, DL. Under the acronym of the German title V 3D2 it gathered a
diversity of more than 20 research projects from several different disciplines for a duration of six years, organized in three
phases of two years each. – Besides text documents today’s digital libraries have to manage also all sorts of digital media.
These use to come in a heterogeneous and inconsistent bunch of formats, for media ranging from still and video images to
CAD construction plans, weather data, and gene databases. The central idea in V 3D2 was that of a generalized document
as a unifying view across all types of media.

Acquisition → Registration → Categorization → Provision → Archival

Figure 1.11: The classical workflow in any public or scientific library.
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Figure 1.12: Results from the diploma thesis on Generative Modeling.

An increasing portion of the data in DLs is three-dimensional. This was the incentive for our group to investigate the
question how three-dimensional objects can be integrated into a digital library in a meaningful way. This research was
pursued in phases 1+2 of V 3D2 in the project ModNav3D/ModNav2000 by Gordon Müller and myself.

The classical workflow in a real library is depicted in Fig. 1.11. A digital library follows the same pattern, but instead
of human librarians it employs mostly automatic tools along the chain. To integrate a generalized document format, a new
media type, basically means to implement methods for indexing, markup, and retrieval of such documents [EF00]. The
change of perspective to regarding 3D models as generalized 3D documents, which is further explained in [FHH∗00], lead
to the following hypothesis. We took it as a technical premise for our research:

“A meaningful integration of 3D documents a DL is possible only when as much information as possible
is maintained as long as possible in the whole process chain from model generation to visualization.”

For the reasons mentioned in the previous sections this is difficult to to obtain with existing model formats: There is no
way of realizing a digital library of VRML models without first solving the shape matching problem in a general way.
The consequence was to look at alternative ways for describing 3D models.

So while Gordon Müller focused on the automatic construction of spatial hierarchies for efficient navigation and
retrieval in 3D [MBH∗01, MSF00], I was looking for model representations that support semantic indexing and markup
better than primitive-based formats. The natural choice for achieving this goal was to use a a generative representation
with a paradigm change from objects to operations. This option is further elaborated and discussed in a journal paper
[FHM98] that presents also first results, and in an invited talk at GI99 in Paderborn [Hav99]. The results from ModNav
were summarized in 2002 in a workshop paper [FH02].

ModNav3D/2000 and the limitations and prospects of generative modeling. Although generative modeling is ap-
pealing in theory it was not at all clear how to realize it in practice, especially with meshes as the targeted surface
representation. Existing generative approaches suffer from some severe practical problems:

• limited general applicability, there is no continuous spectrum from primitive-based to generative shape,
• only few surface types supported, e.g., parametric patches [SK92], polyhedra [PPV95], or F-reps [PASS95], and
• the code generation problem: A replacement of interactive shape modeling by programming is hard to justify.
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Figure 1.13: The Python-based subdivision surface modeling toolkit. Its Sessel (’chair’) is not an object but a tool.
It is applied to a face, also affecting its neighbours. Specific tool-based DOFs permit for incremental shape design.

These limitations are also challenges, as they are complemented by a great commercial potential of generative modeling.
This potential was assessed by the Gründerwettbewerb Multimedia 2000, a competition for new business ideas, which has
awarded my proposal 4DL – a 3D digital library with a price of 10 kDM to stimulate the foundation of a new company.
The basic idea of this company was to install a three-layer market for trading custom intelligent 3D components. It turned
out, though, that for industrial applications compatibility and standards are more important than using the latest cutting-
edge technology. The implementation of a new technology in the digital workflow, training employees the fluent usage of
the new software, avoiding pitfalls and, most importantly, avoiding mission critical failures, are factors withstanding the
introduction of radically new technology – at least as long as this technology is radically new.

From Snyder’s GENMOD to Catmull/Clark surfaces: Multi-patch manifolds. The problem of GENMOD is that
although it provides a flexible machinery for creating single parametric patches it offers no support for stitching patches
together. Practically no interesting objects at all, and especially no real-world objects, can be reasonably represented with
one single [0,1]-parametrization. Not even objects as simple as a sphere can be suitably parameterized as a single patch
as, e.g., the parametrization via polar coordinates has singularities at the north and south poles.

This is a well-known fact from topology, and it is the reason why the mathematical definition of surfaces uses the
concept of manifolds; it will be explained in chapter 2. A 2-manifold surface must provide only local parametrizations
and not necessarily a single global one. It must be possible to unambiguously and continuously iterate from one local
parametrization to the next. The ‘overlap’ between different parametrizations, or ‘charts’ of an ‘atlas’, can be as thin as a
common border curve. This leads to a discrete, graph or cell-complex, aspect of mathematical manifolds that is completely
ignored by GENMOD. It is often desired that adjacent patches meet not only continuously, but even smoothly. One way
to deal with this issue is to develop additional machinery ‘on top’ of a particular patch representation, e.g., to assert the
smoothness of the shape where adjacent NURBS patches meet along a common boundary. This can quickly become very
complicated as witnessed, e.g., by the theory of geometric continuity (see [HL92, Far02]).

Much more elegant is to use subdivision surfaces, e.g., of the Catmull/Clark type. They can be regarded as being
a generalization of both polyhedral meshes and uniform B-spline surfaces at the same time; in fact they build a bridge
between them. The subdivision surface “virus” was brought to our group with the “Geri’s game paper” from deRose et al.
which appeared on Siggraph 1998 [TDT98].
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Figure 1.14: Gallery of subdivision surface models. Few high-level tools permit to very quickly obtain models of
considerable appeal and complexity. But the set of available tools also limits the range of possible shapes. Not all
subdivision surfaces of similar complexity are equally easy to reach in the design space.

Python-based generative modeling with Catmull/Clark surfaces. The first attempt to realize interactive generative
modeling was the Python-based subdivision surface modeling toolkit shown in Fig. 1.13. Although this approach had a
number of quite innovative features, and was successfully used within some projects in 1998/99, it has unfortunately never
been published; instead the experiences gained went directly into developing improved techniques.

The first feature of this approach is that it uses a quadrangle mesh, the S-mesh implemented as a C++ data structure,
that is then wrapped into a Python extension module. Making use of the simplified wrapper and interface generator
(SWIG) [B∗] most of the member functions of the mesh class could be exported to Python. The resulting direct low-level
access to the mesh from Python made it possible to implement very detailed modeling operations in the scripting language.
It turned out that this separation is very useful; in fact it is essential:

• The C++ core provides the efficiency and it offers only a small interface with a
well-defined, immutable set of basic modeling operations.
• The script language, on the other hand, provides the flexibility to try out and re-arrange

modeling operations with instant feed-back, without any long compilation times.

Python ‘borrows’ also a very flexible graphical user interface (GUI) from Tk [O∗]. It provides an OpenGL drawing
canvas and it permits to easily add and delete GUI elements at runtime. This flexibility is important for re-configuring the
GUI according to the currently chosen modeling operation.

Second, an S-mesh consists entirely of quadrangles; no other face degrees are permitted. This helps to keep the data
structures very simple. It also allows for a direct, recursive implementation of the modified Catmull/Clark subdivision
rules from the Geri’s game paper [TDT98]. The special features of these rules are semi-sharp crease edges, by applying
the sharp crease rules only a few times and then the smooth rules infinitely often. One floating-point sharpness value is
associated with each edge as additional DOF for shape design. S-mesh quad faces hold four pointers to potential children.
This tree structure permits for adaptive recursive subdivision to arbitrary depth with a method explained in section 3.3.1.
This is ideal for raytracing. A careful extension of S-meshes has been employed with great success for raytracing by
Kerstin Müller and Thorsten Techmann as part of their ShaOLin (“Shadow Of the Line”) algorithm [MTF03].

The third innovative feature of the Python-based modeling toolkit are the modeling operations themselves.



1.5. DEVELOPMENT OF THE GENERATIVE MESH MODELING APPROACH 37

Figure 1.15: The power of high-level tools. The throne can be created from scratch with only 9 modeling steps.
Possible is this through (i.) custom tools like the chair and the cross, and (ii.) tools with a builtin loop. They can
repetitively crawl over the mesh, like the back/basis in (c) and the side- and middle decoration tools (d,e,g).

Figure 1.16: Simple Lego-style modeling with subdivision surfaces. The cursor with ±x/±y/±z arrows can be
moved back and forth with pairs of neighbouring keys q,w/a,s/z,x. Swift control is surprisingly fast and easy to
learn for users with a good spatial imagination. Jittering the control vertices yields a nice rubber-like appearance.

Rapid generative modeling. Shape design in practice with the Python-based modeling toolkit is shown in Fig. 1.13:
First a high-level modeling tool Sessel (’chair’) is selected (b), then it is applied to a certain position in the mesh by a
mouse click. This selects a face in the mesh, and within the face one vertex. Clicking on a different position re-positions
the application of the tool. This way it becomes immediately obvious to the user what it means that objects are turned into
modeling operations in generative modeling. The degrees of freedom of the tool, usually some booleans, integers, and
floats, are presented as checkboxes and sliders in a dialogue box embedded within the 2D GUI of the tool (c).

A typical session with interactive parameter adjustment is shown in rows 2 and 3. Preset are the parameters previously
used with the same operation; this makes repetitions easier. Users use to start exploring the design space by trying out all
kinds of parameter changes. In the case of the chair the design space is the 2-dimensional (scale,distance) space, a 2D
plane, in which the user traces out an explorative curve. Untrained users get along very well with this kind of interaction
although it does not fulfill the three principles from Grimm for 3D GUIs, namely (i) coexistence of object and gizmo in
the same space, (ii) suggestive handles, and (iii) design-oriented rather than technically driven parameters ([GP95], see
section 1.3.3). Our experience suggests that other ingredients are apparently at least equally important, namely

• immediate feedback of the shape to instantly reflect parameter changes, and
• an undo/redo facility to go back and forth in the sequence of operations already applied.

The naïve play instinct is greatly stimulated when a user changes a slider value of a high-level modeling tool and sees the
shape immediately deform and stretch in the most drastic ways. – Without having sound scientific document we concluded
that the reason for the positive user stimulus is that the toolkit delivers only few frustration during the interaction. Its
shortcomings lie on a different level.

The controllability issue. The gallery of subdivision models in Fig. 1.14 shows the amazing expressiveness of the
approach. It is all the more impressive considering the limited number of modeling steps (< 30). The comparably high
shape complexity can be achieved within so few modeling steps only with powerful high-level modeling tools.

An engineer from the car industry pointed out, though, that it is apparently very easy to create some interesting shapes
with this toolkit, but it is not clear whether a designer can realize precisely a shape he has in mind. The Python-based
toolkit performs only poorly with respect to CAD requirements. This is hinted at by the models in the gallery 1.14 that are
supposed to resemble known shapes like the Enterprise (2b), the little cow (2d), the design chair (3a), and the sofa (3c).
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v0_ray = Ray ( Vec3f ( 4 . 0 4 , 3 . 9 9 , 1 . 9 0 ) ,
Vec3f (−34.97,−31.16,−14.53))

v0 = Sessel (0 .50 ,−0 .70 ,0 .80 ,0 , v0_ray )
v1_r0 = Ray ( Vec3f (−5 .86 ,0 .30 ,1 .23 ) ,

Vec3f (48.45,−7.55,−5.54))
v1 = FancyTail ( 2 , 1 . 2 0 , 0 . 4 5 , 0 , 0 , v1_r0 )
v2_ray = Ray ( Vec3f ( 3 .07 ,2 .19 ,−3 .85 ) ,

Vec3f (−34.17,−19.76,29.81))
v2 = DecorEdge ( 0 . 6 5 , 0 . 1 5 , 4 , v2_ray )
v3_ray = Ray ( Vec3f (−0 .14 ,0 .48 ,2 .98 ) ,

Vec3f (7.99,−5.71,−48.21))
v3 = DecorEdge ( 0 . 6 5 , 0 . 1 5 , 4 , v3_ray )
v4_ray = Ray ( Vec3f ( 1 . 5 5 , 2 . 0 3 , 1 . 6 0 ) ,

Vec3f (−21.97,−37.86,−22.59))
v4 = DecorEdge ( 0 . 6 5 , 0 . 1 5 , 4 , v4_ray )
v5_ray = Ray ( Vec3f ( 1 .38 ,4 .37 ,−0 .99 ) ,

Vec3f (−41.62,−36.50,−2.41))
v5 = DecorKreuzblume ( 0 . 1 5 , 0 . 3 5 , 1 , v5_ray )
v6_ray = Ray ( Vec3f (−7.18,0.63,−1.68) ,

Vec3f ( 45 . 43 , 3 . 27 , 21 . 25 ) )
v6 = Decor (0 .75 ,−0.03,26, v6_ray )
v7_ray = Ray ( Vec3f ( 0 . 4 7 , 0 . 7 1 , 4 . 6 6 ) ,

Vec3f (−4.76,−7.60,−48.16))
v7 = Decor ( 0 . 7 5 , 0 . 1 0 , 2 , v7_ray )
v8_ray = Ray ( Vec3f ( 0 .64 ,0 .53 ,−4 .67 ) ,

Vec3f (−10.27,−5.37,47.70))
v8 = Decor ( 0 . 7 5 , 0 . 1 0 , 2 , v8_ray )

def apply ( s e l f ,mesh ) :
i f s e l f . ray :
i t e r = s e l f . ray . apply (mesh)
for i i n range ( s e l f . steps ) : i t e r . fne ( )
i 2=I terQS ( i t e r )
i 2 . e f l i p ( )
mesh . re f ineFaces ( [ i t e r , i 2 ] , 0 . 9 , 0 . 0 , s e l f . sharp )
mesh . re f ineFaces ( [ i t e r , i 2 ] , s e l f . sca le ,

s e l f . d i s t , s e l f . sharp )
i 2=I terQS ( i t e r )
i 2 . fne ( ) . e f l i p ( )
i 3=I terQS ( i 2 )
i 3 . fne ( ) . fne ( ) . e f l i p ( ) . fne ( ) . fne ( ) . e f l i p ( )
i 2=mesh . re f ineFace ( i 2 , 0 . 6 , 0 . 0 , s e l f . sharp )
i 3=mesh . re f ineFace ( i 3 , 0 . 2 , 0 . 0 , s e l f . sharp )
i 3 . e f l i p ( ) . fne ( )
i 3=mesh . re f ineFace ( i 3 , 0 . 6 , 0 . 0 , s e l f . sharp )
mesh . uni fyFaces ( i 2 , i 3 , 1 )
i 2=I terQS ( i t e r )
i 2 . fpe ( ) . e f l i p ( )
i 3=I terQS ( i 2 )
i 3 . fne ( ) . fne ( ) . e f l i p ( ) . fne ( ) . fne ( ) . e f l i p ( )
i 2=mesh . re f ineFace ( i 2 , 0 . 6 , 0 . 0 , s e l f . sharp )
i 3=mesh . re f ineFace ( i 3 , 0 . 2 , 0 . 0 , s e l f . sharp )
i 3 . e f l i p ( ) . fne ( )
i 3=mesh . re f ineFace ( i 3 , 0 . 6 , 0 . 0 , s e l f . sharp )
mesh . uni fyFaces ( i 2 , i 3 , 1 )

Figure 1.17: Python code examples. (a) The throne is represented as a sequence of pick actions and operator
calls. Code is assembled in background during interactive modeling, and parsed and executed using Python’s exec
function. (b) The implementation of the Sessel (’chair’) modeling operation as the apply method of a tool class.

Swift undo/redo and the ‘magic’ of an interpreted language. The whole modeling history of an object can be scrolled
through at interactive speed using a 2D slider (see Fig. 1.13 (a)). The effect of scrolling forward is shown for the example
of the throne in Fig. 1.15: It rushes through the evolution of the shape. This is an invaluable device for didactic purposes.
It allows users to learn also more complicated modeling tricks very rapidly.

This feature is enabled by the very particular representation of the models created by the Python-based toolkit, namely
as character string with executable Python code. Python provides a ‘magic’ feature that only an interpreted language
can offer, namely to execute at runtime a piece of code stored in a character string. This string is concatenated during
modeling. As an example the Python program for the throne is shown in Fig. 1.17 (a): Each application of a modeling
tool adds two lines of code to the model. The first line selects a position in the mesh by ray intersection, and the second
executes the tool. This execution is completely ‘live’: The Python toolkit can open the model code in a separate editor
window. The user can edit the code and the model is updated right away when the ‘apply’-Button is pressed.

Lesson learned: The importance of atomic undo/redo. This experience explains why in our subsequent approaches,
and throughout this thesis, so much emphasis is put on invertible low-level modeling operations. The Python-based toolkit
did not have invertible mesh tools. Undo of the last operation is realized by deleting the last two lines from the model
string. With every single parameter change, in fact between every two slider ticks, the whole model has to be re-built from
scratch (as in row 2 of Fig. 1.13). This puts a tight limit on the admissible number of modeling steps before using the
toolkit becomes impractical: With more than around 30 modeling steps the interactivity of parameter changes fades away.
Much wiser than building from scratch is of course to un-do the last operation and to re-do it with different parameters.
This decouples the undo/redo time of the most recent operation from the length of the modeling sequence.

The creation of high-level modeling tools – the code generation problem. The fundamental problem with the Python-
based approach, and the reason why it was eventually abandoned, is shown in Fig. 1.17 (b): High-level tools like the ‘chair’
have to be literally programmed in Python. After having created a dozen modeling tools (Fig. 1.13 (b)) it became clear that
this approach does not scale. Myriads of specialized, domain-dependent modeling tools are possible in principle. Really
useful tools can be realized on top of the underlying technologies, mesh modeling, subdivision surfaces, and Python. But
to assemble the code for these tools like in Fig. 1.13 (b) in a text editor is too difficult and abstract. Lines like i3.eflip().fne(),
a crawling mesh iterator, are in fact very concrete and also visually imaginable. – So the Python-based modeling toolkit
has impressively indicated the importance of the code generation problem.
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Figure 1.18: Parametric triangle meshes. Triangle splits are recorded during modeling and grouped in macros,
shown as boxes. During visualization invisible parts of the model are un-built with collapse operations (1c). The
remaining valid triangle mesh can also be shown as adaptive Loop subdivision surface (2c).

Figure 1.19: Modeling combined B-reps with Slick. High-level modeling tools are controlled with (at most) four
floating-point parameters in the range [−1,1], see the sliders in (1a). The adaptive visualization with Combined
B-reps and the implementation of mesh manipulation tools in C++ allow for slick high-speed modeling (1d).

Meshes for offline and for online rendering. The experiences with the Python-based modeling toolkit have raised a
whole bunch of ideas for improvement. Instead of developing the generative aspect further we chose to concentrate on
meshes and adaptive display, in order to create a sound basis for future software layers on top of it.

Data structures for meshes are a delicate issue that is elucidated in chapters 2 and 4. The first template-based half-edge
B-rep mesh data structure in our group dates back to 1995 [BFH95]. These MRT B-reps from Heinzgerd Bendels were
part of the Minimal Rendering Toolkit (MRT), an object-oriented raytracing platform for didactic and research purposes. It
was originally developed by Dieter Fellner [Fel92] and got considerably extended over the years by a number of advanced
contributions such as the radiosity method for global illumination realized by Stefan Schäfer [Sch00, MSF99], or photon
tracing for caustics. The modularized, object-oriented design of the MRT even permitted to (ab)use it for antenna field
strength prediction by radiowave propagation, as was shown by Norbert Schenk [FS97].

Adaptive display of Loop surfaces. Raytracing and interactive real-time display have slightly different requirements
for a surface representation like a mesh. For raytracing a mesh needs to provide a fast ray intersection method. For
interactive display, especially with hardware support, it is usually faster to just render a single triangle than to spend CPU
time on checking whether it is visible or not (’culling’). The ratio is better, of course, when many triangles can be culled
away at the same time with a single operation. Such patch-based rendering can provide great savings, especially when
simple tests for view-frustum culling and back-patch culling are available.

The article on Fast Rendering of Subdivision Surfaces by Kari Pulli and Marc Segal [PS96] was an entry point for
Kerstin Müller and myself to the realm of optimized patch-based rendering; the results of our efforts were presented at
Eurographics 2000 [MH00]: While Kerstin concentrated on improvements on the ’sliding window method’ to tesselate a
pair of Loop triangles, my focus was on providing a flexible triangle mesh data structure for it.
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Figure 1.20: Gallery of Slick models. The modeling speed with Slick is very high thanks to the optimized adaptive
display with combined B-reps. They allow for a combination of polygonal and free-form models (2b,c,d). Only
few modeling operations were realized as the main use of Slick was as a testbed for increasing the modeling
performance of combined B-reps: Interactive manipulation interferes with caching of tesselation data.

Patch-based rendering with template-based mesh data structures. Template parametrization is key because it per-
mits to annotate mesh entities (vertices, edges, faces) with custom data. Very fruitful has proven the view of a polyhedral
mesh as a container data structure, very much like a doubly-linked list, in the spirit of the standard template library (STL)
[SL95]. This view is explained in great detail in chapter 4, especially in section 4.1.1. The triangle mesh let Kerstin attach
patch data to the triangles. Patch-based rendering of subdivision surfaces means that the control mesh is not altered by
subdivision. Instead the method does ‘as if’ the mesh was subdivided, but it exploits the regular structure of the subdi-
vided mesh for efficient, strip-optimized rendering. This is much, much faster than altering the mesh by inserting vertices,
edges, and faces: Patches are simply stored in 2D arrays where the connectivity is only implicit.

Strategic features. Two further improvements were realized with the triangle mesh approach:

• Parametric triangle meshes: All changes in the mesh are logged and can be un-done since an invertible set of
triangle mesh modeling operations is used (edge collapse/vertex split etc.). The mesh functions are again exported
to Python, a (small) set of high-level modeling operations was realized.
• Semantic structure with modeling macros: Macros are a grouping facility for mesh operations to guide undo/redo.

Not single modeling operations are subject to undo/redo, but whole sub-sequences, macros. The length of a macro
sequence is defined by the user, or by a higher software layer.

The background of these features is the digital library context of the DFG project ModNav2000 (V 3D2): First, an ad-
justable undo/redo granularity permits for a semantic level of detail: Objects can be simplified in a meaningful way, e.g.,
respecting shape symmetries. Second, macros have a bounding box, which establishes the link to Gordon Müller’s work
on retrieving objects in 3D. Third, macro undo/redo is fast enough to serve as a frame-to-frame culling mechanism, as in
Fig. 1.18 (1a) and (1c), where the part of the parametric object outside the query box is un-built. – And finally, all this can
also be combined with the Loop subdivision surfaces provided by Kerstin (see 1.18, 2c).

Combined B-reps. Triangle meshes turned out to be much too low-level in abstraction for shape modeling. A quad-
rangular wall is created with two triangles in a common plane. But there is no way to express this property since both
triangles are independent entities. B-rep faces on the other hand can be understood as a facility for grouping individual
triangles together. So the new features were transferred back to B-reps.
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Figure 1.21: Constructive Solid Geometry (CSG) on arbitrary meshes. Conventional CSG operates on primitive
shapes (box, cone, etc.) stored in the leafs of the tree (1a-d). In his diploma thesis Lars Offen has improved the
robustness so much that modeling with cut, copy, and paste of arbitrary meshes becomes possible (2a-d).

Modeling operations for B-rep faces are the Euler operators introduced in section 2.2; a corresponding type of free-
form surface are Catmull/Clark surfaces. Unfortunately the modified rules we used before for semi-sharp creases from
deRose et al. [TDT98] appear to be patented3, so we chose to return to the original Catmull/Clark rules. – Following the
same approach as before with the triangles, a B-rep mesh data structure with template parametrization was annotated with
patch data (potentially) at every halfedge. Furthermore each halfedge carries a Boolean sharpness flag: A mesh with only
sharp edges is treated as ordinary polygonal mesh, whereas a mesh where all edges are smooth is rendered smoothly as
subdivision surface. The user is completely free to set the sharpness of each edge according to his aesthetical needs.

The resulting data structure is called combined B-rep. It is introduced in section 4.3, and a quick intuition of the
effect of different edge sharpness settings is conveyed by the arcade example in Fig. 4.26. A smooth degree 6-face of
a combined B-rep is partitioned into six quadrangular Catmull/Clark patches. Each of these patches has a fixed size of
9×9 vertices and normals for displaying 64 quads in highest resolution. The patch-based approach permits to switch the
level of detail at no cost at all on a frame-per-frame basis, by switching between certain pre-computed OpenGL triangle
strips. The second vital feature of combined B-reps, and the reason for their name, is that they bridge the gap between
polygonal and freeform modeling. In fact they combine both complementary ways of modeling within the same data
structure. Combined B-reps were introduced in a journal paper [Hav02b].

Progressive combined B-reps. The third novel feature of combined B-reps is that they allow for selective tesselation
updates. This is the solution to a very nasty technical problem: Interactive shape manipulation interferes with caching
of tesselation data. The user may change the mesh anywhere, add or delete entities, even switch between polygonal
or freeform. The tesselation of the surface must be quickly re-computed in all affected regions – and, which is more
important, only there. This feature is the basis for efficient undo/redo when changing, e.g., one window in a complicated
facade. As with the triangle meshes, undo/redo was realized with macros of elementary operations, which yields in this
case Euler macros: Euler operations are complete and sufficient on the class of B-reps, and they are also invertible.

A slight complication arises from the fact that, unlike with progressive triangle meshes, also destructive operations
can be used within an Euler macro; this requires special care with undo/redo. This much more sophisticated version of
a combined B-rep with logging of Euler operations, Euler macros, and semantic LOD, is therefore called progressive
combined B-rep. It has been submitted for publication [HF05a].

Alternative ways of modeling: CSG. In parallel to the combined B-reps a number of other modeling approaches have
been pursued. The diploma thesis of Lars Offen [Off03] was about an improved CSG implementation based on the method
proposed by Martti Mäntylä in his book [Män88]. The ambitious goal was to realize CSG on arbitrary B-rep meshes with
only 32 bit single-precision floats for vertex coordinates. This is difficult because first, no exact knowledge on the type of
input objects is available, in constrast to the usual CSG operating on primitives (box, cylinder, etc). Second, B-rep meshes
are more general than triangle meshes as they can have higher-degree faces and also faces may have rings.

3oral communication with Denis Zorin
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Figure 1.22: Lego models from the LDraw community. The .dat-files can be used as interactive Lego construction
manuals as they permit to store stepping information within the model. The highly performant Lego viewer created
by Felix Funke (as his Studienarbeit) has a stepping slider. Problematic is the invisible geometry (2d).

Despite the considerable success shown in Fig. 1.21 it turned out that accumulating numerical inconsistencies can be a
very serious problem. This has increased our sensitivity to numerical problems. It also highlighted the subtle fact that
in a floating-point universe it is not so easy to determine whether a given point is above or below a certain plane. The
fundamental problem is that higher-degree faces are practically never planar; the fourth point of a quad is generally in a
non-zero distance to the plane through the first three points. Working with tolerances is unavoidable, for instance faces
need to have a thickness. In order not to let a single ‘thick’ face spoil all the rest, and make for instance very small faces
vanish, every face even needs to have its own thickness. Moreover, this has implications for the ‘thickness’ of edges and
vertices. – In response to this problem Lars has developed a number of sophisticated mesh repair tools.

A second result was that the CSG method can be decomposed into single modules that are useful in their own right:
An intersection routine that expects a pair of intersecting faces (from one or two solids) and follows the intersection
to determine a closed cut path; a cut routine that dissects the surface along a given cut path; an inversion routine that
exchanges inside and outside; and a method for gluing two surfaces together along a given path. A subtlety of CSG are
co-planar faces; Markus Lagemann has shown in his Studienarbeit how to perform 2D-CSG with a sweepline algorithm
[Lag04] to solve it. Both this and Lars’s work are exclusively using Euler operators. No direct manipulation of mesh
entities was needed, which shows the suitability of this interface.

Alternative ways of modeling: Lego. The world of system shapes opens the fascinating field of meta-shape-design.
The general idea is to design a limited number of basic elements from which an unlimited (or at least very large) number
of shapes can be built. A multitude of examples for system shapes exist that are interesting in both a theoretical and a
practical sense. Theoretically interesting is how to design a shape system as a ‘meta-shape’ – practically the question is
how to realize a given shape with a given system.

The prototype of a system shape is, of course, Lego. The LDraw community has faithfully collected an archive of
all known Lego parts on ldraw.org, and re-created many classical Lego models with them. The LDraw archive was also
used in the Studienarbeiten of Tomas Neumann and Felix Funke. Their task was to create an interactive Lego viewer.
Impressive results of this exercise in optimizing OpenGL display are shown in Fig. 1.22. Lego models are visually
rich and very suggestive and at the same time comparably lean, as they consist only of a list of parts, each with an ID,
orientation, and position. The problem is only that huge amounts of invisible hidden geometry are created this way (see
the wireframe rendering in 1.22, 2d). To remove them is not trivial.

The drawback of such a ‘naive’ realization of system shapes was already mentioned, namely the linear information
complexity trap: In terms of complexity classes there is no difference between a list of Lego pieces and a corresponding
list of triangles. – The link to the shape description problem, and the solution of the complexity issue, is the following
observation: In almost all Lego models the position of almost all pieces is not random. Furthermore, when system shapes
can be understood as meta-shapes, is it also possible to devise a system for creating system shapes, i.e., a meta-meta-shape?
And if so, could the Lego idea be useful for it – as some sort of meta-Lego?

http://www.ldraw.org
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Figure 1.23: The Charismatic workflow for the Wolfenbüttel reconstruction. Conventional plans and official
landmark data are combined with photographs taken from strategic viewpoints (1a-c). The ingenious Charismatic
shell approach (1d) permits to quickly recreate agglomerations of faithfully textured buildings (2a-d).

The Charismatic project. The vision of Charismatic was to re-animate deteriorated cultural heritage sites. The name
is an acronym that stands for the impressive title Cultural Heritage Attractions featuring Real-time, Interactive Scenes
and Multi-functional Avatars as Theatrical, Intelligent Characters – and this title is indeed the programme. Charismatic
was funded by the EU in framework 5 of the Information Societies Technology (IST) programme in 2000-2002 with
a consortium of eight groups from UK, Greece, and Germany. The technical core partners were Prof. David Arnold’s
group at the University of East Anglia (UEA), Tim Child’s television company Televirtual, our group, and the speech
recognition and text understanding group from British Telecom (BT) contributing software to support intelligent yet
simple conversations with a virtual tourism guide.

The vision of Charismatic was to install a new VR tourism industry to exploit Europe’s unique position in global
cultural heritage. The key idea was to produce tools that permit an economically viable production of complete virtual
reconstructions of populated sites of historic and cultural interest. Impressive examples of virtual reconstructions exist
already; the problem is only that practically all of them have been created with substantial funding. Funding of pilot
projects is great to prove that a novel idea can be realized in principle.

A massive breakthrough is only possible with the economic power of a commercially interesting market for cultural
heritage content, when the new area becomes an industry. Exchange is possible only with standards. – Great economic
potential exists in the form of location-based entertainment in visitor centers, where ancient worlds are re-vitalised in
the most impressive and engaging ways. The focus of Charismatic was therefore not only the modeling and interactive
rendering of urban environments, but equally tools for intelligent avatars and interactive storytelling. The latter areas
where worked on by Televirtual and BT, while UEA and our group focused on the modeling and rendering of urban
environments.

The UEA scene graph versus OpenSG. All existing rendering engines have shortcomings. The UEA group enthusias-
tically started to implement their own renderer, the UEA scene graph, with all kinds of optimizations for urban sceneries:

• ROAM engine for adaptive terrain rendering with LOD control
• The ‘occluder shadow’ method to cull away buildings hidden behind other buildings
• Impostors to replace buildings at a distance by a single textured polygon
• Buildings with attached detail geometry that can ‘retract’ into the building when seen from a distance

The use of a proprietary scene graph turned out to be a major problem at the end of the Charismatic project: Exchange
requires standards. Fortunately our group was involved in an open source scene graph initiative, the OpenSG plus project
to extend the open source scene graph OpenSG [Opeb, Opec, RVB02]. But unfortunately, OpenSG was available only in
a very first, unstable version by the time when Charismatic started.

The highly optimized routines from the UEA scene graph have nevertheless been preserved, as they have finally
migrated to OpenSG as part of the Epoch Network of Excellence in 2004. Epoch also promotes OpenSG as common
rendering platform among a consortium of more than 90 groups to assure that all 3D software modules are inter-operable.
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Figure 1.24: Charismatic: Comparison between real and virtual Wolfenbüttel. The liveliness of historic VR was
greatly improved with detailed surroundings (1c) and theatrical elements, avatars and interactive storytelling (2c).

Figure 1.25: Charismatic: Wolfenbüttel houses. Shells can be greatly distorted, a feature that has proven very
valuable with historic buildings. With each house also one special feature was realized, like an arkade or a balcony.

The Charismatic production pipeline and hybrid model representation. The workflow from the available primary
data to the reconstruction of Wolfenbüttel is depicted in Fig. 1.23. To measure success we chose to first reconstruct an
existing city with three students in our group using the UEA shell modeler, results are shown in Figs. 1.25 and 1.24. The
following model representations were used within Charismatic:

• UEA shell models for domestic houses reconstructed using the Charismatic Shell Modeler, see Fig. 1.23 (1d,2d)
• UEA mesh objects for landmark models (churches, fountains) created externally with, e.g., 3D Studio Max
• TU-BS combined B-reps to represent ornamental free-form detail with built-in level-of-detail (cf. Fig. 4.30)
• TU-BS progressive meshes for adaptive LOD rendering of dense triangle meshes from scanned artifacts

The usefulness of combined B-reps for architectural detail was demonstrated at VAST 2001 [HF01]. The architecture of
the Charismatic software was presented in detail in 2003 at the VAST and Cyberworlds conferences [HFDA03, DAHF04].

The key to success: Semantic information. Charismatic gave us the opportunity to transfer the theoretical approaches
from ModNav3D/2000 to an applied practical setting. Both modeling and rendering a complete city are hopeless without
an approach that scales; ideal conditions for generative modeling, which convinced also our project partners.

Key to success was the strict adherence to the working premise of ModNav3D/2000, the maintenance of structural
information as long as possible. Charismatic has shown that both modeling and rendering greatly benefit from a high-
level shape representation. A shell can be compactly described with only a few floats. Similarly, a complete virtual
reconstruction can be described with few but well chosen and structured data. Few DOFs mean that modeling goes fast.
It also helps the renderer because it knows much about the objects it is going to display. The renderer can make efficient
use of the data to choose the appropriate LOD at runtime and generate derived data (impostors etc.) on the fly.
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Figure 1.26: Viewer applications in the DAVE. The ‘teapot’ demo (1a-b,2b) is part of the Davelib to demonstrate
the easy programming of the DAVE. The fishtank and the Rhino-NURBS-viewer (2c-d) are interactive DAVE
applications. Our OpenSG-based VRML viewer (1c-d,2a,2e-f,3a-b) is very impressive with architectural models.
Itis regularly used for design reviews by architects (3b). Very high quality is possible with specialized walkthrough-
software such as Cave Quake III Arena (cq3a) that was ported to the DAVE using the Davelib within a day (3c-d).

The DAVE. The ultimate high-end in virtual reality is marked by so-called Cave-systems. They let the user immerse,
i.e., dive into, a visual computer-generated reality that completely surrounds him. It allows to freely move within a space
of typically 3× 3 meters and to look into any direction. The projected view is immediately updated accordingly. The
stunning impression of quasi-tangible 3D is caused by the fact that the body motion is synchronized with the view: We
all have many of experience with body motion, and we have precise expectations on how our view changes with every
movement of our body. The understanding of spatial relations in a Cave is greatly enhanced by the sense of the own body.

The particular Cave system we realized in Braunschweig in 2002 is called DAVE, which stands for Definitely Affordable
Virtual Environment – compared to other systems it is inexpensive but provides better quality than Caves with CRT pro-
jectors. Our goal was to build a four-sided Cave on our own from off-the-shelf standard components [Hav02a, FHH03].

A spectrum of immersive techniques. The immersive effect is achieved by a stereoscopic surround-projection com-
bined with head tracking. This means that the computer knows at any given moment the position and orientation of the
head of the person in the Cave. Such a system is at the high end of a whole range of possible projection systems:

• active stereo on a desktop computer: Images for the left and right eyes are time-multiplexed RLRLRL... and a
pair of shutter glasses blacken one and then the other eye’s view synchronously. This is called active stereo because
the glasses need to actively switch between states. The sync signal is usually transmitted via infrared light.
• single-screen passive stereo projection is possible with a dual-headed graphics board (for two monitors) feeding

two projectors that project their images to the same screen. A pair of polarization filters in front of each projector
and a corresponding pair of filters in the passive glasses make that the eyes receive images from different projectors.
• single-screen passive stereo with head tracking: A perfect stereo view is maintained for one person. The user can

also move in front of the screen and stick his head into, e.g., the 3D model of a car engine.
• multi-screen active stereo with head tracking (Cave): Several projection screens can cover a wide field of view,

ideally the whole, as in a 6-sided Cave. This permits to inspect and walk around objects freely floating in space.

Only a single person has a perfect view in a Cave; persons standing close can usually follow easily. Like for the stereo,
several options exist also for the tracking. Optical tracking uses reflective markers, infrared light, cameras, and image
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processing to determine position and orientation. Electro-magnetic tracking, which we use in the DAVE, works with a
sensor that measures a pulsating magnetic field created by an emitter. It is less expensive than optical tracking and robust
against occlusion. But the measurement can be disturbed by any piece of metal that is closer to the emitter than the sensor.
Unfortunately it turned out that the room for our DAVE was heavily armoured with steel, especially around the hole in the
ceiling which we needed for the image on the floor which was projected from above.

The DAVE hardware: Active stereo with digital DLP projectors. Passive stereo, e.g., linear polarization, is not
rotationally invariant: Tilting the head by 90 degrees reverses R/L. This is a problem for a Cave, especially on the ground.
Active stereo does not have these problems, but unfortunately it is normally not possible with modern digital projectors.
The reason is that, e.g., DLP projectors create time-coded colors using a colorwheel and a million binary mirrors, one per
pixel. This raises delicate timing issues. So the projector runs at a fixed 120 Hz, irrespective of the input frequency: The
projector has its own framebuffer. So feeding a digital projector with active RLRL signals produces just garbage.

The great technical innovation of the DAVE is that it realizes active stereo with off-the-shelf DLP projectors. How is
that possible? This solution is found, realized, and patented, by Dr. Armin Hopp, an alumni of our group, now head of
digital image. The key is to modify the projector electronics, the formatter board, so that the projector becomes externally
synchronizable (ethernet cables in Figs. 1.27, 4a-d). Armin manages to switch off the framebuffer of each projector for the
duration of every other frame, alternatingly for a R/L pair, which yields comfortable 60 Hz per eye. The CPUs of all eight
projectors are kept in exact sync by a central device, the synchronizer (1.27, 4c). It also steers the six arrays of infrared
LED from Torsten Techmann that drive the shutter glasses (5d,e) by flooding the DAVE with flashes of infrared light.

Sustainability by two levels of synchronization. The schematic overview in Fig. 1.27 (1a-c) shows the projector syn-
chronization in yellow and the standard ethernet to synchronize the eight DAVE clients in red. These clients run in parallel
eight instances of the same (deterministic) program. The only difference between the program instances is their OpenGL
projection matrix, which is set according to screen (left,front,right,ground) and eye (R/L). The computers are synchronized
only at the level of buffer swaps (at 30-50 Hz) issued by the daveserver via UDP broadcast. The server runs the ninth
program instance, and it is connected to the tracking system. With every broadcast it sends the new position/orientation
from the 6DOF sensors of head and mouse to the clients.

This is the key to sustainability for the DAVE: The image display is synchronized instead of the image generation.
Active stereo usually implies using dim and expensive projectors based on the old cathode ray tube (CRT) technology,
where the VGA signal from the graphics board directly steers the electron beam in the tube. To drive a CAVE then requires
very special graphics boards with a genlock that permits to exactly synchronize the VGA signals from all boards. But with
our DAVE we can always use the latest generation of off-the shelf high-performance graphics boards. This means that we
can upgrade all eight of them every year, and the eight PCs every two or three years, and still remain within our budget.

The DAVE software: The Davelib to port legacy code, and OpenSG. The Davelib is a C++ library to facilitate the
quick adaptation of any given OpenGL program to the DAVE. In the simplest case it is sufficient to allocate an object
dave of the class Dave and to insert two lines of code into the redraw routine (which every OpenGL program has), namely
dave→setProjectionGL() before and dave→waitForSync() after rendering the scene, and to recompile the application.
Since its initial version, which I wrote in 2002, the Davelib encapsulates all the essential software components to drive
the DAVE in the singleton C++ class Dave:

• on the server: reading the head/mouse tracking data from the Ascension Flock of Birds via serial bus (RS 232)
• on the server: correction of the tracking data via libTrCalibr2 (from the university of Utah),
• communication and synchronization between server and clients via UDP breaodcast
• on the clients: setting the OpenGL projection matrix for the current view, and access to the hand and mouse CSs

When adapting a desktop OpenGL program to the DAVE, much more involved than the rendering is usually to replace
the 2D mouse by the pair of 6DOF input devices used in the DAVE. The 2D mouse may be used for many purposes,
from selection and picking over parameter adjustment to 3D navigation. For a deep integration all this functionality must
be realized by the combination of head and mouse position and orientation, which are 12 DOFs and not only 2. A very
acceptable default solution is to emulate a 2D mouse pointer. The mouse arrow is drawn on the screen at the point of
intersection with the ray from the tracked head into the direction of the tracked 6DOF mouse.

An alternative to direct OpenGL coding is to develop 3D applications on the scenegraph level. The OpenSG system is
an open source scenegraph with a unique feature: It supports interactive rendering of a dynamic scene jointly on a cluster
of computers. Local copies of common data on are kept consistent across different machines, changes are committed at
common synchronization points, typically once per frame. Due to its compatible design OpenSG could be adapted to the
DAVE within a day by Christoph Fünfzig using the Davelib.
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Figure 1.27: Physical setup of the Definitely Affordable Virtual Environment DAVE. Row 1: Schematic overview
with two levels of synchronization (yelow,red) and tracking system (green). Rows 2,3: I had to plan the physical
installation – an exercise in elementary geometry – and to survey the execution: the wooden frame, built and
installed by a local carpenter, the screen (one piece, 9×2.25 m) made in England, and the thin-film mirrors from
Munich. Row 4: The magical projection from digital image, four pairs of projectors and the synchronizer. Rows
5,6: Head tracking with sensor (5a), emitter (5b), and bird units (5c), shutter glasses, and 6DOF input devices.
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Figure 1.28: Initial problems: The DAVE is a prototype. The magnetic field is ‘dragged’ through the hole in the
ceiling (1a,1b). Kai and I take 9× 9× 6 = 486 measurements in a 25 cm grid for use with the calibration library
libTrCalibr2 from Utah. The projection screen starts to tear in the corners and I have to reinforce it (1b-1d). Color
bits are spread unevenly over 1st and 2nd turn of the color wheel (2a). Lamps explode until we change to digital
image’s open projector case (2b-2d). Torsten adds fast fuses to protect the other projectors when a lamp explodes.

Does it always have to be a Cave? From an engineering and economic point of view a Cave is just a tool, and using it
has pros and cons. Experience has shown that immersive 3D has tremendous advantages over other types of 3D technology
with (i) 3D data with a very complex spatial distribution, and (ii) in situations where precise controllability of virtual tools
and devices is important. The spatial understanding of a complete car engine or a swiss cheese can be greatly enhanced
by the sense of motion of the own body – especially when the head can literally be stuck into the 3D model. Only in a
Cave one can walk around an object floating in space. – The same level of immersiveness is in principle also possible with
portable 3D devices like cyber-helmets, where a pair of small built-in monitors are integrated with the glasses. They may
require less hardware and (some day) provide the same quality, but with respect to software they pose the same problems.

What does ‘virtual reality’ really mean? The possibilities of immersive VR go beyond adapting desktop software; it is
a new quality of media with its own very particular rules and perspectives. A central notion in this context is interactivity.
The limitations caused by insufficiently rich 3D interaction become particularly ardent in a Cave. As was pointed out in
section 1.2 there is the fundamental dichotomy between modeling and viewing. The pre-processing in between destroys
the way back to the modeler as it removes, e.g., the modeling history. Without modeling capabilities in the viewer
interactivity is essentially limited to changing transformation matrices to move objects or the user (navigation). This is
VR only in the sense that a non-existing surrounding environment is displayed. However, it is not a huge step beyond, e.g.,
presenting a drawing or a painting (not: a photo) in an art gallery. This type of VR is basically a walkthrough-painting.

Beyond walkthrough paintings: Technical foundations for responsive VR. Cave technology cries for dynamic inter-
action: changeability is the greatest asset of computer-generated virtual environments. VR knows practically no restric-
tions in terms of construction cost or amount of building material, and phantasy may even ignore the laws of physics. Any
idea can be realized – as long as there are practical ways to express and communicate these ideas to the system.

Note that a Cave user has no keyboard; to type in a name is difficult, as well as to note down someting. A Cave
has no force feedback. Users find it difficult to, e.g., draw a straight line in free space, instead of on a table as one is
used to. Nothing prevents a VR visitor from penetrating the ghostly projected objects around him. Floating 3D objects
have no weight at all. Physical properties can only be suggested with graphical means: With changing colors, with
objects snapping to positions, with particle systems, with shadows and projection on auxiliary planes, with dynamic
connecting lines, and with gizmos as supplemental supporting objects. They are set into the scene on demand as a
’physical’ representation of a piece of information or an action that can be performed.

On the technical level this draws on the integration of modeling and viewing; on ways to inter-twine the inevitable pre-
processing with the modeling; on the preservation of semantic information through the whole chain; on re-parametrization
to identify and isolate the essential DOFs; on powerful construction tools on a high-level of abstraction. This requires all
the technologies developed in the contexts of DL (ModNav/V 3D2) and cultural reconstruction (Charismatic, Epoch).
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Figure 1.29: Three generations of web plugins for interactive modeling and adaptive visualization.

3D Modeling in a web browser: Meaningful interaction for GUI-less modeling. The described technical require-
ments for responsive VR in an immersive environment are remarkably similar to the requirements in a totally different
setting, namely for web-based 3D modeling. The main parallel is that internet users do not expect a web interface to
have any complicated GUI elements or deeply nested menu hierarchies. Html forms are fairly limited compared to a
fully-fledged GUI toolkit like Qt. So when trying to realize 3D modeling, in the sense of shape design, in a web browser,
this needs to be accomplished with a fairly minimalistic user interface. Best is to represent actions directly in 3D.

René Berndt and I made our first experiences with with combining web technology and 3D modeling in 2001. Since
then we have produced the three generations of web browser plugins shown in Fig. 1.29. The first plugin (row 1) used
combined B-rep technology and offered the two ways of modeling shown to the left and right in 1.29 (1c):

• Slick modeling: The modeling functionality (from Figs. 1.19, 1.20) was mapped to a GUI-less browser plugin by
making heavy use of key strokes. Pre-defined high-level tools are activated by pressing, e.g., the e-key for extrude.
Picking applies the tool, pressing 1-4 activates the ‘parameter adjustment’ mode of mouse movements.

• Edge sharpness annotation for .obj models: The edges of a combined B-rep are sharp by default, so that models
exported from a CAD program such as Sketchup (section 1.2.2) are by default polygonal. The plugin allows to
select and smoothen edges and faces of a model read from a .obj file. Also a whole set of faces can be selected and
smoothened or sharpned, or just the edges on the boundary of this region, or just edges emanating from it.

In any case the modeled or annotated 3D shape can be put into a database to produce overview pages like 1.29 (1d), from
which a model can be selected to adjust some of its parameters (tail angle in 1e). The interesting technical details of this
approach have unfortunately never been documented.

The second version of the plugin (row 2) used the first version of a much more general modeling technology, the GML.
It was first shown at the final review of the Charismatic project and has since then matured into the solution that will be
presented in the following section – and in detail in the rest of this thesis. With Internet Explorer 6, Microsoft ceased to
support Netscape/Mozilla plugins (which it had before) so that we started to develop in parallel a version of the plugin as
an ActiveX control. The resulting ActiveGML plugin (row 3) was presented by René in 2005 on the Web3D conference
[BFH05]. The latest version of the plugin is always available from the GML homepage www.generative-modeling.org.

http://www.generative-modeling.org
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Figure 1.30: Turbine made with Slick. Such repetitive modeling tasks immediately suggest a stack-based approach.

1.6 A New Type of 3D Technology: The Generative Modeling Language
GML and its Four-Layered Software Architecture

One of the most serious objections to the Python and Slick toolkits is controllability: A CAD-quality model, e.g., a car
engine, cannot be designed with these toolkits. Both toolkits are also seriously affected by the persistent naming problem,
which takes in this case the form of the picking problem: Selection is done by picking and ray intersection. The picking
rays are even conserved in the model file (see Fig. 1.17). The Slick toolkit, in terms of modeling capabilities more
restricted than the Python-based toolkit, was nevertheless the trigger for developing the GML. First note that a model is
created from a sequence of tool applications, repetitively issuing these three steps:

• tool selection: from a menu or with a shortcut key a modeling operation is selected
• tool application: by picking the mesh a vertex within a face is selected and the tool is applied there
• parameter adjustment: the GUI contains four [−1,1] sliders to enter at most four tool parameters

The simplicity of the toolkit, and its distinct shortcomings, immediately and clearly suggest methods for improvement by
generalization: Modeling acts often locally, i.e., the next operation B is applied very close to where the previous operation
A was applied. The mesh locations are highlighted with little half-arrows a and b, so-called mesh iterators. Since mesh
iterators can crawl over the mesh it is very natural to wish one could tell the computer how to generate b from a, rather
than performing two mouse clicks to pick a and b as independent mesh iterators. This is especially annoying when a and
b are equal: In this case one would like to have a way of saying ‘take the halfedge you already got’.

A very similar desire arises with respect to the parameter adjustment. The Slick gallery in Fig. 1.20 contains objects
that exhibit strict regularities, for instance the turbine propeller (1e). Each of the turbine blades is made from three
extrude operations, as illustrated in Fig. 1.30. This operator has a rotational twist parameter; when it is +0.12 with the
first extrude it should be −0.12 with the second, so that the face has then again the original orientation (1.30 b). Since
the parameter sliders stay where they are, the most efficient way to create a propeller is to perform first, for all blades, the
+0.12 extrusions (one pick per blade) and then the−0.12 extrusions with another pick per blade. Then the third extrusion
is performed to finally connect the blades with tunnels to create the outer ring (1.30 c-e).

What one would like to do instead is to carefully design the three extrusions of the first blade to then simply repeat
them for creating the other blades. This would permit to change the number of blades more easily. Second, one would
like to multiply the 0.12 by −1 rather than enter −0.12. Third, when the model is finished one would like to have one
slider to change all 0.12 to 0.14 at once, which should automatically change all the −0.12 to −0.14.

A stack as a simple solution that leads to – PostScript. Problems of this type can be very easily solved when the result
of an operation, e.g., a newly created face, is put on a stack. To process it the next operation can then simply fetch it from
the stack (pop it). The result of this processing is then pushed again back on the stack etc. This way it is very easy to set
up and define an assembly line of operations that are sequentially applied to a given piece of initial data. Note that it is
sufficient to issue only the operations one after another; parameters are passed quietly over the stack, without the need to
explicitly declare any input- or output variables.

This and other examples quickly raised the attention on stack-based languages. One of these languages has great
importance in the field of 2D graphics as a page description language for desktop publishing, namely Adobe’s PostScript.
It is not well known that PostScript is a programming language. After the first 25 pages of chapter 3 from the PostScript
Language Reference, also known as the PostScript Redbook [Ado99], made it very clear how to write an interpreter for
the language core. The result was, right after christmas 2001, the first version of the GML interpreter.

The original motivation for developing a formal language backend was only to have a notation for GUI automization,
i.e., for the automization of tasks that are performed with a GUI. After all the objective was to render interactive shape
design more efficient. But the language itself has proven so fruitful that the attention has shifted a bit from interactive
design to the general shape description problem. It turned out that a stack-based approach is surprisingly well adapted to
3D graphics as many elements of the language can be directly mapped to concepts from graphics.
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1: /stdCyan setcurrentmaterial
(0,0,-2) (1,1,0) 2 quad

2: 5 poly2doubleface
3: (0,1,1) extrude
4: (0,0,1) (1,0,1) normalize

0 project_ringplane
5: (2,0,0) (0,1,-1) 2 quad
6: /stdYellow setcurrentmaterial

5 poly2doubleface
7: 0 bridgerings

1: 2: 3:

4: 5: 6: 7:

Figure 1.31: GML example for modeling with a stack-based language. 1: Parameters of the quad operator are the
midpoint (0,0,-2) and extension (1,1,0) of the quadrangle and 2 as a mode flag. The quadrangle is put on the stack
as an array of four points. 2: The polygon is converted to a mesh face, pushing a halfedge. 3: The extrude operator
expects a halfedge and extension vector, and pushes the halfedge of the resulting face. 4: The face is moved by
projecting it in z-direction (0,0,1) onto a plane. 5,6: A second quad face is created. 7: The quad faces are bridged
with smooth edges. Thanks to combined B-reps the red/green mesh is sufficient to define the rounded pipe.

GML Simplicity: All functionality comes from the operators. The GML has, like PostScript, only two higher-level
built-in data structures, arrays and dictionaries. An array of 3D points can be used as a simple polygon, a path in a mesh
is just an array of halfedges. A dictionary can be used as a tools library and also as an object of a fully-fledged class in
the object-oriented sense, or just to represent a dialogue box. Halfedges and 2D and 3D points are atomic – literal – data
types in the GML like integers and reals. The set of these basic types is even extensible.

The GML interpreter has, like a Postscript interpreter, no built-in functionality or any reserved keywords. All of
its functionality comes from the operators. Operators are organized in libraries that are registered at runtime with the
interpreter. The GML does not have PostScript’s extensive set of operations for typesetting and 2D graphics, but it has
several libraries for 3D modeling, meshes, polygons, vector math, interaction, etc. A small, illustrative example of 3D
modeling with the GML is given in Fig. 1.31. It shows how a piece of data (a quad) is created and processed, i.e.,
transformed (extruded, projected), and then another piece of data is created (another quad). The result is two objects on
the stack, which are then both popped and processed by a combining operation (a bridge or tunnel).

The GML is, like PostScript, a language that is so simple that it does not even have a syntax or a grammar that are
worth mentioning. The whole language can best be described by one pageful with a dozen rules, which are listed in Fig.
5.5. The GML parser is actually only a lexical scanner. It converts ASCII source code to a sequence of tokens, indeed
implemented as a vector<Token> on the C++ level. To execute a GML program then only means to execute this sequence
to token by token, each time performing the appropriate actions: to put a value on the stack or to call an operator. Quite
remarkably the GML is in fact also a functional language, simply because a function is nothing but an array containing
operations – and functions can also be treated like arrays.

Related Approaches. As we found out later, by pure coincidence, there is another stack-based language for 3D com-
puter graphics that is called GML. It is used as a scene description format for a raytracer. To actually implement it was the
semester project CMSC 23700 [RDR03]. The students were only given its formal description and its desired behaviour. –
It appears that it turned out to be useful since it was later also the basis of a raytracing contest.

Furthermore in his Notebook column in IEEE CG&A, Andrew Glassner has developed a stack-based language as
a tool to describe Crop Art, interesting spirograph-like 2D patterns [Gla04]. It is not so clear, though, why he did not
simply use PostScript. – It appears that stack-based languages have been used due to their great simplicity at a number of
occasions also by other people for rapidly creating small tools.

Despite their success in 2D, stack-based languages have never gained much attention as tool for describing 3D content.
This is all the more surprising since 3D graphics can benefit much more than 2D from a data format that is also a
programming language. The main content in 2D desktop publishing is text, which has very few exploitable dependencies.
PostScript’s capabilities are not even used where they would make sense: To use PostScript only for the print-out of an
Excel sheet is a waste since it is easily capable of representing the sheet itself, i.e., the maths behind and the relations
between spreadsheet cells. The ghostscript interpreter, for instance, might be fed only with the values of the essential cells
from which the rest of a spreadsheet can typically be produced.

The fact that the GML can actually compute values, has loops, and can perform conditional decisions, is much more
important for 3D than 2D graphics: Every complex geometric shape, be it a building or a mechanical object, results from
assembling several individual parts that are highly dependent on each other, simply because they need to fit together.
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Figure 1.32: Gothic architecture example. Window tracery is an amazingly rich but challenging domain for
parametric and procedural design. (a) Profile detail of the main rosette at full resolution with subdivision depth 4.
(b) Wireframe of the complete Gothic window with two levels of recursion, sub-windows and sub-sub-windows.
(c) The Procedural Cathedral, a raw building of the Cologne cathedral with about 70 windows, here simple style.
All geometric elements are created by appropriate functions: Objects become operations. 12 KB compressed GML

1.6.1 Four-Layered GML Software Architecture and Thesis Overview

It is important to emphasize that the scope of the paradigm change in 3D technology proposed in this thesis is not limited to
representing 3D content by a stack-based language. This alone will not help at all. There is sometimes the misconception
that the GML is only a formal language; but equally important is its runtime engine. So the more appropriate label for this
technology appears to be the term GML framework.

The arrangement of the four software layers follows the principle of information unfolding (Def. 1.1). High-level
information is on demand successively unfolded to produce larger amounts of more explicit derived data. These data are
cached only as long as they are needed since they can be re-generated. The following explanation begins at the low level,
corresponding also to the order of the chapters. The broadening of the view from local to global is illustrated in Fig. 1.32.

• Level 1: Adaptive display of curved surfaces – Catmull/Clark patches Chapter 3

On the lowest level shape boils down to triangles. To synthesize enough detail for close-up views (1.32a) a curved
surface is partitioned into small patches that (i) can be tesselated quickly with a small computational effort and (ii)
have a multi-resolution tesselation. This is vital to maintain an interactive frame rate also for overviews (1.32b).
Patch setup, computation, tesselation and display is all only local – an important precondition for selective updates.

• Level 2: Primitive-based shape representation – B-rep meshes Chapters 2 & 4

The shape of a subdivision surface is completely determined by the much leaner control mesh. Mesh entities, the
vertices, edges, and faces of the B-rep, are annotated with tesselation data. This are not only the Catmull/Clark
patches for smooth faces from level 1: Faces may also be polygonal, and then the face carries (a reference to) the
triangulation of the face boundary. All tesselation memory is returned to a global pool when entities are deleted.

• Level 3: Shape manipulation operators – Euler operators Chapters 2 & 4

Although B-reps are a primitive-based representation they can also be created procedurally with Euler operators.
They have some important properties: They are closed, so they do not invalidate a valid B-rep, they are sufficient,
so every B-rep can be created with them, and they are invertible, which is the basis for undo/redo. Every B-rep can
be created by/converted to an Euler sequence, regularities in the sequence can be exploited for semantic LOD.

• Level 4: Formal shape description language – GML Chapter 5

As soon as shape can be created with operators, specific operator sequences can be grouped together as re-usable
shape construction macros. A simple formal language is essential as an explicit notation for these macros. The
structure of the GML is very well suited to representing the assembly-line style of modeling in interactive shape
design. At the same time it permits to exploit the similarity between shape design and programming.

All levels of the GML framework are deliberately based on well-established, well understood standard technology. B-reps,
Catmull/Clark surfaces, Euler operators, and stack-based languages are not at all new. The innovation lies rather in the
novel way of combining these components: Nobody believed it would make sense to create meshes with PostScript.
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Figure 1.33: Different available IDEs for GML. The software design of the GML is that of a plugin. The GUI
code is just a thin layer on top of the GML interpreter and the Meshlib, which permits for a rapid adaptation to,
e.g., the Fast Light Toolkit fltk (a), the MFC framework from Microsoft (b), and Trolltech’s Qt (c).

1.6.2 Features of GML-based 3D Technology

The term Generative Modeling reflects an alternative paradigm for representing shape, namely to understand a 3D shape
as the result of a sequence of operations, the shape generating functions, rather than a static set of low-level shape
primitives. The layered GML architecture from the last section is an attempt to operationalize this view on shape. Not all
implications of this technology may be obvious; the following list shall therefore highlight a few of them. Note that some
of the arguments refer to details of the framework that are only explained in the following chapters.

• Paradigm shift from objects to operations
Throughout the nineties, from TBag over VRML to OpenSG, were 3D shapes often understood as objects in the object-
oriented sense: An object of type Cylinder has member variables height and radius which are floating-point numbers.
But this view completely neglects the procedural aspect: All real shapes are the result of some manufacturing process;
synthetic 3D objects are created using modeling tools; in other words, shape is in many if not most cases the result of
applying certain operations.
Objects can in many cases also be understood in the functional sense, as operations. A node in a graph can be identified
with the operation of creating this node; an edge can be seen as the action of connecting two nodes. The advantage is
that then a graph pattern can be formulated as a parameterized graph weaving operation. – This explains how meshes
can be created with the GML as efficiently as whole scene graphs.

• Shape design as rule design: Plugging rules Lego-like together
The reader is urged to try an experiment: Ask somebody nearby to place a dozen dots on a sheet of paper. Repeat
the experiment with other simple shapes like triangles, quadrangles, and circles, or ask a person to draw an arbitrary
continuous pen stroke for thirty seconds. The result is surprising: Almost everybody will immediately invent some sort
of rule. Depending on the person’s creativity he or she will place the dots in a row, make a grid of quads, an alternating
sequence of triangles, or draw a nice meandering stroke.
Assembling GML programs is a little bit like playing Lego with compatible rules instead of compatible bricks: Output
data from one operation are input data to the next. The greatest challenge in operator design is to define the input
signatures (the order of the input parameters) in a way that permits the most flexible combinations of processing chains.

• Procedural models deserve a procedural representation
The generative method works best if many dependency relations exist between shape data. The ideal case is when a
few initial parameters of a geometric construction are sufficient to derive a complete building or a complex machine
part. The GML supports in an ideal way the reduction of parameters. A GML program is just a sequence of tokens, and
executing the program means to execute each token in a row. This permits to easily and transparently replace concrete
values by variables, and vice versa: ‘1 2 3’ and ‘1 x 3’ are absolutely identical (modulo side effects) if x is set to 2, or
if x is an arbitrary function that eventually pushes the number 2 on the stack (’evaluates to the number 2’).

• Bridging the gap between modeling and viewing
The GML together with its runtime engine can be seen as a modeler with an optimized realtime renderer, but also as
a 3D viewer with an integrated modeler. This modeler is very general since with its Euler operators it is low-level but
complete. Correspondingly a GML model can be much more than a conventional mesh model, it may even integrate a
customized modeler to create an unlimited manifold of similar models. An example is the Cave Configurator in Fig.
1.33, where only a few high-level parameters can be adjusted with the blue arrow gizmos representing 3D sliders.
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• Polygonal and free-form geometry within the same data structure
Combined B-reps realize the generative principle already on the data structure level: Subdivision surfaces are generated
procedurally from the control mesh by simple but powerful recursive refinement rules. Smooth free-form surfaces can
be created with minimal effort just by switching the sharpness flag of a few edges in the mesh: Every face that has at
least one smooth edge is rendered as Catmull/Clark subdivision surface. This isolates just the essential DOFs for shape
design: The complexity is reduced by more than two orders of magnitude because one quadrangle face of the control
mesh can unfold to as many as 256 quads of the tesselation.

• On-line multi-resolution mesh modeling
Conventionally a static shape is converted to a multi-resolution mesh in a pre-processing step. Our approach inter-
twines this pre-processing with interactive display. The actual tesselation of a mesh face, irrespective of its type, is
generated only on demand, i.e., when it is requested for display. In case of local mesh modifications the tesselation
is selectively updated: The data structure keeps track of allocated, deleted, and modified mesh entities by means of a
touching scheme (see section 4.3.2). The tesselation is also incremental: Surface resolution can be traded for interaction
speed using a quality parameter. This means that the tesselation is organized in a way that it is refineable so that the
computational cost can be spread (’amortized’) over a number of frames.

• Preservation of model semantics throughout the whole processing chain
The entire knowledge about which mesh entities belong to which part of the model is preserved on the level of individual
half-edges of the control mesh. This means that the complete way through the unfolding of information in levels 1-4
from sec. 1.6.1 is recorded. Picking a Catmull/Clark patch with a mouse click one finds the half-edge the patch belongs
to. The half-edge carries the ID of the Euler log record of the unique operation that created it. The log record belongs
to an Euler macro. And on the macro level it is possible to identify the parts of the model by navigating through the
macro hierarchy on the GML level, traversing the macro parent/child relation. The macro resolution can be defined by
the user. The whole mechanism is even fast enough to let faces of the model be used for interactive sliders.

• Generality through extreme simplicity: The GML is extensible
The GML framework has only very moderate requirements for a surface representation or modeling method to be
integrated. The interface is extremely simple as it requires only to define a number of operators: They need to pop
input parameters from the stack, complain if there is an error, otherwise process them and push the result back on the
stack. In a few Studienarbeiten this approach was applied to integrating implicit surfaces, convex polyhedra, and 3D
Powerpoint. It is a inspiring exercise to try and define, for a given application purpose, an ‘orthogonal’, i.e., minimal,
set of operators, and to maximise their combinability by defining their signatures appropriately.

• Generalization of modeling history
One of the great things from the popular modeler 3D Studio Max from Kinetix is the modifier stack: All modifications
applied to an object are visibly stacked on another in the GUI. The parameters of each modification, e.g., the frequency
of some noise applied to the object, can be changed at any time. The GML generalizes the modifier stack as it allows
to treat and combine any sequence of consecutive processing steps as a single high-level tool. Because of the persistent
naming problem the modifier stack of Max is frozen when an object is converted to a polygonal mesh and low-level
mesh operations are applied. The GML can record operator sequences on the half-edge level, of course.

• Generalization of data flow graphs
The GML is also capable of representing processing steps arranged in a dataflow network. Formally this is a directed
acyclic graph (DAG) where the output of one operation can be fed into the next. For every DAG exists a partial linear
ordering. In the simplest this can be directly turned into a GML program by simply concatenating the names of the
respective operators in this order, separated by whitespaces; possibly a few calls to dup and pop must be interspersed.
Since the GML is a functional language it is more general in that it allows operators, i.e., processing nodes, also to be
parameters. As it furthermore allows to collapse sub-parts of the network into a single combined operator (node), it
even permits to send sub-networks as parameters over the connectors within the network.

• Solution to the annoying code generation problem
GML inherits from PostScript a unique feature. PostScript is the invisible language: In terms of quantity of automati-
cally generated source code PostScript is without a doubt unparalleled by any other programming language. Whenever
a document is printed on a PostScript printer, the printer actually executes the document as a computer program written
in PostScript that, as a side effect, produces the bitmap that eventually appears on a sheet of paper. The vast amount
of available PostScript drivers for all kinds of software indicate that it can not be immensely difficult to generate valid
PostScript code. PostScript is ASCII. It is very interesting and instructive to have a look at the result produced by
AutoCAD when converting an engineering drawing to PostScript.
An often-heard objection to stack-based programming languages is that they are horrible to program (’stack acrobatics’).
The answer to this is that nobody wants to program: A stack-based language was chosen to get rid of coding altogether.
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Figure 1.34: Separation of structure from appearance. A generic chair model, parameterized with five 3D points,
is adapted to given chairs. The arrows are slider gizmos to move the five control points interactively, so in fact they
re-parameterize the DOFs. 12 KB GML code. Note that surprisingly different objects share the same structure.

1.6.3 Potential: A Wealth of New Questions

The really difficult problems are not solved in this thesis, of course. The considerations from the last section nevertheless
permit to hint at possible directions for further research in response to the tough issues that were mentioned in section 1.4:
The proposed change of perspective may after all assist in finding adequate solutions one day.

• The semantic gap between a shape and its meaning
The example from section 1.4 for the semantic gap between a shape and its meaning is the scanned amphora. This
refers to the inverse problem of shape synthesis, namely shape recognition. What does it mean to recognize a shape?
This question is flagged below as a possible area for further research.

• Solution to the modeling bottleneck
Generative design with its possibility to specify rules for automated shape creation, instead of creating individual shape
instances, is certainly a mandatory first step to increase the modeling efficiency; however, only this is not yet sufficient.
What is still lacking in the current thesis is an efficient method to design shape creation rules interactively; and this will
be the difficult part.

• Digital libraries of solutions to modeling problems
Re-using the solutions to modeling problems that have already been solved before is possible only when these solutions
were formulated in a generic, re-usable way. The operator calculus offers in principle the possibility to do so, and in
fact a substantial library of auxiliary functions are part of the GML model of Gothic architecture ([HF04a, HF04b], also
see section 5.4.1). But again the hard problems are those of maintenance (versioning, consistency) and the classical
digital library services: markup, indexing, and retrieval of construction rules.

• Extremely compact shape representation
The size problem is indeed solved by procedural modeling. Quickly gathering the GML files for all models in this
thesis, including some redundancies, yielded about 1 MB of source code – which is only 175 KB zip-compressed.

• Dynamic virtual worlds
The most important ingredient is the integration of full modeling capabilities into the viewer – which has been achieved.
The GML permits for arbitrarily complex responses to user events. Powerful callback functions can be attached to any
piece of geometry in the scene, callback functions can even be interactively assembled and defined at runtime. – Again,
however, this is only the technical prerequisite: It still remains to find ways for a meaningful interaction/communication
with a virtual environment – efficient ways for humans to express their creative ideas without much frustration.

• Using 3D ‘out of the box’
This is solved by three measures, (i) the integration of modeling and viewing, (ii) the possibility to isolate the essential
DOFs, and (iii) the design of the GML as a plugin: Executing ‘1452 castle’ might create and display a typical castle
from 1452 in any third-party application that provides an OpenGL context, provided a suitable castle library is provided.
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A wealth of fruitful new questions should be the result of solving some of the annoying questions mentioned above.
The following list is a preview to the collection of a dozen areas for Future Work at the end of the thesis in section 5.6.

• GML as a general exchange standard for procedural models
The great goal is an architecture that allows to exchange intelligent 3D components between different software systems
so that they still remain high-level editable in the target system. The GML is intended to be a ‘smallest common
denominator’ for the description of procedural models, analogous to triangles for the description of surfaces. This
claim remains to be proved, of course. It can be formulated as the GML efficiency conjecture:

Most if not all concepts in today’s state-of-the-art parametric and procedural modeling systems can be
efficiently represented using a stack-based operator calculus like the GML.

Examples already mentioned include the construction history (modifier stack) and the dataflow graph; further candidates
are dialogue boxes and high-level primitives, scene graphs, keyframe animations, articulated bodies, particle systems,
soft bodies, and procedural shaders, which may all be very well captured with operators.

• GML as shape markup language
GML+OpenSG may be a valid successor of VRML/X3D. History showed that to standardize only the language is not a
solution. Without a standard runtime engine inter-operable 3D components will remain a myth. The power of GML as
a markup language will be shown in section 5.6.12. There are ways to translate an X3D file (=VRML+XML), as well
as other legacy formats, to GML syntax automatically (see Figs. 5.61 and 5.60 in section 5.5.3).
The great advantage of such a transformation is that it removes the artificial separation between markup language and
processing language. Both are replaced by a single extensible language for static as well as procedurally generated
and/or manipulated shapes, and one extensible standard runtime environement – as opposed to the fragile combination
of VRML/X3D + Java/JavaScript + prorietary viewer. This unified view has a great potential: Hierarchical Euler macros
can for example be seen as the continuation of a scene graph below object level, etc.

• Shape configurability for mass customization
Mass customization is a huge trend: Market pressure, shorter product cycles, and simply the advantages of digital
technology lead to the implementation of a purely digital workflow in many industrial domains. With computer power
comes customizability: A CAM/CAE machine does not have to produce only identical objects in the same production
line; in one word, it introduces changeability.
The configurability of shape is thus less of a problem for the manufacturing process, it is more an interface problem.
Questions are how to author, configure, store, and transmit changeable shapes reliably, how to let non-expert users edit
shape, and how to suitably limit the degrees of freedom to avoid infeasible input. The most serious argument against
end user 3D shape editing is cost: Creating masses of 3D user interfaces is simply too expensive. – Needless to say that
the GML framework is qualified in a unique way to be a solution to the interface/exchange problem.

• Tangible 3D: Truly responsive virtual worlds
A gizmo is a 3D object that is artificially put into a scene to represent an operation, such as a parameter change
or a switch. The vision of Tangible 3D is to operate gizmos with bare hands, which are the ultimate form of human-
computer interface (3D-HCI). In the recent science-fiction movies Matrix and Minority Report computers are controlled
by pointing with bare fingers at transparent 2D interfaces freely floating in space. A less far-fetched and more concrete
usage scenario are 3D shopping terminals. They may be thought of as a generalization of the familiar selling machines
with a small 2D screen, such as ATMs (for drawing cash money), or terminals that sell railway tickets.
This leads to two fields of research that are tightly related: First, to develop the right input devices, and second, to
identify suitable interaction metaphors and devise general design guidelines for responsive 3D applications. Our first
results, together with Hyosun Kim and Georgia Albuquerque, of un-instrumented 3D interaction with camera tracking
of finger tips are very promising [KAHF05]; but much, much more is possible – and will be done.

• Update-able shape data structures: The quantitative increase in speed requires new a quality in algorithms
A quantitative increase, e.g., in processing speed and available main memory, can turn into a qualitative change simply
because suddenly things become possible that were not possible before. Any sort of pre-processing becomes obsolete
when it takes longer to read the processed data from a file than to compute them. But then the users will sooner or later
also want to change the input data on the fly.
Many existing methods in computer graphics, like raytracing, use to operate in a monolithic input→algorithm→output
fashion. They need to be completely re-arranged when used interactively: (i) the processing is quickly performed only
partly to produce a rough approximation, (ii) the output data are multi-resolution, and (iii) is recorded which output data
Bj are produced from which input data Ai. When Ai changes to A′

i then (ideally) only B′
j must be (re-)computed, and

not the complete result B0 . .Bm. – An example for such bi-directional caching over several levels are the (progressive)
combined B-reps (sections 4.4,4.3). The same is possible for other surface types, e.g., for the tesselation of metaballs.
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• Logging and re-constructibility: Re-ordering construction sequences
A naive solution to the problem of authoring procedural shape families is logging. With a macro recorder, for instance,
all user interactions and events are captured, they can be repeatedly played back, maybe even some sort of editable code
is generated (Maya MEL, Microsoft VBA), etc. It makes no sense, though, to record all slider ticks during parameter
adjustment. Similarly, interactive modeling involves much trial and error. So there must be a way for the user to tell
the system which steps are essential and must be recorded, and which are not. Even more desirable is, of course, to
have a system capable of deciding automatically what is important and what is not. With an operator-based calculus to
formalize construction sequences this boils down to the problem to automatically optimize these sequences.

• New research area: Comparison of shape constructions
With a notation for construction plans at hand it becomes in principle also possible to reason about and compare shape
constructions. Note that there are many different ways to build the same shape. This is not only a technical problem. It
reflects the fundamental fact that every shape instance naturally belongs to different shapes families: A triangle is, for
n = 2, an n-dimensional simplex shape, as well as a rough approximation to the circle.
More general than the question whether two shapes are similar is the question whether two shape families are similar.
This more general question is not inevitably also more difficult to solve. Without imposing any restrictions it is, of
course, undecideable [Tur36]. A reasonable approach is to define a normal form containing a limited set of building
blocks for procedural constructions. One such building block is for example the linear sequence (Fig. 1.2). Imaginable
is a small set of generic construction templates that can be tried out with a given dataset, e.g., a scanned stairway, to
mimic its procedural construction; this should in this case also involve using a loop. Such a normal form with generic
procedural building blocks might as well be of great benefit for the rapid design of shape families.

• New research area: Automatic Shape Understanding as generalized shape matching
The semantic gap between a shape and its meaning is not closed in this thesis. The example from section 1.4 is the
scanned amphora and the observation that most important fact about it is that it is indeed an amphora. But how can it
be explained to a computer what an amphora is? – This is exactly the shape description problem.
Existing methods usually try to recognize an unknown shape by comparing it to a number of known shapes by means of,
e.g., measuring the deviation between surfaces (Hausdorff distance). This is a somewhat superficial measure, though.
Much better results are possible for all kinds of recognition tasks with a guided, model-based search than with a blind
search: A task like pose estimation from a video sequence is much faster and more robust when a deformable 3D model
of a human body is available that can be fitted to the video. The GML can assist in the rapid production of domain
specific shape templates.
A generative description of a parameterized shape template makes it possible to express structural similarity. A concrete
example is the generic chair shown in Fig. 1.34. It has only very few input parameters, five 3D-points, which makes
it possible to quickly adapt the chair template to any given (scanned) chair. Although the models do not match in the
strict sense (Hausdorff distance), the ‘important’ properties of the target chair can nevertheless be matched – according
to the sense of importance that was coded into the chair template. This is exactly the kind of flexibility that is needed
for the extraction of semantic/structural information. The images in the lower row show that a garden chair, a sunbed,
a sofa, and a bed (not shown) in fact share the same structure as a chair.
To decipher the abstract structure always means to throw away some information. From the structural point of view, this
may be only artifact information. For other purposes, however, this may be exactly the valuable information; for quality
control of the object’s surface for instance, or to find differences between supposedly identical objects. – An area for
research is therefore to find ways how the generic structure of a shape class and the detailed surface of a particular shape
instance can be intregrated into a single representation – hopefully in a way that combines the strengths and mutually
compensates for the weaknesses of both ways to represent shape.

• New research area: Managing procedural knowledge
Procedural knowledge is one of the most valuable assets of individuals as well as academic institutions and commercial
companies. The ability to satisfy an order relies on the knowledge how similar tasks have been performed in the past.
Thus the preservation of this knowledge is critical. Procedural knowledge takes many different forms, which makes it
very hard to reason about it.
One of the main reasons for the enormous success of the personal computer in the 1980’s was a revolutionary killer
application: the spreadsheet. Software such as VisiCalc [Bri04] gave average persons for the first time the possibility to
perform complicated calculations easily and instantly. Within the framework, a great amount of flexibility is granted.
For more general tasks, the user must leave the restricted framework and fall back on a more general method to tell the
computer what to do, namely programming. The missing link between spreadsheets and programming is a technology
for all users, i.e., also those with no programming skills, that

• permits to specify a process, i.e., a sequence of processing steps,
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• allows to integrate different applications into one process,
• but does not require any literal programming, and
• demands only a level of expertise comparable to creating a spreadsheet.

The idea to use the GML with its simple operator-based notation for representing procedural knowledge in general,
i.e., as a technology to provide this missing link, was presented at the I-Know conference in Graz 2005 [HF05b]. The
proposal was quite vividly discussed.

Thesis overview. The goal of this thesis is to develop a framework for generative modeling with meshes as the principal
surface representation. For the principle of information unfolding to work properly it is not only necessary to specify
input- and output data and then to optimize the conversion. The input data should be given in a form that indeed supports
an efficient conversion, and the output data should be arranged so that results which are not yet computed can be integrated
later. As the GML framework performs this unfolding even across several layers, it is just as important as it is laborous to
optimize all of these processing steps simultaneously.

To summarize the task, what needs to be done is the following:

• Chapter 2 – Theoretical Foundation of Polygonal Meshes
Clarify on the fundamental properties of the shape domain, in particular on the subtle relation between cell com-
plexes, 2-manifolds, and polyhedral meshes. Find a suitable, convenient definition of a mesh. Determine an operator
interface for creating and modifying these meshes, and clarify on the properties of the operations: Are they closed,
complete, and invertible?

• Chapter 3 – Subdivision Surfaces
Following the idea of patch complexes concentrate on finding a suitable type of multi-resolution free-form patch.
It needs to be compatible with irregular polyhedral meshes, and it should not offer too many DOFs to remain
artistically manageable. As it is at the lowest level of abstraction, with maximum unfolding, its generation/setup,
tesselation, and adaptive display need to be highly optmized.

• Chapter 4 – Practical Meshes
Operationalize the more theoretical considerations on meshes from chapter 2. This is an applied and sometimes
very technical chapter, intended to be useful also for students. It covers issues such as template parametrization of
mesh data structures, realtime rendering from view frustum culling to LOD computation, the exact definition of the
interface to the Catmull/Clark patches from chapter 3, caching and selective updates, logging and inversion of mesh
construction sequences, and guidelines for the implementation on mesh modeling tools.

• Chapter 5 – The Generative Modeling Language GML
The final chapter eventually presents the GML as the formal calculus on the top level. It provides a complete
definition of the language on a single page (Fig. 5.5) and a short general introduction to useful programming and
modeling concepts. This is then somewhat intensified and applied right away to an extremely rich but challenging,
long-standing domain of procedural shape design, namely Gothic architecture. – The chapter concludes with a
proposal of a dozen directions for further research and an epilogue (in German).



Chapter 2

Theoretical Foundation of Polygonal Meshes

The purpose of this chapter is to give a proper definition of a mesh. This thesis builds upon meshes as the principal method
for representing the shape of three-dimensional objects. But it is not so apparent, nor is it easy to define, what a mesh
actually is. There is a gap, and a number of subtle differences, between the well-defined mathematical foundations of
meshes and the way meshes are used in practice. Considering their importance, it is worthwhile to have a closer look at
what these differences are.

The exposition begins with a few basic facts from algebraic topology. For aesthetic reasons, it starts at the very
beginning, by introducing general topological spaces. The conciseness of the mathematical formulation permits to reach
the point quickly where cell complexes can be defined as a well-defined way to look at meshes. This is then compared to
indexed face sets as the main device for using meshes in practice. The main problem that is identified is how a mesh is
embedded in 3-space.

Algebraic topology provides the major foundation for the description of shape, and it forms one of the grounds com-
puter graphics can stand on. The second foundation comes from another branch of mathematics: differential geometry.
Both fields are tightly related, but they consider slightly different aspects of shape: While the focus of topology is a qual-
itative classification and a distinction between global shape types, differential geometricians are more interested in local
analytic properties of curves and surfaces, such as differentiability and curvature.

The main concept here, and also the link between both of these branches, is the manifold. It is a very general and
broadly applicable conceptualization that permits to express a variety of different aspects related to shape. The main
reason for its usefulness is its versatility: Manifolds are a device for understanding abstract, high-dimensional spaces
embedded in even higher-dimensional spaces. On the other hand, they can also be very concrete: In computer graphics,
there is for instance the well-known, important distinction between manifold and non-manifold triangle meshes (the latter
creating notorious problems).

Meshes are by no means the only way to describe shape. Creative minds have developed a great variety of different
shape representations in the past decades. They all differ in their strengths and weaknesses, and it is often far from trivial
to convert from one representation to the other. The mathematical theory of shape, however, applies to all of them. So it is
quite important to be conscious about the theoretical background. Many shape representations developed by practitioners
are surprisingly close to the abstract theory, point clouds being a notable example.

New ideas can also come from theory. One such idea, and a central idea pursued in this thesis, is to understand shape
as the result of applying a sequence of operations, rather than just a list of geometric primitives. A list of triangles can
represent a shape, but a sequence of Euler operators shows how to build the shape. So Euler operators are an example for
the paradigm shift from objects to operations, for meshes as one specific shape domain. Meshes are only one example
though, which should be kept in mind when reading this chapter. The same approach is certainly valid for other shape
representations as well, since all methods are based on the same underlying theory, and they all must respect the same
nature of shape.

The material presented in this chapter has been collected and combined, sometimes with some slight variations, mainly
from two fabulous books. The book Topology of Surfaces from L. Christine Kinsey [Kin93] is a great introduction to the
mathematical theory of cell complexes, surfaces, and manifolds, and the book Introduction to Solid Modeling from Martti
Mäntylä [Män88] is the central resource for Euler operators and the conceptual bridge to shape modeling and CSG.

2.1 Basic Facts of Algebraic Topology

The objective of topology is the classification and description of the shape of a space up to topological equivalence. Most
of the shapes computer graphics and geometric modeling are concerned with are of course embedded in Euclidean space.
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Many ideas and algorithms on shape developed in these fields actually understand a shape just as a compact set of points in
three-space. The familiar Euclidean space already has very much structure, but algebraic topology offers ways to reduce
this structure to its very essence.

Definition 2.1 (Topological Space)
A topological space is a set X with a collection B of subsets N ⊂ X, called neighbourhoods, such that

• for every point x ∈ X there is a neighbourhood N ∈ B that contains x, and

• the intersection N = N1∩N2 of any two neighbourhoods N1,N2 ∈ B is again a neighbourhood N ∈ B .

The set B of all neighbourhoods is called a basis for the topology on X.

Definition 2.2 (Open sets, Topology)
Let X be a topological space with basis B. A subset A⊆ X is an open set if each point x ∈ A has a neighbourhood N ∈ B
that contains x, and N is contained in A: x ∈ N ⊆ A. The set of all open sets T is a topology on the set X.

Topology is an amazingly general concept, which can be illustrated by the example of a discrete topology: Let X =
{x,y}. Then possible topologies T on X include {X ,∅}, {X ,∅,{x}}, {X ,∅,{y}}, and {X ,∅,{x},{y}}. But topology is
also very fundamental and elegant, since the familiar definitions of interior, limit point, closed sets, connectedness and
continuity can all be rewritten to depend only on the ideas of neighbourhoods and open sets. Note that X is required to be
only a set, so no structure at all is needed to construct a topological space – just a collection of neighbourhoods that covers
X . And the subsets obtained from combining these neighbourhoods are just the open sets of X . The open sets are in fact
defined by the neighbourhoods, as a set is open if and only if it can be written as a union of the elements of the basis B.

Theorem 2.3 (Elements of a topology)
Let X be a topological space with topology T and basis B.

1. X and ∅ are elements of T .

2. The union of any collection of elements in T is in T .

3. The intersection of any finite collection of elements in T is in T .

Definition 2.4 (Closed sets)
If C is a subset of a topological space X with topology T , then C is closed if X−C is open.

Theorem 2.5 (Closed sets)
Let X be a topological space.

• X and ∅ are closed

• The intersection of any collection of closed sets is closed.

• The union of any finite collection of closed sets is closed.

So the closed sets are only derived from the open sets, defined as their set-theoretic complement. In 3D, the closed
sets match the intuitive notion of a solid: It is natural to assume that the two-dimensional surface of a 3D solid belongs to
the shape itself. This fact is important, e.g., for set-theoretic operations such as union, intersection and difference, which
are actually used in practice with the CSG method to create 3D shapes. One subtle problem with this method is that the
difference A−B of two overlapping solids A and B, both closed sets, also removes B’s surface, and it leaves A−B a set
that is neither open nor closed. Fortunately, this issue can be resolved by a slightly modified, ‘regularized’ version of the
operation: Instead of A−B, it yields the closure of the interior of A−B. Please consult Mäntyläs book for some interesting
details [Män88].

The discrete topology mentioned before is just one example for topological spaces with seemingly counter-intuitive
properties. In fact quite a bit can go wrong at the lowest level, and it is very interesting to see which low-level properties
are needed to assure that things are as one would usually expect them to be. ‘Point set topology’ offers some definitions
that clarify on such elementary properties:

Definition 2.6 (Hausdorff space)
A topological space X is a Hausdorff space if for every pair of distinct points x,y ∈ X, there are disjoint open sets U and
V so that x ∈U and y ∈V.

This definition is related to a classification of how powerful a topology is in separating different points and sets, namely
the separation axioms. They define a hierarchy of T0, T1, and T2, or Hausdorff, spaces . And even stronger than Hausdorff
spaces are ‘normal’ spaces, where every pair of disjoint closed sets is contained in a pair of disjoint open sets – which is a
quite intuitive precondition, but by no means true for all topological spaces. Fortunately, there are easy ways to construct
also spaces of a more familiar type.
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Definition 2.7 (Metric, Metric Space, Metric Topology)
Let X be a set with a function d : X ×X → R. X is a metric space when d is a metric, i.e., when it satisfies

• d(x,y) = 0 if and only if x = y

• d(x,y) = d(y,x) for all x,y ∈ X (symmetry)

• d(x,z)≤ d(x,y)+d(y,z) for all x,y,z ∈ X (triangle inequality)

The metric d can be used to derive a topology on X, called the metric topology. It is defined by a neighbourhood which is
the collection of all sets of the form N = DX (x,r) = {y ∈ X : d(x,y) < r} with x ∈ X and a real number r > 0 .

Definition 2.8 (Topology on Euclidean Space)
Points in the n-dimensional Euclidean space R

n are denoted using coordinate tuples x = (x1,x2, . . . ,xn).
The Euclidean distance between two points x,y ∈ R

n is given by the metric

‖x− y‖=
√

(x1− y1)2 +(x2− y2)2 + · · ·+(xn− yn)2 .

The open ball with radius r centered at x ∈ R
n is Dn(x,r) = {y ∈ R

n : ‖x−y‖< r}.
The open balls form a basis for a topology on R

n.

So the familiar standard topology on R
n is just a direct result of the standard Euclidean distance used as a metric.

This definition works for any dimension. For n = 1 the induced metric topology is just formed by the open intervals.
The Cartesian product of open intervals forms open rectangles in 2D and open boxes in 3D. Remarkably, it makes no
difference if balls or boxes are used, since the resulting topologies are equivalent: An infinite union of balls can form
a box, and an infinite union of boxes can form a ball. So both sets of neighbourhoods in fact agree on which sets are
open. And both variants are actually used as shape representations in computer graphics! They are called ‘union of balls’
[ACK01a, ACK01b] and ‘octree’ or ‘voxel’ [CDM∗02] representations, respectively.

Definition 2.9 (Continuity, Invertibility of Functions)
Let D ⊆ R

n and R ⊆ R
m. A function f : D −→ R is continuous if whenever B is an open set in R, then A = f−1(B) is an

open set in D. The function is invertible if there is another function g : R−→D so that 1R = f ◦g : R−→ R is the identity
function of R, and 1D = g◦ f : D−→ D is the identity function of D. Then g is called the inverse f−1 of f .

Definition 2.10 (Homeomorphism)
A function f : D −→ R is a homeomorphism if it is both continuous and invertible, and the inverse function f−1 is also
continuous. The spaces D and R are then topologically equivalent . Topological equivalence is an equivalence relation
as it is reflexive, symmetric and transitive. A quantity is called a topological invariant if it is the same for topologically
equivalent spaces.

Homeomorphisms are the ‘silver bullet’ of topology, since they allow to identify different topological spaces if they
have basically the same structure: All that is required is that the open sets on both spaces are ‘compatible’. Seemingly
quite different spaces can be mapped to each other, and are thus the same from a topologist’s point of view. An example
are the infinite two-dimensional plane and the sphere, but only with the north pole missing, called the ‘pointed’ sphere.
Both spaces are topologically equivalent since there is a homeomorphism, the stereographic projection: Put the sphere on
the plane such that the south pole just touches the plane. Then any line from the north pole to a point on the plane touches
the sphere at a unique point, and this establishes a mapping that is both continuous and invertible.

Continuity is of course much weaker than differentiability: The analytical properties of the spaces to be identified do
not matter. So homeomorphisms are allowed to stretch and bend quite freely, but the spaces have to remain connected: A
topological space is connected if it can not be written as a union of two (non-empty) disjoint open sets. Connectedness is
a topological, or intrinsic property, whereas for instance boundedness is not: The sphere is bounded, but not is the plane.
Consequently, as Kinsey says “no topological property should be based solely on distance, since in topology distance
means very little” ([Kin93], section 2.4, p. 29).

A little stronger than boundedness is compactness, and it turns out to be a topological property: A set A is (sequentially)
compact if every infinite sequence of points in A also has a limit point in A. With the standard topology on R

n, the
Heine-Borel theorem states that this is equivalent to saying that A is closed and bounded. So together with closedness,
boundedness does qualify for being a very basic topological property. A subtlety though is that this is the case only for
topologies that are not discrete. Algebraic topology has developed a powerful machinery and many different ways to tie
spaces together, and to construct useful mappings between them. Only the most basic ones are presented next, and they
directly relate to the construction of polygonal meshes.

Note by the way the difference between a homeomorphism and a (group) homomorphism: The latter is just a function
f that is compatible with some group operations �,�′ so that f (x � y) = f (x) �′ f (y). An invertible homeomorphism is
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Figure 2.1: Example of an identification space. First a cylinder is constructed from a quadrangle by gluing two
edges together: Edges a1 and a2 are identified through an equivalence relation (see Def. 2.13). In particular, the top
and bottom pairs of vertices are identified. The neighbourhoods of these vertices are two half discs (with red and
green halves) that extend over the left and right sides. Note that these half-discs are open in the relative topology.
Another triangular 2-cell is attached by gluing a3 to a1 ∼ a2, and vertex B4 of a 1-cell is identified with the top
quad vertices. The resulting relations are A1 ∼ A2 ∼ A3 , B1 ∼ B2 ∼ B3 ∼ B4 , and a1 ∼ a2 ∼ a3. The red vertex
B is a complex vertex: Its neighbourhood is not homeomorphic to the open two-dimensional disc.

called isomorphism. Algebra and algebraic topology are both interested in functions that maintain some sort of qualitative
structure. A quantitative study of analytic geometric properties on the other hand is the objective of differential geometry.

Definition 2.11 (Relative Neigbourhood, Subspace Topology)
Let A⊂ R

n. A neighbourhood of a point x ∈ A relative to A is a set of the form Dn(x,r)∩A.
More generally, let A⊂ X be part of a topological space X. Then the neighbourhood of a point x ∈ A relative to A is a set
N ∩A where N is a neighbourhood of x in X. The topology TA induced by this basis is called the subspace topology on A
induced by the topology T on X.

The subspace topology offers a way to obtain neighbourhoods of spaces (or objects) that are embedded in a larger
space. In R

n for instance, when B⊆ A⊆ R
n, B is open or closed relative to A iff B = A∩C for some C ⊆ R

n that is open
or closed, respectively. This way one can also speak of the neighbourhood of a point on a surface that is embedded in 3D,
such as the surface of a solid. The induced 2D neighbourhood of a surface point x is just the intersection of a 3D open
ball Dn(x,r) around the point with the surface. The same works of course for one-dimensional curves embedded in 3D.
The portion of the surface or the curve that is cut out of 3-space by the ball can have a very interesting structure. It is by
no means in all cases just a plain local 2D or 1D space.

Another rich source of examples is the category of quotient or identification spaces. They are a device to filter out
redundant information in contrast to the product spaces mentioned before which help to lift spaces to higher dimensions
and thus add information.

Definition 2.12 (Quotient topology)
Let X be a topological space with topology T and f : X → Y a function ‘onto’ another set Y , which means that the image
of f covers Y completely. The quotient topology T ′ on Y is derived from T by defining U to be open in Y if f−1(U) is
open in X. Thus, U ∈ T ′ if and only if f−1(U) ∈ T .

Definition 2.13 (Identification space)
Let X be a topological space with an equivalence relation ∼ defined on X.
The equivalence class of x ∈ X is [x] = {y ∈ X : x∼ y}.
The identification space X/∼ is defined as the set of equivalence classes of the relation ∼, so X/∼ = {[x] : x ∈ X}.
This operation is also called gluing.

An identification space is just a way of saying that x is glued to any y that satisfies x ∼ y. Technically, the gluing
operation is determined by the equivalence relation. A simple example is the construction of a cylinder X/ ∼ out of a
unit rectangle X with an equivalence relation ∼ like this: The equivalence class [(x,y)] of a point (x,y) from the rectangle
is a set {(x,y)} containing only the point itself, unless x = 0 or x = 1, where it consists of the two equivalent points
{(0,y),(1,y)}. Given a topological space X and an identification space X/∼, there is a natural function X→X/∼: x → [x]
which simply maps an element to its equivalence class. Now this function induces a quotient topology on the identification
space X/∼ . The point-wise equivalence therefore extends to whole neighbourhoods, just as one would expect from a real
gluing operation.
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Figure 2.2: Cell complex on a sphere: The first is not a complex, because there is no lower-dimensional cell to
bound the 2-cell. The insertion of a single 0-cell is sufficient to fulfil the condition (2) for cell complexes from
Definition 2.15. The object (b) is the pointed sphere. The ‘sphere with a zipper’ (c) with one and the object (d)
with two 2-cells are also often used as complexes on the sphere.

The cylinder example is elaborated in Fig. 2.1, where a topologically more complex object is created (left picture).
The schematic representation to the left is called a planar diagram. The planar diagram has the advantage over the picture
that all parts are visible and unambiguously denoted. And to a certain degree, the embedding shown in a picture is just
an artifact: There are infinitely many possible embeddings. It is convenient to exclude embeddings that are too weird by
imposing a few regularity conditions.

Definition 2.14 (n-Cell)
An n-cell is a set whose interior is homeomorphic to the n-dimensional open unit disc Dn = {x ∈ R

n : ‖x‖ < 1} with the
additional property that its boundary must be divided into a finite number of lower-dimensional cells, called the faces of
the n-cell. Notation: σ < τ if σ is a face of τ.

Definition 2.15 (Cell Complex)
A cell complex K =

⋃
{σ : σ is a cell} is a finite set of cells such that

1. if σ is a cell in K, then all faces of σ are elements of K

2. if σ and τ are cells in K, then Int(σ)∩ Int(τ) = ∅
The dimension of the cell complex K is the dimension of its highest-dimensional cell. The set of all points in all cells in K
is denoted |K| and called the realization or the support of K. All k-dimensional (or short k-cells) of K form the k-skeleton
of K.

Cell complexes are the basic device for expressing agglomerations of identification spaces in a strictly hierarchical
fashion. They are frequently used as a theoretical device for arguing about shape, much like Turing machines serve as an
abstract computer model. The basic requirement is only that cells are (relatively) open sets, bounded by lower-dimensional
cells as their (relative) closure. 2-complexes are a very general form of polygonal meshes, although in practice meshes can
occur that do not belong to the class of cell complexes. This is due to the fact that meshes may contain self-intersections,
which is not allowed for cell complexes. This and a few other subtleties are the reason why the actual definition of
meshes is postponed to section 2.3. Until then, the term ‘mesh’ will be used synonymously to ‘2-complex’. The following
terminology is used for meshes in computer graphics:

• 0-cells, or point cells, are called vertices,
• 1-cells are line or curve segments, are called edges, and
• 2-cells are regarded as surface patches, are called faces.

Definition 2.16 (Degree, Valence)
The vertex valence is the number of times a vertex appears as an endpoint of an edge.
The face degree is the number of vertices, which equals the number of edges on the face boundary.

Especially relevant for computer graphics is the case where all 2-cells are triangles.

Definition 2.17 (Simplicial complex)
A k-cell is called a k-simplex if its boundary is formed by k + 1 (k− 1)-cells. 1-simplices are line segments, 2-simplices
are triangles, 3-simplices are tetrahedra. A cell complex is called a simplicial complex if all its cells are simplices.

Note that the general definition of a cell complex does not require that a 2-cell must be bounded by 1-cells: The surface
of a ball is a sphere, but this is not a 2-cell because it is not homeomorphic to the open disc. Just like in the stereoscopic
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Figure 2.3: Different examples of cell complexes: (a) A solid cube with a hollow sphere and a triangle , attached
by an edge and a point, (b) a set of connected line segments, (c) multiple sheets connected via a single edge, and
(d) a vertex attached to six edges and twelve surfaces.

a a a a

Figure 2.4: Cylinder vs. Möbius band. The planar diagrams (a) and (c) of both surfaces are very similar. The
neighbourhoods of the start and end vertices of the arrow are shown in red and green. For the Möbius band the
direction of one edge is reversed before gluing. A bug that crawls along the top edge of (c) from left to right finds
itself suddenly in the bottom left corner of the planar diagram just when it has arrived in the top right.

projection example, it becomes a 2-cell if a point cell is inserted in the surface that serves as its boundary (see Fig. 2.2).
Analogously, a 2D disc bounded by a circle is not yet a cell complex. The circle becomes a 1-cell only if there is at least
one vertex to bound it. And cell complexes are also sensitive to their embedding: It may not be that two cells, for instance
two line segments, intersect, if there is no 0-cell at the intersection point; condition 2 forbids all the special cases related
to self-intersections.

A topological space is formed by defining neighbourhoods for all points in |K|. For 2-complexes, this is done by
taking a collection of polygons and identifying or gluing edges and vertices together. A complete labeling as it was done
in Fig. 2.1 can be tedious, especially for the vertices. Alternatively, just the edges are labeled, but provided with arrows
to define directions. The direction of a single edge can make a great difference, as is demonstrated in Fig. 2.4 with the
examples of the Möbius band and the cylinder. The Möbius band is a quite fundamental surface.

Definition 2.18 (Orientability)
A non-orientable surface is one which contains a Möbuis band.

The Möbius band has the interesting property of having only one side and only one border, in contrast to the cylinder:
There is no way to paint the two sides of the band in different colors. This also means that there is no way to distinguish
an interior and an exterior. So a Möbius band cannot be part of the surface of a solid object: The surface of a (compact)
solid partitions space into two disjoint volumetric sets, its (finite) interior and its (infinite) exterior. This distinction is only
global, but orientable surfaces also permit a local distinction between inside and outside of an object through a consistent
orientation of the 2-cells. A 2-cell is oriented by assigning a rotation direction. This determines a traveling direction along
the cell boundary: Each boundary cell is traversed in the direction of the rotation, and this also determines a cyclic order
of the boundary cells.

The orientation also permits to distinguish between the two sides of a surface. By convention, the side where the
rotation direction is counterclockwise (CCW) is outside, i.e., directed towards the exterior, and the clockwise (CW) side is
directed towards the interior. A pair of neighbouring 2-cells is oriented consistently if their choice of inside and outside is
the same. A consistent orientation is not possible for surfaces that contain a Möbius band, since the part where the Möbius
band is does not permit a consistent orientation (try with the complex in Fig. 2.4 (d)).

To a great part, computer graphics uses an abstraction: Instead of representing a three-dimensional solid volumetri-
cally, as a collection of 3-cells, the surface of the object is taken as the object itself. The abstraction lies in the fact that



2.1. BASIC FACTS OF ALGEBRAIC TOPOLOGY 65

b

b

a a

Figure 2.5: Construction of a torus via identification spaces. First edges a are identified to create a cylinder, as in
Fig. 2.4. Then the cylinder is bent, and the top and bottom boundaries are also identified. The result is a closed
surface. All four corners of the planar diagram are glued together, and its neighbourhood is a full 2-disc (green).

every real surface, such as a sheet of paper or metal, are of course not infinitely thin, but they are solid objects themselves.
The surface of real-world objects though is closed as well as orientable. The objective of computer graphics is image
synthesis. The image we get from a real world object is, unless it is translucent, determined by its surface, which justifies
the abstraction mentioned. This makes surfaces a distinct object of study for computer graphics. The central notion for
the study of surfaces is the concept of a manifold.

Definition 2.19 (Manifold)
An n-dimensional manifold is a topological space such that every point x has a neighbourhood topologically equivalent
to the n-dimensional open disc D(x,r) with center x and radius r. Further is required that any two distinct points have
disjoint neighbourhoods (Hausdorff). A 2-manifold is also called a surface.
An n-manifold with border is a topological space such that every point has a neighbourhood topologically equivalent to
either Dn or the half-disc DN

+ = {x = (x1,x2, . . . ,xn) ∈ R
n : ‖x‖< r and xn ≥ 0} (manifold with border).

Manifold surfaces are much more restrictive than 2-complexes: A 2-complex K is called a manifold complex only if
its realization |K| has the manifold property, i.e., every point of |K| ⊂ R

3 has a neighbourhood that is homeomorphic to
the 2-dimensional open (half-)disc. This is not the case for any of the cell complexes in Fig. 2.3 since they all contain
whole edges that violate the manifold property.

Although only a subset of all 2-complexes can be embedded on manifold surfaces, it is nevertheless a very important
subset. It also plays an distinct rôle in computer graphics, forming an important class of meshes. An even more restricted
class of surfaces is also a fundamental, long-standing subject of study, namely surfaces that are exclusively composed of
linear parts.

Definition 2.20 (Polyhedron)
A 2-complex K is a polyhedron if its support |K| is a closed orientable manifold surface, its edges are straight line
segments, and its faces are simple planar polygons.

Manifolds are also more general than cell complexes: They do not require any partition into cells or other kinds of
sub-structures. They merely provide the support, or realization, |K| for many cell complexes. So when speaking of a cell
complex as a surface, the realization is meant. Different cell complexes can have the same support, and thus may define
the same topological spaces. The five Platonic polyhedra, shown in Fig. 2.12 later, are all complexes on the sphere, an
orientable 2-manifold. They can also be considered complexes on the solid ball, if the interior is counted as a 3-cell.

The question arises of how manifold surfaces can be categorized. The objective of algebraic topology is to classify
topological spaces up to homomorphisms, i.e., up to topological equivalence. The 2-manifolds are a very restricted class
of topological spaces, so there should be some hope to find a good classification. It can be obtained by using a very basic
technique.

Definition 2.21 (Connected Sum of Surfaces)
Let S1 and S2 be two surfaces. Remove a small disc from each of them, and glue the boundary circles of these discs

together. The new surface is called the connected sum of S1 and S2, written as S1#S2.

The connected sum operation is a very powerful device for creating more complex shapes by gluing simpler surfaces
together. One example, the connected sum of two tori, is shown in Fig. 2.7. This way, one can make up any combination
of closed orientable and non-orientable surfaces, such as spheres, tori, and Klein bottles. There is also a ‘minimal’ closed
non-orientable surface. It leads to a quite concise categorization of closed surfaces.
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Figure 2.6: Klein bottle vs. Torus. Just as with the cylinder and the Moebius band, a Klein bottle is very similar to
the torus, except that the orientation of one arc is reversed. The resulting surface is non-orientable, as it contains a
Möbius band (green). But it is also a closed surface, so it cannot be embedded in 3-space without self-intersection,
as sketched in (c).

Figure 2.7: Connected sum of two tori. Orientable surfaces are classified as spheres with a number n of handles,
such as the one in (a). This is topologically equivalent to the connected sum of n tori: A double torus is just a
sphere with two handles. Image (c) shows two tori with open discs removed, so that the boundary circles can be
glued together to form the double torus (d).

Definition 2.22 (Projective plane)
The projective plane P

2 is the connected sum of the sphere S
2 and the Möbius band. So it is constructed by cutting out a

disc from the sphere and identifying the boundary created with the boundary of the Möbius band.

Surprisingly, a surface with border can be handled very much like a closed surface. The reason is that the border
can be naturally divided into a number of loops: It must form one or more closed cycles which are made up from the
(overlapping) neighbour half-discs of the border points. The surface can be closed when these border loops are filled, by
inserting additional 2-cells, each of them homeomorphic to the open 2-disc.

Theorem 2.23 (Classification of surfaces)
The connected sum of a torus and a projective plane is topologically equivalent to the connected sum of three projective
planes: T

2 #P
2 = P

2 #P
2 #P

2. This leads to the following classification of compact connected surfaces:

• A closed surface is homeomorphic to a sphere, a connected sum of n tori, or a connected sum of n projective planes.

• A closed orientable surface is therefore homeomorphic to either a sphere or a connected sum of n tori.

• The same applies to a surface with borders, except that a finite number of discs is removed.

The proof of this quite important theorem is constructive. First, it can be shown that every compact connected surface
admits a triangulation. This is a simplicial complex with only finitely many triangles. It can also be shown that a surface
is connected if and only if the triangles can always be arranged in a list such that triangle Ti can be glued to a triangle
Tj, j < i earlier in the list. But then there must also be a connected planar diagram of all the triangles, this is basically a
set of very long strips of triangles forming a tree. The interior edges are irrelevant, but all edges on the border have labels
to still be matched. Now the proof proceeds by performing the actual gluing, i.e., by shortening the border, until only the
few prototype cases above remain. For details on this case distinction, see Kinsey [Kin93], section 4.4. She also presents a
simple 15 step reduction from T

2 #P
2 to P

2 #P
2 #P

2 to prove the key fact that a combination of tori and projective planes
can be reduced to a combination of projective planes alone.

In the domain of closed 2-manifolds, the main distinction is therefore between orientable and non-orientable surfaces.
Non-orientable surfaces can be considered pathological cases for the purposes of computer graphics, as there is almost no
practical use for them. Fortunately, it is not very difficult to determine whether a given 2-complex is a closed, orientable
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Figure 2.8: Planar diagrams of sphere (a), (b) and crosscap (c), (d). The projective plane P
2, also called crosscap,

is similar to the ‘sphere with a zipper’, with the difference that the orientation of one arc is reversed. The result is
that a Möbius band (green) is part of the surface (d), which makes the surface non-orientable. It can be imagined
as one side of the zipper on the sphere being reversed, a similar relation as between the cylinder and the Möbius
band (Fig. 2.4).

surface |V | |E| |F | genus χ
sphere 1 0 1 0 2
n tori 1 2n 1 n 2−2n negative, even
m projective planes 1 m 1 m 2−m odd, negative for m > 2

Figure 2.9: Genus and Euler characteristic of the typical prototype surfaces.

surface: A consistent orientation of the 2-cells must be possible, and the relative neighbourhood of every point on the
surface must be homeomorphic to the open 2-disc. The first property, orientability, can be checked locally in a similar
way as in the proof sketch above. The second property is trivial for 2-cells, and has to be checked only for 1- and 0-cells.
In the terminology of computer graphics, this provides a criterion to determine the (topological) consistency of a mesh.

Theorem 2.24 (Mesh consistency)
A 2-complex is called a valid mesh if it is a closed, orientable manifold surface; otherwise it is a general or invalid

mesh. A mesh is valid if and only if it fulfills the following criteria.

1. Manifold Edge Property: Every edge is incident to exactly 2 faces.

2. Manifold Vertex Property: Each vertex has an edge cycle of all incident edges. This is a cyclic list of edges such that
each pair of consecutive edges in the list, together with the vertex itself, constitutes a part of the boundary of some face.

3. Orientability: All faces can be oriented in a consistent fashion. This means for all edges that the faces on both sides
traverse this edge in opposite directions, according to their respective orientations.

This criterion allows to check in a straightforward manner whether a given 2-complex, or mesh, K is closed, manifold,
and orientable. It is also possible to derive the type of surface that permits to embed K without self-intersections, according
to the classification from theorem 2.23. This is possible with the Euler characteristic of K.

Definition 2.25 (Euler characteristic, Genus)
Let K be a complex. The Euler characteristic of K is χ(K) = |0-cells|− |1-cells|+ |2-cells|− |3-cells|± · · ·
The Euler characteristic of a 2-complex is the alternating sum χ(K) = |V |− |E|+ |F |.
The genus of a compact surface S is 1

2 (2−χ) if S is orientable, and 2−χ if S is non-orientable. Correspondingly the
numerus of a mesh is the number of its shells: A shell is a connected components in a mesh or 2-complex.

The genus is more related to physical properties of the surface, such as the number of handles or the number of
crosscaps, that are attached to the sphere. The sphere is the prototype genus 0 object. The Euler characteristic on the other
hand is 2 for the sphere, and this is its maximum value. Neither Euler characteristic nor genus can reliably distinguish
between orientable and non-orientable surfaces: Not all surfaces with the same Euler characteristic are topologically
equivalent.

Theorem 2.26 (Euler characteristic)
Two compact connected surfaces are topologically equivalent if and only if they have the same Euler characteristic, they
are both either orientable or non-orientable, and they have the same number of borders.
Any 2-complex K such that |K| is topologically equivalent to the sphere has Euler characteristic χ(K) = 2.
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Figure 2.10: Directed Complex and Ring Examples. A directed complex on a surface with border (a), and a
complex on the torus (b), (c). The connected boxes (d) and the quad torus (e) contain faces with rings. They are
therefore no cell complexes in the strict sense.
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Figure 2.11: Four closed paths on a double torus. The Betti number β1 of the double torus is 4: The surface is still
connected, as any point on the surface can be reached from the green point without crossing any of the paths. Note
that all eight yellow vertices on the boundary of the planar diagram (a) are identified and fall onto the same point
in the embedding.

This means that the Euler characteristic is not a topological invariant, but almost: For instance on the set of all
orientable 2-complexes without borders, it is. – The proof of the theorem is again constructive; it uses a reduction where
edges, faces and vertices are removed until no further removal is possible. Each removal leaves the Euler characteristic
constant, and thus all that remains to be proven is the Euler characteristic for the prototype surfaces, the sphere and the
n-handled torus. The respective numbers of vertices, edges, and faces are listed in table 2.9. Note that the minimal
genus-0 object, the pointed sphere shown in Fig. 2.2 (b), consists of one face and one vertex only. Certain objects are also
described more easily when allowing rings, as in the last two images Fig. 2.10 (d) and (e): A face with rings has two or
more disjoint boundary polygons, so it is not homeomorphic to the open disc. Yet it is always possible to insert an edge
that connects a ring with the outer boundary polygon, thus re-establishing the open disc property. Note that this edge is
incident to the same face on both sides. The remarkable thing about the Euler characteristic is that it can be related to the
number of connected components and the total number of handles in all these connected components.

Theorem 2.27 (Extended Euler-Poincaré formula)
Let K be a complex on a compact orientable surface. Let v = |V |, e = |E|, f = |F | be the number of vertices, edges, and
faces of K. Then

v− e+ f = 2(s−h) − b+ r ,

where s is the number of connected components, also called shells, h is the number of topological holes, b is the number
of border components, and r is the number of rings.

The basic form of the extended Euler-Poincaré equation is v− e+ f = 2(s−h). This equation, however, is far from
obvious. It deserves some explanation. The Euler-Poincaré formula is a specialization for 2-complexes of a more general
equation from a theorem for n-complexes which states that χ = β0−β1 +β2−+ . . .+(−1)nβn . It is proven in Kinsey’s
book [Kin93] as theorem 6.24. The βi are the Betti numbers. They are a result of homology theory, another subject in
algebraic topology, which is a group-theoretic approach to a better surface classification. As was noted above, the Euler
characteristic cannot distinguish between orientable and non-orientable surfaces, which is a quite elementary distinction.
This drawback can be remedied when providing each cell of an n-complex with an orientation, which can be understood
as a traveling direction on the cell. Longer paths, called k-chains, can be formed by summing up such k-cells, which yields
the algebra of chains. The interesting thing now is the boundary operator ∂. The boundary of a k-cell σ is the chain of
(k−1)-cells that are faces of σ, but with the orientation inherited by σ. In the example in Fig. 2.10 (a), ∂(σ) = b− c− e,
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Figure 2.12: The five Platonic solids: The dodecahedron and icosahedron are dual, cube and octahedron are dual,
and the tetrahedron is self-dual. The plane models of octahedron, cube, and dodecahedron are created by stretching
one face. This face turns into the unbounded exterior.

and ∂(b) = P−Q. Thus, the boundary operator maps a k-chain to a (k−1)-chain:

∂(a1σ1 + . . .+amσm) = a1∂(σ1)+ . . .+am∂(σm)

In example (a), which is a surface with border, ∂(σ+ τ) = a+b− c+d , as e is canceled away because it appears in both
directions in σ and τ. A slight variation yields (b), the familiar complex on a torus, now with a diagonal. The torus is a
closed surface, and here ∂(σ+ τ) = 0. In particular, any multiple iσ+ iτ is also mapped to 0 by the boundary operator.
The kernel of the boundary operator, the set of k-chains that are mapped to 0, is called the k-cycles. For any complex on
the torus, the set of 2-cycles, like the group { i(σ+ τ), i ∈ Z} from image (b), is isomorphic to Z. And this is exactly
what is measured by the second Betti number β2, which is also equal to the number of cavities enclosed by a complex.
The Klein bottle cannot enclose a cavity, i.e., it does not partition R

3 in two distinct sets, an interior and an exterior.
Non-orientable surfaces have ker(∂,2-chains)� {0} and thus β2 = 0.

The idea of homology is to measure the power of the chain groups: Two k-chains are homologous if their difference is
the boundary of some k+1-chain. Two vertices, for instance, are homologous if there is a path between them, and β0 is the
number of equivalence classes of vertices with respect to homology. But this is just the number of connected components,
which equals the number of cavities, if all components are orientable. So for orientable surfaces with multiple connected
components, or multiple shells, β0 = β2. Betti number β1 can also be interpreted as the number of closed paths that can
be put on a surface without decomposing it into disjoint parts. This number is 0 for the sphere, as any closed path on
the sphere, such as the equator, creates two disjoint surface parts. Yet two such paths can be put on the torus, as for
instance a and b in image 2.10 (b), without affecting the connectedness of the surface. And on the double torus, even
four closed paths can be inserted without separating any two surface points, as shown in Fig. 2.11. This demonstrates the
fact that β1 can be interpreted as twice the number of topological holes, or handles, of the surface. Finally, this yields the
Euler-Poincaré equation as follows:

v− e+ f = χ = β0−β1 +β2 = s−2h+ s = 2(s−h)

The extended form of this equation as in the theorem is obtained by counting one additional edge for each ring,
because 2-cells may only have a single boundary curve. The treatment of border components is just as in Theorem 2.23,
where it was argued that each border loop corresponds to a face. So the left-hand side of the equation above actually reads
v− (e+ r)+( f +b), which then yields the extended Euler-Poincaré equation.

The remarkable thing about this formula is that it allows to derive the type of surface which permits an embedding
of K without self-intersections, by only looking at the numbers of vertices, faces, and edges. For a compact, connected,
orientable 2-complex that has no rings, the number of topological holes is h = 1

2 (e− v− f )+1.

2.2 Euler Operators

The considerations so far were based on the assumption that is is possible to manipulate surfaces and cell complexes, but
there was no dedicated discussion of the devices that permit to do so. The surface classification theorem 2.23 for instance
used a method to reduce a given complex to one of the standard complexes, which are the sphere and the n-handled torus
for closed, orientable surfaces. Consequently, for creating new objects the point of departure are complexes on the sphere.

A very useful change of perspective reveals what is necessary to create genus-0 objects: To consider a 2-complex as
a planar graph. Physically, this can be understood as taking one face of the complex, which is deemed to consist of a
rubber-like material, and to stretch it so much that the rest of the complex is suspended in its interior. This way, so-called
plane models are constructed, an embedding of a 2-complex in the 2-dimensional plane. Note the difference to the planar
diagrams from the previous section: The unbounded exterior of the plane model actually belongs to it, as it corresponds
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Figure 2.13: Planar models of Euler operators to manipulate a 2-complex. The make. . . operators in the left
column correspond to their inverse kill. . . operators to the right: Each row shows different situations for applying
the operator. The↔ arrows can be either read from left to right (make. . .), or from right to left (kill. . .). With the
first three operators, any genus 0 shape can be built. The last two operators are concerned with rings and building
higher-genus objects. The different versions of the same operator are denoted makeEV (a), (b), (c), etc.

to the face that has initially been stretched. Note that the unbounded outer face is CW oriented, while the bounded faces
retain their CCW orientation when transformed to a plane model.

The obligatory examples are the plane models of the Platonic solids in Fig. 2.12. They are completely regular because
all faces are congruent, all edges have the same length, all vertices have the same valence, and the angles in all corners are
equal. The Platonic solids also have the interesting property that the tetrahedron is dual to itself, the octahedron is dual
to the cube, and the dodecahedron is dual to the icosahedron. Duality in this case is defined in the topological sense by
exchanging the roles of faces and vertices:

Definition 2.28 (Topological Dual of a 2-complex)
Let K = (V,E,F) be a 2-complex on a closed orientable manifold surface. The topological dual K̄ = (V̄ , Ē, F̄) is another
2-complex with |V̄ | = |F |, |Ē| = |E|, and |F̄ | = |V |. Each vertex in the primal complex corresponds to a face in the dual
complex and vice versa. Two vertices v̄, w̄ ∈V̄ of the dual are connected if and only if the corresponding faces f v̄, f w̄∈ F
of the primal complex are neighbours.

Every closed edge cycle around a vertex in the primal complex corresponds to a closed face boundary in the dual
complex. Consequently, the sequence of edges on a face boundary is called the edge cycle of the face.

This establishes a correspondence between edge cycles around vertices in the primal and face boundaries in the dual
complex. The dual of the dual complex is again the primal complex. To practically obtain the topological dual the vertices
can be placed in the face centroids. Topological duality is also a justification for plane models, since it carries over to the
duality defined for planar graphs, when considering the plane model of a 2-complex.

But not all 2-complexes can be embedded in the 2-plane as a whole, of course. An embedding of any higher-genus
object has self-intersections; only partial embeddings are possible, which are then to be glued together (see Def. 2.13).
This paradigm offers the useful view of a 2-complex as a locally planar graph. It reduces the problem of creating 2-
complexes in 3-space to the question which kind of operations permit to create such graphs in the plane. One possible
answer are Euler operators. There are five Euler operators, and each of them is invertible, which makes for a set of ten
operators altogether. The table in Fig. 2.13 shows the effects of all ten operators and the different possibilities to apply
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makeVFS none
killVFS shell has no edges and single vertex
makeEV none
killEV edge has different vertices on both ends
makeEF vertices belong to the same face boundary of the same face
killEF edge has different faces on both sides
makeEkillR vertices belong to different face boundaries of the same face
killEmakeR edge has the same face on both sides, edge is not a loop
makeFkillRH can only be applied to a ring
killFmakeRH a face may not become ring of itself

Figure 2.14: Conditions for legal application of Euler Operators.

each operator. Another table in Fig. 2.14 lists the conditions under which each operator can be legally applied. Before
showing a concrete example that demonstrates how to build a torus, the individual operators are introduced. The first three
Euler operators are enough to create any object that is topologically equivalent to the sphere.

makeVFS: Make Vertex, Face, Shell creates the minimal 2-complex, the pointed sphere. It provides one connected
component (a shell) that consists of just a face and a vertex attached to it, to initialize the modeling process. The planar
model actually consists of the vertex alone, the face is the (unbounded) plane around it. To better distinguish between the
point with the plane and the empty configuration (with no plane), the plane around the point is hatched in Fig. 2.13, (1a).

makeEV: Make Edge & Vertex is the vertex split operator. It allows to split any vertex into a pair of separate vertices
connected by a new edge. Thus it introduces one edge and one vertex, which explains the name. Different configurations
are possible: The new vertex can be attached to an isolated valence-0 vertex, for example created by makeVFS (2.13,
(2a)). When attached to a higher-valence vertex, there are two possibilities, either a dangling vertex (2.13 (2b)) or the
classical vertex split (2.13 (2c)). The inverse operator killEV is also called edge collapse.

makeEF: Make Edge & Face is the face split operator. It is dual to makeEV as it splits a given face in two, introducing
a new face and a new edge. The three possible configurations are also the duals of the makeEV configurations: The loop to
create a 1-gon (2.13 (3a)), the ‘dangling loop’ inside a face (2.13 (3b)), and the classical face split (2.13 (3c)). Its inverse
killEF is also called the face join operation.

Any sphere-like object can now be created, proceeding in a breadth-first manner, starting from a single initial seed-face
for each shell: The first double sided face is created by one makeVFS, a sequence of makeEV (a), and one makeEF (c).
One side is then further expanded by issuing some makeEV (b) and (c), and for every desired face one makeEF (c). The
next two operations are concerned with genus changes: To create topological holes or to glue different objects together so
that they form a single connected component. This can be elegantly accomplished by using rings as the key concept.

makeEkillR: Make Edge, Kill Ring connects a ring with the outer face boundary. This creates just a single edge to
decrease the number of face boundaries by 1. The newly inserted edge is incident to the same face on both sides, with
2.13, makeEkillR (c) as the typical case. The ring however may as well contain only a single vertex (b). The inverse
killEmakeR operator is also applicable to a shell that consists of only a pair of connected vertices (a), for example created
by the sequence makeVFS, makeEV (a). In this case, the result are two points with attached faces, one face being a ring
of the other face. This is suggested by the different hatches.

makeFkillRH: Make Face, Kill Ring & Hole turns a ring into a face of its own. This is maybe the simplest, but also
the most abstract Euler operator. Its inverse, killFmakeRH, is actually easier to understand, because it exactly corresponds
to the connected sum of surfaces from definition 2.21: One face a of a shell A is turned into a ring a′ of one face b of
another shell B, thus creating the connected sum A#B of both shells. The elegant thing is that in case A = B, exactly the
same operation can be used to create a (topological) hole, changing the genus of an object. The diagram in Fig. 2.13, (5a)
attempts at illustrating this operation: Given a face (hatched) with a ring (white interior), the makeFkillRH operation just
disconnects the ring from the face. The face loses its ring (big hatched quad), and the ring becomes a face in its own right,
shown as the hatched exterior around the white quad. Note that this exterior face is CW oriented, which is also the case
when it is used as a ring in the bit quad on the left side.



72 CHAPTER 2. THEORETICAL FOUNDATION OF POLYGONAL MESHES

So makeFkillRH and killFmakeRH just convert back and forth between faces and rings. A very illustrative example
are the stacked boxes in Fig. 2.10 (d): They are connected by making the bottom face of the small box a ring of the top
face of the large box via killFmakeRH. This makes only sense, however, if the small box is really stacked on top of the
larger box, so that the respective faces a coplanar. In this case, by the way, the name killFmakeRH is a misnomer, since
no hole is created, but two shells are joined. The operation should therefore be called killFSmakeR for ‘Kill Face & Shell,
Make Ring’ when used for joining shells. Yet since the same operation can be used in two different ways, either name can
do, so one may as well stick to the name killFmakeRH. This operation is also used with the other ring example from Fig.
2.10, the quad torus (e). Its construction via Euler operators is demonstrated in the following section.

2.2.1 Euler Operator Example: Quadrangular Torus

A concrete example explains best how Euler operators work in practice. The example model is the quadrangular torus, a
quadrangular box with a quadrangular hole. It is assembled in twelve steps, illustrated in Fig. 2.15. The same steps are
shown both as planar diagrams (rows 1,2,3) and in perspective view (rows 4,5,6).

Steps 1–2. Modeling starts with the pointed sphere, created by makeVFS (step 1). This first vertex is split three times,
to create a chain of four vertices (step 2). The first split is of type makeEV (a), the next two splits add dangling vertices
with makeEV (b). Note that the single resulting face is a hexagon, which can well be seen in the planar diagram: It takes
six steps to travel around the vertices, for instance in counter-clockwise direction. In the perspective view, the face (shown
in wireframe) is shown as ‘suspended’ in the polygon formed by the three edges.

Step 3. This shows the value of planar models: Some configurations tend to get complicated when realized in 3D; in
such cases, the corresponding planar diagram can help a lot. This is also true for the next step: Via makeEF, the polygon
is closed, and a double-sided quad is obtained. In the planar diagram of step 3, two faces can be clearly identified: The
brown quad and the (infinite) green plane. In 3D, they are just the co-planar front- and backsides of a double-sided quad.

Steps 4–5. Four makeEV (b) operations in the corners of the brown quad create four dangling nodes and raise the face
degree to 12. The corresponding perspective image shows the non-planarity of this face, which is a result of the dangling
vertices sticking out of the original face plane. The planarity is re-established when four new quads are formed by four
times applying makeEF (step 5). The result so far is a quad box with the topology of a cube: It has eight corners, six faces
and twelve faces. And note that 13 Euler operations were used so far, all except the first with an ‘E’ in their name, six of
them with an ‘F’, and eight containing a ‘V’.

Steps 6–8. One dangling vertex (step 6) forms the basis for another quad, created the same way as the first one in the
beginning (steps 7,8). The brown quad is embedded in the green face, but thanks to the edge in the corner, the green face
is still homeomorphic to the 2-disc. It has degree 10, and the diagonal edge is incident to the same face on both sides.

Step 9. One application of killEmakeR removes the diagonal edge and makes the brown face a ring of the green face,
lying entirely in its interior. Note that the green face is no longer homeormorphic to the 2-disc. So the resulting surface is
no longer a cell complex in the strict sense (see definition 2.15). However, keeping track of which ring belongs to which
face, it is always possible to introduce ‘artifact’ diagonal edges to connect the rings (inner boundaries) with the outer
boundary, so that the face is homeomorphic to the 2-disc again. This simple operation can restore the cell property of the
face.

Steps 10–11. Just as in steps 4–5 before, four makeEV followed by four makeEF are applied to the quad face, resulting
in a displaced copy of the original face. This displacement operation is called an extrusion, and it can of course be applied
to faces of any degree, not just to quads. So two quad extrusions are used: step 3→ step 5, and step 9→ step 11. Note
that also in the general case, the side faces are always quads. The second extrusion is in negative direction (with respect to
the face normal), which can of course only be seen in perspective view, since the planar models of positive and negative
extrusions are identical. The second extrusion is made such that the extruded face in step 11 lies exactly in the same plane
as the face in step 3.

Step 12. The last operation, killFmakeRH, just makes the extruded face from step 11 a ring of the bottom face of the
box. This also creates a topological hole in the object, hence the name of the operation. It is hard to illustrate this operator,
as it does not at all change the connectivity of the 2-complex. It merely just flags a face to become a ring, and hereby
the face ‘dissolves’. For the sake of clarity, steps 11 and 12 are also shown from below in Fig. 2.16. The left image (a)
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1: makeVFS 2: 3 × makeEV (a,b,b) 3: makeEF (c) 4: 4 × makeEV (b)

5: 4× makeEF (c) 6: makeEV (b) 7: 3 × makeEV (b) 8: makeEF (c)

9: killEmakeR (c) 10: 4 × makeEV (b) 11: 4 × makeEF (c) 12: killFmakeRH

1: makeVFS 2: 3 × makeEV (a,b,b) 3: makeEF (c) 4: 4 × makeEV (b)

5: 4× makeEF (c) 6: makeEV (b) 7: 3 × makeEV (b) 8: makeEF (c)

9: killEmakeR (c) 10: 4 × makeEV (b) 11: 4 × makeEF (c) 12: killFmakeRH

Figure 2.15: Euler operator example: Quadrangular Torus. For an explanation see section 2.2.1.
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Figure 2.16: The creation of a topological hole using killFmakeRH. These are the last two steps 11 and 12 from
the construction of the quad torus (Fig. 2.15), but shown from below. The left face has no rings but the vertices
just ‘shine through’.

shows step 11: The extruded quad face (brown) cannot be seen, only its vertices and edges ‘shine through’. Note that the
bottom face is oriented CCW, but the invisible extruded quad is oriented CW from the current viewpoint. The right image
2.16 (b) shows the situation after killFmakeRH. The extruded quad face and the inner part of the bottom face ‘cancel out’.
What remains is a hole, and the grey face becomes incident to the former neighbours of the ‘dissolved’ face. Note that the
ring retains the orientation of this face: Rings are always oriented clockwise. This is consistent with the rule that the face
interior is to the left when traveling along the face boundary in the direction prescribed by the orientation.

2.2.2 Another way to build the Quad Torus

The presented way to build the quad torus is illustrative and explains all the Euler operators, but it is also somewhat
tedius to follow. The full power of the Euler operator approach to building shape is revealed by slightly restructuring the
construction process. Note that this results in the same object. It issues basically the same Euler operations, except a
makeVFS instead of makeEV in step 6, and killFmakeRH except killEmakeR in step 9. The new process demonstrates
how Euler operators can be grouped into functions, or higher-level operators, by reorganizing the operator sequence in
a slightly different and more structured manner: There are many different sequences of Euler operators that result in the
identical shape.

Turning a polygon into a double-sided face. A simple polygon without holes can be considered just a sequence
p0, p1, . . . , pn of points in 3D. It is converted into a double-sided polygon by a corresponding sequence of Euler oper-
ators that reads makeVFS, makeEV(b), . . . , makeEV(b), makeEF. There are n−1 makeEV (b), one for each of the points
p1, . . . , pn. The last operator closes the polygon and creates the second face. This is basically a generalization of steps
1–3 from the previous example. For creating the quad torus, this is applied twice, for the big and the small quad. Let
fB,bB and fS,bS be the front and backsides of the big quad B and the small quad S, so that all sides are coplanar, and the
front-sides fB and fS are facing into the same direction.

The extrude operation. Steps 4 and 5 can also be generalized to faces of arbitrary shape and degree, and also to faces
with rings. This operation is called extrude. What happens is that for all vertices of a face (and of all rings), dangling
vertices are created, in face normal direction. Subsequent dangling vertices (on all boundaries) are then connected via
makeEF to create the side quads. Note that this basically amounts to a displacement of the original face, provided the side
quads are all new faces. All the dangling vertices are created in the same distance d in the face normal direction. When d
is negative, an ‘inverted’ shape can be created, with the CCW sides of all faces directed to the interior. For the quad torus,
the extrude operation is applied to fB with d, and to the backside bS of S with −d.

Turning an inverted shape into a hole. The result is that the displaced face b′S lies in the same plane as f ′B – but it has
the opposite orientation, since the extrude operation does not affect the orientation of the face that is being displaced. The
same holds for the front face fS of S, which still lies in the same plane as bB. So both faces fS and b′S of the small quad
are ready to become rings of the respective faces bB and fB of the big quad, thus creating a hole through the object. The
result is exactly the same object as the one shown in Fig. 2.15, step 12.

Practical relevance of Euler operators. The possibility to re-order an Euler sequence is also the deeper reason for the
practical relevance of the Euler operators. It can be used for expressing the similarity of 3D objects, and it is also the
actual foundation for the realization of the generative idea developed in the later chapters 4 and 3 of this thesis.
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Operator v e f r h s
makeVFS 1 1 1
makeEV 1 1
makeEF 1 1
killEmakeR −1 1
killFmakeRH −1 1 1
plane normal 1 −1 1 −1 2 −2

M−1 =
1
12




2 9 −5 3 −2 1
−2 3 5 −3 2 −1

2 −3 7 3 −2 1
−2 3 5 9 2 −1

4 −6 2 −6 8 2
8 −6 −2 −6 4 −2




Figure 2.17: Algebraic properties of Euler Operators. Each operator creates or deletes a number of mesh entities,
shown as rows in the table. The numbers can also be deduced from the operator names. The rows are linearly
independent, spanning a 5-dimensional hyper-plane in signature space. The Euler-Poincaré equation (last row) is
the 6th independent direction, which then amounts to a basis matrix. The inverse of this matrix (right) can be used
to compute unique Euler coordinates from a given mesh signature.

2.2.3 Properties of Euler Operators

The Euler operators have an interesting relation to the extended Euler-Poincaré formula. With v,e, f being the number
of vertices, edges, and faces of a mesh, and s,h,b,r the number of shells (or connected components), topological holes,
border components, and rings, it reads

v− e+ f = 2(s−h) − b + r ,

as it was stated in Theorem 2.27. With the Euler operators just presented, it is not possible to create meshes with border, so
b is always 0. As was noted before, however, a border component always forms a closed loop, so it basically corresponds
to a – not necessarily planar – face. A clean way to handle border components is thus to just flag such ‘border faces’ as
faces that do not really belong to the mesh. These invisible faces are called hollow faces.

From the example in the last section it has become clear that the names of the individual operators correspond to the
entities added to or removed from the mesh (see explanation of steps 4-5). The effect of the operators to the respective
numbers from the Euler-Poincaré equation are listed in Fig. 2.17 (a). The vector of integer numbers (v,e, f ,r,h,s) are
called the signature of a mesh. The signature can be considered as a vector from a six-dimensional vector space. In this
case each mesh corresponds to one vector, but of course different meshes can have the same signature. The application of
an Euler operator transforms a mesh into another mesh and changes the signature. So a construction sequence, as in the
quad torus example, can be considered as a path in 6-dimensional space. As there are only five directions to go, one for
each Euler operator, the space that is spanned by the operators can at most have dimension five. And this is indeed the
case, as the rows from Fig. 2.17 (a) are linearly independent when considered as 6-vectors. The inverse operators, killVFS
etc., have a reversed signature, which is multiplied by -1, so they just lead to the same vector space.

One thing to note is that the second incarnation of the killFmakeRH operator, the killFSmakeR operator to join different
shells, has a different signature, namely (0,0,−1,1,0,−1). It is not part of the above table, though, because it is not
independent from the other operators: Instead of creating different shells that are subsequently joined into one connected
component, it is as well possible to create the resulting object from only one shell. Another remark concerns the fact
that table 2.17 (a) lists three constructive make. . . operators, but also two destructive ones: killEmakeR and killFmakeRH.
This is due to what is perceived as the usual way

• to create rings, namely by detaching them from an outer boundary, as in step 9 of the quad torus example, and
• to creates holes, namely by turning faces into rings, as in step 12 of the quad torus example.

So the Euler operators span a 5-dimensional hyper-plane in 6-space. When the normal vector n = (1,−1,1,−1,2,−2)
of this hyperplane is added to the set of signature vectors, a full basis of the 6-dimensional space results. By adding it as
another row to the table, an invertible 6× 6 matrix M results; this matrix is just the right part of the table 2.17 (a). But
a basis matrix is invertible, and the inverse matrix M−1 is shown in Fig. 2.17 (b). This matrix has the very interesting
property that it allows to compute the “Euler coordinates” of a given mesh. Take for example the quad torus from the
previous section: It basically consists of two boxes, with the top and bottom faces of the inner box being rings of the
respective faces from the outer box. The resulting numbers of mesh entities can be seen in the first table from Fig. 2.18,
(a). The multiplication with M−1 yields

(16,24,10,2,1,1) · M−1 = (1,15,10,1,1,0)

which is the vector that tells how many times each of the Euler operations have to be applied to obtain the mesh. This
gives the second table in Fig. 2.18, (b). The fact that the last coordinate is 0 just means that the vector (16,24,10,2,1,1)
is a valid combination of mesh entities, i.e., it fulfills the Euler-Poincaré equation.
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v 16
e 24
f 10
r 2
h 1
s 1

makeVFS 1
makeEV 15
makeEF 10
killEmakeR 1
killFmakeRH 1
plane normal 0

1 makeVFS
v−1 makeEV

f +h−1 makeEF
r−h killEmakeR

h killFmakeRH

Figure 2.18: Euler coordinates of a mesh. The Euler coordinates are the minimal number of Euler operators to
create the mesh. Left boxes: The signature of the quad torus can be used to compute the respective (minimal)
numbers of Euler operators needed to build it: There is a linear dependency between both integer vectors. The
fact that the plane normal result is 0 means that the signature is valid (Euler-Poincaré). Note that the example
construction uses exactly these numbers. Right: More general version for the signature (v,e, f ,r,h,1), i.e., the
minimal number of Euler operators for constructing any closed orientable manifold 2-complex that has only a
single connected component (s = 1).

A more general result can be obtained for meshes with a single shell, i.e., when s = 1. The multiplication of the
vector (v,e, f ,r,h,1) with for instance the second column from M−1 yields the Euler coordinate of makeEV. The resulting
expression can be drastically simplified using the Euler-Poincaré equation, by substituting f =−v+ e+ r−2h+2:

1
12

(9v+3e−3 f +3r−6h−6) =
1
12

(9v+3e−3(−v+ e+ r−2h+2)+3r−6h−6) =
1
12

(12v−12) = v−1

So this yields v− 1 as the Euler coordinate of makeEV, which is not such a surprise: besides makeVFS, makeEV is
the only Euler operator that creates a vertex, so the total number of vertices should correlate with the number of times
makeEV is to be applied. In a similar way, simple expressions for the other Euler coordinates can be obtained. They are
summarized in the table to the right, in Fig. 2.18 (c). These numbers are minimal in that they represent the least number
of operator applications. Note that they can also take negative values: High-genus objects, with h > 0, but without or with
just a few rings, have r−h < 0. A negative number means that instead of killEmakeR, its inverse operator must be used.
Thus, such objects cannot be constructed without use of the makeEkillR operator – which seems plausible.

2.2.4 Closedness and Completeness of Euler Operators

So far it has merely become clear that it is possible to construct some interesting surfaces using Euler operations. The fact
that it is possible to compute Euler coordinates for every 2-complex that satisfies the Euler-Poincaré equation is also an
indication for their general applicability. Yet there are many different meshes for each signature, and it is not so clear yet
whether any possible 2-complex with rings can really be constructed using Euler operators. The second important issue
concerns the question whether in some situations the application of an Euler operator can turn a 2-complex with rings
into something that is not a 2-complex with rings. So the question is whether Euler operators are closed on the set of
complexes on compact orientable surfaces of any genus. The following theorem clarifies on these questions. Its proof has
two different parts, which will also be sketched, since they provide important insights in the nature of Euler operators.

Theorem 2.29 (Euler operators are closed and complete)
LetM be the set of all closed orientable manifold 2-complexes with rings.
Then the Euler operators are a closed and complete set of operations forM. More precisely:

• Any Euler operator that is applied to a mesh m ∈M yields another mesh m′ that is again inM.

• Every mesh m ∈M can be created by a finite sequence of Euler operators.

Proof part 1: Closedness of Euler operators. The first part of the theorem states that Euler operators are sound: It is
not possible to make a mesh invalid by applying an Euler operator. An invalid mesh is a 2-complex that violates either one
of the three criteria from the mesh consistency theorem 2.24, the manifold edge and vertex properties, and the orientability.

The theorem furthermore assumes that the operators are only used in a syntactically valid way: It is not legal, for
instance, to use killEF to delete an edge that is incident to the same face on both sides; in this case, killEmakeR must
be used, or killEV in case it is a dangling vertex. It is also illegal to delete a shell using killVFS if there are still some
edges left. To check the conditions under which each of the operators can be applied is a subtle and important issue when
implementing Euler operators.
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The soundness must be proven for each operator and also its inverse operator, according to all the legal configurations
that are shown in Fig. 2.13. The proof is inductive over the length of the sequence. So assume for the induction step that
a closed orientable manifold 2-complex, i.e., a valid mesh, is given.

• makeVFS/killVFS
The first pair of operators, makeVFS and killVFS, trivially maintain the validity criteria, and so are sound.

• makeEV/killEV
The operators makeEV (a) and (b) create a dangling vertex, which just inserts an edge into the edge cycle of a vertex.
The vertex split makeEV (c) does the same for two vertices. This does not affect the manifold vertex property, since no
new cycles can be added to a vertex by makeEV; edges are only inserted in existing cycles. Neither can makeEV affect
the manifold edge property, as all new edges are incident to exactly two faces. Orientability also still holds: It is not at
all affected by inserting a dangling vertex with makeEV (a) and (b). Concerning makeEV (c), when all faces around a
vertex are consistently oriented, this is also true if the vertex is split. So makeEV is sound.
Its inverse killEV only merges cyclic vertex lists, which preserves the manifold vertex property. The manifold edge
property and the orientability are not affected either because only one edge vanishes. So killEV is also sound.

• makeEF/killEF
The operations makeEF (a), (b), and (c) are the topological duals of makeEV (a), (b), and (c). So one can argue that if
makeEV is sound, then makeEF must also be sound since makeEV works like makeEF on the topological dual – and
the dual of a closed orientable manifold 2-complex also has these properties. With the same argument, killEF must also
be sound.
It is instructive to try checking the three criteria individually for makeEF. The duality between vertices and faces also
helps to better understand the manifold vertex criterion. The cycle of edges around a vertex corresponds to a face
boundary in the dual graph. The requirement of a single closed edge cycle for primal vertices carries over to the
requirement of a single closed face boundary in the dual graph, i.e., a face in the dual graph may not have rings. A
primal face with rings corresponds to a dual vertex with more than one edge cycle, which is a non-manifold, or complex
vertex (see Fig. 2.1 and the table 2.28)

• makeEkillR/killEmakeR
The duality argument does not help with the soundness of the remaining two operators because they are using rings.
The makeEkillR/killEmakeR pair of operators trades between rings and edges. But a 2-cell may not have multiple
boundaries, since it cannot be homeomorphic to the 2-disc then. As mentioned before, this is repaired by taking every
ring as if it was permanently connected with the outer face boundary. Irrespective of the number of rings, as well as
their shape and position, it is always possible to introduce such ‘artifact edges’ in a way so that they do not cross (which
is a consequence of the Jordan curve theorem, see [Kin93]), to restore the 2-disc property of a face with rings. Keeping
this in mind, the makeEkillR/killEmakeR operators become irrelevant to the question of soundness.

• makeFkillRH/killFmakeRH
The last pair of operators, makeFkillRH and its inverse, are nothing but the connected sum of surfaces and the inverse
operation, which disconnects a surface by cutting it along a closed cut path, filling in two small discs as plasters. The
connected sum operation though is defined for surfaces, where it does not use rings. This is also possible using Euler
operators: killFmakeRH turns a face into a ring of another face, and the ring can then be immediately removed using
makeEkillR. So using the following operators in a sequence together, the connected sum is realized without rings.

• killFmakeRH + makeEkillR is the connected sum, to either join different shells into one,
or to create a topological hole by joining a shell with itself.

• killEmakeR + makeFkillRH does the reverse by detaching a face that is connected over
a bridge, i.e., a single edge, with the rest of the shell.

Concerning the consistency criteria the only critical issue is to maintain the orientability of the complex. The problem
is to assert that a face and its ring always have opposite orientations. If this is not the case, a Klein bottle can seemingly
be created, as shown in Fig. 2.19.

The connected sum affects the face signature in a simple way: Basically, one face of the mesh is traded for an additional
edge, in order to create a topological hole. This is also compatible to the Euler-Poincaré equation, which reads v−e+ f =
2s− 2h in its simpler form: The connected sum increases the left-hand side of the equation by 2, since it becomes
v− (e + 1) + ( f − 1), which has to be compensated by one fewer shell or one more hole on the right-hand side. Also
note that the connected sum was actually defined only for surfaces, but it carries over to 2-complexes on the surfaces: In
the surface case, two small discs are removed and the disc boundaries are identified. Correspondingly, on a 2-complex
two faces can be removed, and their boundaries can be identified. This is possible, though, only if the boundaries are
compatible, i.e., if they contain the same number of vertices and 1-cells. It is simpler, however, to set one face into the
other, and to connect both with a bridge, which is the effect of using killFmakeRH + makeEkillR, as it was proposed.
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Figure 2.19: Problems with Klein Bottle and killFmakeRH. A long and thin rectangular box can be bent in two
ways so that the ends meet: With the end faces facing each other, or facing in the same direction. While the first
way creates a torus, the latter case leads to the Klein Bottle (a, b). But killFmakeRH is a topological operator,
and it does not check the geometric validity of the configuration; consequently, it can be used regardless of how
the box is bent and the faces are oriented. This can lead to the problem that the face interior is not well defined,
in particular it cannot be triangulated correctly (c). For a valid triangulation (d), the face interior must always be
to the left when traveling along the boundary, which implies a CCW orientation for the face boundary, but a CW
orientation for rings.
Note that this is not a topological problem, but a problem with the embedding: a geometrical pitfall (see Fig. 2.28).

Proof part 2: Completeness of Euler operators. The completeness of Euler operators can be proven in a constructive
way. This is interesting indeed, because it effectively gives an actual algorithm to convert a given mesh into a sequence of
Euler operators. The underlying idea is fairly simple:

1. Given a valid mesh with rings, delete all of its entities,

2. record all Euler operators that were used for doing so, and finally

3. invert the sequence, by inverting each operator and reversing the sequence.

This algorithm relies on the invertibility of Euler operators. It terminates since a mesh has only a finite number of entities
that can be removed. The question remaining is about the best order of operations. First, all rings can be removed in a
simple way, by turning them into faces using makeFkillRH. This reflects the second view of rings, namely as temporally
disabled faces: Faces that are not rendered for the moment, but that ‘lend’ their boundary to another face. So the face is
still there, it is just simply marked as being a ‘ring’. With makeFkillRH, the mark is removed, and it becomes a face again.

Once there are no more rings, in principle any sequence of legal kill. . . operations will do: For instance, one could
apply killEV and killEF as long as there are edges to do that legally. Edges with the same face on both sides can also
be removed, creating a ring with killEmakeR, and the ring can be removed as already described. But according to the
conditions from Fig. 2.14 there is a subtlety: If the edge has the same vertex on both ends, and also the same face on both
sides, it is called a double loop; so it is not only incident to only a single vertex, but it is also adjacent to only a single face.
Consequently a double loop corresponds also to a double loop in the dual graph. In this case, to apply killEmakeR is not
legal – otherwise the face would become a ring of itself1. Double loops may appear to be strange and very extraordinary –
but the truth is that they have already appeared, for instance in the complexes on the torus in Fig. 2.5 and the double-torus
in Fig. 2.11.

Instead of issuing operations in an unordered manner, the procedure EULERKILLMESH from Fig. 2.21 systematically
first removes rings, then joins all faces (per shell), and retracts all vertices (also per shell). The result is a pointed sphere
for shells with genus 0, a pair of double loops for genus 1 shells, two such pairs for genus 2, etc. So this procedure is
effectively a constructive way to obtain the prototype surfaces from the surface classification theorem (Theorem 2.23):
After step 3, there is only one face and only one vertex for a connected surface, and 2n edges, if n is the genus of the
surface, just as promised by the table in Fig. 2.9. So one consequence of the theorem is that double loops use to come in
pairs, which is why step 4 of the procedure removes two double loop edges at a time. The first of them is removed by the
procedure KILLDOUBLELOOP (also in Fig. 2.21), which is a substitute for a specialized Euler operator. It basically works
by temporarily adding one vertex, one edge, and one face, so that killEmakeR can be applied to the temporary edge. This
is the green edge in Fig. 2.20 (c), which illustrates steps 1–5 of the procedure.

When all double loops are removed, all shells have been reduced to pointed spheres, so that they can simply be
removed with killVFS, which is done in step 5 of EULERKILLMESH. This completes the sequence of Euler operators to
remove the mesh, which can then be inverted to yield a sequence to construct the mesh.

1Mäntylä [Män88] incorrectly applies killEmakeR to double loops in his remedg procedure for mesh removal (Program 16.10)
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Figure 2.20: Removing a double loop. This shows steps 1–5 of procedure KILLDOUBLELOOP from Fig. 2.21.

EULERKILLMESH(m = (V,E,F))
1 Remove all rings. Turn all rings into faces us-

ing makeFkillRH. This increases the number of con-
nected components, and it decreases the number of
topological holes.

2 Join all faces. Apply killEF (c) as long as possible,
i.e., to all edges with different faces on both sides.
The result is that each shell has only a single face left,
but possibly still many vertices.

3 Collapse all edges. For sphere-like shells (genus 0),
the edge structure is now a tree. Apply killEV (b) and
(c) to ‘retract’ this tree into one – arbitrarily chosen –
root vertex. This leaves this vertex as the single vertex
per shell.

4 Remove all topological holes. All remaining edges
are double loops. Choose one and delete it with
KILLDOUBLELOOP. Then the shell still has only one
surface, but a new vertex v′ was inserted to break a
loop. Double loops come in pairs, so there is another
edge that joins v and v′. Remove v′ by collapsing this
edge with killEV. Continue with the next double edge.

5 Kill all shells using killVFS.

KILLDOUBLELOOP(e)
1 Assert that edge e is a double loop that has the same

vertex v on both ends and the same face f on both
sides. There is no single Euler operator to remove
such a double edge.

2 With makeEF (b), create a loop with edge l on v, cre-
ating a new face g1 so that e and l are now both adja-
cent to f and g1.

3 Split v using makeEV (c) to separate the loops, so that
l is now on the new vertex v′, e remains on v, and v
and v′ are connected with a new edge that is adjacent
to g1 on both sides.

4 Remove this edge with killEmakeR to make l bound-
ary of a ring of the new face g1.

5 To remove the topological hole, turn this ring into a
face g2 of its own using makeFkillR.

6 To clean up, note that the boundaries of the new faces
g1 and g2 are loops, attached to v and v′, respectively.
So g1 and g2 can be removed with 2×killEF.

Figure 2.21: Mesh Removal using Euler operators. Left: Steps 1–3 of procedure EULERKILLMESH produce the
prototype surfaces from Fig. 2.9. What remains are double loops forming the skeleton of topological holes. They
can be removed a pair at a time (step 4), using the procedure KILLDOUBLELOOP to the right (see Fig. 2.20).
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2.3 What is a Mesh? – A Definition

Later chapters in this thesis are very much based on meshes, so it is vital to make unambiguously clear what a mesh is. In
section 2.1, the term mesh was introduced, and preliminarily defined as being synonymous to valid two-dimensional cell
complexes. The following definition is the promised attempt to describe more precisely what is generally used and known
as meshes in computer graphics.

2.3.1 Mesh Definition

The following definition of a mesh is supposed to be compatible to 2-complexes on the one hand (as from the definition of
cell complexes 2.15 for n = 2), and to practical meshes on the other. Two-complexes and manifold surfaces are formally
well-defined concepts. But neither of them exactly corresponds to the computer graphics notion of meshes. It is not easy
to define meshes, though, because their use is very heterogeneous. But only some form of definition permits to theorize
about the exact nature of the differences mentionend.

Definition 2.30 (Mesh)
A mesh consists of three finite sets V,E,F, which are the vertices, edges, and faces of an abstract 2-complex, and an
embedding σ. The embedding maps all mesh entities, i.e., all vertices, edges, and faces, to subsets of R

3 in a way that

• the embedding σ(v) of each vertex v ∈V is a 0-cell,
• the embedding σ(e) of each edge e ∈ E is a 1-cell, and
• the embedding σ( f ) of each face f ∈ F is a 2-cell.

Vertices, edges, and faces are tied together by their boundaries. This is understood as an abstract incidence relationship,
and is called the connectivity of the mesh:

• The boundary of an edge e ∈ E consists of two end vertices v,v′ ∈V. v and v′ may be the same.
• The boundary of a face f ∈ F is an alternating cyclic sequence (v0,e0,v1,e1, . . . ,vn−1,en−1), n≥ 1,

of vertices and edges, where vi,vi+1 have to be the end vertices of ei.

Each vertex may appear only once in a face boundary. Since they are cyclic sequences, indices are modulo n, and edge
en−1 goes from vn−1 to v0. Faces may have multiple boundaries, in which case one of them is denoted as base face, and
the others as rings. Every edge must be part of at least one face boundary, every vertex must be part of at least one edge.

The embedding must be compatible to the incidence relationship: The boundary of σ(e) ⊂ R
3 must be the points

σ(v),σ(v′) ∈ R
3. For a face boundary, the sequence (σ(v0),σ(e0),σ(v1),σ(e1), . . . ,σ(vn−1),σ(en−1)) of the respective

embeddings must be continuous and identical to the boundary of σ( f ). The boundary sequence determines the face
orientation.

This is a weaker version of the definition of 2-complexes, particularly with respect to the identity of cells and their
embedding: A 2-complex in 3-space is made of cells that are 0-, 1- and 2-dimensional open subsets of R

3. Some of the
cells touch at their borders, and this defines the incidence relationship. Meshes in computer graphics are defined the other
way around: Vertices, edges, and faces are abstract entities that are not identical with 0-, 1-, and 2-cells, as it is the case
with a 2-complex. Instead, they are only mapped to cells. But each cell can be mapped to by multiple abstract entities.
This has important consequences, for example

• different vertices can be at the same position in space,
• different edges may occupy the same 1-cell (as subset of R

3),
• faces that touch along their boundaries do not have to be glued together, and
• the cell interiors do not have to be disjoint, so edges may cross faces, and different faces may be stuck in each other.

When a pair of 2-cells of a 2-complex mutually intersect, a 1-cell is automatically required along the intersection curve.
And when a 1-cell hits through a 2-cell there has to be an explicit 0-cell at the hit point. The mesh definition is less
restrictive since it requires only the individual embeddings to be cells, i.e., homeomorphic to the 0-, 1-, or 2-disc, and thus
free of self-intersections. To require all faces to have pairwise disjoint interiors, as 2-complexes do, would unnecessarily
rule out many meshes used in practice. From a computer graphics point of view, self-intersections are not too much of a
problem for many algorithms. The z-buffer algorithm, for instance, is robust against mutually intersecting faces, so that a
mesh can in all cases be rendered correctly by the graphics hardware. The only notable exception are co-planar faces with
different colors which exhibit the well-known z-buffer artifacts. – The separation between the ‘abstract’ complex and its
embedding reflects two different aspects of a mesh, one of them discrete, the other of continuous nature:

• The discrete connectivity is defined by the incidence relationship on the entities of the abstract complex (V,E,F).
• The ‘continuous’ geometry of a mesh is defined by its embedding σ.
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Figure 2.22: Self-intersections are sometimes hard to detect. This illustrates the difference between theory (cell
complexes) and practice (meshes): All objects have the same connectivity, but only the rightmost object (d) is a
cell complex; the first three objects contain self-intersections, and the mapping from R

3 to the cells is not unique.
All objects shown are part of the same continuous family of parametric objects. It would be unnatural, and com-
putationally expensive, to restrict the stretch parameter only to the interval corresponding to valid cell complexes.
This is an important argument justifying the use of meshes instead of cell complexes in computer graphics.
The objects are primarily composed of quadrangles, but note that none of them is planar. This is an example of
another issue mentioned: where exactly is the surface of higher-degree faces located? The practical answer is that
faces with degree > 3 are triangulated. So the ‘true’ surface can be regarded as an artifact of the triangulation
algorithm. What the graphics hardware eventually displays is only a collection of simplicial 2-cells: triangles.

This separation is motivated by the way computers work. The fundamental underlying problem is the very particular
‘psychology’ of a computer, which is quite different from a mathematician’s human perception, and also from mathe-
matical formalism: It requires special effort in terms of developing algorithms, as well as in computing resources (space
and time) to actually make a computer realize that there is such thing as a self-intersection in a given 3D object. Being
part of computer science, computer graphics inherits a particular approach to solve practical problems, namely to prefer –
possibly even many – local solutions over one global solution, where ‘everything’ relates to ‘everything’.

One of the consequences of the separation is, for instance, that the embedding can be changed without changing the
connectivity. Vice versa this is not possible, due to the required continuity of the embedding of the face boundaries: When
for example an edge is added to split a face, σ has to account for the new edge and face, and it must be modified for the
face that is split. Another consequence is that the criteria for mesh consistency, as formulated for 2-complexes in theorem
2.24, must be modified in order to tell whether a given mesh realizes a closed orientable manifold surface. According to
the separation between abstract complex and embedding, it is split into two parts. They tell whether a mesh is a closed
orientable manifold, or whether it could be one, only with a different embedding.

Definition 2.31 (Topological Consistency)
A mesh is topologically consistent if and only if an embedding σ exists so that the mesh is a closed orientable manifold
surface. Equivalently, the abstract complex must satisfy the three criteria from the mesh consistency theorem 2.24,

• the manifold edge property,
• the manifold vertex property,
• and it must be orientable.

To also allow meshes with borders, the manifold edge property can be weakened, so that every edge must only be incident
to ≤ 2 edges, and border vertices may have a single ‘open’ edge cycle.

It is important to note that the three consistency criteria in theorem 2.24 are purely topologic in nature, since the
embedding is irrelevant for them: The consistency can be verified by checking only the ‘discrete’ incidence relationships
between the entities – which, in the case of 2-complexes, are in perfect synchronization with the ‘continuous’ embedding.

Definition 2.32 (Geometrical Consistency)
A mesh is geometrically consistent if and only if is a closed orientable manifold surface. That is, it is topologically

consistent, and the embedding σ is reversible, i.e., for all cells, σ−1 is a single unique abstract entity.

While topological consistency can be maintained very efficiently, it is usually much more difficult to assure geometric
consistency. In order to see what can go wrong, it is best to look at some concrete cases. Quite a typical example to
illustrate the difference between cell complexes and meshes is shown in Fig. 2.22. It shows the same abstract complex
with four different embeddings only one of which is a cell complex. – One very strong incentive for the mesh definition
2.30 came from the necessity to make it compatible with meshes represented as indexed face sets.



82 CHAPTER 2. THEORETICAL FOUNDATION OF POLYGONAL MESHES

2.3.2 General Meshes in Computer Graphics: Indexed Face Sets

Many data structures, algorithms, and mesh file formats in computer graphics use indexed face sets (IFS’s) for the descrip-
tion of 3D surfaces. They are very general in that they are just based on an index scheme, for instance, an enumeration
of the different entities. This imposes the fewest restrictions in terms of geometric or topological consistency. There are
many different specialized versions of indexed formats, but they usually have a few things in common.

Definition 2.33 (Indexed Face Set)
An indexed face set is a mesh with the following additional properties:

• The embedding of each edge is a straight line segment.
• An edge e ∈ E is uniquely identifiable by an (unordered) pair of end vertices v,v′,

which formally establishes an equivalence relation: (v,v′)∼ (v′,v)∼ e.

Its concrete representation is a set of lists, each for a different type of data. These are usually

• vertex positions, as a list (p1, p2, . . . , pn) of n 3D points pi = (xi,yi,zi)
• normal vectors, as a list (n1,n2, . . . ,nk) of k 3D vectors ni = (xi,yi,zi)
• texture coordinates, as a list (t1, t2, . . . , tl) of l 2D points ti = (ui,vi), and
• faces, as a list (b0,b1, . . . ,bm) of m face boundaries. Each face boundary bi is again a (cyclic) list, with variable

length mi, of index tuples, one for each vertex on the face boundary.
• Vertex tuples may contain indices of vertex positions, normal vectors, and texture coordinates, in a specified order,

some of which can be optional.

Where exactly is the surface of an indexed face? This is a particularly problematic issue concerning the face definition.
It only prescribes the face boundary to be a piecewise straight, closed polygon in R

3, basically a sampled curve in
space. But by no means it has to be planar. So it is only clear that the surface is suspended ‘somewhere’ in the face
border, but there is no obvious, canonical, definition of the surface. More formally, there is not always a well-defined
continuous mapping from the unit 2-disc to R

3 so that the disc boundary matches the face boundary polygon. Highly
non-planar boundaries may be exceptional, but one has to keep in mind that computers realize a finite-precision floating
point universe: The fourth point of a quad may simply not be representable so as to make the quad exactly planar – just
because no suitable point exists in the discretized space. And non-planarity again raises the question of the exact surface
definition. The tolerancing issues that are inevitable with higher-degree faces in arbitrary position can be avoided by using
exclusively triangles. A subclass of indexed face sets are the indexed triangle sets. They are basically IFS’s that contain
only degree 3 faces, and they are sometimes also called triangle soups: Just a collection of triangles in space.

The importance of file formats. The indexed face set approach is used by a number of mesh file formats, such as
VRML, the .obj format from Wavefront Inc., the .off (’object file format’), and others. Despite the fact that all these
formats use the same underlying approach, there are subtle differences between them. This can be the reason for an
inevitable loss of information when converting from one format to another: The target format may not be able to represent
some of the data of the source format, or the target format may require additional data that cannot be derived from the
source file. The similarity between two of the ascii formats for indexed face sets, .obj and VRML, is demonstrated in Fig.
2.23. The VRML format is based on different types of nodes, each with different fields, such as the coord field for the
coordinate list of the IndexedFaceSet node in the example. Using fields, additional meta-information can be specified,
such as the material, whether faces have to be triangulated, or whether back-faces can be culled away because the object
is solid. Also the orientation can be specified using the boolean ccw field to determine which side is outside.

Both formats VRML and .obj permit faces of arbitrary degree, but they do not support faces with rings. It is possible
though to specify normal vectors and texture coordinates per vertex. In .obj, this is done with lines of the form n x y z
and t u v . Normals and texture coordinates have an ID just like vertices, which can be used when specifying a face: f
v0/t0/n0 v1/t1/n1 . . . vk/tk/nk is the more general form of faces in .obj, where the ID triplet vi/ti/ni specifies which
vertex position, texture coordinate, and normal is to be used for vertex i of this face.

2.3.3 Are Meshes necessary for Rendering? – The OpenGL Answer

A whole spectrum of indexed geometry descriptions exists. Indexed face sets, such as .obj and VRML, are quite redun-
dant compared to today’s efficient mesh encoding schemes [TG98]. Redundancy is not tolerable when efficiency and
performance are primary goals, for instance, when communicating with the graphics hardware over the display driver.
Realtime requirements dictate that a new image has to appear 20-30 times per second. So the question is: What are
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# Wavefront . ob j f i l e example
# ===========================
v −1.25 −1.25 −1.25 # V1: 000
v −1.25 −1.25 1 .25 # V2: 001
v −1.25 1.25 −1.25 # V3: 010
v −1.25 1 .25 1 .25 # V4: 011
v 1.25 −1.25 −1.25 # V5: 100
v 1.25 −1.25 1 .25 # V6: 101
v 1 .25 1.25 −1.25 # V7: 110
v 1 .25 1 .25 1 .25 # V8: 111
v 2 .00 0 .50 0 .50 # V9
f 1 2 4 3 # F1 : 0∗∗
# rep lace 5 7 8 6 F2 : 1∗∗
f 5 7 9 # F2a : 1∗∗
f 7 8 9 # F2b : 1∗∗
f 8 6 9 # F2c : 1∗∗
f 6 5 9 # F2d : 1∗∗
f 4 8 7 3 # F3 : ∗0∗
f 2 1 5 6 # F4 : ∗1∗
f 2 6 8 4 # F5 : ∗∗0
f 1 3 7 5 # F6 : ∗∗1

# VRML indexed face set example
# =============================
Shape {

appearance Appearance {
ma te r i a l Ma te r i a l { d i f f u seCo lo r 1 1 0 }

}
geometry IndexedFaceSet {

coord Coordinate {
po in t [

−1.25 −1.25 −1.25, # V0: 000
−1.25 −1.25 1 . 2 5 , # V1: 001
−1.25 1 .25 −1 .25 , # V2: 010
−1.25 1 .25 1 . 2 5 , # V3: 011
1.25 −1.25 −1.25, # V4: 100
1.25 −1.25 1 . 2 5 , # V5: 101
1 .25 1 .25 −1 .25 , # V6: 110
1 .25 1 .25 1 . 2 5 , # V7: 111
2 .00 0 .50 0 .50 # V8

]
}
coordIndex [

0 , 1 , 3 , 2 ,−1 , # F1 : 0∗∗
# rep lace 4 , 6 , 7 , 5 # F2 : 1∗∗
4 , 6 , 8 ,−1 , # F2a : 1∗∗
6 , 7 , 8 ,−1 , # F2b : 1∗∗
7 , 5 , 8 ,−1 , # F2c : 1∗∗
5 , 4 , 8 ,−1 , # F2d : 1∗∗
3 ,7 , 6 , 2 ,−1 , # F3 : ∗0∗
1 ,0 , 4 , 5 ,−1 , # F4 : ∗1∗
1 ,5 , 7 , 3 ,−1 , # F5 : ∗∗0
0 ,2 , 6 , 4 ,−1 , # F6 : ∗∗1

]
creaseAngle 0.0
convex TRUE
so l i d TRUE
co lorPerVer tex TRUE
ccw TRUE

}
}

Figure 2.23: Indexed Face Set file formats. Two times the same object is shown, in the .obj format from Wavefront
Inc. (left) and in VRML syntax (right). Faces are given as index lists with indices referring to the vertex sequence.
Vertices are implicitly numbered by their order, starting at 0 (VRML) or at 1 (.obj).

GLf loa t ver tex [ ] = { −1.25,−1.25,−1.25, −1.25,−1.25,+1.25,
−1.25,+1.25,−1.25, −1.25,+1.25,+1.25,
+1.25,−1.25,−1.25, +1.25,−1.25,+1.25,
+1.25 ,+1.25 ,−1.25, +1 .25 ,+1 .25 ,+1 .25 , +2 .00 ,+0 .50 ,+0 .50 } ;

GLuint t r i s t r i p [ ] = { 4 , 0 , 6 , 2 , 7 , 3 , 5 , 1 , 4 , 0 } ;
GLuint quad [ ] = { 0 , 1 , 3 , 2 } ;
GLuint t r i f a n [ ] = { 8 , 7 , 5 , 4 , 6 , 7 } ;
g lEnab leC l ien tS ta te (GL_VERTEX_ARRAY) ;
g lVe r texPo in te r ( 3 , GL_FLOAT, 0 , ver tex ) ;
glDrawElements (GL_TRIANGLE_STRIP , 1 0 , GL_UNSIGNED_INT , t r i s t r i p ) ;
glDrawElements (GL_TRIANGLE_FAN , 6 , GL_UNSIGNED_INT , t r i f a n ) ;
glDrawElements (GL_QUADS, 4 , GL_UNSIGNED_INT , quad ) ;
g lD i sab l eC l i en tS ta t e (GL_VERTEX_ARRAY) ;

Figure 2.24: Indexed Face Set in OpenGL. The object from Fig. 2.23 can be rendered with three display primitives
from Fig. 2.25: A quad for the bottom (0,1,3,2), a triangle fan around vertex 8, and a triangle strip for the rest.
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Figure 2.25: OpenGL display primitives. A vertex sequence is partitioned according to the chosen primitive
type. For GL_TRIANGLES and GL_QUADS, vertex triplets and quadruples correspond to triangles and quads. In
a triangle strip, every single new vertex vi forms a new triangle vi−1,vi−2,vi with the previous two vertices from
the sequence, which are swapped every other time for a consistent orientation. This happens also with quad strips,
where a pair vi,vi+1 of new vertices is swapped to form the quad vi−2,vi−1,vi+1,vi with the previous pair. With
a triangle fan, the first vertex v0 is special, since every new vertex vi forms a triangle v0,vi−1,vi. The polygon
primitive is a bit redundant, since the specification says that a polygon must be convex, so it can be rendered with
a triangle fan.

suitable low-level graphics display primitives? The trade-off here is between changeability and compactness of the mesh
description.

The answer to this question given by the OpenGL graphics standard [WND97]: Meshes are not needed for rendering.
Instead of meshes, OpenGL uses the ten graphics primitives shown in Fig. 2.25. For surfaces it supports isolated triangles,
quadrangles, and convex polygons. They directly correspond to the vertex and face lists from the IFS definition 2.33, as
for each degree n face a sequence of n vertices is to be transmitted, n = 3 or 4. The vertex sequence may be a continuous
stream of (x,y,z) values for v0,v1,v2, . . .. This is inefficient when the same vertex is used several times. The solution is
to use vertex arrays: The vertex sequence is specified by its beginning in main memory, i.e., a pointer to the start of an
array. Individual array elements can then be referenced simply by their index, so that multiple references create not so
much overhead. Efficiency can be gained by grouping primitives together by their types.

To achieve more space efficiency, OpenGL offers also strip geometry: With triangle strips and fans, every newly
arriving vertex creates one new triangle, by re-using the two previous vertices. Two indices have to be swapped for a
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Figure 2.26: Swapping OpenGL triangle strips. In the middle of each row, the upper row shows the strip indices,
the next two rows show the triangles created. For every other triangle, two indices are swapped (lower row).
OpenGL does not render empty triangles, which is the case when two of three indices are equal (shown in bold).
This can be used for inserting additional vertices on the upper or lower border of a strip, for vertices with higher
valence than 4. This principle can be extended to the point where a triangle fan can be rendered as a strip.
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Figure 2.27: Inflating the Möbius band. When the Möbius band has a thickness, it becomes a torus-like object
with a rectangular profile. But before gluing the ends together, one end is rotated by 180 degrees. Remarkably,
the result is an orientable object! It has two sides but only two boundary curves, both of which can be seen as
boundary curves of a Möbius band.

consistent orientation of every other triangle (Fig. 2.25). Note that there is not much difference between triangle and quad
strips, since the first can be transformed into the latter by joining pairs of triangles, and both use an identical indexing
scheme. Triangle fans can also be reduced to triangle strips, as shown in Fig. 2.26, so the triangle strip is an efficient and
versatile geometric primitive. There are even practitioners who consider a list of triangle strips (TSL, for triangle strip
list) as the only geometry primitive really necessary, disregarding fully fledged polygonal meshes to be a waste of time
and space. A 3D object stored in vertex arrays can be rendered with just a few lines of C code, as demonstrated in the
code example in Fig. 2.24. It is comprised essentially of specifying two pieces of information:

• vertex data: memory locations for the vertex positions with glVertexPointer and a normal array, color array, etc.
• index arrays: a primitive type (enum) and the location of an array with indices, using glDrawElements.

Remarkably OpenGL too realizes the separation between connectivity and embedding from the mesh definition 2.30.

Consistency issues, pitfalls, and mesh repair. What is appealing about IFS’s is that they are very general, because they
can represent any collection of surface pieces: Triangles, quadrangles, and isolated polygons in space. So any type of
surface can be represented, even if it has borders, is non-orientable, not connected, and so on. The generality is of course
also a drawback, since a priori not much is known about a given mesh in IFS format. The term ‘face set’ stresses the fact
that global consistency in any way is not enforced. A few of the flaws that can occur when a mesh is not well defined are
listed in Fig. 2.28. Some of these flaws can be more easily remedied than others, which opens the field for mesh repair
algorithms.

Remarkably, there are just three topological pitfalls, which correspond to the three mesh consistency criteria, but quite
a bit can go wrong with the geometry of a mesh. What is even worse, most of the geometric problems can only be checked
approximately, and some sort of ‘epsilon’ is involved because of the finite floating point resolution. Connectivity problems
on the other hand can be detected clearly and efficiently.

2.3.4 Mesh Manipulation with Euler Operators

A mesh that is represented as indexed face set can not be changed very easily. Unlike geometry changes, which can be
done by moving the vertices, changes of the connectivity are not so simple. Indexed face sets do not store neighbourhood
information explicitly which would be needed for connectivity changes.

As an example, consider the cuboidal object from Figs. 2.23 and 2.24. Suppose one wishes to insert the midpoint of
edge (1,5) as a new vertex with index 9 in the VRML description. The edge is part of face (1,5,7,3) that then has to
become (1,9,5,7,3) . To insert it only in this face, however, would make it a T-vertex. So it must also be inserted in the
face (1,0,4,5) that contains the back-edge (5,1). But to find this face requires to search through all edges of all faces.
So this simple vertex insertion is an O(n) operation for an indexed face set, just because indexed face sets do not store
explicit neighbourhood information.

The elegance of Euler operators. But connectivity changes are not only a matter of computational complexity, and
not only a question on the level of data structures and mesh implementations. The question always arises: Which set
of operations shall be implemented for modeling? – The Euler operators offer a conceptually clean way to manipulate
manifold meshes on the lowest level, i. e., on the level of individual vertices, edges, and faces. On the one hand, they
are a theoretical device to prove and reason about properties of 2-complexes. The great advantage of Euler operators is
that they consistently handle all special cases: Isolated vertices, dangling edges, rings, and faces that are neighbouring on
themselves.
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Topological Pitfalls

complex vertex A non-manifold vertex of the abstract complex. So with any embedding there is
more than one single edge cycle for it, or the edge cycle is not closed. The different
surfaces in its neighbourhood are just not homeomorphic to the 2-disc.

complex edge,
edge with multiple sheet

A non-manifold edge that has more than two faces attached to it. Complex edges
of solids have an even number of sheet, and the topological consistency can be
restored by splitting a complex edge up into multiple manifold edges.

non-orientable edge
An edge that has two faces attached to it, but with opposite orientations, so that
both face boundaries traverse the edge in the same direction – unlike orientable
edges, that are traversed in both directions by the two boundaries.

Geometrical Pitfalls

self-intersection General term for any violation of the condition 2 for cell complexes (Def. 2.15),
which requires that Int(σ)∩ Int(τ) = ∅ for every pair σ and τ of cells.

touching vertex A vertex that lies in the interior of an edge or a face of a different part of the
surface, so that the surface touches itself.

T-vertex A vertex v incident to two edges e1,e2, that touches another edge e3. Furthermore,
both edges e1,e2 also lie on e, but they are not identified with it. A T-vertex lies
on the boundary of e3’s face, but is not part of it, so it is actually a border vertex
of the surface.

multiple vertex Several different vertices at the same position in space, for instance, a pair v �= w
with σ(v) = σ(w). They are sometimes added intentionally, e.g., to remove a
complex vertex.

null edge,
zero-length edge

A pair of unidentfied vertices with an edge between them, so the face degree is
seemingly wrong. Zero length edges are used intentionally, e.g., when triangular
Bézier patches are required but only quadrangular patches are available.

loop,
degree 1 face

While routinely used in topology where edges can bend, the geometry of a loop
is a face collapsed to a single point when using only straight edges. So special
provision is to be taken for defining the loop geometry.

degree 2 face While routinely used in topology where edges can bend, a degree 2 face collapses
to a line when using only straight edges. Degree 2 faces are used together with
null edges, for instance, when splitting a solid with a plane (see for instance the
solid splitting algorithm from Mäntylä, [Män88] in chapter 14).

multiple edges Several different edges with the same embedding, so both end vertices are multiple
vertices.

non-planar face A face where no plane in R
3 contains all vertices of the face boundary, not even

when allowing a ‘tolerable’ error.

reversed orientation A shell or just a single face that is ‘inside out’, because the face orientation is not
compatible. Easy to check and to repair for closed meshes (interior must be finite),
not so easy for meshes with border.

non-simple face boundary The boundary polygon lies in a plane, but it intersects itself. This can happen when
exchanging successive vertices which, for instance, turns a quad into a ‘bowtie’.

outside ring A ring that is not (completely) contained within the boundary of its base face.
Sometimes caused by confused ring and base face.

non-coplanar ring Typically used for a planar face that is made a ring of another planar face, but
unfortunately the planes are (very) different.

reversed ring A problem caused by a ring that is actually not reversed, i.e., when the ring has
the same orientation as the base face. May be caused by an attempt to create a
non-orientable object, such as the Klein bottle (Fig. 2.19).

Figure 2.28: Possible Pitfalls with Polygonal Meshes.
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Figure 2.29: Inflating neighbouring face and ring. Two vertices are set into the lower edge of a double-sided
quad, provided with dangling vertices using 2×makeEV (b), and connected with makeEF. The new face is then
made a ring of the backside quad using killFmakeRH. Now the mid lower edge ‘looks’ non-manifold, since it is
adjacent to the backface on one side and to a ring of the backside on the other (a). This situation can be clarified
by “inflating” the backside using an expanding extrude operation (b). The ring can be removed by inserting two
edges on the back using makeEkillR + makeEF, creating the green face (c) to remove the ring. Removing two
edges with 2×killEF basically restores the situation in (a), leaving one edge to connect two loops, so that the green
face has degree 8 (d). The remaining edge can be removed by killEmakeRH + makeFkillR, leaving the loops as
two triangle faces (d). Note that without inflating, these faces have degree 1, i.e., they are loops.

A particularly useful feature of Euler operators is that they can handle faces of any degree. But sometimes this
generality may not be needed, e.g., when using only triangle meshes. Then the Euler sequence for constructing these
meshes can have a simpler structure, because it turns out that sequences with always the same few operations are used. In
this case it makes sense to combine these operations, and to set up a new, derived, set of mesh construction operations with
them, replacing the Euler operators. A notable example for this approach are the edge collapse / vertex split operations
that will be introduced in section 4.1.6 (Fig. 4.10): A vertex split is nothing but makeEV, makeEF, makeEF.

2.3.5 A Note on Seemingly inconsistent Mesh Configurations

With Euler operators every manifold mesh can be realized, and at the same time the connectivity of the mesh is guaranteed
to remain valid at all times (theorem 2.29). But one has to bear in mind that this concerns only the validity of the abstract
complex and not necessarily a valid embedding. Edges of a mesh are usually only straight line segments. Consequently,
a loop will always be invisible, since it collapses to a straight line of zero length, i.e., to a point. But note that the reason
of such problems is only an inadequate embedding.

When practically using Euler operators for building meshes, it is not always easily possible to figure out what the
problem is with a given embedding. Most of the problems, e.g., the pitfalls from Fig. 2.28 cannot be solved only by
visual inspection of a model. One solution to this problem is to inflate inflate a model the model. Formally, to inflate a
model means to subdivide and expand it around the critical parts, in order to make the embedding more distinct with the
added geometry. When the solution to the problem is found, it can in most cases be transferred back to the unexpanded
solution, due to the algebraic properties of Euler operators. One example where inflation is quite useful is to make a loop
edge visible by expanding it to, e.g., a circle. This can be done by a sequence of makeEV. This technique was used, for
instance, in Fig. 2.20 that shows how to remove a double loop. The solution that was found for this problem could be
translated back to the unexpanded circles, i.e., to the case of loop edges.

Using inflation, even orientability problems can be clarified. The prototype of a non-orientable surface is the Möbius
band which contains a surface with only one side. Surprisingly, an orientable surface can be created by inflating it, as
shown in Fig. 2.27. The images of the Möbius band shown earlier in this chapter are actually ‘fakes’: They were all just
created by collapsing one of the two surfaces of the inflated Möbius band.

Another seemingly non-manifold configuration can be created by a face that is turned into a ring of a direct neighbour
face. This introduces an edge that is a non-manifold edge – seemingly. But this edge does not affect the integrity of
the mesh: As demonstrated in Fig. 2.29, inflation reveals that the edge can be removed by a sequence of makeEkillR +
makeEF + killEmakeR + makeFkillRH operations. The first two operators remove the ring and create loops, i.e., degree
1-faces, which are then disconnected. To clean up, the loops can then be removed with 2×killEF. It may seem strange to
connect a vertex with itself using makeEkillR, but this is nevertheless a legal operation.

This example illustrates the fact that Euler operators are better thought of as abstract mesh manipulation operators,
than as user-friendly modeling tools. User-friendly modeling tools should rather be based on Euler operators.
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2.4 Hierarchical Meshes for Interactive Modeling and Visualization

The goal of this thesis is a system for interactive inspection and on-line manipulation of three-dimensional models repre-
sented by surface meshes. Note that the latter requires the first: Long display latencies are inacceptable when constructing
a 3D object with the aid of a computer. A good modeler must incorporate an efficient viewer. The considerations so far
have revealed two different aspects of meshes, relating to both of these issues interactive visualisation and modeling.

• Euler operators permit the consistent manipulation of manifold meshes.
Euler operators reflect a paradigm change from objects to operations: A mesh is understood as the result of a
sequence of parameterized operations rather than a set of unrelated faces. A particular sequence of Euler operations
can be re-used: It will always reliably reproduce the same type of connectivity changes, provided it is used under
the same specified conditions. A fixed operator sequence can still be parameterized, namely in terms of the vertex
positions. Even more power have variable operator sequences: The extrude operation (section 2.2.2) is a notable
example of a variable sequence with a clear structure: n×makeEV, then n×makeEF, to create a degree n face.
The downside is that the neighbourhood of a face and a vertex must be readily accessible, ideally in constant time,
for Euler operators to be efficient. Another drawback is the limitation to manifold meshes.

• Indexed face sets are an efficient and general low-level mesh representation.
Indexed face sets, in particular indexed triangle sets organized as triangle strip lists, are a very space efficient
surface representation. Triangle strips are compatible to low-level graphics APIs such as OpenGL, and today’s
graphics acceleration boards are optimized for displaying large triangle meshes at interactive rates. Triangles are
2-simplices, and they permit to approximate any kind of 2D surfaces embedded in 3D at any desired resolution.
Indexed face sets do not store explit face neighbourhood information. The reason is that for the purpose of mesh
display, neighbourhood information is not needed, so at this point it is just an unwanted overhead. It is indispensable
though for consistent mesh manipulation, since changing the connectivity implies to change face neighbourhoods.

Neither of both views on meshes is entirely satisfactory. But it is possible to combine them in a way such that they
mutually compensate for their deficiencies and their advantages are added. The solution is to use them in a hierarchical
fashion with the patch complex approach.

Definition 2.34 (Patch, Patch Complex, Tesselation)
A generally non-planar 2-cell P ⊂ R

3 is called a surface patch. If the mapping from a paramater space U ⊂ R
2 to P is

explicitly given, then P is called a parametric patch.
A patch can be approximated by simplicial subdivision, the result is called a tesselation. A tesselation is a 2-complex

with border, of course homeomorphic to the 2-disc, made of triangles whose vertices are sampled from the patch.
A patch complex is a 2-complex with non-planar faces. So its faces are patches, and its edges, where adjacent patches

meet, are in general curves in 3-space.

The distinguishing feature of a patch complex, one that makes it different from, e.g., a polyhedron, is its embedding:
The faces are essentially polygons in space, but they can be arbitrarily bent and stretched. The term ‘patch’ is also used in
a more sloppy fashion, in that also planar faces are sometimes called patches, especially when they have curved borders.
The patch complex examples in Fig. 2.30 demonstrate the idea of hierarchical meshes: The surface is partitioned into
curved or flat patches, and each of the patches is then tesselated.

• High-level modeling with Euler operators.
Euler operators manipulate only the abstract complex of a mesh. The embedding of each face is a whole patch.
This reduces the overhead of storing connectivity information with faces, since there are much fewer faces in the
mesh than in the tesselation. A great shape complexity can be achieved with relatively few faces that have a very
detailed tesselation. So mesh faces become higher-level data structures, some sort of mechanism for grouping many
low-level simplices together. This opens also new possibilities, e.g., for culling2: To cull away individual triangles
is inefficient, because it is faster to just render them, whereas culling of whole patches is worthwile.

• Low-level display with indexed face sets.
The tesselation is directly stored as indexed face set (triangle strip list), so that it can be processed by the graphics
hardware in an optimal way. The patch representation can, and should, be chosen in a way that the computations are
very schematic, so that they can be highly optimized. For each patch, also different levels of detail of the tesselation
can be computed. This makes it possible to adapt the surface resolution both to the position of the viewer, and to
the capabilities of the machine (Fig. 2.30 (c) and (g)), which is called adaptive rendering.

2Culling means to detect objects that are not visible, so that they do not have to be processed by the rendering pipeline.
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Figure 2.30: Patch complex examples.

The big question remaining is how to define the patches. In fact a great number of possible surface representation
schemes exists, from Hermite patches over Bézier- and B-spline surfaces, to, most notably, NURBS. When choosing
a particular patch type for a patch complex, one important requirement is that adjacent patches can be seamlessly and
smoothly stitched together. Methods exist to achieve smooth transitions, for instance, between trimmed NURBS patches,
but they are usually computationally very expensive due to the underlying theory of geometric continuity. Good overviews
over the different possibilities to define free-form patches and the methods to stitch them together is given in the books
from Farin [Far02] and Hoschek and Lasser [HL92].

On the other hand, not all shapes are exclusively made of smooth, curved surface parts. Many objects, such as for
example buildings, are composed of planar polygons for the most part – but they exhibit important free-form features in
prominent places on their façades. So a method was required that integrates well with polygonal meshes on the one hand,
but also permits to use curved patches within the same data structure. In particular, smooth surfaces should not require
much overhead in terms of degrees-of-freedom with respect to the polygonal parts of the surface.

As a result of these considerations, subdivision surfaces have been chosen as the representation for smooth surfaces.
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Chapter 3

Subdivision Surfaces

This chapter introduces Catmull/Clark subdivision surfaces. It shows their origin from B-Spline surfaces, introduces limit
rules, discusses their behaviour in practice, and illustrates some typical problems; finally it develops an optimized method
for fast interactive display. The treatment is somewhat verbose because Catmull/Clark surfaces are of great importance
for this thesis. They have a number of unique features:

• Subdivision surfaces make free-form modeling manageable
Only very few degrees of freedom must be specified to create appealing smooth free-form shapes. Meaningful
changes can be applied in an intuitive way but the surface remains always smooth and connected. The method is
extremely robust and computationally stable.

• Subdivision surfaces are compatible with polygonal meshes
Every manifold polygonal mesh can be used as control mesh for subdivision surfaces. In particular the same data
structure can (and will) be used for both wys of modeling. And even more importantly, the same type of operations,
Euler operators, can be used for both polygonal and free-form modeling.

• Subdivision surfaces support optimized interactive display
The complexity of the control mesh is typically two or more orders of complexity smaller than the tesselation.
Subdivision surfaces are inherently multi-resolution surfaces, with a strictly hierarchical structure so no further
computations are needed to change the resolution. The evaluation can be greatly optimized so that more than 50K
9×9-patches can be computed per second on an average PC.

A short historic overview The basic idea of recursive subdivision is to refine a given initial mesh, the control mesh, by
inserting new vertices, edges, and faces on every level, according to a number of rules, the subdivision rules. They are
designed in a way that in the limit, when the number of subdivision steps goes to infinity, the mesh converges to a smooth
surface that possesses a continuous tangent plane everywhere.

The idea of recursive subdivision has been first applied to curves: In 1974 Chaikin [Cha74] presented his idea of
successively refining a polygon that converges to a curve. Subdivision surfaces have then been introduced four years later,
as early as 1978, in the two landmark papers Recursively generated B-Spline Surfaces on Arbitrary Topological Meshes
from Ed Catmull and James Clark, and Behaviour of Recursive Division Surfaces near Extraordinary Points from D. Doo
and Malcolm Sabin. Both appeared in the same famous issue 6, vol. 10, of Computer-Aided Design [CC78, DS78].

The Catmull/Clark scheme proceeds by splitting all faces of a given mesh recursively into smaller quadrangular sub-
faces; it was designed as a generalization of bicubic B-spline surfaces. They are therefore C2 continuous almost every-
where, except at irregular vertices, where they are at least tangent plane continuous. The Doo/Sabin scheme replaces with
each refinement step (i) a degree m-face by a smaller degreem m-face, (ii) a valence n-vertex by a degree n-face, and (iii)
each edge by a quad. The Doo-Sabin surfaces are a generalization of biquadratic B-splines and, thus, C1-continuous al-
most everywhere. Another nine years later, in 1987, Charles Loop eventually discovered a subdivision scheme for triangle
meshes. The Loop scheme recursively splits a triangle in four sub-triangles by inserting a new vertex on every edge of the
mesh. This scheme generalizes quartic triangular B-splines.

It is probably fair to say that subdivision surfaces were not a very hot research topic for the longest time. In any
case they have been put back into focus by the article Subdivision Surfaces in Character Animation from Tony DeRose,
Michael Kass and Tien Truong that appeared on Siggraph 1998 [TDT98] together with the amazing short film Geri’s
game produced by Pixar. The subdivision surface approach proved so useful that within a few years, dozens of different
subdivision schemes and modifications have appeared. Sources for an overview over existing schemes are the Siggraph
course notes [ZS99] and the books from Joe Warren and Cohen et al. [WW02, CRE01].
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Figure 3.1: Knot intervals mapped to B-spline control polygon.

3.1 Genesis of the Catmull/Clark Scheme

The basic idea from Catmull and Clark was to generalize the popular bicubic uniform B-spline surfaces, so that every
manifold mesh could serve as control mesh, irrespective of the vertex degree. B-spline surfaces are tensor product surfaces.
This is a general technique to create surface representations from curve representations in basis form. This gives good
control over the shape, but the tensor product approach requires control points to be arranged by rows and columns. The
control mesh must therefore be a regular grid where all interior control vertices, also called CVs, have valence four.
So the story of Catmull/Clark surfaces actually begins with the famous B-spline basis functions.

Definition 3.1 (B-spline functions) Let (t0, t1, . . . , tk) be a nondescending sequence of scalar values, called a knot vector.
The B-spline functions Nn

i of degree n, with 1≤ n≤ k−1 and 0≤ i≤ k−n−1, are recursively defined as follows.
As knot values are allowed to coincide, the result of a division by zero is defined as zero, in particular 0

0 := 0.

N0
i (t) = 1[ti,ti+1](t)

Nn
i (t) =

t− ti
ti+n− ti

Nn−1
i (t)+

ti+n+1− t
ti+n+1− ti+1

Nn−1
i+1 (t)

The basis of the recursion are the box functions 1[a,b](t) of an interval [a,b], which are equal to 1 if a ≤ t ≤ b and equal
to 0 everywhere else. The recursive definition of the basis functions can be understood in different ways, for instance as a
convolution, as in the Siggraph 99 course notes [ZS99]. The reason for the fractional form of the coefficients is that they
are the relative position of t in the interval [a,b] with respect to start and end of the interval according to the mappings

t → t−a
b−a

, t → 1− t−a
b−a

=
b− t
b−a

.

To facilitate this interpretation, t is printed in bold in the above definition; and Fig. 3.1 shows a graphical interpretation on
the segments of the control polygon. The B-spline functions have many interesting properties, the most important are:

• Compact support, inherited from the box functions: Nn
i is equal to zero outside the interval [ti, ti+n+1].

• The B-spline functions are piecewise polynomials with a monomial representation for each interval.

• Functions Nn
i are Cn−1, but only if successive knot values are different.

• In case j knot values coincide, the respective B-spline functions are only Cn− j.

• The functions form a partition of unity
∑k−n−1

i=0 Nn
i (t) = 1 on the inner intervals, i.e., for all t ∈ [tn, tk−n].

The knot vector defines the interval sizes. In case of equally spaced knot values the knot vector is called equidistant. In
the simplest case, an equidistant knot vector is just a sequence of integers like for instance (−3,−2,−1,0,1,2,3,4). By
careful inspection of the diagram in Fig. 3.3 the properties mentioned above can be verified.

As the B-spline functions form a partition of unity they can be used as weight functions. All linear combinations with
respect to these weights yield an affine combination of the coefficients, for any t ∈ [tn, tk−n]. But note that the coefficients
can not only be numbers, they can be taken from any affine or vector space. In such a case the coefficients are called
control vertices or short CVs. Given a knot vector (t0, . . . , tk) there are k− n B-spline functions of degree n that can be
used with a control polygon of the same size to form a curve, an example for which is shown in Fig. 3.1
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N0
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Figure 3.2: B-spline functions of degrees 0 and 1 for the equidistant knot vector (−3,−2,−1,0,1,2,3,4). The
highlighted box function N0

3 isolates the middle interval [0,1]. The graphs of these functions are shown in Fig. 3.3.
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Figure 3.3: B-spline functions.

Definition 3.2 (B-spline curve) Let (t0, t1, . . . , tk) be a knot vector, n a number such that 1 ≤ n ≤ k−1, and P a control
polygon with k− n control vertices, so P = (p0, . . . , pk−n−1). The B-spline curve c of degree n for t ∈ [tn, tk−n] is then
defined as

c(t) =
k−n−1∑

i=0

pi Nn
i (t)

Some properties of this curve can again be derived from inspection of the diagram in Fig. 3.3 for the equidistant example.
For t = 0 for example, it is N2

1 (0) = N2
2 (0) = 0.5, while the other basis functions are zero. Accordingly the curve for n = 2

is exactly in the middle between p1 and p2 at this time.

3.1.1 Evaluating points on a B-spline curve

Especially for curves with many CVs it is quite inefficient to evaluate all basis functions separately. A more efficient
method make use of the compact support: For t ∈ [ti, ti+1] only the basis functions Ni−n, . . . ,Ni are nonzero. Furthermore
the recursion can proceed by combining the control points directly, rather than computing weights. This constitutes the de
Boor algorithm for B-spline curve evaluation shown in Fig. 3.4.

To make the processing very clear the de Boor-algorithm for the important cubic case is explicitly listed in Fig. 3.5.
It is identical to the general algorithm, but it has the loops for n = 3 unrolled. Only a sub-polygon of the CVs of length
four is needed to compute the curve in any given sub-interval [ti, ti+1], namely the four points (pi−3, pi−2, pi−1, pi). Just as
with Bézier curves, new points are computed that lie on the line segments of the control polygon. And just as with Bézier
curves they make up a new polygon so that every interpolation step yields one fewer point:

(pi−3, pi−2, pi−1, pi) = (p0
i−3, p

0
i−2, p

0
i−1, p

0
i ) −→ (p1

i−2, p
1
i−1, p

1
i ) −→ (p2

i−1, p
2
i ) −→ p3

i = c(t)

The difference to Bézier curves, though, is that the curve parameter t is not related to the interval [0,1] but to an interval
that is defined by the first and last knots from a (sliding) knot sub-sequence of the knot vector.



94 CHAPTER 3. SUBDIVISION SURFACES

DEBOOR(t,k,n,(t0, . . . , tk),(p0, . . . , pk−n−1))
1 Find i such that t ∈ [ti, ti+1]
2 (p0

0, . . . , p
0
k−n−1)← (p0, . . . , pk−n−1)

3 for j← 1 to n
4 do for m← i−n+ j to i
5 do s← ( t− tm) / ( tm+n+1− j− tm )

6 p j
m← (1− s) p j−1

m−1 + s p j−1
m

7 return pn
i

Figure 3.4: De Boor algorithm, general version.

DEBOOR-CUBIC(t,k,(t0, . . . , tk),(p0, . . . , pk−n−1))
1 Find i such that t ∈ [ti, ti+1]
2 (p0

0, . . . , p
0
k−4)← (p0, . . . , pk−4)

3 s← ( t− ti−2) / ( ti+1− ti−2 ) p1
i−2← (1− s) p0

i−3 + s p0
i−2

4 s← ( t− ti−1) / ( ti+2− ti−1 ) p1
i−1← (1− s) p0

i−2 + s p0
i−1

5 s← ( t− ti−0) / ( ti+3− ti−0 ) p1
i−0← (1− s) p0

i−1 + s p0
i−0

6 s← ( t− ti−1) / ( ti+1− ti−1 ) p2
i−1← (1− s) p1

i−2 + s p1
i−1

7 s← ( t− ti−0) / ( ti+2− ti−0 ) p2
i−0← (1− s) p1

i−1 + s p1
i−0

8 s← ( t− ti−0) / ( ti+1− ti−0 ) p3
i−0← (1− s) p2

i−1 + s p2
i−0

9 return p3
i

Figure 3.5: De Boor algorithm, cubic version.

This is visualized in Fig. 3.1, at the beginning of the section, using another equidistant knot vector. This time the
multiplicity of the first and last knot values is four, which makes the spline curve interpolate the end points. The diagram
demonstrates the evaluation of the cubic B-spline curve at parameter values 2.5 or 2.7. These values reside in the knot
interval [t5, t6] = [2,3], and the respective points on the curve are computed from the sub-polygon (p2, p3, p4, p5). The
position of the parameter is set in relation to an interval “window” of four, three, and two knot values at the different levels
of the de Boor-algorithm.

By evaluating the spline curves at all relevant parameter values the curve can be sampled and thus converted to an
approximating polygon. Yet such an approximation can also be derived from the control polygon directly. One possibility
is knot insertion, as shown in Fig. 3.1 (c). By repeatedly inserting new knots to the knot sequence the control polygon is
also refined while still representing the same curve. At the same time the control polygon follows the curve more tightly:
In principle, infinitely repeated knot insertion yields a control polygon that is identical to the curve.

3.1.2 Recursive Subdivision of B-spline Curves

Catmull and Clark had another idea, though, for refining the control polygon, namely through subdivision. The main idea
is to have a look at the uniform case of a cubic B-spline curve, especially with the knot vector from Fig. 3.3, (t0, . . . , t7) =
(−3,−2,−1,0,1,2,3,4). B-spline curve are piecewise polynomials that are masked out using the box functions N0

i . The
box function of the unit interval [0,1] = [t3, t4] is N0

3 , which is printed in bold in the Figure. For t ∈ [0,1], the B-spline
curve can thus be written in matrix form like this:

c(t) =
∑3

i=0 pi Nn
i (t) = (p0, p1, p2, p3)




N3
0 (t)

N3
1 (t)

N3
2 (t)

N3
3 (t)


 = (p0, p1, p2, p3) · 1

6




(− t3 + 3 t2 − 3 t + 1) N0
3(t)

( 3 t3 − 6 t2 + 4) N0
3(t)

(− 3 t3 + 3 t2 + 3 t + 1) N0
3(t)

( t3 ) N0
3(t)




= (p0, p1, p2, p3) · 1
6



−1 3 −3 1

3 −6 4

−3 3 3 1

1







t3

t2

t
1


 =: PT MT T

In this notation, P = (p0, p1, p2, p3)T is the (column) vector of control vertices, T = (t3, t2, t,1)T are the monomial basis
functions, and M is the basis change matrix for changing from the monomial basis to the B-spline basis. Note that M is
actually the transpose of the 4×4 matrix above. Now given this curve over [0,1], consider to split it in halves so that one
sub-curve c′ runs over [0, 1

2 ], and another sub-curve c′′ runs over [ 1
2 ,1]. But the first sub-curve c′ shall actually have a

parametrization over [0,1], so that its parameter t′ travels twice as fast as the parameter of the original curve c. This can
be expressed through a matrix S to obtain c′ directly from c:

c′(t′) = (p0, p1, p2, p3) ·
1
6



−1 3 −3 1

3 −6 4

−3 3 3 1

1







1
8

1
4

1
2

1







t3

t2

t
1


 =: PT MT ST T
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Figure 3.6: B-spline subdivision. (a) The original curve over [0,1] with its four CVs is split in two parts over the
sub-intervals [0,0.5] and [0.5,1]. (b) The CVs p′i for the left part of the curve. (c) Repeated subdivision yields the
CVs for the [0,0.25] part of the original curve. (d) Situation around a vertex.

On the other hand, c′ is just a cubic polynomial curve – so it must be possible to express it as a B-spline segment. In
particular, there must exist four control vertices P′ = (p′0, . . . , p

′
3) for c′ so that it can be written as follows:

c′(t′) = P′T MT T

How do the points P′ relate to the original CVs P? The transposed versions of the above equations are c′(t) = TT SMP
and c′(t) = TT MP′. They can only be true for all infinitely many values of t′ if the following holds:

M P′ = S M P ⇐⇒ P′ = M−1 S M P =
(
M−1 S M

)
· P =: H · P

The inverse of M exists, and the matrix multiplication to obtain H = M−1 S M yields:

H =
1
18




2 −3 3

−1 3

2 3 3

18 11 6 3


 ·

1
8




1

2

4

8


 ·



−1 3 −3 1

3 −6 3

−3 3

1 4 1


 =




1
2

1
2

1
8

3
4

1
8

1
2

1
2

1
8

3
4

1
8




Here M is not transposed, unlike above. – The result of this computation, H, is quite specular, actually. The new CVs
relate to the old ones in a suprisingly simple way, they are linear combinations:

P′ =




p′0
p′1
p′2
p′3


 =

1
8




4 4

1 6 1

4 4

1 6 1


 ·




p0

p1

p2

p3


 =




1
2 (p0 + p1)
1
8 (p0 +6p1 + p2)
1
2 (p1 + p2)
1
8 (p1 +6p2 + p3)




The result of repeated subdivision of the control polygon is depicted in Fig. 3.6. The sequence (a)-(c) shows how the
control polygon gets closer and closer to the curve with repeated refinement. But also note that the number of CVs
essentially doubles every step. Yet the process is quite efficient: (d) shows only three refinement steps (in blue, green,
red), and a fourth step would already be hard to see. Also note that subdivision has a smoothing component: The original
vertices in 3.6 (d) form an acute angle that is widened in every step – this is not very surprising, though, as in the limit,
the process needs to converge to a smooth curve.

An interesting thing to note is that there are only two different kinds of new vertices: Those that lie in the middle be-
tween two old vertices, with weights ( 1

2 , 1
2 ), are called edge points, and those that are a weighted sum of three consecutive

vertices, with the weights ( 1
8 , 6

8 , 1
8 ), are vertex points. As shown in Fig. 3.6 (d), three vertices are sufficient to perform

subdivision around a single vertex. According to the construction, the vertex must eventually converge to a point on the
B-spline curve – but is there a faster way to compute the limit position than performing an infinite number of refinements
steps? Let K be the upper-left 3×3 sub-matrix of H, then the situation at a vertex point is as follows:

P′ =




p′0
p′1
p′2


 = 1

8


 4 4

1 6 1
4 4


 ·




p0

p1

p2


 = K ·P

P′′ = K ·P′ = K ·K ·P
P(n) = (Kn) ·P
P∞ = ( limn→∞Kn ) ·P
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Figure 3.7: Convergence of B-spline curve subdivision. The upper row demonstrates the fast convergence rate:
After three steps of subdivision, the square becomes a polygon with 32 line segments that are very close to the
limit (dotted curve). The bottom row shows the points from the upper row projected to the limit curve. The great
advantage is that a lower resolution can be obtained from a higher resolution curve by simple sub-sampling. The
limit curve is not a circle.

As suggested by Fig. 3.6, Kn converges quite rapidly:

K =


 0.500000 0.500000 0.000000

0.125000 0.750000 0.125000
0.000000 0.500000 0.500000


 K2 =


 0.312500 0.625000 0.062500

0.156250 0.687500 0.156250
0.062500 0.625000 0.312500




K3 =


 0.234375 0.656250 0.109375

0.164062 0.671875 0.164062
0.109375 0.656250 0.234375


 K4 =


 0.199219 0.664062 0.136719

0.166016 0.667969 0.166016
0.136719 0.664062 0.199219




K10 =


 0.166911 0.666667 0.166423

0.166667 0.666667 0.166667
0.166423 0.666667 0.166911


 K20 =


 0.166667 0.666667 0.166666

0.166667 0.666667 0.166667
0.166666 0.666667 0.166667




When computing in single precision floating-point (with a 23 bit mantissa), the limit is reached for n = 23. The limit
matrix K∞ can be expressed as the dyadic product of (1,1,1)T and the left eigenvector 1/6 · (1,4,1) of K, which is easy
to verify:

K ·K∞ =
1
8


 4 4

1 6 1
4 4


 · 1

6


 1 4 1

1 4 1
1 4 1


 =

1
8
· 1
6


 8 32 8

8 32 8
8 32 8


 =

1
6


 1

1
1


(1,4,1) = K∞

This eigenvector belongs to eigenvalue 1, and it gives the weights of the limit position on the curve, given one vertex and
its two neighbours on the control polygon of a B-spline curve. The usefulness of this can be clearly seen in Fig. 3.7. The
subdivided control polygon yields exactly the same B-spline curve as the original polygon, shown in dashed. On any such
level of subdivision, including level 0, i.e. the original control polygon, the limit position of the polygon vertices can be
computed using the limit weights 1/6 · (1,4,1). This has the important consequence that a polygon refinement operator
can be realized by repeated subdivision followed by application of the limit weights. This last step is referred to as the
projection to the limit position of a recursively subdivided curve (or surface). The great advantage is then that different
parts of the refined polygon may actually be drawn at different refinement levels, and thus at different approximation
qualities. Yet still the different parts agree in limit positions, so they can be stitched together seamlessly. This also leads
to an efficient implementation, as once a refined polygon is computed, any lower level can be obtained by sub-sampling.
This is not the case if only subdivision is applied: The curves in the upper row of Fig. 3.7 (right to left) are not sub-sampled
versions of each other, but the curves in the lower row are.

This derivation demonstrates the importance of the eigen analysis of subdivision matrices. As further explained in
e.g. the Siggraph Course Notes [ZS99] and the book from Joe Warren [WW02], Eigenanalysis can also be used to derive
differential properties such as tangents and curvatures. As it turns out, the tangent vector of a uniform cubic B-spline
curve can be computed using the weights (1,0,−1).
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3.1.3 Tensor Product Surfaces

Tensor product surfaces are a quite general way to define a surface from a given curve representation. Recall that in
definition 3.2 the B-spline curve took the form

∑k−n−1
i=0 pi Nn

i (t). For any parameter t ∈ [tn, tk−n] from the parameter
interval, the basis functions sum to one (partition of unity), so all points of the curve are affine combinations of the
vertices p0, . . . , pk−n−1 from the control polygon. Furthermore, the coefficients are nonnegative, as Nn

i (t) ≥ 0, so any
point on the curve is actually a convex combination of the control vertices. Consequently, the curve lies in the convex
hull of the control points. The B-spline functions are not the only example for a basis with these properties: The famous
Bernstein polynomials Bn

i (t) =
(n

i

)
ti(1− t)n−i also form a nonnegative partition of unity, over the interval [0,1], and using

them for a basis yields the famous Bézier curves. Many other examples for affine basis functions for convex combinations
exist [Far02].

The idea of tensor product surfaces is now to consider not only one, but m curves, each with its own set of n control
vertices. All m curves are evaluated at the same parameter value v, which yields m points. These points are then used as
CVs of another curve, of degree m−1, that is evaluated at parameter u.

Definition 3.3 (Tensor product surface) Let [u0,u1] and [v0,v1] be parameter intervals of two sets of basis functions
A1(u), . . . ,Am(u) and B1(v), . . . ,Bn(v), so that all Ai(u) ≥ 0, i = 1, . . . ,m, and Bj(v) ≥ 0, j = 1, . . . ,n, and let A and B
form partitions of unity

∑m
i=1 Ai(u) = 1,

∑n
j=1 Bj(v) = 1 for all parameters from the respective intervals. Furthermore let

(pi j) be a grid of m×n control vertices. The tensor product surface for A, B, and (pi j) is then defined as follows:

s(u,v) =
m∑

i=1

Ai(u)


 n∑

j=1

Bj(v)pi j


 =

m∑
i=1

n∑
j=1

Ai(u)Bj(v) · pi j = (A1(v), . . . ,Am(v))




p11 · · · p1n
...

. . .
...

pm1 · · · pmn







B1(u)
...

Bn(u)




The matrix notation s(u,v) = (Bj(v))T (pi j)(Ai(u)) of the surface explains the name “tensor product surface”. Both
sets Ai and Bj of basis functions may of course consist of B-spline functions, they may possibly have different degrees and
different knot vectors as well. It is even possible to use a B-spline in u and a Bézier curve in v for a mixed representation
tensor product patch, or to mix with any other basis function type. The parameter directions are completely independent,
important is only the partition of unity to assert that the surface points are convex combinations of the CVs.

In order to derive the Catmull/Clark scheme, the choice is again the uniform knot vector (−3,−2,−1,0,1,2,3,4)
and the cubic functions from Fig. 3.3. When the uniform cubic basis functions are taken for both directions u and v, the
resulting surface can again be parameterized in terms of the monomial basis functions. Recall from the last section 3.1.1
that a B-spline curve can be written in matrix form as c(t) = PT MT T , with vector of control vertices P = (p0, p1, p2, p3)T ,
monomial basis functions T = (t3, t2, t,1)T , and the basis change matrix M. Replacing T by the surface parameters
U = (u3,u2,u,1) and V = (v3,v2,v,1) respectively, this can be readily plugged into the tensor product equation:

s(u,v) = UT M P MT V

In order to derive refinement rules for such a tensor product of uniform cubic B-spline functions, literally the same
approach as before can be used. The surface is parameterized over (u,v) ∈ [0,1]× [0,1], and the idea is again to look at
the sub-patch s′(u′,v′) in the “lower left” corner of the parameter space: (u′,v′) ∈ [0, 1

2 ]× [0, 1
2 ]. This gives two equations

for s′, one obtained by modification of s and another one with its own control vertices, now called Q:

s′(u′,v′) = UT S M P MT ST V ( modified CVs from s )
s′(u′,v′) = UT M Q MT V ( own grid Q of CVs )

This can be true for all u′ and all v′ if and only if

MQMT = SMPMT ST

⇐⇒ Q = M−1 SM · P · MT ST M−T

= (M−1 SM ) · P · (M−1 SM )T

= H P HT

So the same matrix H = M−1 SM as before in the curve case is now multiplied twice to the CV grid, once to the left
and once to the right. Intuitively, one might guess that four different refinement rules result from this: In the curve case,
applying H once led to two different rules, for vertex and edge points. Applying it twice should lead to vertex/vertex,
edge/edge, edge/vertex, and vertex/edge rules. But it turns out that the latter two are identical, so just three different rules
result.
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Figure 3.8: Subdivision of the 4×4 control grid of a tensor product surface from uniform cubic B-splines.
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Figure 3.9: Stencils of the Catmull/Clark scheme. (a) face rule: The face point, shown as bold square, of a
(regular) face is the average of its (four) vertices. (b), (b’) edge rule: An edge point (bold circle) can be expressed
as the average of two vertices and two already computed face points. (c), (c’) vertex rule, regular case: The vertex
point can be expressed as the average of the center vertex and the sum of adjacent vertices and face points. (d):
enumeration scheme used in the vertex rule for vertices and already computed face points. In this case all faces are
quads, but the rule applies to adjacent faces of any degree. (b’) and (c’) use the newly computed face points.

To carry out the algebra of the multiplication Q = H PHT with H = M−1 SM is not very handy. What comes out has
a remarkably symmetry, though, which is coded in different colors in Fig. 3.8. The refined grid Q is partitioned into three
classes: face points (red), edge points (white), and vertex points (blue). For each of these classes, one representant is
shown:

face point q11 = 1
4 (p11 + p12 + p21 + p22)

edge point q12 = 6
16 (p12 + p22)+ 1

16 (p11 + p21 + p13 + p23)

= 1
4 (p12 + p22)+ 1

16 (p11 + p21 +2 p12 +2 p22 + p13 + p23)

= 1
4 (p12 + p22 +q11 +q13)

vertex point q22 = 36
64 p22 + 6

64 (p21 + p12 + p32 + p23)+ 1
64 (p11 + p31 + p13 + p33)

= 1
2 p22 + 1

16 (p21 + p12 + p32 + p23)+ 1
16 (q11 +q31 +q13 +q33)

These equations apply in the same way to the other points of the respective classes. To re-group the terms as it is shown
has the benefit of reducing the number of operations because the already computed face points can be used (shown in
bold). Also note that the operations that are used are numerically extremely stable! Only minimal rounding artefacts are
introduced: Divisions by a power of two can be performed exactly on binary arithmetic, as they only add to the binary
exponent. Furthermore, only additions are used, so that no effects like extinction can occur, which can happen with
subtraction.

It is sometimes awkward to match the point indices in the rules with a grid scheme like in Fig. 3.8. A more convenient
and intuitive notation, and one that exploits the symmetry of the rules, is as subdivision stencil. The stencil diagrams show
directly how the weights are applied. The entries in the diagrams are only the nominators: as the weights sum to one, the
denominator is just the sum of the weights shown in the stencil. Stencils for face, edge, and vertex rules are shown in Fig.
3.9 (a), (b), and (c). The re-grouped versions using the already computed new face points are shown in (b’) and (c’).
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Figure 3.10: Example of recursive Subdivision. Face, edge, and vertex points are red, green, and blue.

3.1.4 Catmull/Clark Surface: Generalization to the Irregular Case

The great achievement of Catmull and Clark was to generalize the rules for the regular case of a 4×4 grid to the irregular
case, where face degrees and vertex valences may be different from four. In this case, the edge rule remains unchanged,
and the face rule can be generalized in an obvious way. The vertex rule, however, is generalized so that in the regular case,
it is identical to the regular vertex rule that is already known.

face rule A face point of a face with degree n is the average of the face’s vertices v1, . . . ,vn, i.e.
the face centroid

f =
1
n2

n∑
i=1

vi

edge rule An edge point is the average of the two endpoints of the edge and the two face points
of the incident faces.

e =
1
4

(v0 + v1 + f0 + f1)

vertex rule A vertex point of a vertex with valence n is computed from v itself, from the adjacent
neighbour vertices v1, . . . ,vn, and from the newly computed face points f1, . . . fn of
the incident faces (indexing scheme in Fig. 3.9 (d)):

v′ =
n−2

n
v +

1
n2

n∑
i=1

vi +
1
n2

n∑
i=1

fi

mesh connectivity rule A refined mesh is formed by connecting all newly computed face and vertex points to
the edge points around them.

Why are irregular control meshes so important? The generalized rules remedy an important limitation of B-spline
surfaces, namely that only regular grids of control vertices can be used. This is of great practical importance. To form
a shape with a B-spline surface, an artist can move the CVs from the regular m× n-grid freely around in space. Now
suppose the artist wants to apply a bump to a particular place on the surface, but it happens that there is no CV nearby, i.e.,
no appropriate degree of freedom (DOF) is available. To insert a new local DOF is possible, but this changes the whole
grid: A whole new row and a new column of CVs have to be inserted using knot insertion in both directions. And all this
effort only to let the artist move the new CV at the intersection of the new row and column! – This is the reason why the
number of CVs always tends to increase heavily with all kinds of tensor product surfaces.
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Figure 3.11: Stencil for limit position and tangents. (a): Valence 7 example. Note that in this enumeration scheme,
the fi do not refer to the face centroids but to the opposite quad vertices. So the limit rules only apply when all
incident faces are quads, which is the case right after the first subdivision. (b-e): Visualization of the weights for
limit tangents with increasing vertex valence. Sine and cosine have the suitable property that they are identical but
shifted by 90 degrees.

With subdivision surfaces an artist can modify the control mesh locally if the surface needs more detail only in this
place. In other words, new degrees of freedom can be introduced only where needed, without affecting the rest of the
surface. The following arguments from [HKD93] nicely sum up the properties of Catmull/Clark surfaces:

• This set of rules can be applied to any closed valid 2-manifold mesh, the control mesh.
• The faces can have any degree, vertices may be of any valence.
• After the first subdivision all faces are quadrilaterals.
• Around regular vertices (valence 4) the surface is a bicubic B-spline surface.
• The limit surface is curvature continuous except at irregular vertices.
• The number of irregular vertices remains constant after the first subdivision.

Due to the fact that only faces from the control mesh may have a degree unequal to four, it is convenient to introduce some
notation to distinguish between the control mesh and faces produced by subdivision. In the following, the control mesh
will also referred to as the base mesh, and its respective entities are base faces, base edges, and base vertices. The terms
‘control mesh’ and ‘base mesh’ denote the same thing; the difference lies in the connotation. While the first emphasizes
the artistic or design aspect, the latter comes from the multi-resolution community and is used when reasoning, e.g., about
recursive refinement.

It is important to note that the generalized face and vertex rules share one important property with the original B-spline
refinement rules: They are linear in the positions of vertices and faces. As a particular consequence, a subdivision step
can be formally described as a linear mapping, i.e., a matrix: The subdivision matrix.

After the first subdivision step all faces are quads. Any irregularity can then only come from the vertices. So the
difference between the regular setting, as in Fig. 3.8, and the irregular case is that the vertices p22, p23, p32, p33 of the
center quad can have any valence. It is therefore more convenient to consider only the situation around a single vertex,
as it is done in Fig. 3.9 (d), or, more commonly, as in Fig. 3.11. In this setting, no single subdivision matrix exists, but
there is one matrix Sn for each vertex valence. The valence n subdivision matrix Sn takes the positions of the n direct and
n indirect neighbours vi and fi around a valence n vertex v, arranged as column vector, to the next refinement level:

(v′,v′1, f ′1, . . . ,v
′
n, f ′n)

T = Sn (v,v1, f1, . . . ,vn, fn)T

3.1.5 Rules for the Limit Position and Surface Tangents

The subdivision rules of Catmull/Clark can be recursively applied to obtain a finer and finer mesh, which in the limit
converges to the smooth surface itself. But in every step, each quadrangle face is split into four smaller quadrangles.
So the number of faces grows exponentially, as a mesh with n quadrangles after the first subdivision will have 4k · n
quadrangles after k more subdivision steps.

Just like in the curve case, this process will eventually converge to a limit surface. Every base vertex corresponds to a
unique vertex from the k times refined mesh. Such a vertex is called a child on the k-th subdivision level. So in particular,
every base vertex has a unique position on the limit surface, which is called its projection on the limit surface.

Following the same approach as in the curve case, rules for the limit position can be obtained by analysis of the
subdivision matrix. As for curves, this matrix comes from looking at the situation around a single vertex. But this needs to
be done for each valence. Fortunately, a closed solution exists. The following remarkable rules can be found in Appendix
A of the paper from Halstead et al. [HKD93].
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Figure 3.12: Comparison of subdivision alone to subdivision with subsequent projection to the limit surface. The
blue square is the orthographic projection of the control mesh, a cube. The blue curve is the silhouette projection
of the limit surface. This curve is identical to the curve in Fig. 3.7. Note that the corners of the cube have valence
3, so on every subdivision level there are just eight irregular vertices, with valence 3, the children of the corners.
Note that as in the curve case, subdivision approaches the limit surface by shrinking, while projecting the sub-
divided points to the limit surface yields a denser and denser sampling without shrinking effects. This sampling
scheme also has the sub-sampling property, which is important for adaptive evaluation.
The difference between subdivided grid (black) and limit surface grid (red) is also shown in the bottom row. Bottom
right image: After 3 levels of subdivision the difference is small but noticeable, as a little bit red can still be seen.

limit vertex rule v∞ =
n

n+5
v +

4
n(n+5)

n∑
i=1

ei +
1

n(n+5)

n∑
i=1

fi

limit tangent rule t∞x =
n∑

i=1

An cos
(2π i

n

)
ei +

n∑
i=1

(
cos

(2π i
n

)
+ cos

(2π (i+1)
n

))
fi

t∞y =
n∑

i=1

An sin
(2π i

n

)
ei +

n∑
i=1

(
sin

(2π i
n

)
+ sin

(2π (i+1)
n

))
fi

where An = 1 + cos
(

2π
n

)
+ cos

(π
n

)√
18+2 cos

(
2π
n

)

limit normal rule n∞ = t∞x × t∞y

These rules are somewhat mystic, and far from obvious. Halstead et al. do not provide much insight on how they obtained
them. A computer algebra system employed complained about Eigenvalues being complex. Jos Stam, who derives part of
some limit rules in his ‘evaluation’ papers [Sta98, Sta99], only mentions a technique to ’rotate complex entries away’. –
Some insight on the question why so many sine/cosine terms appear is at least provided by Fig. 3.11 (b-e).

The limit position of a base vertex is unique, so the limit rules yield identical results when applied to a base vertex,
or to any of its direct children. This is important for adaptive surface refinement, because it means that, as in the curve
case (Fig. 3.7), a lower resolution can be obtained from a higher refinement level by simple sub-sampling also for surfaces
(Fig. 3.12). Note that the fast convergence rate from curves carries over to surfaces.
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Figure 3.13: Crease curve design.
Upper row: A 4× 4 control mesh of a bicubic B-spline patch. One border of the patch is marked in green, this
is a B-spline curve with four control points, marked with green sticks: Its CVs are the four big red points, which
are the result of the evaluation of the four row curves (thin red sticks). When the left red segments are identical to
the segments before (collinear, same length), the green control polygon of the border curve coincides with the 3rd
column of the 4×4 grid (top row, last image). This is exactly the configuration used with crease curves.
Bottom row: The 3rd column is now made a crease. The cross-border tangents are decoupled, but the surface
remains connected (C0 continuity). Bottom row, last image: The virtual last rows of the control mesh of the
surface to the left (continued in green) and to the right (continued in blue) of the crease.

3.1.6 Borders and Creases

The rules presented so far work well for closed manifold meshes. But for control meshes containing borders the rule set
must be extended. This extended rule set can also be used to introduce a new feature, namely crease curves.

As was demonstrated in the previous sections, Catmull/Clark surfaces are a generalization of B-spline tensor product
surfaces. The construction of these tensor product surfaces is quite elegant, because they basically “lift” one-dimensional
curves to a two-dimensional surface. Thanks to the partition of unity property of the underlying curves, the four borders
of a tensor product surface patch are again curves of the same type, as one parameter is fixed:

s(u,0) =
∑m

i=1 Ai(u)
(∑n

j=1 Bj(0)pi j

)
s(0,v) =

∑n
j=1 Bj(v)

(∑m
i=1 Ai(0)pi j

)

s(u,1) =
∑m

i=1 Ai(u)
(∑n

j=1 Bj(1)pi j

)
s(1,v) =

∑n
j=1 Bj(v)

(∑m
i=1 Ai(1)pi j

)

When A and B are B-spline basis functions the borders are ordinary B-spline curves. To obtain the CVs of the border
curve just one surface parameter is fixed. In case of a regular bi-cubic B-spline patch with 4×4 CVs, the four CVs of the
u = 1 border curve are obtained from evaluation the of four row-wise B-spline curves. Their control polygons are shown
in red in Fig. 3.13. This behaviour has two undesirable effects for meshes with border:

1. The surface depends on CVs that have no corresponding point on the free-form surface.
2. It is not obvious how to stitch another base mesh to a given border so that there is no gap between the surfaces.

The first objection is of a somewhat aesthetic nature. But the second problem is serious, because for a neighbouring patch
to fit the expressions in the brackets need to be identical. An example is shown in the top left image in Fig. 3.13: The
red balls form the control polygon (green) of the border curve (also green). Note in the bottom row that the left part of
the surface does not change its shape no matter how the surface on the other side of the crease is changed. The patch is
still identical to the patch shown in the last image of the upper row. Both sides of the surface coincide only in the crease
curve, which is the B-spline curve defined by the base mesh CVs on the crease. This polygon needs to be matched by the
respective polygon of a neighbouring patch to close the gap.

But there is a simple solution to this problem: Let the last row be only “virtual”, and compute it as the continuation of
the center segments. This situation is shown in the top right image (curves with red segments), and its use for designing
a crease in a continuous surface is shown in the bottom right image. Recall that for B-spline curves, the limit position
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Figure 3.14: Stencil for crease limit position and tangents, with k = 4.

of a control polygon vertex can be computed using the weights (1,4,1)/6 from its two neighbours on the curve. Let the
polygon be (p0, p1, p2, p3) and p2 be the point in question. So when is p2 identical to its own limit position?

p2 = p2
∞ =

1
6

p1 +
4
6

p2 +
1
6

p3 = p2 +
1
6

(
p1 + p3−2p2

)
⇐⇒ p1− p2 = p2− p3

So this is the case when the last two segments are identical, i.e., when they are collinear and have the same length.
Practically, to use it with surface subdivision, a crease is defined by a sequence of edges in the control mesh, and the
respective crease curve is obtained by regarding this sequence as the control polygon of an ordinary (uniform) cubic
B-spline curve. The subdivision surfaces next to the crease simply act as if the control mesh was continued across the
crease in the fashion shown in the bottom right image from Fig. 3.13. Note that this also solves the first problem: The
supplemental rows are only virtual, so the control mesh is still a closed manifold mesh.

The definition of a crease as a B-spline curve also works well together with subdivision. Only two new rules are
needed, one for refining existing vertices, and one for generating new vertices on a crease edge. Both rules are directly
taken from curve subdivision (cf. sec. 3.1.2).

crease edge rule A new crease edge point is obtained as the average of the two endpoints of the edge:

ecrease =
1
2

(v0 + v1)

crease vertex rule A crease vertex is a vertex v incident to exactly two edges tagged as creases. In
this case the vertex point is obtained from the neighbouring vertices vprev,vnext on the
crease just as in the curve case. The limit position of v is also on the curve and does
not depend on the surface CVs.

v′ = 1
8

(
vprev + 6v + vnext

)
v∞ = 1

6

(
vprev + 4v + vnext

)
crease normal rule A crease vertex has two normal vectors attached to it, for the surface on either side

of the crease. The tangent vector along the crease is very simple, but the cross-crease
surface tangent is more complicated. Let v0 = vprev and vk = vnext be the neighbouring
crease vertices, and f0,v1, f1, . . . ,vk−1, fk−1 the face points and neighbour vertices to
the left of the crease v0,v,vk (see Fig. 3.14)

t∞x = vk− v0

t∞y = αv + β0 v0 +
∑k−1

i=1 βi vi +
∑k−1

i=1 γi fi + βk vk

n∞ = t∞x × t∞y
where for k = 1: α =−4 β0 = β1 = 1, γ0 = 2,

and for k > 1: for i = 1 . . .k−1 , and with Rk = 1+cos( πk )
k sin( πk ) (3+cos( πk )) ,

β0 = βk = −Rk(1+2cos(πk )) βi =
4 sin( i πk )

k (3+ cos(πk ))

γi =
sin( i πk ) + sin((i+1) π

k )
k (3+ cos(πk ))

α = 4Rk(−1+ cos(πk ))

The rule for the cross-crease tangent t∞y appears in the appendix of a paper from Biermann et al. [BLZ00]. For the case
k = 2, i.e., when a crease goes along two edges of the same face of the base mesh, they appear to propose the weights
α= 6,β0 = β1 =−3,γ0 = 0. This case is shown in Fig. 3.16 in the second image, where the crease follows the face borders
in four vertices, while the two vertices in the middle have on both sides k = 2. The proposed weights pose difficulties
when k = 1 and vprev,v,vprev are collinear, as in this case the two tangents are collinear as well, so that the normal has
length zero.
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Figure 3.15: Simple example of an object with a crease. Examine the closer top face vertex.

Corners and dart vertices. The motivation of creases was to find a simple rule for efficiently treating meshes that
are not closed but have a border. Of course, any border is topologically equivalent to a closed curve. With the crease
approach, B-spline curve subdivision is plugged in to Catmull/Clark subdivision, and two open surfaces with the same
border polygons will seamlessly meet along the curve.

But creases can also very well be used with closed manifold meshes. In this setting, each edge of the control mesh
carries a boolean sharpness flag that determines whether the respective edge is smooth or sharp, i.e., a crease edge. With
the ordinary smooth edges, the unmodified rules are used. When edges can be set to sharp without any restrictions, two
more cases must be handled in addition to crease vertices: Vertices that are incident to only one sharp edge, the dart
vertices, and vertices with more than two sharp edges, the corners.

dart vertex rule A dart vertex is a vertex incident to one sharp edge and an arbitrary number of smooth
edges. Its vertex point is computed using the standard vertex rule. The standard vertex
limit rules do not apply, though. One workaround is to apply them only after a number
of subdivision steps.

corner vertex rule A corner vertex is a vertex v incident to more than two sharp edges. It remains fixed
at the same position across all subdivision levels. A corner with m sharp edges has
m normal vectors, one for each wedge. A wedge is formed by two consecutive sharp
edges and the smooth edges between them, as found when traveling around the vertex.
The normal vector of a wedge is the cross product of the sharp edges’ directions:

n∞v =
(v0− v)× (vk− v)
‖ (v0− v)× (vk− v) ‖

The indices are the same as for crease vertices in Fig. 3.14. Visually more pleasing
results however can be obtained by averaging all face normals of a wedge:

n∞v =
s
‖ s ‖ where s =

k∑
i=1

(vi−1− v)× (vi− v)
‖ (vi−1− v)× (vi− v) ‖

Irrespective of the orientation of the smooth edges in between a wedge’s two sharp edges, the surface at a corner
locally approaches the plane spanned by the sharp edges. This is a delicate subject, though: Close to the corner the surface
may exhibit a very high curvature, so that the plane is a good surface approximation only in a small neighbourhood around
the vertex. This occurs for example when the smooth edges in a wedge deviate much from the plane. The problem gets
even worse if the opening angle of a wedge is more than 180 degrees, which is not an uncommon situation. This led to the
above heuristic. The subject was treated in detail, though, in the ‘normal control’ paper by Biermann, Levin, and Zorin
[BLZ00]. They propose a slightly modified rule set that takes the wedge opening angle into account. Unfortunately it is
patented (oral communication), so it was not included in any of our group’s software.

There is also a problem with the limit weights of dart vertices: They are definitely not the same weights as for smooth
vertices. The reason is that the limit weights are derived from the eigenanalysis of the subdivision matrix – and this matrix
is different for dart vertices. It differs only in one row, though, namely the row to compute the edge point of the crease.
But this difference leads to a different limit behaviour: In a smooth unit cube (edge length 1 unit) with one sharp edge,
the limit position of the two dart vertices differs by 0.0768499 units or about 7.7%, depending on whether the smooth
limit rules are applied to the 1 times or the 4 times subdivided base mesh. The respective normals differ by more than 11
degrees. This workaround works well in practice. A thorough solution of the problem would involve the analysis of the
eigenstructure of the subdivision matrix for dart vertices – which unfortunately could not be found in the literature.
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Figure 3.16: Examples of different vertex and face types. Top row: Crease edges do not have to form closed loops.
When a crease vertex gets an additional sharp edge, it turns into a corner vertex. A vertex may also be incident to
a single sharp edge, which turns it into a dart vertex: The sharp crease ends within a smooth surface.
Bottom row: The face classification follows the vertex classification. Both the top and bottom faces have only
sharp edges. But the vertices of the bottom face are also corners, as they are incident to three sharp edges. All
edges are therefore straight line segments, and the polygonal quad face can simply be rendered using two triangles.
The top face is a sharp face, and the B-spline curves must be sampled prior to triangulation.

3.1.7 Artist’s Delight: Summary of Vertex and Face Classifications

Smooth vertex 0 sharp edges, control point of the freeform surface
Dart vertex 1 sharp edge, endpoint of a crease curve
Crease vertex 2 sharp edges, control point of a crease curve
Corner vertex ≥ 3 sharp edges, vertex remains fix across all refinement levels

Table 3.1: Vertex classification according to the number of incident sharp edges

Smooth face a face with at least one smooth edge, the face has no rings
Sharp face all edges are sharp, at least one crease vertex
Polygonal face all edges are sharp, and all vertices are corners

Table 3.2: Face classification according to the vertex classification and edge types.

The possibility to freely choose which edges are sharp and which are smooth results in a shape representation that offers
the utmost freedom and expressiveness to creative designers and artists. There is already a leap in productivity by using
subdivision surface: Instead of having to stitch together a complicated free-form object from isolated tensor product
patches, there is only one single control mesh for the whole shape. The control mesh can have any connectivity, and the
artist may modify the control mesh anywhere to add detail to the surface.

For the resulting surface to behave as intuitively as possible, there is the two sets of simple classification rules above.
The classification proceeds from vertices to faces: The face classification depends on whether the face has any smooth
edge, and if not, on whether all edges are straight line segments or not. Concerning the face classification, two cases have
not yet been discussed, which actually help to bridge the gap between polygonal and free-form surfaces: Polygonal and
sharp faces. Faces of both types have exclusively sharp edges, and they will be treated in detail in section 4.3 in the next
chapter.
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Figure 3.17: Influence of a single base vertex. The position of the white control vertex (first image) directly
influences the red face centroid of the first subdivision. The centroids go into the surrounding edge points (green),
and finally into the vertex points (blue). The darkened region denotes the region of influence in the first and second
subdivision. Note that on any level, all vertices except the two outer rings are influenced. Images 4 and 5: The CV
is lifted first a bit, then a lot. This demonstrates which portion of the surface is liftet together with it, and that the
border of the 2-neighbourhood remains in place.

Figure 3.18: Identity of the base faces and subdivision surface: For all configurations of 4×4 control vertices in
an equally spaced grid, the center face of the control mesh is identical to the corresponding subdivision surface.

3.2 Practical Experiences with Subdivision Surfaces

This section shall give a somewhat informal, and certainly incomplete, overview about some qualitative properties of
subdivision surfaces. It shows which problems may occur when they are employed for 3D modeling in practice. The
purpose is to better understand the implications of the formal rules and equations from the previous sections; some of
these implications are less obvious. The purpose of this exercise is to gain a better intuition for the tasks subdivision is
very good at, and which mesh configurations inevitably lead to problems – and why.

This research is informal when it comes to comparisons between the control mesh and the subdivision surface: Strictly
spoken, the control mesh does not define a surface. Of course it contains topological faces, but as there is no constraint
on vertex positions, in general no polygonal surface can be attached to the faces. A face is only defined by its boundary
which is an arbitrary, piecewise linear, closed path in 3D. The subdivision surface, on the other hand, exists even for
pathological control meshes, with self-intersections and all other geometrical pitfalls (see Fig. 2.28): It is defined as the
limit of a bounded infinite refinement process that provably converges.

Although the control mesh and the subdivision surface can not really be compared, it is instructive to look at how the
subdivision behaves in relation to the control mesh. This uses the informal notion of a control mesh surface. One can
also speak of the subdivision surface corresponding to a base face: One base face together with its 1-neighbourhood is
enough to start the refinement process. Such a portion of the subdivision surface is also called a patch. This section also
demonstrates subdivision on some real models, taking the promise literal that any manifold mesh can be used as control
mesh for subdivision.

3.2.1 Radius of Influence of a Vertex and a Face

A Catmull/Clark surface is created basically by “sliding” the 4×4 control mesh of a uniform cubic B-spline surface over
a given base mesh. But which parts of a surface are influenced by one specific vertex v? The vertex coordinates are
propagated by the subdivision rules to the surrounding surface. So one needs to look at how the rules proceed:

• v influences the face centroids fi of all surrounding faces
• The fi are used for computing all the edge and vertex points of these faces.
• In each round of subdivision, these entities spread the influence of v one step further in the neighbourhood
• But with each step, the faces are subdivided once – and the influence spreads half as wide.
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Figure 3.19: An example of surface shift: Faces with zero area can very well have a subdivision surface with
non-zero area. Subdivision implies averaging, so large faces get smaller while small faces get larger – always in
relation to the size of the direct neighbours. This is demonstrated here by collapsing two rows and two columns of
a regular control mesh. The face where the two rows and columns cross has collapsed into a point with no area at
all. The corresponding subdivision surface is shifted a little towards the bigger top left neighbour face.

Figure 3.20: A shift of the face centroid leads to surface shift: The centroid is the average of the vertices, so it
goes into the direction where most of the vertices are – and it drags the rest of the surface with it.

It is also instructive to consider a regular grid of unit quadrangles so that the subdivision surfaces is reduced to
the regular B-spline case. The radius k of influence increases with each subdivision step according to the sequence
1,1/2,1/4,1/8, . . .1/2n. The sum

∑
2−n approaches 2, which is v’s radius of influence. So v influences the surface of

4×4 = 16 faces around it. See Fig. 3.17 for a similar example. As far as limit positions of base vertices are concerned,
however, a vertex contributes only to the limit positions of its direct neighbours.

So note: When a vertex is moved, the whole subdivision surface in its “open” topological 2-neighbourhood is changed
and must eventually be recomputed. This may lead to unexpected behaviour when a vertex has one very long edge – or
when a vertex’s neighbour vertex has a long edge.

3.2.2 Smoothing, Averaging, and Surface Shift

Many of the figures so far were based on the regular setting, i.e., a grid of regular planar quadrangles in the control mesh.
In this special case the B-spline surface is exactly identical to the quad itself. This holds also locally: Whenever there is
a configuration of 16 vertices like in Fig. 3.18 (c), the center quad will be exactly interpolated by the subdivision surface.
But in general, the control mesh is not planar, faces have different sizes, and the face degrees and vertices valences are
different from four. In these cases the subdivision surface only roughly follows the control mesh. Both surfaces not only
differ in normal direction, but their difference has also a tangential component. This effect is called surface shift, and it
sometimes leads to results that are counter-intuitive at first sight, so it is important to understand why and how the surface
is shifted.

The vertices of the subdivided grid are not only affine combinations but also convex combinations of the base vertices:
All subdivision rules are of the form vnew =

∑
αi vold

i , with
∑

αi = 1 and for all i, αi ≥ 0. So this process is basically
some averaging. But averaging means that differences are reduced:

• sharp peaks and sharp edges are rounded,
• subdivided quads have a more regular quadrangular shape, i.e., they are approaching a square,
• the angles between the edges around a vertex become more regular, i.e., they approach 2π/n for valence n, and
• surface shift: large faces become smaller, small faces become larger

One effect of averaging is that even base faces with no area at all can have a non-vanishing subdivision surface, as
demonstrated in Fig. 3.19: The surface is ‘blown up’ on the expense of the subdivision surface from neighbour faces. To
make a subdivision surface vanish, all CVs in the 1-neighbourhood of the base face must be degenerate, i.e., must collapse
to the same point, or lie on a line.
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Figure 3.21: Many vertices attract the surface. In particular they attract the face point.

Figure 3.22: Foldover example. Small faces attract the surface.

Surface shift and fold-overs. Subdivision starts by computing the centroid of each face from the base mesh: The
centroid is the average of all of its vertices, which are a set of distinguished points on the face border. It is not, however,
the center of mass of the face as a two-dimensional set of points in R

3. Averaging is rather a majority decision, so the
centroid is attracted by the location where most of the vertices are. This is demonstrated in Fig. 3.20, where the centroid
is shifted to the top of the front quad. With further refinement, the whole surface basically follows the shifted centroid.

Another way to look at such conglomerations of vertices is to relate the sizes of neighbouring faces: Vertices that
are close together attract the subdivision surface more, but they also make for smaller faces. As a rule of thumb, it can
therefore be stated that small faces attract the subdivision surface stronger than large faces.

A prototypical situation is shown in Fig. 3.21: A stack of quadrangles is refined on bottom and top just as in the
previous example. As a result, the two refined quads attract the subdivision surface more than their neighbours. The
subdivision surface is therefore on both ends closer to the base mesh than in the middle (Fig. 3.21 (c)). Fig. 3.21 (d) shows
how close the centroid is to one vertex. The reason is that the respective face is just a simple 7-gon (3.21 (e) where most of
the vertices are to the left; note that the centroid also has valence 7, and its edges basically point to the midpoints between
the face’s vertices (actually to the edge points between them).

This behaviour can sometimes lead to unforeseen fold-overs of the surface. The object in Fig. 3.22 (a,b) has basically
the same topology as the one in the previous example (Fig. 3.21): A stack of quads, but this time the quads remain in the
same plane, but are shrunk. The difference to the previous example is the modification, namely a small quad in the lower
left corner of the surface. This quad is much smaller than the surrounding faces. But the subdivision surface is completely
determined by the 1-neighbourhood of a surface, and so the small quad attracts the surface. As the quad is in the same
plane as its neighbours, the result is a fold-over (Fig. 3.22 (c)).

The situation becomes clearer when the stacked (extruded) faces are put on different heights, as in 3.22 (d, e): The
smaller quad makes that the subdivision forms a clear ‘nose’, which becomes the fold-over when the control mesh is
flattened.

3.2.3 Linearity and Ripples

Subdivision is a linear process. The refinement rules are such that face, edge, and vertex points on the next level all
linearly depend on the positions from the level immediately before. It is quite remarkable, actually – although plausible
from the linear algebra point of view – that the result of infinitely repeating a linear mapping can itself also be obtained
through a linear mapping: The limit rules are linear in the CVs.

A practical consequence of this linearity is shown in Fig. 3.23: When an artist is moving a vertex, the subdivision
surface follows in a completely predictable manner: Twice the displacement of the CV gives twice the displacement of
the surface, yet the absolute distance of the surface displacements are smaller, of course.
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Figure 3.23: Linear dependency between the subdivision surface and the displacements of the CVs. The limit
position of a vertex depends only on the CV itself and its direct neighbours. When modifying the surface, an artist
can influence the surface in a very predictable way when keeping an eye on the CV’s limit positions.

Figure 3.24: Non-convex base face. Subdivision sees the front-facing polygon as an 8-gon (red balls) and treats
it like any other such – disregarding the fact that the centroid lies outside the face polygon. To split the face into
convex parts is the solution then, as triangles or quads, for instance.

Ripples with high valences. The great thing about subdivision is that it works with faces of any degree m and with
vertices of any valence n. But unfortunately, with higher n or m, ripples appear on the surface. Fig. 3.25 shows an
example. The first thing to note is that the phenomenon is basically the same for vertices and for faces: The face point
of a degree n face becomes a valence n vertex after the first subdivision. So the problem is merely one of high-valence
vertices. One apparent reason for the unwanted behaviour is shown in 3.25 (2a): The edge point from the first subdivision
is the average of the two endpoints of the edge and the centroids of the two adjacent faces. The ripples clearly correlate
with the deviation of these four points from a common plane: When they are nearly coplanar, the ripples mostly disappear
– at the expense of reducing the curvature in one direction, of course.

The true reason however seems to be that the computation of vertex points and face points is not completely symmetric,
as in Fig. 3.25 (2e,f): The curvature of the bent quad mesh is zero in one direction, which is not the case if the quads are
split into two triangles: Their subdivision surface exhibits ripples.

3.2.4 Non-convex Faces

Subdivision works irrespective of the geometry of a face, especially also on faces that are not convex. Such faces may
have the property that the centroid does not lie inside the face polygon, as is the case for the u-shape in Fig. 3.24. The
solution to this problem is of course to split the nonconvex face into smaller faces.

The reason why non-convex faces are not automatically split into convex parts is of course the fact that for subdivision,
“connectivity matters”. The decisions which vertices to connect plays a great role for the resulting subdivision surface. It
is important for the symmetry of the model: The apparent U-symmetry is lost with the triangulation in Fig. 3.24 (c), but
kept with the control mesh (e). Abstract properties like symmetry are in the responsibility of the artist; and the control
mesh connectivity is a degree of freedom for expressive design.

3.2.5 Example Models

In the following research the promise that any closed manifold mesh can do as control mesh of a subdivision surface
was taken literally! The example models are very clean models from the Viewpoint Corporation [Vie]. They have a vast
collection of highly polished, commercially available models, and they offer a small collection of models as a trial package
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Figure 3.25: Example of ripples appearing with high valences. Top row, (1a,1c): A cylinder with a valence 32
vertex on top and a degree 32 face on the bottom. (1d,1e): The borders between the quads from the first subdivision
are highlighted in red. The quads around the centers are much longer and thinner than at the periphery. Bottom
row, (2a,2b): The edge point from the first subdivision is shown in red. (2c): The effect is reduced with the control
mesh as in (2b). (2d): Subdivision surface from a regular quad grid where one row of quads is split into triangles.
(2e-2f): The triangles have a ripple problem.

that can be obtained by registered users for free. These models were indeed of such a high quality that they could be used
as control meshes right away. This is quite a valuable property.

Another interesting thing about these models is are not just made of triangles. Many other beautiful standard models
used extensively in computer graphics like the Stanford bunny, the dragon or buddha models, are obtained from 3D
acquisition methods. The Viewpoint models are instead clean synthetic models exported from CAD systems. They do not
contain coplanar unconnected faces and the like. On the other hand, their use as subdivision surface control meshes is an
abusal, because they were not conceived for this purpose – it is important to keep this fact in mind when some problems
of their subdivision surfaces are discussed in the following.

The Viewpoint Girl model. The girl is made of six different shells, each topologically equivalent to the sphere: The
legs, the arms, the body, and the head. Several shells in one control mesh, and also interpenetrations between different
shells, are no problem for subdivision. It takes only the local 2-neighbourhood into account.

The girl is a great example that demonstrates the applicability of subdivision surfaces as a sculpting tool for smooth,
natural forms – with particularly impressive results for the hands and the face. The hand is basically made from quad
extrusions for the hand itself, and for the fingers. The quads are obviously diagonally split when they are not sufficiently
planar. This mixed triangle-quad approach gives quite nice results, especially when the control mesh is so lean. The only
visible artifacts are in the regions of the finger tips/finger nails: There is one vertex with very high valence (7 or 8) at every
finger, which obviously attracts the surface and therefore leads to higher curvature.

The face is also a nice homogeneous mixture of triangles and quad faces, and it seems to avoid high valence quad faces.
There are different artifacts here: It contains faces with different materials, and the borders between them are affected by
surface shift, especially in the region around the mouth. The material borders are nicely modeled in the polygonal control
mesh. But the border has triangles on one side, and quads on the other – and this leads to a border curve that has the same
shape as already shown in Fig. 3.25 (2d).

The Viewpoint Cessna model. The cessna airplane model is basically a tubular shape made of quad extrusion with a
very particular property: Some of the quads are grouped together to form a region, like the white windows made of three



3.2. PRACTICAL EXPERIENCES WITH SUBDIVISION SURFACES 111

Figure 3.26: The Viewpoint models girl (row 1), cessna (row 2), dodge (row 3), airboat (rows 4, 5), and trumpet (row
6), and their respective subdivision surfaces.
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quads. These regions have a very thin border around it, made of thin, long quads, with one triangle in each corner. The
green border around the windows is made in such way.

Such a configuration is subject to serious surface shift: The size of the border increases to the expense of the much
bigger neighbouring faces. The amount of growth is proportional to the difference in size between border and neighbours.
This is the reason why the right and left green borders are thicker than the border on top and bottom of the window: The
white window quads are three or four times as wide as they are high.

These thin borders are also causing another, at first surprising, artifact: They decouple the interior of the region from
the exterior of the surface. An example is the region on the nose of the airplane (Fig. labelfig:viewpoint-models (2b)),
where the otherwise quite regular tesselation becomes more closely spaced on the region border. The 1-neighbourhood of
the interior is the border, so the exterior of the region has no influence on the subdivision surface of the interior.

This must then lead to shape artifacts that are also noticeable when there is no change of material: There is a thin hori-
zontal border where the door is, but the main direction of high curvature of the tubular shape is vertical – as a consequence,
the surface exhibits a noticeably higher vertical curvature where the thin horizontal border is (Fig. labelfig:viewpoint-
models (2e)).

The Viewpoint Dodge model. The dodge car model demonstrates how much subdivision surfaces depend on the reg-
ularity of their control meshes. When looking at the polygonal control mesh, the vertical front of the car looks perfectly
regular and clean. Only closer inspection reveals that just a few edges are actually missing here and there, and therefore
this portion of the control mesh is not perfectly symmetric.

The subdivision surface however amplifies such irregularities very much. They become especially noticeable by
following the reflection lines and highlights on the surface, which are of course much more detailed when the model is
subdivided and the tesselation has a high resolution.

The importance of maintaining symmetry is especially apparent with the bottom side of the car (Figs. 3.26 (3e), (3f):
The control mesh is not symmetric, because the left half of the mesh contains one more edge than the – actually mirror-
symmetric – right part. This one edge, because it is very long, leads to a quite serious asymmetry when subdivision is
applied. As already mentioned, for subdivision “connectivity matters”.

The Viewpoint Airboat model. The airboat model is very interesting, as a special modeling technique has been used
with it. Probably in order to improve the visual appearance from the edges of the model, many of them have been provided
with parallel edges on both sides in a small, constant offset distance. On both sides, the offset edges lie in the same plane
as the original face and its border. In the corners, this leads to a configuration called a “suitcase corner”.

As is clearly visible in Fig. 3.26 in the first two images (4a), (4b), this control mesh construction leads to really
nice round beveled edges with apparently constant curvature. The reason is that the subdivision surface must follow the
prescribed curvature in cross-edge direction, which is defined by the equally spaced sequence of offset edge, face edge,
and offset edge. So this technique yields a similar effect as the semi-sharp creases from the Geri’s game paper by deRose
et al. [TDT98], yet not by a modification of the subdivision rules, but alone by modifying the mesh connectivity.

Yet only three edges are not sufficient to decouple the face interiors. The price to pay is therefore a severe surface shift
in the face interior, as in Fig. 3.26 (4c). To reduce this effect, four edges would have to be used around the face borders,
for instance a bevel (two edges) plus one offset edge on each side. This would decouple the interiors of the faces on both
sides. But when the distortion of the tesselation is hidden, for example through assigning the same material everywhere,
very good results are possible with this technique - see for instance with the engine of the airboat in Fig. 3.26 (4d-e).

This approach leads to serious problems, however, when the corner angle is more than 180 degrees, such as the 270
degrees in Fig. 3.26 (5a,b,c). The very small (green and cyan) triangles in the corner, where the offset edges cross, are
extremely stretched. The reason is that the valence 6 vertex, at the point where the offset edges actually cross, is very
much dragged – but its position is plausible to be the centroid of its neighbours, which are relatively far away. This and
the next two images, (5d) and (5e), make it very clear that an artist, when modeling with subdivision surfaces, should take
great care about relative sizes of neighbouring control mesh faces.

The Viewpoint Trumpet model. The trumpet model represents a musical instrument that is one of the greatest fields
where subdivision can be applied: A trumpet has, by its nature, a tubular shape. In this case it is even a completely regular
quad extrusion, which is the parade discipline of Catmull/Clark surfaces, the regular B-spline control grid. This explains
for example why the surface from the mouth piece is so beautiful and high-quality (Figs. 3.26 (6b,6c)).

The limitations of a purely tube-based approach are the connection of crossing tubes. This problem was ignored here,
and the tubes are allowed to penetrate each other. Another problem that was not visible at first becomes apparent with
subdivision: The valves are actually composed of three unconnected shells. Subdivision of course requires neighbourhood
information, and a properly connected base mesh, to create a connected surface – which adds to the list of mesh integrity
properties required for subdivision.
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3.3 Options for Adaptive Tesselation and Display of Subdivision Surfaces

The great problem with the recursive refinement of subdivision surfaces is that the number of surface primitives grows
exponentially with the levels of refinement. The constant factor is 4 for both the Catmull/Clark and Loop schemes: One
base face first leads to 4, then to 16, to 64, and finally to 256 faces on the fourth refinement level. This makes for 1536
little quads from an object as simple as a cube! Computer memory becomes more affordable every day, so the size of these
data is less of an issue – but is it actually reasonable to display such high levels of refinement? A simple consideration
gives an answer:

• A typical computer display has a resolution between 1024×768 and 1600×1200, so roughly 1-2 million pixels.
• About half of the faces of a simple 3D object are visible if there is not too much self-occlusion.
• Each (quad) face corresponds to 256 quads on the fourth refinement level.
• Consequently, a four times refined object with just 2 ·2,000,000/256 = 15625 base mesh quads

will on average (!) display more quad faces than there are pixels on the screen.

For the purposes of interactive display, it is clearly an overkill to display one quad for each pixel – except at the object
silhouette, or in regions with great color changes (e.g., highlights), simple Gouraud shading can do the job much cheaper
without loss of quality. For other applications though, such as producing a physical realization of a virtual 3D shape
(“physical mockup”, “rapid prototyping”), a very accurate tesselation is vital. In these cases a uniform tesselation may be
inevitable.

3.3.1 Recursive Subdivision with a Hierarchical Data Structure

The above argument lead our group to search for output sensitive tesselation methods. The objective of computer graphics
is image synthesis. Within this domain, the parade field of output sensitivity is raytracing: Not are the objects rasterized,
instead each pixel actively looks for the relevant objects in the scene that contribute to its color value. This avoids the
problem of having to know a priori the pixel coverage of each object displayed, and the annoying fact that also invisible
objects need to be rasterized, if not lit, as is the case when using graphics hardware. Heavy overdraw is a problem for the
rasterization hardware, but not for raytracing. With a hierarchical spatial data structure the closest object along the ray can
in principle always be found in logarithmic time, with respect to the number of objects in the scene. Hardware-supported
rendering in principle proceeds by simply rendering all objects, so it has a linear complexity unless sophisticated culling
is used. – Algorithms to compute the intersection of a ray with a subdivision surface all proceed basically like this:

• Assuming a ray from the eye intersects the bounding box of a subdivision surface,
• determine the base faces whose patches are most likely hit, and
• recursively subdivide them,
• until the (projected) bounding volume has about the size of the pixel,

which counts as an intersection between ray and subdivision surface.

What is needed for any such intersection algorithm to work is a method for local refinement, as opposed to the aforemen-
tioned uniform, global, refinement. Consider again how the refinement proceeds:

• to compute a face point requires all vertices of the face
• to compute an edge point requires (a) the two vertices of the edge, and (b) the the two adjacent face points
• to compute a vertex point requires (a) all face points of the incident faces, and (b) all neighbour vertices.

Data structures for refinement to arbitrary depth. After the first subdivision all faces are quads, which is convenient
for designing a data structure. So given the first subdivision, how should the subdivision surfaces be organized to support
local refinement? The canonical way to represent a face is by an object with four references to the corner vertices, and
another four references to child nodes. They represent the (potential) sub-quads, so the children are of the same data type
as the face, yet the references are initially set to nil.

A critical issue is where to store the connectivity of the subdivision. Of course one might provide each face on any
level with four references to its neighbour faces. But the space overhead is considerable, as the four children of a face are
always arranged in the same way. So instead of providing each face with explicit neighbour pointers it is better to make
use of the hierarchic structure of subdivision. A face simply asks its parent face where to find the respective neighbour.
Two of the four neighbours are always siblings, so there is a 50% chance that the neighbour request can be answered by
the direct parent. To find also the other two, the neighbour request is propagated up the hierarchy, and the result of the
request back down. The upwards-propagation might eventually lead to a face from the first subdivision. But the parent of
such a face is a base face. The base face must provide explicit neighbourhood information, otherwise it would not have
been possible to compute the first subdivision. This approach trades space for time: Four neighbour references are saved,
but in some cases it might be necessary to traverse all refinement levels up and down to answer a neighbour request.
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Figure 3.27: Complete vs. incomplete recursive refinement. Columns (a,c,e) show complete and (b,d,f), for
comparison, incomplete refinement. Columns (a,b) show in rows 1,2,3 the refinement requests LL,LL,LL, which
stands for ’lower left’. Columns (c,d) show the refinements LL,LL,UR in rows 1,2,3. And columns (d,e) finally
compare the three basic cases LL,LL in (1e-f), LL,LR, which is symmetric to LL,UL, in (2e-f), and LL,UR in (3e-f).

A neighbour request can also lead to recursive subdivision when the requested neighbour, or even some of its parents,
are not computed yet. Subdivision is triggered according to a simple rule that can be formulated in either of two ways,
upwards or downwards the hierarchy:

• A face can only be subdivided if its full 1-neighbourhood exists.
• For each face the full 1-neighbourhood of its parent face exists.

As an example consider the initial state where only the first subdivision exists and all child references are nil. Each face f 1

from the first subdivision can be refined, as all faces incident to any of its four vertices v1
1,v

1
2,v

1
3,v

1
4 exist. Let f 2

1 , f 2
2 , f 2

3 , f 2
4

be the four children of f 1 on level 2, numbered in the same order as the vertices. Then to subdivide its child f 1
2 , for

instance, further it is necessary to compute all faces incident to v1
2. So far only one of them exists, f1. – So this is an

example of how a refinement request triggers subdivision on a higher, i.e., a parent level.

Complete and incomplete recursive refinement. There are basically two ways to organize the selective refinement
process: In response to a refinement query either all children can be generated or only the requested one. The latter
strategy, incomplete refinement, has higher administrative costs, but it can considerably save computations. Both strategies
are compared in columns (a,b) in Fig. 3.27. A sub-face consists of one face point, two edge points, and one vertex point.
To compute the vertex point, all face points must exist of the faces around the same vertex on one level higher, as in
Fig. 3.27 (1b). This dagram shows the basic pattern for incomplete refinement, where three face points are requested in
addition to the four points of the sub-face (in the regular case). Incomplete refinement performs better, e.g., with (3a) vs.
(3b), but a child request can also lead to cascading computations on higher levels: In (3d) not much is saved compared
to (3c). The reason is shown in (3f): The (LL,UR) request leads to computing the face points of all faces incident to the
center face! The direct comparison reveals that that complete refinement scheme in columns (a),(c),(e) is more stable.
Back-propagation always ends at one level higher, so it trades traversal costs against point computation costs. Which
scheme to choose may be machine specific, because whether traversal is faster or the computations may depend on the
actual hardware architecture.

A hierarchical data structure is not so good for interactive rendering. The author’s first attempts to realize non-
uniform recursive refinement, and actually the first interactive demos on subdivision surfaces in our group, were based
on the ‘incomplete refinement’ strategy. The resulting data structure was called the SMesh, S for subdivision, and demos
based on it have been shown with some success for a while. But it turned out that this is not the optimal approach for
interactive display, mainly because of three reasons:
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• An adaptive tesselation without cracks requires nasty additional administrative overhead,
• Each single quad is rendered an as individual, which is inefficient
• When the base mesh is changed it is not easy to find and update all affected entities.

To avoid cracks all faces need to be projected to the limit surface. But the limit position of a vertex v depends on all
vertices from all faces incident to v, which is an awfully complete neighbourhood! Furthermore the completion of the
neighbourhood triggers new vertex requests, and these can lead again to (cascading) subdivision. Consider for example
an edge point of the LL center quad in Fig. 3.27 (1b). Only 5 of the 3×3 points needed for computing the limit positions
are present, three edge and one vertex point are missing; the latter in turn requires two new face points, and so on – and
quickly the attractive sparseness is abandoned. Not to mention the fact that for each vertex, both the subdivided position
and its limit projection need to be stored, as further refinement is always possible – which doubles the data size.

A hierarchical data structure is very good for accurate rendering. While these issues have prevented the use of
SMeshes, e.g., for interactive 3D modeling, they are not grave when using them for a different purpose: Raytracing,
where the refinement resolution is driven by the pixel error. The SMeshes have inspired Thorsten Techmann from our
group, who extended the basic principle considerably in his diploma thesis to cover both Catmull/Clark and Loop surfaces
with basically the same refinement mechanism. Kerstin Müller and he later took adaptive refinement to great success with
their ShaOLin (“Shadow Of the Line”) algorithm [MTF03]: Among other techniques they also introduced a refinement
cache. It keeps all the tiny refined faces for a while, i.e., during the computation of a few rows of the image. This is very
effective with raytracing since pixel coherence leads to many similar evaluations in more or less the same surface regions.

3.3.2 Direct Evaluation: Parametric Surfaces and Basis Functions

The recursive approach can hardly keep up when the control mesh is interactively changed, due to its considerable ad-
ministrative overhead: In each frame, to just re-compute a two times subdivided face, 4+ 4 · 4 = 20 little faces must be
deleted, allocated, 5 ·5 = 25 vertices are allocated, computed, projected, and references to them are put into the 20 faces
by recursive traversal. Why not simply compute just the 25 limit vertices? And for adaptive tesselations it would even
be more profitable if any vertex that is needed could be evaluated directly – without depending on any caches or other
complicated data structures. There are basically two ways to directly obtain a specific vertex: Parametric evaluation, and
the extraction of weights from basis functions.

Parametric subdivision surfaces. Direct parametric evaluation of subdivision surfaces was presented by Jos Stam for
triangle- and quad-based subdivision, in both cases following the same principle [Sta99, Sta98]. It starts not at the first but
at the second subdivision, which also induces a partition of the subdivision surface into quadrangular free-form patches.
Each of these patches has a canonical [0,1]× [0,1] parametrization, and furthermore every patch has at most one irregular
vertex (cf. Figs. 3.10 and 3.17). W.l.o.g. it is at parameter value (0,0). As a consequence, 3 from 4 of its sub-patches
(now on level 3) have a regular 4× 4 local control mesh; and any point on the surface with parametric coordinates
(x,y) ∈ ([0,1]× [0,1] \ [0, 1

2 ]× [0, 1
2 ]) can be directly obtained by just evaluating the respective bi-cubic tensor product

B-spline surface! In order to obtain points on the remaining quarter [0, 1
2 ]2 of the patch, it is recursively split, and the

same approach is applied again – then leaving only [0, 1
4 ]2 as problematic region on the 4th level. For any parameter value

(x,y) ∈ [0,1]2 except (0,0), this recursion will come to an end. The irregular point in (0,0) is of course obtained directly,
using the limit position rules from sec. 3.1.5.

This is a very elegant approach, and the canonical method to practically obtain points on the subdivision surface whose
parametric coordinates are not inverse powers of two, i.e., that are not of the form (2−m,2−n), m,n≥ 0. This is important
for algorithms that do not deal with a given (regular) sampling of the surface, but need to actively sample the surface at
general parameter values. To summmarize, this method is very flexible, but not especially efficient: To evaluate a point
on a B-Spline surface requires five curve evaluations (see sec. 3.1.3 and Fig. 3.13).

Evaluation of basis functions. Most surprisingly, any kind of recursive evaluation can actually be skipped! – But only
when the parametric coordinates of the points that will be requested are known beforehand. To perform one subdivision
step means to compute new points as convex combinations of existing points. The new points are in turn the CVs of the
next level. So it is easily possible to track and accumulate the weights, for each point on any given level k, all the way
from the base CVs to any level k. This idea applies also to the limit rules, so that each vertex of the tesselation can be
directly obtained from the base vertices. These weights are therefore called the direct weights of a tesselation vertex.

This is shown for the regular setting in Fig. 3.28. The direct weights can also be directly obtained, by regarding the
patch as a mapping R

2→ R, more specifically [0,1]× [0,1]→ [0,1]. Given a point on the limit surface with parametric
coordinates (x,y) the influence of a particular CV on this point can be measured simply as the height of the point above
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Figure 3.28: Basis functions of a regular patch. Each basis function corresponds to setting the z-value of one
CV to 1 while all other CVs are at height 0. For a specific point on the limit surface with parameter values
(x,y)∈ [0,1]× [0,1] the vertical displacement then measures the influence the respective CV has on this point. The
sixteen direct weights of a limit point with respect to all CVs sum to one, at least in theory.
Points from the k-th subdivision level have parametric coordinates of the form (i/2k, j/2k), with i, j = 0, . . . ,2k.
For these points, the direct weights equal the accumulated weights of the subdivision rules across all levels.
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CC_grid_refine := proc(N, A, k)
localM, B, i, j, ii, jj;

M := 2×N−3;
B := array(1..M, 1..M) ;
for i toN−1do

for j toN−1do B2×i−1,2× j−1 := face(Ai, j, Ai, j+1, Ai+1, j, Ai+1, j+1)od
od;
for i toN−2do for j toN−2doB2×i,2× j := vertex(4, Ai+1, j+1,

[Ai, j+1, Ai+2, j+1, Ai+1, j, Ai+1, j+2],
[B2×i−1,2× j−1, B2×i+1,2× j−1, B2×i−1,2× j+1, B2×i+1,2× j+1])

od
od;
for i toN−1do for j toN−2do

B2×i−1,2× j := edge(Ai, j+1, Ai+1, j+1, B2×i−1,2× j−1, B2×i−1,2× j+1) ;
B2× j,2×i−1 := edge(Aj+1, i, Aj+1, i+1, B2× j−1,2×i−1, B2× j+1,2×i−1)

od
od;
RETURN(B)

end

CC_grid := proc(k::integer)
localB, n, v, vv, i, j, l, BK;

n := 4;
B := array(1..4, 1..4,

[[v11, v12, v13, v14], [v21, v22, v23, v24], [v31, v32, v33, v34], [v41, v42, v43, v44]]);
for i tokdoB := CC_grid_refine(n, B, k) ; n := 2×n−3od ;
RETURN([n, evalm(B)])

end

p4,4 := CC_grid(3)[2][4,4];

p4,4 :=
1225

262144
v11 +

11025
262144

v12 +
5635

262144
v13 +

35
262144

v14

+
11025
262144

v21 +
99225
262144

v22 +
50715
262144

v23 +
315

262144
v24

+
5635

262144
v31 +

50715
262144

v32 +
25921
262144

v33 +
161

262144
v34

+
35

262144
v41 +

315
262144

v42 +
161

262144
v43 +

1
262144

v44

Figure 3.29: Maple code to derive direct weights symbolically. The function call CC_grid(3)[2] yields an 11×11 matrix
that is produced from a 4×4 base mesh after three refinement steps. The example shows the weights for direct subdivision
of point p4,4 from the 3rd refinement level, which corresponds to parameter values ( 1

4 , 1
4 ) on the patch. This point still

needs to be projected to the limit surface to eventually yield the direct position weights. – Note that this procedure works
only for the regular case, but with a slight modification it can be generalized to arbitrary valences: Simply assume that
on every subdivision level, the points in the top left and bottom right corners have been computed elsewhere. On the 3rd
refinement level, the points in these potentially irregular corners are p1,1, p1,2, p2,1, p2,2 and p10,10, p10,11, p11,10, p11,11. If
they are treated as symbolic constants, the symbolic algrebra approach works as before and produces valence-independent
direct weights. This idea is further elaborated in the section 3.4 on vertex and face rings.
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the ground: Set only the height of this CV to one, and all other CVs to zero. – When the direct weights with respect to
all CVs are known, the limit point at (x,y) of any patch can be directly obtained by a weighted sum over the patch CVs.
To practically determine the direct weights a software package for symbolic algebra, Maple [Map], was used. With a few
lines of code Maple computes the weights for any desired refinement level (see Fig. 3.29).

This is an extremely attractive way of evaluating a subdivision surface, because it perfectly realizes the idea of tesse-
lation on demand for adaptive real-time display: Given a coarsely approximated patch that needs to be displayed at higher
resolution, e.g., because the observer comes closer, just compute some more points refine the tesselation. No administra-
tive overhead is involved, and also changes in the control mesh can easily be handled: Just recompute a few points on the
affected patches for a coarse resolution and successively refine in the following frames. This spreads the tesselation cost
over time, and maintains instant feedback during the actual modeling. So this approach has been pursued next, and for
interactive applications it worked much better than the SMeshes.

Drawbacks of the evaluation with direct weights. Our experiences identified three remaining issues with this method:

• Fixed maximum resolution and maximum vertex valence. When starting from the first subdivision, two from
four points of each quad may be irregular. As the subdivision rules are valence-dependent, there is basically one set
of direct weights for each valence. This makes for an m×m table of valence combinations, each with its own set of
direct weights for each tesselation vertex. Most annyoing, the maximum valence m is pre-determined when setting
up the table. Yet this problem is solvable (see below).

The maximum resolution of the tesselation is pre-determined as well, by the choice of a set of parametric coordinates
for which direct weights are derived. This is typically a maximum subdivision level k with points (i/2k, j/2k) where
i and j vary from 0 to 2k.

• High operation counts. Most points of the tesselation depend on all base vertices in the 1-neighbourhood of the
face! For the regular case, this means that each point in the tesselation is a convex combination of 16 base vertices.
To approximate a patch by 8× 8 quads, 9× 9 vertices must be computed. This makes for 81 · 3 · 16 = 3888 float
multiplications for the weights and 81 · 3 · 15 = 3645 additions – for one patch! This can be reduced a bit if zero
weights are not multiplied, which occur only at the patch border, though.

Surprisingly, to obtain the surface normals, in fact twice as much work must be invested as for the positions! The
reason is that the surface normal is the cross product of the limit tangent vectors – and each tangent vector is also a
weighted sum of the base CVs. The only difference is that the tangent weights sum to zero instead one. In total, this
makes for more than 11.000 floating point multiplications and about as many additions to produce the 81 points
and 81 normals!

• Precision problems. Unfortunately the accumulated weights do not sum exactly to one any more. A second effect
is that when summing up sixteen float numbers, up to four bits are lost in float precision – but not always the same
bits! Which bits are lost depends on the order in which the sixteen values are added. This leads to pixel errors on
the patch borders: The border vertices from two patches do not coincide, even though the identical CVs and weights
are used for both, only because the computations were performed in different orders.

In an attempt to tackle the problem of high operation counts, another feature from Maple [Map] was used: It can generate
optimized C-source code for a given symbolic expression. The optimizer tries to reduce the operation count by identifying
common sub-expressions, so that intermediate results are stored in temporary variables if they are used more than once.
For the cited case of a 9× 9 tesselation with 81 points, Maple has identified 244 common subexpressions for the full
computation of limit points and normals – which gave some saving, but no fundamental improvement. Due to the reported
problems, we never chose to actually publish our experiences and results with direct weights.

One paper though pursued the direct weights approach with success: Bolz and Schröder [BS02b] managed to solve
the efficiency problems by a clever use of the streaming extensions of Intel CPUs, today available from AMD as well. The
SSE hardware permits to execute four floating point operations at the same time [Int99a]. When the memory layout of the
input data is arranged a suitable way (Array of Structs/Struct of Array issue, also called AoS/SoA issue), it is possible to
keep the SSE unit on the processor all the time busy. This gives a performance boost over our (in this respect) admittedly
simplistic implementation that uses only the standard math libray. Bolz and Schröder reported that 302 base quads could
be tesselated to level four, resulting in 302 ·256 = 77312 quads, in only 14 ms on a Pentium 4 with 1700 MHz. They also
solved the precision problems, simply by copying border vertices from a patch to its neighbour patch to make sure that
both use exactly the same data.

There exists an elegant way to also circumvent the first problem, the valence dependency of the direct weights, so that
just one set of direct weights is sufficient. This technique, the vertex and face rings, is presented in the next section, along
with a computation scheme that is optimized very much with respect to operation counts.
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3.4 Adaptive Tesselation on-the-fly of
Catmull/Clark surfaces with Crease Edges

After the first subdivision of the base mesh all faces are regular quads. Irregularity can only come from the vertices: Each
quad face has one point that is a vertex point and another point that is a face point, and both of them are possibly irregular.
The other two points are edge points, which are always regular, i.e., they have valence four. The core idea for speeding
up the patch tesselation is to divide the computation in two parts: The potential irregularity is captured by vertex and
face rings that are refined separately first. These rings are subsequently fed into the computation of the actual tesselation,
which is then completely regular, and can therefore be optimized a lot.

This section presents an optimized version of the approach from the journal paper with the same title [Hav02b].

3.4.1 Vertex and Face Rings

Let v ∈ V be a base vertex that belongs to a smooth base face f ∈ F with degree n from the unrefined control mesh
(V,E,F) with vertices V , edges E, and faces F . In terms of notation, the entities of the mesh are considered just elements
of these sets. There is a distinction between a vertex v, which is a node of a graph, and its 3D position, which is referred
to as v0. This notation is convenient for subdivision, where the base mesh is referred to as 0-th subdivision level. So in
the following, superscripts refer to the 3D points attached to the respective entities (see also the mesh definition 2.30).

The face point f 1 = facepoint( f ) is the centroid, i.e., the average of the vertices v0
0, . . . ,v

0
n−1 of f . The vertices are

ordered in counterclockwise orientation, but the sequence has no canonical start point; so in fact any vertex of f can do
as v0. The first subdivision introduces edge points e1

0, . . . ,e
1
n−1 on every edge ei. An edge point e1

i = edgepoint(ei) is the
average of four points: f 1, the face point of the adjacent face, and the endpoints v0

i ,v
0
i+1 of the edge. Please recall that the

vertex sequence is cyclic, so vertex indices are always modulo n and, accordingly, edge en−1 goes from vn−1 to v0.

Definition 3.4 (Face Ring) A face ring is defined by the face point f 1 together with the sequence (e1
0,v

1
1, . . . ,v

1
n−1,e

1
n−1,v

1
0)

of alternating edge and vertex points from the first subdivision. Face rings, like vertex rings, always start with an edge
point. Consequently, the vertex point v1

0 is the last point of the face ring.

Given a face ring, the limit position and normal of the face point f 1 can readily be computed (section 3.1.5 with
limit stencil in Fig. 3.11 (a)). Consequently, all points f 2, f 3, . . . on any higher subdivision level can also be computed,
now using the vertex rule: The face ring defines the first level quads around f 1. The same ring on the next level is the
alternating sequence of the face centroids and edge points from the present ring. Together with applying the vertex rule to
f 1 then the refined face ring on the next subdivision level is obtained. See Fig. 3.30 for an example of face rings, as well
as vertex rings, which are explained next.

Unlike with face rings, where all edges incident to the face point f 1 are smooth, some edges of a vertex v1 may actually
be sharp. The polygon ring around the vertex is therefore ordered according to the vertex classification. In any case in the
following definition the polygon is arranged so that it always starts with a sharp edge, in case there is one. If there are
more than one, as for crease and corner vertices, then also more than one vertex ring may be attached to v.

Definition 3.5 (Vertex Ring) The vertex ring of a vertex v with valence m is made of the first level vertex point v1 and the
polygon (e1

0, f 1
0 , . . . ,e1

m−1, f 1
m−1) of alternating edge and face points around v. The vertex ring is again organized as an

array of 3D points, but this time in clockwise direction. A vertex with sharp edges may have more than one vertex ring,
according to the vertex classification and the following rules.

• If v has 0 sharp edges it is a smooth vertex, and the vertex ring is closed (see Fig. 3.11).
The vertex ring array starts with an arbitrary edge point, and it ends with a face point.
• If v has 1 sharp edges it is a dart vertex, and its vertex ring is closed as well.

Its vertex ring array starts with the edge point of the single sharp edge incident to v.
• If v has 2 sharp edges it is a crease vertex, and it has two vertex rings. Both corresponding arrays contain an odd

number of points. Each ring starts at one sharp edge, and the last point is the edge point of the other sharp edge
• If v has ≥ 3 sharp edges it is a corner, and it may have an arbitrary number of vertex rings: There is one

vertex ring for each sequence of consecutive smooth edges, and each ring starts, and ends, with a sharp edge.

A vertex or face ring represents a possibly irregular vertex with its 1-neighbourhood. Such a ring of quads contains enough
information to be refined: The face points become the indirect neighbours on the next level, the edge points become the
direct neighbours, and the next level vertex point can be computed as well. Note that a vertex has one surface normal with
respect to each attached vertex ring. A vertex ring also equals a wedge from the corner vertex rule (see 3.1.6).
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Figure 3.30: Vertex and Face Rings. Upper two rows: Schematic and perspective views of vertex and face rings.
Left column: The control mesh with a pentagonal center face, partitioned into 5 quads by the first subdivision.
Each quad corresponds to a patch, one of them is marked in yellow. Columns 2,3: Each face has a face ring made
of the points from the first subdivision: The face point, and the sequence of edge- and vertex points. The face point
valence equals the face degree. Column 3: Each ring is recursively subdivided, yielding the refined rings on levels
2,3, and 4. Column 4: Vertex rings around the vertices of the center face, with points from the first subdivision.
Column 5: Each vertex ring is also refined, yielding the direct neighbourhoods of the (potentially) irregular vertices
on levels 2,3, and 4.

Figure 3.31: Recursive subdivision of a patch, and points fed in from vertex- and face rings, explained in 3.4.2.
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(a) (b) (c) (d)

Figure 3.32: Pattern of projected points per level. Squares in the top row stand for points of the subdivision, the
bottom row shows fixed 9×9 grid of tesselation data, initially containing garbage (white). (a) The first subdivision
determines only the corners of the patch tesselation. (b) Only 5 points from the 2nd level need to be projected
(grey) to obtain a 3× 3 tesselation. (c), (d) develops the projection pattern: Only three points from each 2× 2
block of refined points need to be projected, one already is.

3.4.2 Optimized Recursive Subdivision

The tesselation of each patch is stored in two arrays of 3D points with fixed size (2k +1)×(2k +1), one for vertex positions
and one for surface normals. The size of these arrays is determined by an arbitrary but fixed maximum subdivision level
k = kmax. In the following considerations, kmax = 4 is assumed. This facilitates the presentation of the technical details,
but the approach applies analogously to other values of kmax. It is equally possible, and even perfectly reasonable, to
have several instances of the technique, each with different values of kmax, in the same application. To set kmax = 4
is a good choice, however, as further explained in sec. 3.4.5 below. This makes for arrays of size 9 · 9 = 81, totaling
2 · 81 · 3 · 4 = 1944 bytes per patch to store the positions and normals when three single precision 32 bit IEEE floating
point numbers are consumed by each 3D point and normal vector.

Feeding in vertex and face rings. The vertex and face rings from the previous section help to make the computation of
the actual tesselation highly regular, so that only the regular versions of subdivision rules, limit position rules, and limit
normal rules must be considered. To see why this is so see Fig. 3.31, the key figure for understanding the process. The
top row 1 of Fig. 3.31 shows the tesselation from subdivision level 4, projected to limit surface, in an overview (1a) and
as close-up (1b). The patch in the upper left corner is incident to one face point and one vertex point, both of them are
irregular with valence 5. The vertex and face rings of this patch are shown in (1c) and (1d). Note how the ring points
correspond to the limit points from the tesselation.

Images (2a,3a) in Fig. 3.31 show the local control mesh of the patch on level 1. Without the irregular top left and
bottom right this is a quasi regular 4×4 grid, only with two points missing. All points except the top right and bottom left
points can be read from the vertex- and face rings. These two points, called pTR and pBL, are needed as additional data for
a complete local patch control mesh. The next images (3b-3d) show how the local control mesh is refined, yielding an ever
finer quasi-regular grid. One outer ring of vertices outside the patch border is always necessary for further refinement. As
before, the top left and bottom right points are missing from the grid. But these points are not needed for grid refinement:
On every level, the eight points in the top left and in the bottom right corners of the grid have already been computed from
the vertex and face rings (2b-2d). Only the regular rest of the grid on every level is left to be computed.

Optimized subdivision and limit projection of the quasi-regular grid. Each level of refinement consists of two
passes: First the grid is refined, then some points are projected on the limit surface. The refined grid is used for fur-
ther subdivision on the next level, while the limit points successively fill the fixed-size tesselation.

The tesselation is initialized with four points from the first subdivision level: Two of them are the vertex and face
points, whose limit positions and normals are available from the vertex and face rings. The other two are the (regular)
edge points from the first subdivision, and they can be projected using the regular stencils. These four points and normals
are put into the corners of the tesselation, in array positions 0, 8, 72, and 80, shown in grey in Fig. 3.32 (a). After this
initialization a coarse level 1-approximation of the subdivision surface can already be displayed, with one quad per patch.
The application may determine, however, that some patches deserve higher accuracy, due to some measures like projected
screen size, surface curvature, etc. Then the tesselation is progressively filled on demand with additional limit surface
points, as shown in Fig. 3.32. The two passes for refinement and limit projection are explained in detail next.
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Figure 3.33: Subdivision and limit projection patterns. Left column: Pass 1, subdivision. Coarser levels are
overlaid to finer levels, with corresponding (vertex) points on top of each other. The points fed in from vertex- and
face rings are in the top left and bottom right (magenta and cyan). The 2×2 boxes show the pattern for applying
the subdivision rule from Fig. 3.34. (2a): Level 1→ 2. (3a): Level 2→ 3. (4a): Level 3→ 4.
Right column: Pass 2, limit projection to obtain the pattern in Fig. 3.32. The grids (1b)-(4b) show the subdivision
levels 1-4, exactly corresponding to Fig. 3.31 (2a)-(2d). The 2× 2 boxes show the pattern for applying the limit
projection rule from Fig. 3.35. – The letter ‘A’ is used as digit for number 10 to keep the diagram readable.

First pass: Grid subdivision using the SUBDIVISIONRULE. The right column from Fig. 3.33 shows the local quasi-
regular control grid on levels 1-4, with the patch vertices surrounded by the outer ring of vertices needed for refinement.
On level k the grid size is (2k−1 +3)× (2k−1 +3) and the tesselation has size (2k−1 +1)× (2k−1 +1), see Table 3.3.
Now consider the left column of Fig. 3.33. Diagram (2a) shows how level 2 is com- Level Grid Tesselation

1 4×4 2×2
2 5×5 3×3
3 7×7 5×5
4 11×11 9×9

Table 3.3: Grid sizes per level

puted from level 1. The older level is doubly spaced and laid on top of the new
level. The vertex and face rings blend in, and only eight points in the TR and BL
corners remain to be computed. Diagram 3.33 (4a) goes from level 3 to 4, and it
exhibits prototypically the regularity that can be exploited to optimize the subdivi-
sion. The double-spacing of the old grid induces a tiling into 2× 2 blocks. These
blocks are processed in row-wise order. The first row goes from block (13,14,23,24)
to (19,1A,29,2A), the last row eventually finishes with block (95,96,A5,A6), digit
’A’ meaning ’10’. Half-blocks like (97,A7) are treated specially.

Before the blocks can be processed in this order the grid must be initialized by computing the points 03-0A from the
top. On the beginning of each new row of blocks the left border vertices (30-A0) are initialized first, together with two
temporary variables, a′ and b′. This is further explained in Fig. 3.34, where also the pseudocode of the SUBDIVISIONRULE

function is listed. The block tiling seeks to make maximal use of common sub-expressions, and it introduces temporary
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1

SUBDIVISIONRULE(a,a′,b,b′,
p01, p11, p12, p21, p22,
q13,q22,q23,q31,q32,q33)

1 � Precondition: a′ = p11 + p21

2 � Precondition: b′ = q11 +q31 + p10 + p11

3 a ← p12 + p22

4 q33 ← 1
4 (a+a′)

5 b ← q13 +q33 + p11 + p12

6 q23 ← 1
4b

7 q32 ← 1
4 (q31 +q33 +a′)

8 q22 ← 1
16 (6 p11 +b+b′ + p01 + p21)

9 a′ ← a
10 b′ ← b

(e) 1 1

1 1

(f) 1
1 1

1

(g)

1
1 1

1

(h) 1

1 6 1

1

Figure 3.34: Subdivision rule for a 2×2 block and local point enumeration scheme. Given points p0···2,0···2 from
the previous level (a), the four points q22,q23,q32,q33 from the next level (c) are to be computed, which are a vertex,
edge, edge, and face points (b). Blocks are computed row-wise from top left to bottom right, so points q13 and q31

are already available. The vertex rule (d) has a large stencil, but it can make use of the right and left edge points
(h). Further operations are saved by using temporary variables a′ = p11 + p21 and b′ = q11 +q31 + p10 + p11. This
reduces the operation count to 11/4 vecadd and 5/4 vecmul for creating one point of the refined grid.

variables to reduce the overall absolute cost. This cost is measured as the operation count, which is the number of vecadd
and vecmul operations. Each of them consists of three of their floating-point counterparts.

The four points of a block are computed with 11 vecadd and 5 vecmul operations. This makes subdivision a quite
inexpensive operation: Only 2.75 vecadd and 1.25 vecmul operations are needed to obtain one subdivided point!

Second pass: Progressively filling the Tesselation using the LIMITRULE. When the grid is refined new points can
be added to the tesselation. This proceeds in an up-sampling manner: With kmax = 4 the 9×9 arrays are filled after three
rounds of refinement, as can be seen in 3.32 (2b-2d). This figure shows the relation between the grid, which grows in size,
and the fixed-size tesselation. As only the missing points need to be added on every level, the limit projection pattern
again induces a 2× 2 tiling of the control grid (Fig. 3.32 upper row), and only 3 from 4 points in each block need to be
projected. Note that this tiling is different from the one used in subdivision, the (already projected) vertex point is now in
the lower right of a tile.

The computation is optimized based on the observation that the regular position and tangent stencils use weighted
(1,4,1) sums. This applies to the position stencil as well, which is a (1,4,1) sum of (1,4,1) sums! In order to exploit this
fact, three sets of temporary variables are maintained when processing the tiles in row-wise order (top to bottom, left to
right): The column sums a3 and a4 will be the a0,a1 for the next tile (to the right), and the row sums b3 and b4 will take the
roles of b0,b1 for the respective tile on the next row of tiles (to the bottom). The ty-tangent of point 12 needs additionally
row sums c0 and c1, and c1 will be the c0 on the next tile row. Similarly, the tx-tangent of point 21 needs additionally c2
and c3, and c3 will take the role of c2 when the next tile (to the right) is processed.

When these values are available, the bold lines in procedure LimitRule can be omitted, and the operation count
reduces to 24 vecadd, 12 vecmul, and 3 unitnormal operations for the projection of three points. The unitnormal operation
unitnormal(tx, ty) := normalize(tx× ty) is a cross product followed by vector normalization, to obtain normal vectors of
unit length. So in total, the cost for the limit projection of one single point is 8 vecadd, 4 vecmul, and 1 unitnormal.
And what is the cost of a unitnormal? A cross product is equivalent to 1 vecadd + 2 vecmul, and vector normalization is
a scalar product (equivalently 2/3 vecadd, 2 vecmul), and an inverse square root (or a square root and a division). This
makes unitnormal an expensive operation: 5/3 vecadd, 4 vecmul, and an inverse square root.
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LIMITRULE(a0..3, b0..3, c0..3, p0..3,0..3)
1 a0← p00 +4p10 +p20
2 a1← p01 +4p11 +p21
3 a2← p02 +4 p12 + p22

4 a3← p03 +4 p13 + p23

5 b0← p00 +4p01 +p02
6 b1← p10 +4p11 +p12
7 b2← p20 +4 p21 + p22

8 b3← p30 +4 p31 + p32

9 c0← p01 +4p02 +p03
10 c1← p21 +4 p22 + p23

11 c2← p10 +4p20 +p30
12 c3← p12 +4 p22 + p32

13 v11← 1
36 (a0 +4a1 +a2)

14 v12← 1
36 (a1 +4a2 +a3)

15 v21← 1
36 (b1 +4b2 +b3)

16 n11← normalize((a2−a0)× (b0−b2))
17 n12← normalize((a3−a1)× (c0− c1))
18 n21← normalize((c3− c2)× (b1−b3))

(a)

1 4 1
4 16 4
1 4 1

(b)

-1 1
-4 tx 4
-1 1

(c)

-1 -4 -1
ty

1 4 1
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1 1 1 1
4 4 4 4
1 1 1 1
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↑
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↑
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1 4 1
1 4 1
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←b0

(f)

1 4 1

1 4 1
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c1
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↖

(g)

1 1
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1 1

c2 c3
↖ ↖

Figure 3.35: Limit projection rule for a 2× 2 tile, with the same local enumeration scheme, but different tiling
than before. The bottom left point of each tile was projected on the previous level. To the other 3 points, the
position and tangent stencils must be applied, shown in (a)-(c) for the top left point. – The computation of the
bold variables a0,a1,b0,b1,c0,c2 can be saved using temporary variables, as they overlap with previous calls to
the same function. This reduces the operation count to 8 vecadd, 4 vecmul, and 1 unitnormal per point projection.

Program code and coding techniques. The block-based functions for subdivision and for limit point projection are very
efficient: Only 2.75 vecadd and 1.25 vecmul are needed to obtain a point of the regular control mesh on the next refinement
level, and only 8 vecadd, 4 vecmul, and 1 unitnormal to obtain a point of the tesselation. But optimization has always two
aspects: Optimizing the algorithm is one part, but to optimize also the implementation another. The performance gains
from adapting to a specific hardware architecture can be drastic. For the implementation of subdivision, however, only
generic optimizations were realized that are recommended for any C++ program. – The algorithm is not yet adapted to
any specific hardware architecture, this might be subject to future work.

The subdivision and limit projection were combined for all levels together in one large subdivision function. For a
maximum execution speed it is a straight line program for the most part: Loops are unrolled and conditional branches are
avoided as much as possible. All temporary 3D points are stored in one ‘static’ point array. Nested inline functions help
to minimize function calls and parameter passing over the stack, and they keep the code nevertheless quite concise. A
portion of the actual C++ code is shown in Fig. 3.36. It illustrates the coding of the subdivision pass from level 2 to 3 and
the limit projection pass on level 3, as depicted in Figs. 3.33 (3a,3b), and 3.32 (c), respectively.

The truth is that not only one, but four subdivision functions exist. Every edge of the base mesh can be either smooth or
sharp. Since every patch is incident to two base edges, this makes for four possible combinations. To minimize branching
each combination has its own function. Only the combination (smooth,smooth) was presented here, the other ones are
analogous. They use the B-spline curve subdivision from section 3.1.2 for left or top borders of the patch that are sharp.

A note on reciprocal square roots and SIMD extensions. The reciprocal square root is a remarkable function because
it can be computed much faster directly than a square root followed by a division. The Intel IA-32 processor architecture
for instance provides two instructions, FDIV and FSQRT, which both take 23 clock cycles in single precision and 38
cycles in double precision on a Pentium 4 ([Int99b], Table C-6). For comparison: The single precision FADD and FMUL
instructions take 5 and 7 cycles (latency), and have a throughput of 1 and 2 cycles, due to the pipelined architecture.

The newer SIMD-extension on Intel processors (single instruction, multiple data) however provides a RSQRTPS
instruction ([Int99a], Chapter 3.2) which computes an approximation to the inverse square roots of four single precision
numbers at a time – in only 6 clock cycles! This is about as fast as the SIMD instructions ADDPS and MULPS that add
and multiply four single-precision floats at a time in 4 and 6 cycles. The problem with the RSQRTPS instruction is just
that it delivers only 12 bits of accuracy. To improve this Intel proposes one iteration of the Newton-Raphson method,
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/ / ∗ SUBDIVIDE LEVEL 2 TO GET LEVEL 3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

vecsum (aP , B02 , B12 ) ;
subdivTopRule (aN , aP , B03 , B13 ,C02 ,C03 ,C04 ) ;
subdivTopRule (aP ,aN , B04 , B14 ,C04 ,C05 ,C06 ) ;

vecsum (aP , B12 , B22 ) ;
vecsum1111 ( bP , B11 , B12 ,C02 ,C22 ) ;
subdivRule (aN , aP ,bN , bP , B02 , B12 , B13 , B22 , B23 , C04 ,C13 ,C14 ,C22 ,C23 ,C24 ) ;
subdivRule (aP ,aN , bP ,bN , B03 , B13 , B14 , B23 , B24 , C06 ,C15 ,C16 ,C24 ,C25 ,C26 ) ;

subd ivLef tRu le (B20 , B21 , B30 , B31 , C20 ,C30 ,C40 ) ;
subdivRule (aN , aP ,bN , bP , B11 , B21 , B22 , B31 , B32 , C22 ,C31 ,C32 ,C40 ,C41 ,C42 ) ;
vecassign (aP , aN ) ;
vecassign (bP , bN ) ;
subdivLR1Rule (B12 , B13 , B22 , B23 , B24 , B32 , B33 ,

C24 ,C26 ,C33 ,C34 ,C35 ,C36 ,C42 ,C43 ,C44 ,C46 ) ;

subd ivLef tRu le (B30 , B31 , B40 , B41 , C40 ,C50 ,C60 ) ;
subdivRule (aN , aP ,bN , bP , B21 , B31 , B32 , B41 , B42 , C42 ,C51 ,C52 ,C60 ,C61 ,C62 ) ;
vecassign (aP , aN ) ;
vecassign (bP , bN ) ;
subdivLR2Rule (B22 , B32 , B42 , C53 ,C54 ,C62 ,C63 ,C64 ) ;

/ / ∗ LIMIT POINTS LEVEL 3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

i f ( levelMax <3 ) {
vecsum141 ( bP , C01 ,C11 ,C21 ) ; / / co l 0
l im i tTopRu le ( 2 , bP ,bN , dP0 , eP0 , C01 ,C02 ,C03 ,C11 ,C12 ,C13 ,C21 ,C22 ,C23 ) ;
l im i tTopRu le ( 6 , bN , bP , dP1 , eP1 , C03 ,C04 ,C05 ,C13 ,C14 ,C15 ,C23 ,C24 ,C25 ) ;

l i m i t L e f t R u l e ( 1 8 , C10 ,C11 ,C12 ,C20 ,C21 ,C22 ,C30 ,C31 ,C32 ) ;
l im i tRu l e ( 20 , 22 , 38 , aP , bP ,aN ,bN , dP0 , eP0 , dN0 , eN0 ,

C12 ,C13 ,C14 ,C21 ,C23 ,C24 ,C31 ,C32 ,C33 ,C34 ,C41 ,C42 ,C43 ) ;
l im i tRu l e ( 24 , 26 , 42 , aN ,bN , aP , bP , dP1 , eP1 , dN1 , eN1 ,

C14 ,C15 ,C16 ,C23 ,C25 ,C26 ,C33 ,C34 ,C35 ,C36 ,C43 ,C44 ,C45 ) ;

l i m i t L e f t R u l e ( 5 4 , C30 ,C31 ,C32 ,C40 ,C41 ,C42 ,C50 ,C51 ,C52 ) ;
l im i tRu l e ( 56 , 58 , 74 , aP , bP ,aN ,bN , dN0 , eN0 , dP0 , eP0 ,

C32 ,C33 ,C34 ,C41 ,C43 ,C44 ,C51 ,C52 ,C53 ,C54 ,C61 ,C62 ,C63 ) ;
l im i tRu l e ( 60 , 62 , 78 , aN ,bN , aP , bP , dN1 , eN1 , dP1 , eP1 ,

C34 ,C35 ,C36 ,C43 ,C45 ,C46 ,C53 ,C54 ,C55 ,C56 ,C63 ,C64 ,C65 ) ;
i f ( l e v e l ==3 ) { return ; } / / i n case only l e v e l 3 was requested

}

Figure 3.36: Part of the patch tesselation function.

This excerpt of C++ code shows how subdivision level 3 is obtained from level 2. It demonstrates in particular the
usage of the subdivision and limit rules for the individual blocks. Control points are indexed in a matrix fashion,
with letters A, B, C, D for subdivision levels 1, 2, 3, and 4. The first part of the code performs the subdivision, the
second part the limit point computation. They correspond directly to Fig. 3.33 (3a,3b). The limit code is executed
conditionally, only if the points from level 3 are not yet in the tesselation. In case only level 3 was requested the
function returns after the projection step.

Subdivision and projection are performed alternately, with only one or two if-statements per level. In case level
3 has already been projected before, and now level 4 is requested for refinement, the projection part is skipped
and the computation proceeds with level 4 subdivision and projection. There is no caching of the (unprojected)
subdivided vertices from previous calls: The memory overhead would be high (right column in Fig. 3.33), and the
performance gain only minimal since subdivision only is not costly at all. Limit projection requires three times
more operations than subdivision.
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Figure 3.37: Adaptive refinement towards the patch borders. Cracks in the tesselation are avoided when low-
resolution patches refine towards their higher resolution neighbors. The patch orientation is such that the vertex
and face points in the TL and BR corners, so the patch meets its two neighbour along the left and top borders. The
basic depth levels 1, 2, 3 and 4 are shown in the lower right, the refinements to its left and to the top. The level 1
(left) has the most possibilities for refinement. It can even be next to a level 4 patch.

which essentially doubles the number of significant bits in each iteration. Intel argues that it can be implemented very
efficiently so that it takes less than another 6 cycles. In total, Intel claims, this gives a performance gain by a factor
of 35, compared to executing four times FDIV and FSQRT ([Int98], Appendix A, “Newton-Raphson Method with the
Reciprocal Instructions”).

In general, the performance gain from using SIMD can be a factor of 4, as four single precision or integer operands can
be processed at a time. Optimal performance however, e.g., with Intel’s SSE2, can only be achieved with an appropriate
data layout. This concerns the AoS vs. SoA issue: It makes a difference whether using an array of structs or a struct of
arrays. In order to calculate four dot products a · b,c · d,e · f ,g · h from eight 3D vectors, the MULPS instruction can
compute for instance the four products of the x-component in one step:

MULPS : (ax,cx,ex,gx) (bx,dx, fx,hx) −→ (axbx, cxdx, ex fx, gxhx)
This requires, however, that the input vectors are arranged this way in memory, otherwise costly re-ordering, or swizzling,
is necessary. Intel therefore proposes to store an array of 3D points in three arrays, one for the x, the y, and the z
components of all vectors (SoA order). This can require substantial data structure re-design, especially with object-
oriented approaches. Another possibility to achieve at least 75 percent of the peak performance, or a improvement of
factor 3, is to use 3D vectors as SIMD operands:

ADDPS : (px, py, pz,−) (qx,qy,qz,−) −→ (px +qx, py +qy, pz +qz,−)
But not only is one component wasted in this case, the drawback is also that for optimal performance, the operands need
to be aligned on 16 byte memory boundaries. A 3D vector of three single-precision floats needs only 12 bytes, so an array
of memory aligned 3D points requires one third more memory. So although the performance gain for subdivision can
be drastic, as e.g. demonstrated by Bolz and Schröder in [BS02b], substantial re-organization may be necessary to make
optimal use of SIMD. The implementation of the presented scheme does not (yet) use SIMD to perform each vecadd and
vecmul with only a single instruction. A speed-up by a factor of 3 could be achieved when using platform-specific code.

The multiplication with a power of two. Yet there is another remarkable low-level optmization, for which unfortu-
nately no machine instructions seem to exist: The multiplication a · 2b of a floating point number a by a power of 2. It
could be replaced simply by adding b to the exponent of a. For single precision 32 bit IEEE floats, this is even just an 8
bit operation, since the exponent is stored in bits 23-30 (bit 30 is the sign of the exponent, bit 31 the sign of the number
itself). This could only be efficiently exploited through a special machine instruction, because a multiplication is only 2
cycles slower than an addition anyways. The a ·2b multiplication, though, could be even faster than the full float addition.
For Catmull/Clark subdivision, this instruction would be quite beneficial: It is quite remarkable that the regular stencils
contain almost exclusively multiplications by constant factors that are powers of 2 (see Figs. 3.34 and 3.35).

This fact is also one of the reasons for the striking computational stability of repeated recursive subdivision: Mul-
tiplications by a power of 2 can be computed exactly in the binary system. Another reason for its excellent numerical
condition is the fact that the whole method is based on a system of repeated convex combinations. No subtractions are
involved (except for the normals), and the numbers added are in the same orders of magnitude.
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g lEnab leC l ien tS ta te (GL_VERTEX_ARRAY) ;
g lEnab leC l ien tS ta te (GL_NORMAL_ARRAY) ;
g lVe r texPo in te r ( 3 , GL_FLOAT, 0 , patch→po in t s ) ;
g lNormalPoin ter ( GL_FLOAT, 0 , patch→normals ) ;
glDrawElements (GL_TRIANGLE_STRIP , t r i l e n g t h [ d ] [ dLe f t ] [ dTop ] ,

GL_UNSIGNED_SHORT , t r i s t r i p [ d ] [ dLe f t ] [ dTop ] ) ;
glDrawElements (GL_QUAD_STRIP , quadlength [ d ] [ dLe f t ] [ dTop ] ,

GL_UNSIGNED_SHORT , quads t r i p [ d ] [ dLe f t ] [ dTop ] ) ;

0 2 4 6 8

18

36 40 44

54

72 76 80

Figure 3.38: OpenGL calls to render a patch at a given resolution (d,dleft,dtop). The glDrawElements routine
expects a primitive type, number of primitives, index data type, and a pointer to an array of indices. The indices in
this array are relative to the vertex/normal pointers specified just before. The diagram shows the vertices used for
resolution (2,3,3): The indices of the triangle strip and the quad are pre-computed.
To further reduce the function call overhead, it is also possible to merge the quad strip into the triangle strip, when
each quad is split into two triangles.

3.4.3 Adaptive Realtime Display

In order to eventually display a subdivision surface using graphics hardware, display primitives must be generated: On the
lowest level everything boils down to triangles. To achieve output sensitivity, the tesselation must be adaptive. Adaptive
display is complicated by the fact that when adjacent patches with different refinement depths are rendered using a regular
tesselation, annoying cracks appear along their common border. A suitable tesselation scheme therefore has to take
neighbour resolutions into account. So the rendering stage is organized in the following way:

• First, all base faces are assigned a refinement level d, also called the face depth,
which is an integer ranging from -1 (not visible/backfacing, skip) to 4 (highest resolution).
• A degree n-face is partitioned into n patches, and every patch has common borders

with two patches from neighbouring faces.
• When two patches differ in depth, the patch with the lower resolution

refines towards the common border, to match the higher depth there.
• Assuming a patch orientation with the face point in the bottom right and the vertex point in the top left,

the patch needs to be refined at most towards the left border or the top border.
• A suitable tesselation is thus chosen for each patch based on an integer triplet (d,dleft,dtop).

A face depth of 0 is a special case: If all faces have depth 0, the subdivision surface is identical to the base face, except
that all vertices are projected to their limit position. The partition into quadrangular patches, and thus the the computed
tesselation, is only used with depth 1 or higher. So in principle, 4 ·4 ·4 = 64 combinations are possible for the (d,dleft,dtop)
triplet. But all combinations where the face depth is equal or higher than the neighbour depth can be discarded as well: In
this case it is the neighbour that has to refine. So for d = 3, only the cases where (dleft,dtop) ∈ {(3,3),(3,4),(4,3),(4,4)}
need to be considered. In summary only 4 ·4+3 ·3+2 ·2+1 ·1 = 30 combinations are possible. They are shown in Fig.
3.37. All the triangle and quadrangle configurations are computed once in advance. Features are the following:

• Any difference in depth can be accomodated: A depth 1-face can be next to a depth 4-face.
• The arrays of such a depth 1-face must neverteless be computed to depth 4, since it must refine to the border.
• Only high depth differences lead to long, thin triangles.

The original paper [Hav02b] has proposed a strategy for refinement towards the boundary where only the actually missing
vertices are computed, rather than a complete level. In practice, however, it has proven very probable that a depth 1 face
that is next to a depth 4 face is going to be shown in higher resolution itself at most a few frames later. To restrict the
computation to whole levels also reduces the administrative costs.

To render a patch adaptively is extremely simple and effective using vertex arrays: As shown in the code example in
Fig. 3.38, the pre-computed tesselation can be rendered with just a few OpenGL calls. OpenGL, as most low-level 3D
APIs, offers the possibility to render indexed geometry. Thus, when the resolution of a face changes, just a different one
from the 30 pre-computed index arrays needs to be selected according to the (d,dleft,dtop) triplet.

This approach regards subdivision surfaces merely as a specific rendering method for a base face: Instead of rendering
the triangulated face the patches are rendered. In contrast to the original idea of recursively subdividing the control mesh,
the base mesh is now left completely untouched. The great advantage is that the resolution can be changed at no cost at
all once the tesselation itself is completely filled! Only this property makes it possible to adjust the resolution of all faces
on a per-face-per-frame basis, which was one of the method’s primary design objectives.
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Figure 3.39: Adaptive display of subdivision surfaces.

3.4.4 Results and Discussion

The main result of the presented new computation scheme is that it reduces the computation cost by more than 40 percent
compared to the previously published scheme [Hav02b]. To subdivide the quasi-regular grid the previous approach applied
the vertex, edge, and face stencils in a straightforward way recursively. It used only a more efficient final rule for the
combined computation of a limit surface point and its normal.

The previous approach was already more efficient than the basis function approach. In terms of operation counts, the
new scheme is – to the best of the author’s knowledge – the most efficient evaluation scheme to-date for Catmull/Clark
surfaces. The performance gain is illustrated in the following table. It sums up the operation count to obtain level 4 from
the first subdivision:

Approach #vecadd #vecmul #unitnormal
Refinement of vertex & face rings, levels 2-4 168 66 -
Grid refinement & limit projection, levels 2-4 876 410 81
Optimized recursive subdivision, levels 2-4 1044 476 81

Previously published recursive subdivision, levels 2-4 2071 638 81

Direct evaluation via basis functions >3500 >3500 81

The third row is the sum of the first two rows with the two phases of subdivison and limit projection. The table shows that
the operation count of subdivision plus projection is comparable to just about three or four times the unitnormal operations
alone! The 81 unitnormals cost 135 vecadd, 324 vecmul, but also 81 inverse square roots (c.f. the note on inverse square
roots in 3.4.2).

The operation costs from the optimized scheme have been counted directly from the code. Besides the subdivision
and limit rules just presented, the numbers include also the overhead from the initialization of the top and left borders and
the temporary variables. The unitnormal operations were counted separately, of course, because they cause the same cost
with all approaches. The cost for setting up the vertex and face rings of level 1 was not counted either.

The cost of the final rule. The computation of the limit position and normal was combined into a single operation, the
final rule, listed in Fig. 3.40. Points are indexed in matrix fashion (as in Fig. 3.35), with p11 in the upper left and center
p22. The final rule uses 16 vecadd, 5 vecmul, and 1 unitnormal. Alternatively, six weighted (1,4,1) sums can be used, and
two vector subtractions for the tangents, which makes for 14 vecadd and 6 vecmul plus 1 unitnormal – useful only if a
multiplication takes less than twice as long as an addition on the given hardware.

The cost of recursive subdivision. The operation counts for the basic Catmull/Clark subdivision rules are summarized
in table 3.41. They are obtained by grouping vectors with the same weights together. To determine the total operation
count for subdivision consider a single regular 4×4 patch. The kth subdivision of this patch contains (2k)2 quadrangles,
which are defined by (2k +1)2 vertices. Including the 1-neighbourhood, a grid of size (2k +3)2 is needed to compute the
next subdivision level. But how often did each of the rules have to be applied to produce these (2k +3)2 points? Consider
the following decomposition of this number:

(2k +3)2 =
(
(2k−1 +1)+(2k−1 +2)

)2 = (2k−1 +1)2 + 2 · (2k−1 +1)(2k−1 +2) + (2k−1 +2)2

Careful inspection of Fig. 3.33 and, e.g., counting the red, green, and blue dots in Figs. 3.10 and 3.17 reveals that these
three summands are just the number of times the different rules are applied in the regular case. They are listed in table
3.42.
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FINALRULE(n, p, p1..3,1..3)
1 a ← p13− p31

2 b ← p11− p33

3 c ← p12 + p23 + p32 + p21

4 d ← p11 + p13 + p31 + p33

5 tx ← a−b+4(p23− p21)
6 ty ← a+b+4(p12− p32)
7 n ← normalize( tx× ty )
8 p ← 1

36 (16 p22 +4c+d )
9 return n, p

Figure 3.40: The final rule. Com-
bined computation of limit position p
and normal n from [Hav02b].

vecadd vecmul unitnormal
vertex rule 8 2
face rule 3 1
edge rule 3 1
final rule 16 5 1

Figure 3.41: Operation counts for regular stencils.

vertex rule: (2k−1 +1)2 times
face rule: (2k−1 +2)2 times
edge rule: 2(2k−1 +1)(2k−1 +2) times
final rule: 2k−1(3 ·2k−1 +2) times

Figure 3.42: Number of times each rule must be ap-
plied to produce level k from level k−1.

k Grid Tessel. face edge vertex final vecadd vecmul unitnormal
0 4×4 2×2 4 64 20 4
1 5×5 3×3 9 12 4 5 239 74 9
2 7×7 5×5 16 24 9 16 687 212 25
3 11×11 9×9 36 60 25 56 2071 638 81
4 19×19 17×17 100 180 81 208 6887 2120 289

Figure 3.43: Number of rule applications on each of several levels of subdivision. The operation counts are
accumulated: To produce a tesselation with 9× 9 points, in total 2071 vecadd, 638 vecmul and 81 unitnormal
operations are performed.

For the number of times the the final rule is applied in table 3.42 the usage of the upsampling scheme from Fig. 3.32
is assumed again. The (2k−1 +1)2 vertices from the previous level are already projected on the limit surface, and only the
additional points need to be projected on every level. The number of remaining applications of the final rule is therefore
(2k + 1)2− (2k−1 + 1)2. Concrete numbers for the resulting application counts for all four rules for the first four levels
are given in table 3.43, along with the respective accumulated numbers of elementary operations. These absolute numbers
show how important it is to optimize the final rule: The final rule is applied asymptotically more often than any other rule.
Already for k = 4 this is the case (bottom line in table 3.42).

It is interesting that the average number of computations needed to produce one point in a tesselation is asymptotically
constant. The higher the level of refinement the higher the cost, but also the larger the number of points in the tesselation.
So what is the sum of vecadd and vecmul operations needed for producing a single point in a subdivision grid with
(2k +1)2 points when k approaches infinity? This is the total number of rule applications across all levels, divided by the
number of tesselation points.

The vertex rule for instance is applied (2k−1 +1)2 = 22k−2 +2k +1 times, each time issuing 8 vecadd and 2 vecmul.
The asymptotically dominant term is 22k−2. It turns out that the edge and face rules have the same dominating term 22k−2.
To sum the rule applications over all levels a simple fact comes in handy: it is

∑n−1
i=0 22i = 1

3 (22n−1). Taking into account
that the edge rule is applied twice as often, the number of vecadd and vecmul per (unprojected) point on the refined grid
with straightforward recursive subdivision is:

#vecaddlim = lim
k→∞

1
3

22k−1
(2k +1)2 · (8+3+2 ·3) =

1
3
·1 ·17 =

17
3

#vecmullim = lim
k→∞

1
3

22k−1
(2k +1)2 · (2+1+2 ·1) =

1
3
·1 ·5 =

5
3

This means that in the limit, in fact for n ≥ 6, less than 6 vecadd, 5 vecmul operations are needed to produce a vertex of
the tesselation. To then project the vertex on the limit surface and to compute its normal using the final rule, additional 16
vecadd, 5 vecmul, and 1 unitnormal have to be performed. So in total, around 22 vecadd, 10 vecmul, and 1 unitnormal
operations are needed for each point of a regular tesselation, using this straightforward implementation. These constants
are of course smaller with the new optimized scheme. Subdivision takes asymptotically 11/3 vecadd and 5/3 vecmul, and
limit projection another 8 vecadd, 4 vecmul, and 1 unitnormal.

This makes asymptotically 12 vecadd, 6 vecmul and 1 unitnormal per point/normal pair, a saving of more than 40%.
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Figure 3.44: Extreme bending of a subdivision patch. Top: The grid faces are 1×1 units, the vertical displacements
are 1, 2, 4, 8, and 16 units (1a-e). Bottom: Tesselation normals along the patch diagonal, from face to vertex point.

3.4.5 Remarks on Tesselation Quality and Accuracy Issues concerning kmax = 4

The proposed method uses a fixed maximum refinement level kmax = 4. The practical justification is that this permits
more aggressive optimization, for instance static pre-allocated caches, pre-computed strip indices, unrolling of all loops,
and to avoid any recursive function calls. But of course the question arises whether any fixed maximum refinement level
can ever be sufficient, and in particular, whether kmax = 4 is sufficient. Is this a serious limitation? – After examining this
question two possibilities are discussed to extend the algorithm to arbitrary depth.

When is kmax = 4 sufficient? The question of adaptivity can as well be posed the other way around: Assuming the
highest resolution is limited, what are the implications for modeling? In which occasions, and with which kind of control
meshes will this limitation lead to noticeable artifacts? – Following the idea of output sensitivity, i.e., screenspace error,
basically two criteria are important to steer the further refinement:

• Projected size: A given quad covers too many pixels
• Curvature: The piece-wise linear approximation is too far away from the true surface.

A violation of the projected size criterion becomes especially noticeable as shading artifacts, as demonstrated in Fig. 3.45.
Gouraud shading interpolates the color values at the vertices only linearly, so it can not faithfully reproduce highlights
with a too coarse sampling, especially with highly reflective materials. But a denser surface sampling is not the only
remedy: With today’s programmable graphics hardware, especially with the advent of per-pixel lighting [Nvi04], much
more powerful and general shading models have now become available, for instance even Phong shading.

The curvature criterion is also related to instrinsic properties of the surface. A limitedh/w
∑7

i=0αi α0

1.0 30.51 4.83
2.0 49.68 9.60
4.0 67.01 18.68
8.0 78.02 34.07

16.0 83.95 53.52
32.0 86.96 69.71
64.0 88.48 79.53

128.0 89.24 84.72

Table 3.4: Normal variation
over the patch vs. variation
over the first quad only

sampling density will always fail when the surface curvature can be unlimited. But the
curvature of the surface is determined by the ‘curvature’ of the control mesh. It is large
when dihedral angles are large, the angles between the surface normals of neighbouring
quads. But the dihedral angle between base faces can at most approach 180 degrees –
assuming that the control mesh does not intersect itself. Worst cases are very long spikes,
i.e., vertices or faces that are displaced very much in one direction. In order to better
understand the worst cases, two experiments have been carried out.

The first experiment is shown in Fig. 3.44, where one face of a regular tesselation is
displaced in vertical direction. The angular variation over the tesselation is measured: The
tesselation of a base quad contains 16×16 quads on level 4. Consequently there are seven
tesselation points along the patch diagonal between the limit face point and a limit vertex
point. In the experiment the normal variation over the eight points was related to the angle
α0 between the normals at the limit face point and its diagonal neighbour. The results,

summarized in Table 3.4, reveal that in case of, e.g., a box that is 16 times as long as it is wide, the level 4 tesselation is
definitely insufficient (c.f. Fig. 3.44, 2e): The angle between the face and vertex point normals is 83.95 degrees while α0

is 53.52 degrees! This means that most of the variation of the whole patch actually occurs within the quads around the
face point. The normals no longer vary smoothly over the patch.
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Figure 3.45: Shading artifacts from insufficient sampling. (a): Gouraud shaded dark but highly reflective surface.
(b): Same as (a) with enhanced contrast and brightness. (c): The projected size criterion is violated.

Figure 3.46: Subdivision surfaces approximating a sinoidal wave. Top: control mesh, subdivision surface, and level 4
tesselation. Bottom: Dihedral angles of 111 (a), 149 (b), and 160 degrees (c), and highly non-planar quads (c,d).

The second experiment is a sinusoidal wave, inappropriately represented with a coarse rectangular regular grid as
control mesh, shown in Fig. 3.46. The grid CVs are displaced in vertical direction only, and the factor of displacement
was varied. This experiment shows that also large dihedral angles can be accomodated: Even the 149 degrees between the
base face normals in image 3.46 (2b) are sufficiently smoothed out by the recursive refinement.

Distinct shading artifacts appear in this model only in regions with a great distortion within a base face. The sinusoidal
wave has a circular shape, and when the vertical grid displacement is large, the faces along the grid diagonal (the line of
sight in 3.46 (1c)) deviate very much from a plane: The normals of opposite base quad vertices can nearly point in opposite
directions, as in 3.46 (2d-2e). The quads in the tesselation inherit this bending, and the result is that Gouraud interpolation
between two darker and two brighter vertices on opposite sides of a tesselation quad produces shading artifacts.

The third area where a limited sampling density is the problem that can lead to annoying artifacts was mentioned
already: vertices with very high valences and high-degree base faces. The resulting artifacts can nicely be seen in Fig.
3.25, (1d) and (1e), where the tesselation quads around the vertex and face points are unproportionally large.

The bottom line of these experiments is that to limit the recursive refinement to level 4 is sufficient in most practical
cases. The surface sampling was shown to be inappropriate in certain worst cases. It is not very probable, however, that
such degenerate configurations are likely to be introduced intentionally by a designer. It can be expected that any artist
with a minimum of experienced most likely seeks to avoid bending single faces more than 60 or 70 degrees, dihedral
angles over 150 degrees, and to use very thin, long, boxes to define a smooth surface.
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kmax = 1: kmax = 2: kmax = 3: kmax = 4: kmax = 5:

Figure 3.47: Alternative technique: Multiple fixed-size tesselations with copying prior to refinement.

Extensions to the framework for higher levels of refinement. There are basically two ways to extend the framework.
The first is to use multiple instantiations of the technique, but each with a different kmax. Instead of a fixed size tesselation
there is a pool of patches of different sizes, such as shown in Fig. 3.47. Refinement is done via up-sampling just as before.
But in order to refine, e.g., the 5×5 tesselation from level 3, it is copied to level 4 in a doubly spaced manner, filling only
the black squares. The grey vertices remain to be filled in on level 4. This technique permits to display a few patches
in very high refinement, e.g., in depth 5, 6, or even 7, without having to allocate the same amount of memory for all
other patches as well: When using kmax = 4 exclusively, 100K patches are allocated for a control mesh with 25K smooth
quad base faces. This consumes of 194 MB of memory, instead of just 21.6 MB needed for, e.g., the level 2 tesselation.
The alternative technique trades time for space, and the (2k +1)2 copy operations may be a considerable time overhead,
especially with higher levels of refinement. This technique is therefore advantageous in cases where the patch resolutions
are greatly varying, and the resolution of most patches remains constant over some time.

The second possibility to extend the framework is to retain a fixed kmax, but to use a hierarchy of patches: When higher
levels than kmax are needed, the patch is decomposed into sub-patches. Instead of splitting one quad into four sub-quads,
a 3× 3 patch is split on demand into nine 3× 3 sub-patches, or a 5× 5 patch into twenty-five 5× 5 sub-patches. This
reduces the administrative overhead and also the costs for hierarchy traversal. The drawback is that pre-computing the
triangle strip indices gets more complicated, since many more cases need to be considered.

Next higher layer: The meshes to control subdivision. This chapter has presented the essential prerequisites to use
subdivision surfaces for interactive free-form shape design: A very fast, refineable tesselation on-the-fly, and adaptive
multi-resolution rendering. But to start with subdivision, first some form of control mesh is needed; in particular, a data
structure for it.

Interesting shapes are not only made of free-form parts. Subdivision surfaces open the interesting option to represent
polygonal and free-form surfaces with the same data structure. It is neither obvious nor trivial, though, how to organize the
control mesh so that it can represent both types of surfaces efficiently. Furthermore, the surface has to allow for selective
updates: When interactively changing a small part of a large control mesh, only the affected parts of the tesselation need
to be re-generated, and ideally at interactive rates. – How this can be achieved is the subject of the next chapter.

Figure 3.48: Adaptive display of large subdivision surfaces. For large control meshes a gradual LOD distribution
is essential to maintain interactivity (1c-1e). A uniform tesselation, with smooth base faces 0-4 times subdivided
(2a-e), is not an option. (1b): But where do the control meshes come from to start with?



Chapter 4

Practical Meshes

This chapter introduces the indispensable infrastructure for storing and manipulating polyhedral shapes in a digital com-
puter, mesh data structures. It attempts to pick up and operationalize the abstract concepts from chapter 2. Consequently,
this chapter is also somewhat more implementation oriented. In the context of the bottom-up approach pursued in this
thesis, the mesh layer is the next higher layer above the subdivision surfaces from the previous chapter. The mesh layer is
not a single layer, though, as it is in fact divided into three parts, or sub-layers:

• B-rep Meshes are a container data structure to represent the connectivity of a mesh. They are abstract, and not at all
restricted to being used for 3D shapes. They can be thought of as a generic data structure for arbitrary locally planar
graphs. B-reps can be augmented (instantiated) with any kind of custom data attached to vertices, edges, and faces.

• Combined B-reps (or “cB-reps”) are an instantiation of the general B-reps. Their set of custom data, their trait,
includes 3D points for vertices, triangulations for polygonal faces, and subdivision surfaces for the curved parts of the
surface. Thus, combined B-reps bridge the gap between polygonal and free-form shapes! They provide methods to find
the visible faces (view cone culling) and to determine a suitable surface resolution on-the-fly (depth assignment).

• Progressive Combined B-reps (“pcB-reps”) finally are used to actually change and modify a combined B-rep mesh.
They provide a concise API with only thirteen well-specified methods: The five Euler operators, their inverse operators,
and for the manipulation of vertex, edge, and face attributes (3D position, sharpness, material).
Furthermore, all executed mesh operations are logged, so that pcB-reps provide a complete undo/redo mechanism. It is
even fast enough to serve as level-of-detail technique to temporarily remove un-needed detail at runtime.

In order to explain the relations between the layers, to motivate the design decisions, and to introduce the concepts used
herein, the chapter begins with an introduction on the design options for mesh data structures. For many professionals
‘mesh’ means just ‘triangle mesh’. In order to explain why those were not used in this thesis they are discussed first.

A mesh survival guide. Meshes are a very particular object of study: A mystery and a myth to novices, but also a
field for religious battles and quarrels for those who know. The truth is probably in between: No years of theory are
required, but a sound background in algebraic topology helps tremendously – and even without that, a few basic facts
already facilitate the understanding of mesh data structures a lot. Also true is that meshes come in a great variety and
different flavors, because they are used for the most different purposes. Unfortunately it can not be expected that there is
a single data structure that fits for all purposes in all domains. Especially with real-time applications, a penalty for using
over-generalized data structures is inacceptable; only to load and display a 3D model does not even require a mesh. But
on the other hand it is equally annoying to find out later in the application development process that a specific algorithm
only performs well when the neighbourhood of an entity can be efficiently determined.

So is any attempt to find a unified view on meshes void from the start, will no single API ever meet all requirements?
The challenge is to find a level of abstraction that is high enough to permit flexibility on the implementation side, but is
also not too high as to be inefficient in giving access to the manipulation of low-level entities. Great unification efforts
have been made by a number of famous initiatives, just to name CGAL [Vel99, SVY99], OpenCascade [Opea], or, more
recently, OpenMesh [Bot, BSBl02]. Yet none of them has achieved general acceptance today: A query on sourceforge
alone for ‘mesh 3d’ lists two dozen open source software packages with meshes in them [Sou]. Not to mention that
probably every computer graphics group, and every 3D software company, has its own collection of mesh data structures,
highly optimized for the respective purposes.

All design decisions imply certain trade-offs, and it is a laborious and sometimes repetitive task to find out what level
of flexibility is required by an application that, e.g., a student has in mind. Some of these issues are discussed in the first
section, which is supposed to serve as a cookbook with recipes hopefully valid for meshes of different flavors.
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4.1 Triangle Meshes

When arbitrary shapes are to be represented, the first choice are always triangle meshes, or, following the nomenclatura
from chapter 2, simplicial complexes. This is due to

• their perceived simplicity, as three points always form a plane,
• their compatibility with graphics hardware,
• few limitations and validity constraints to cope with,
• availability of simplification and continuous adaptive level-of-detail,
• and their broad support in the research literature, with a wealth of sophisticated
• algorithms for mesh editing, extraction, re-sampling, segmentation, and parametrization, and many more.

It is probably fair to say that triangle meshes are the smallest common denominator for representing surfaces in 3D. The
reason is that they can be exported from practically all 3D applications, irrespective of the respective internal surface
representations: Any surface in 3D can be approximated by a triangulated, simplicial surface, and this even to arbitrary
precision. And once exported, all the machinery developed for mesh processing can be applied.

There are some interesting direct consequences of the Euler-Poincaré equation (Theorem 2.27) for manifold triangle
meshes. Triangles do not have rings, and it is reasonable to assume that in a practical triangle mesh the number of shells,
topological holes, and boundary components is small compared to the number of vertices, edges, and faces. Furthermore,
every triangle has three edges, and every edge belongs to two triangles. This can also be imagined as every edge being
split in two halves, each half belonging to one of the two adjacent faces.

Theorem 4.1 (Number of entities in a triangle mesh)
Let v, e, and f be the number of vertices, edges, and faces in a manifold triangle mesh, where the number of shells s,
topological holes h, and boundary components b is relatively small. Let sv,se,s f be the size of the vertex, edge, and face
data structures. The number of ‘edge halves’ in a triangle mesh is 2e≈ 3 f , which leads to the following approximations:

• v+ f ≈ e
• f ≈ 2v , in average there are twice as many triangles as vertices
• e ≈ 3v , in average there are three times more edges than vertices
• memorysize(V,E,F) = v · sv + e · se + f · s f ≈ v · (sv +3se +2s f ) ≈ f · ( 1

2 sv + 3
2 se + s f )

The first approximation holds for manifold meshes in general because it follows from v−e+ f = 2(s−h) − b when the
right-hand side is close to zero. And since 2e≈ 3 f , the second approximation follows, because 2(v+ f ) ≈ 2e ≈ 3 f .
And the third approximation is a consequence of the first two ones. – Although this may come as a surprise at first, it
becomes plausible when considering for example regular grids, see Fig. 4.1. The implication for data structure design is
that, e.g., one byte of memory saved with edge data is worth three bytes of memory saved with vertex data.

Figure 4.1: Regular grids of quadrangles and triangles. Every vertex of a regular quadrangle grid, which is a
tiling of the plane, corresponds to one quadrangle: For quad meshes holds in essence f ≈ v, and the average vertex
valence is 4. In triangle meshes, the average valence is 6, so every vertex has twice as many edges as every face.
Consequently, there must be twice as many faces: f ≈ 2v.

4.1.1 “My First Triangle Mesh”: The Shared Vertex Data Structure

The first question is which programming language to use for implementing meshes. Mesh entities, i.e., vertices, edges, and
faces, are obvious candidates for objects in the object oriented sense. On the other hand, especially for the performance
required for real-time rendering, the C programming language is a good choice, due to its relative closeness to hardware
and low-level drivers: The OpenGL API, for instance, is in C. So C++, the object-oriented extension of C, appears to be a
feasible choice and a good compromise [ES90].

A first attempt to create a data structure for triangle meshes in C++ might look like in Fig. 4.2: A mesh consists only
of two (fixed-size) arrays, one for vertices, and one for faces. A vertex contains just its 3D position and a reference to one
of the triangles it is incident to. A face contains references to three vertices, and to three neighbour faces. Edges are not
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struct Vec3f { . . . f l oa t x , y , z ; } ;

struct VertexSVNstat ic
{

i n t oneFace ;
Vec3f pos i t i o n ;

} ;

struct FaceSVNstatic
{

i n t ver tex [ 3 ] ;
i n t neighbour [ 3 ] ;

} ;

struct MeshSVNstatic
{

i n t vertexN , faceN ;
VertexSVNstat ic ve r t i c e s [ 1 00 ] ;
FaceSVNstatic faces [ 1 00 ] ;

} ;

void render ( MeshSVNstatic& mesh)
{

FaceSVNstatic ∗ face = mesh . faces ;
g lEnab leC l ien tS ta te (GL_VERTEX_ARRAY) ;
g lVe r texPo in te r ( 3 , GL_FLOAT, sizeof ( Ver texSVNstat ic ) ,

&mesh . ve r t i c e s [ 0 ] . p o s i t i o n . x ) ;
for ( i n t i =0 ; i <mesh . faceN ; ++ i ,++ face ) {

glDrawElements (GL_TRIANGLES , 3 , GL_UNSIGNED_INT ,
face→ver tex ) ;

}
g lD i sab l eC l i en tS ta t e (GL_VERTEX_ARRAY) ;

}

(a)

n[0]
v[0]

n[1]
v[1]n[2]

v[2]

(b)

Figure 4.2: Shared vertex triangle mesh with neighbourhood information, static version. Each face contains three
pointers to neighbour faces, each vertex has a face pointer. Both together make up the connectivity of the mesh.
Neighbour and vertex references must be consistent with the orientation (a). The mesh can be readily rendered
even without any connectivity information, (b) is a wireframe output captured from OpenGL.

explicitly represented, and references are realized by indices. This mesh representation of indexed triangle sets is called
shared vertex data structure because triangles share their vertices. A vertex does not have to be copied to be part of more
than one triangle. The data structure in Fig. 4.2 can additionally store the connectivity, so, strictly spoken, it is a ‘shared
vertex mesh with neighbourhood information’.

The C++ class Vec3f is equally used for points and vectors, to keep things simple. In addition to the three floats from
the code example it provides the usual methods such as dot, cross, normalize. – On 32 bit architectures, pointers as well
as integers and single precision floats all require 4 bytes of memory, the ID size unit of 32 bit. Following theorem 4.1, the
size of the shared vertex data structure is sv = 1+3units = 16bytes, se = 0, and s f = 2 ·3units = 24bytes.

A shared vertex mesh with v vertices requires (sv + 2s f ) = 16+ 48 = 64 bytes per vertex and, equivalently, a mesh
with f triangles requires 32 bytes per triangle.

Loading and rendering a mesh. The shared vertex data structure can represent an indexed face set, as presented in
section 2.3.2, that is loaded from an .obj or VRML file (Fig. 2.23), provided

• the file contains exclusively triangles, so it is actually an indexed triangle set, a ‘triangle soup’, and
• the arrays for vertices and faces are of sufficient size.

Indexed triangle sets provide no neighbourhood information. By default all neighbour indices are set to invalid, i.e., to the
special value −1. The same value is reserved for faces that have no neighbour face, i.e., faces at the border. This rule is
consistent in that all triangles are isolated in the beginning.

A mesh without explicit connectivity is not completely useless. The shared vertex data structure permits, e.g., to
deform a mesh in arbitrary ways: When the position of a vertex is changed, all incident triangles are immediately and
consistently updated, since they directly refer to this vertex. Second, the mesh can be readily rendered using OpenGL.
The code to render an indexed face set was shown in Fig. 2.24 from chapter 2. Basically the same is possible for shared
vertex meshes, as the code example to the right of Fig. 4.2 suggests. The same object as in chapter 2 is shown in Fig. 4.2
(b) as a wireframe triangle mesh. This image is an authentic screen shot of the output from the render routine in the code
example.

Connectivity definition. Since neighbourhood information can be stored a number of in different ways, it is necessary
to specify conventions how to use the available indices. This helps to tell whether a given index assignment is consistent.

For a face, vertex and neighbour indices shall follow the convention depicted in the diagram in Fig. 4.2 (a): neighbour
index i refers to the unique neighbouring triangle that is also incident to the vertex referred to by vertex indices i and i+1,
where 0 ≤ i ≤ 2. In case an edge belongs to a border, the respective neighbour index remains −1. In triangle meshes,
closed border loops cannot be treated like faces, as it was proposed in chapter 2 (e.g., in theorem 2.23), simply because in
general borders have degree > 3. Triangle indices, such as i+1, are understood as modulo 3, since the sequence is cyclic
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void col lectFaceNeighbours ( MeshSVNstatic& mesh)
{

typedef pa i r < i n t , i n t > Edge ;
typedef pa i r <Edge , i n t > EdgeFacePair ;

map<Edge , i n t > edges ;
Face∗ face ;
i n t k ;

for ( face = mesh . faces , k =0 ; k<mesh . faceN ; ++ face ,++k ) {
edges . i n s e r t ( EdgeFacePair (Edge ( face→ver tex [ 0 ] , face→ver tex [ 1 ] ) , k ) ) ;
edges . i n s e r t ( EdgeFacePair (Edge ( face→ver tex [ 1 ] , face→ver tex [ 2 ] ) , k ) ) ;
edges . i n s e r t ( EdgeFacePair (Edge ( face→ver tex [ 2 ] , face→ver tex [ 0 ] ) , k ) ) ;

}

map<Edge , i n t > : : i t e r a t o r edge10 , edge21 , edge02 ;

for ( face = mesh . faces , k =0 ; k<mesh . faceN ; ++ face ,++k ) {
edge10 = edges . f i n d (Edge ( face→ver tex [ 1 ] , face→ver tex [ 0 ] ) ) ;
edge21 = edges . f i n d (Edge ( face→ver tex [ 2 ] , face→ver tex [ 1 ] ) ) ;
edge02 = edges . f i n d (Edge ( face→ver tex [ 0 ] , face→ver tex [ 2 ] ) ) ;
face→neighbour [ 0 ] = ( edge10 == edges . end ( ) ) ? − 1 : (∗ edge10 ) . second ;
face→neighbour [ 1 ] = ( edge21 == edges . end ( ) ) ? − 1 : (∗ edge21 ) . second ;
face→neighbour [ 2 ] = ( edge02 == edges . end ( ) ) ? − 1 : (∗ edge02 ) . second ;

}
}

Figure 4.3: Gathering connectivity information. The function collectFaceNeighbours builds up on the shared
vertex mesh implementation from Fig. 4.2. It uses the map template class from the STL as a dictionary containing
(key,value) pairs with an integer pair as the key and one integer as value. Note that the edge insertion in the first
pass does not check whether a key, i.e., an edge, already exists in the map.

and only its order counts. It is not important which of the vertices is referred to by which index, since all three orders
(va,vb,vc), (vb,vc,va), and (vc,va,vb) are equivalent.

To distinguish between references and entities the notations v[i] and n[i], or f .v[i] and f .n[i], respectively, are used for
vertex and neighbour references. The actual entities are denoted va,vb,vc or f0, f1, f2. – The cyclic order also defines the
surface orientation; n[0], n[1] and n[2] are arranged in CCW orientation, and this shall denote the frontside of the triangle.
A pair of adjacent triangles is oriented consistently if and only if both are incident to two vertices va and vb, and one of
them contains edge (va,vb) , and the other contains (vb,va). Note that this gives a criterion to determine the consistency
of the mesh, in the sense of the mesh consistency theorem (Theorem 2.24 from chapter 2).

Concerning mesh consistency, note that a vertex can store only a single reference to an adjacent face, i.e., to only one
edge cycle. This means that complex vertices (as listed in the ‘mesh pitfalls’ table in Fig. 2.28) cannot be represented,
since it would require several links to incident faces from different cycles. Edges are not explicitly represented in this data
structure. This is another important design decision.

Gathering connectivity information Neighbourhood information is essential for almost every method to process a
mesh. Some of the applications were mentioned in the beginning of this section (4.1): Mesh editing, simplification,
reparametrization, and resampling, all need to ‘crawl’ over the surface, which is not possible without connectivity infor-
mation. – So far, the neighbour indices of the mesh are still uninitialized. A simple 2-pass algorithm can determine the
suitable neighbour indices by setting up and examining a search structure for directed edges.

• For each triangle fk, k = 1 . . .n, with vertex indices (v0,v1,v2), enter the directed edges
(v0,v1)→ k , (v1,v2)→ k , (v2,v0)→ k into the search structure.

• For each triangle fk, k = 1 . . .n, look up the reversed directed edges (v1,v0)→ k10 , (v2,v1)→ k21 , (v0,v2)→ k02 .
The neighbour entries of triangle fk are then (n0,n1,n2) := (k10,k21,k02).

The search structure is essentially a map to store and retrieve (key,value) pairs. In this case the key is a directed edge,
represented as a pair of integers that can be lexicographically ordered. The value is the face that has entered the edge.
Storage and lookup can be done in time logn, when for instance the map is implemented over a balanced tree [CLR90].
Both passes can be performed in O(n logn), which also gives an O(n logn) algorithm in total.

The same task can also be performed in linear time, making use of the fact that the average vertex valence is six: A
fixed size bin is created for each vertex, and the neighbours are sorted into the bins in the first pass, and retrieved in the
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second. – In any case, a third pass over the triangles, where each triangle enters itself into the oneFace field of its three
vertices, eventually concludes the detection of neighbourhood information.

This algorithm assumes that the mesh is a valid manifold mesh, possibly with boundaries. It can also be used, however,
to detect nonmanifold configurations, i.e., some of the topological pitfalls from table 2.28 in chapter 2:

• In pass 1, it is possible to check whether the key already exists before entering an edge (a,b)→ k .
If the same edge (a,b)→ k′ has been entered before from a different face, this means that
there is either an edge with multiple sheet (a complex edge), or the mesh is non-orientable.
• In pass 2:, If there is no neighbour for a given edge, then the respective triangle has a boundary edge.

Complex edges, boundaries, and non-orientability can be detected easily. But to assert that the mesh is manifold a third
criterion has to be checked, the manifold vertex property from the mesh consistency theorem 2.24. This is not so simple,
however, since it involves to arrange the faces incident to each of the vertices in a single cycle. Equivalently, if triangle f
points to vertex v, and v references face fv , then f and fv must be in the same cycle around v.

C++ templates and the STL. The implementation of the above algorithm is a function collectFaceNeighbours, shown
in Fig. 4.3, that builds up on the shared vertex data structure from Fig. 4.2. The implementation is greatly facilitated by the
use of the standard template library, the STL [SL95]. The STL is a very particular library, since it is based on an design
document that describes only the required properties of a number of basic data structures; it specifies only access methods
that use iterators, rather than prescribing a particular implementation. The STL makes heavy use of templates. The
template facility of C++ is a method to realize generic programming. This means that the basic low-level data structures,
such as arrays (STL template class vector), doubly-linked lists (list), and dictionaries (map), are parameterized in terms of
the data types they carry. The data structures themselves have to be implemented only once. They are therefore also called
container data structures: the data to be managed are regarded as anonymous containers, and the data structure itself is
realized in a generic way. Through this separation it can warrant the data structure integrity on the management level, and
make sure that references etc. are always consistent.

Without going into details (see [ES90] for the exact definition of template semantics) is the simplest way to understand
C++ templates as a cut & paste mechanism: The source code of the linked list itself is something like a form where the
data type to be stored is just referred to as some anonymous class T. When a concrete list is needed, for example a list
of a particular class of vertices, the list is instantiated, and the T is replaced by the given type argument almost verbatim:
The class list<Vertex> can be used just as if the linked list source code had Vertex instead of T everywhere in it. The fact
that list<Vertex> is a template specialization can be completely hidden by assigning a different name to it, which is highly
recommended: With typedef list<Vertex> VertexList, the new type VertexList can be used just like a normal list class with
a standardized set of access methods.

4.1.2 Shared Vertex Mesh with Traits

The first version of the shared vertex implementation from Fig. 4.2 is not very flexible. The size of the vertex and face
arrays is fixed to 100, but this could be easily remedied by dynamic memory allocation (malloc in C, or new in C++). More
serious is the fact that the vertex and face classes are a combination of both connectivity and geometry information (vertex
positions). Recall from chapters 2, and especially from the mesh definition 2.30, that it is quite reasonable to distinguish
between the ‘abstract’ mesh, as defined by the entities and the incidence relationships, and its embedding.

Besides this theoretical justification for a separation on the data structure level, there is also a very practical one:
It is very desirable to have a clear distinction between the connectivity of the mesh on the one hand and the attributes
of vertices, edges, and faces, on the other. If this is not so, the vertex and face classes themselves have to be changed
whenever a different set of attributes is needed. Different algorithms and applications may require completely different
sets of attributes, while still using essentially the same mesh data structure.

Different sets of vertex and face attributes. The object in in Fig. 4.2 (b) had to be rendered in wireframe mode
because the mesh does not provide surface normals so far. Normal vectors are indispensable for lighting calculations,
to render objects with different materials, illuminated by a number of different light sources etc. Surface normals are
usually specified per vertex for meshes approximating smooth surfaces. Vertex normals from the tesselation of a sphere,
for example, all point radially outside, they point from the sphere center into the direction where the vertex is. Using
the normal the graphics hardware calculates a color value at each vertex, according to a chosen shading model. Shading
requires only the orientation of the surface, not the surface itself, to determine the color of a piece of surface around
the vertex that is infintely small. The color of points in the interior of the triangles is usually derived from the colors of
the vertices, e.g., by linear interpolation (’Gouraud shading’). Surface normals are only one example of possible entity
attributes. Further examples include face normal vectors, face or vertex colors, and texture coordinates for vertices.
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template<class T r a i t >
struct VertexSVN : public T r a i t : : V
{

typedef FaceSVN< T r a i t > Face ;
typedef typename T r a i t : : V V;

VertexSVN ( ) { }
VertexSVN ( const V& data ) : T r a i t : : V( data ) { }
~VertexSVN ( ) { }

FaceSVN< T r a i t >∗ oneFace ;
} ;

template<class T r a i t >
struct FaceSVN : public T r a i t : : F
{

typedef FaceSVN < T r a i t > Face ;
typedef VertexSVN< T r a i t > Vertex ;
typedef typename T r a i t : : F F ;

FaceSVN ( ) { }
FaceSVN( const F& item ) : T r a i t : : F ( i tem ) { }
~FaceSVN ( ) { }

Vertex ∗ ver tex [ 3 ] ;
Face∗ neighbour [ 3 ] ;

} ;

template<class T r a i t >
struct MeshSVN : public T r a i t
{

typedef VertexSVN< T r a i t > Vertex ;
typedef FaceSVN< T r a i t > Face ;

MeshSVN ( ) { vOld = ve r t i c e s . begin ( ) ;
fOld = faces . begin ( ) ; }

~MeshSVN ( ) { }
bool checkForRelocat ion ( ) ;

vec to r<Vertex > ve r t i c e s ; Vertex ∗ vOld ;
vec to r<Face> faces ; Face∗ fO ld ;

} ;

struct TraitSVN_Vtpn_Fm
{

typedef TraitSVN_Vtpn_Fm T r a i t ;
typedef MeshSVN < T r a i t > Mesh ;
typedef FaceSVN < T r a i t > Face ;
typedef VertexSVN< T r a i t > Vertex ;

struct V
{

V ( ) { }
V( const Vec3f& p ) : pos i t i o n ( p ) { }
v i r t ua l ~V ( ) { }

Vec2f t ex tu recoord ;
Vec3f pos i t i o n ;
Vec3f normal ;

} ;

struct F
{

F ( ) { }
F ( const F& f ) { }
v i r t ua l ~F ( ) { }

Vec3f faceMidpo in t ( ) const ;
Vec3f normal ( ) const ;
Box3f bbox ( ) const ;

i n t mate r ia l ID ;
} ;

} ;
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Figure 4.4: Shared vertex implementation using traits. Basically the same data structure as in Fig. 4.2, but split in
two parts: generic mesh as container data structure (left), and trait class for vertex and face attributes (right).

template<class T r a i t > bool TriMesh< T r a i t > : : checkForRelocat ion ( )
{

Vertex ∗ vNew = ve r t i c e s . begin ( ) ;
Face∗ fNew = faces . begin ( ) ;

i f ( vOld==vNew && fOld==fNew ) { return fa lse ; }

for ( vec to r<Face > : : i t e r a t o r f =faces . begin ( ) ; f != faces . end ( ) ; + + f ) {
for ( i n t k =0 ; k <3 ; k ++ ) {

i f ( f→ver tex [ k ] ! =NULL ) { f→ver tex [ k ] = vNew + ( f→ver tex [ k ] − vOld ) ; }
i f ( f→neighbour [ k ] ! =NULL ) { f→neighbour [ k ] = fNew + ( f→neighbour [ k ] − fO ld ) ; }

}
}
for ( vec to r<Vertex > : : i t e r a t o r v= ve r t i c e s . begin ( ) ; v != ve r t i c e s . end ( ) ; + + v ) {

i f ( v→oneFace !=NULL ) { v→oneFace = fNew + ( v→oneFace − fO ld ) ; }
}
vOld = vNew ;
fOld = fNew ;
return true ;

}

Figure 4.5: Relocation repair function. It must be called whenever dynamically adding/removing entities, since
STL vectors may unexpectedly relocate to a different memory location, invalidating all pointers to vertices/faces.
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Generic programming using traits. A separation of the mesh data structure from the data the mesh entities have to
carry can be achieved in a similar way as in the STL by using templates. This turns a mesh class into a container data
structure. The mesh itself is essentially just a graph, and its task is to keep the incidence relationships consistent. The
containers are the entity attributes to be stored in the mesh. They can be seen as a more general form of an embedding,
into an abstract ‘data space’ instead of R

3.
Unlike linked lists, however, meshes have three different types of entities, so a mesh template has to be parameterized

in terms of three different types of containers. For a few serious technical reasons (scoping, debugging, etc.), it is more
than desirable to have only a single template parameter – usally the attribute classes are not independent from each other
anyways. This can be accomplished by the ‘local type’ facility offered by C++: Not only can a class have local type
declarations, equally possible is to declare new ‘local’ classes inside of its scope. Such a class with sub-types, that is used
as template parameter, is called a trait.

Definition 4.2 (Trait)
A trait is a C++ class that is (a) used to instantiate a template, and that (b) contains local type names required by the
template. The purpose of the local type names is to further qualify the properties of the instantiated template. The local
types may come from typedef statements or from class declarations within the scope of the trait.

The shared vertex data structure as a template. The code to the left in Fig. 4.4 directly corresponds to the previous
implementation of shared vertex meshes, but now the implementation is generic. Vertices and faces are implemented as
template classes, derived from the respective attribute classes. The trait class TraitSVN_Vtpn_Fm is shown to the right. It
codes in its name the properties of vertices and faces: a vertex contains position, normal vector, and 2D texture coordinates,
and a face has a material identifier.

The names of the attribute classes, Trait::V and Trait::F, are prescribed by the mesh template. Note that the mesh
template in no way assumes that, e.g., a vertex must contain a 3D position. The mesh template only standardizes the
access to the mesh entities and the connectivity information.

• The mesh template provides five types Mesh, Vertex, Face, V, and F, that always refer to
the mesh itself, a mesh vertex, a mesh face, and the vertex and face attributes.
• The connectivity information is always stored in Vertex::oneFace, Face::vertex[ ], and Face::neighbour[ ].
• The vertex and face classes are derived from the attributes, so both types have compatible pointers. As the attribute

classes have virtual functions (the destructor), an attribute pointer can be dynamically casted to an entity pointer. If
faceattribute is a pointer to a face attribute (of type Face::F*), then the respective Face* pointer is obtained like this:

Face* face = dynamic_cast<Face*>( faceattribute );

• Note that the attribute classes can not only attach additional data members to a mesh entity, but they can also provide
new member functions. Attribute member functions even have access to the connectivity information: A dynamic
cast can be also applied to the this pointer of a Trait::F object.

The ability to turn an attribute pointer into an entity pointer has great significance for the efficiency of the template
approach. This is a difference between meshes and, say, linked lists, even when both are container data structures: While
it is rarely necessary that a list item needs access to the previous and next elements in the list, this is very well the case with
mesh items. Otherwise decent functionality like faceMidpoint or boundingBox functions could not be realized as attribute
member functions. But this is exactly where they belong, since only the trait knows where to find, e.g., the vertex position.

But note that this feature is only optional: The template classes TriVertex and TriFace do not have virtual functions. If
the respective attributes Trait::V and Trait::F do not introduce virtual functions, one pointer (4 bytes on 32 bit architectures)
is saved per vertex and face. But without any virtual functions, no dynamic cast to a derived class is possible [ES90].

References: Pointers versus indices, and the relocation problem. The new version of the shared triangle mesh uses
pointers instead of indices as reference to vertices and faces. But it also uses STL vectors as dynamic arrays to store
vertices and faces. It is important to keep in mind that this combination can cause serious trouble.

The STL vector container is specified as a dynamic list that nevertheless permits random access in constant time to
each element [SL95]. Most vector implementations realize this as an array, located at the beginning of a coherent chunk
of memory. The chunk is a bit larger than the array, so that elements can be appended, e.g., using push_back. When the
space is used up, the whole chunk is copied to a newly allocated chunk of twice the old size, and the old chunk is released.
This operation is called relocation.

In theory, pointers and indices are equivalent, since one can always convert from one to the other – but a conversion
always introduces an overhead. So in practice, this is a design choice with subtle, but important consequences: Pointers
are absolute memory positions, while indices are only relative.
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• Contra indices: An index alone is useless and confusing: To which array does it refer? The beginning of the array,
i.e., the memory address of the 0-th element, must be known in order to access the target element.
• Pro pointer: Pointers can be used to get directly hold of one specific element. A face member function can for

instance call a member function of one of its vertices, without access to the mesh.
• Pro pointers: Type safety. It is not possible to take a face pointer for a vertex pointer without an explicit cast. But

indices can stand for anything.
• Contra pointer: When an array moves to a different location, the original objects usually remain intact for a while,

and errors can be deferred to the moment when the memory is reused and a defunct object is accessed.
• Pro indices: Array positions are very robust against array relocation. Copying or moving an array to a different

memory location leaves the relative positions within the array intact.
• Pro indices: Index arithmetic. There are more than 4 billion combinations of 32 bits. It is often possible to sacrifice

bits to store additional data, for instance the sign bit, so that negative numbers have a special meaning.
• Contra index arithmetic: It affects scalability. Today meshes exist with billions of vertices. An ‘abuse’ of single

bits is not very robust, and must be well documented. Much cleaner is to use an explicit status bit-field, into which
special states can be coded.

In summary, one can keep in mind that pointers are more convenient, especially from an object-based point of view,
but indices are more robust against copying and memory relocation. In practice, also the purpose of the data should be
considered: Some APIs are index based, such as OpenGL’s indexed geometry, while others are pointer based, such as
many OS services and standard library functions like the string functions. The indexed triangles of shared vertex meshes
can be directly passed on to OpenGL (Fig. 4.2, right), this is not possible with the pointer based version.

A solution to the relocation problem for meshes. Concerning the relocation problem, it is important to take precau-
tions: Whenever operations change the size of a vector (increase or decrease it), it is necessary to check whether the
array was relocated. This is done by storing the beginning of the vector in beginOld. If the beginning has changed after
an operation, all pointers p referring to objects in the vector need to be updated as p=beginNew+(p-beginOld). Note that
taking the difference beginNew-beginOld as a memory offset would be faster1, but this is illegal, since pointer differences
are only allowed for pointers into the same array [ES90]. A relocation may look like excessive overhead, and like an
argument against using vectors. But note that relocations happen only to double the vector size, so a vector of size n has
had to undergo only logn relocations.

For meshes with pointer references a relocation of the vertex or face arrays destroys the mesh connectivity. The
relocation check must consequently be performed each time when a vertex or face is added. The implementation of the
TriMesh<Trait>::checkForRelocation routine of the mesh from Fig. 4.4 is shown in Fig. 4.5. After every relocation, it
loops through both arrays, so its cost is O(|F |+ |V |). This happens whenever either of the two vectors is relocated, so
the total cost is less than O((|F |+ |V |) · (log |F |+ log |V |)), which equals of course O(n logn) for n ∈ {|V |, |E|, |F |}. –
Consequently, such a routine should always be provided when using dynamic arrays together with pointer references, to
solve the relocation problem.

4.1.3 Halfedges and Mesh Iterators

Edges are not explicitly represented in the shared vertex data structure. This is an important design decision. It has
consequences for mesh manipulation, as well as for the possibility to navigate over a mesh.

The position in a mesh: Halfedges. A mesh is composed of entity sets V , E, and F , and the relations between the
entities in these sets. So what is a ‘position’ in a mesh? A face is a unique entity, but it may have many vertices. A vertex is
unique, but it may have many edges. An edge is unique as well, but it has two endpoints. So only a combination of entities
unambiguously denotes a position. Generally a pair of incident entities is enough to derive the third: A (face,vertex) pair
for example denotes a unique edge, by convention for instance the one in CCW direction in the face. In some cases this is
still not unique: A vertex can be several times part of the same face, as in the torus example (or the double torus, Fig. 2.7).

Both vertices and faces can be incident to a variable number of entities, but – at least in the manifold case – edges are
different, since every edge is incident to exactly two faces and two vertices. So edges are a good instrument for navigating
over a mesh: Either of the two ‘sides’ of an edge unambiguously identifies one of two possible (face,vertex) pairs. Since
there are two such pairs, the edge has two sides, each of them referred to as one halfedge. Halfedges use to be depicted as
half-arrows (Fig. 4.6 a).

1The memory alignment problem can be solved by casting: char* d=( (char*)beginNew )-( (char*)beginOld ); p = (Object*)( ((char*)p) + d ); This
usually works, even on segmented memory architectures, in contrast to what is said in [ES90]
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Figure 4.6: Iterating over a triangle mesh. (a) Manifold edges have two distinct sides, and each side can be
associated with one face and one vertex, for example the vertex the halfedge emanates from (source vertex, red).
The direction of a halfedge is induced by the CCW face orientation, so halfedges are shown as ‘half-arrows’. (b-e):
Crawling over the mesh with halfedge navigation functions, like f aceCCW (b,c), mate (c,d), and vertexCCW (d,e).

In the shared vertex data structure a halfedge is referred to by a combination ( f , i) of a face f and a neighbour index
i, 0≤ i≤ 2. As shown in Fig. 4.2 (a), index i refers to a vertex and the next neighbour face in CCW direction, incident to
vertices f .v[i] and f .v[i+1]. This is a matter of convention, though: sometimes halfedges are defined to refer to the target
rather than the source vertex.

Mesh navigation: Halfedges as mesh iterators and for path expressions. An object that refers to a position in a data
structure, such as a specific element in a list, is commonly referred to as an iterator. Halfedges can be understood as
mesh iterators: Just like a list iterator l permits to traverse a list by l′ = l.pred or l′ = l.next, a mesh can be traversed
using halfedges. Unlike lists, meshes are locally two-dimensional graphs that, in a way, also incorporate their dual graphs:
Recall from the duality definition (Def. 2.28) that edge cycles of vertices and faces are mutually topological duals of each
other. Consequently, there are five canonical navigation operations for a halfedge, or mesh iterator, h:

• Traversing the edge cycle of a vertex in either direction with h.vertexCCW and h.vertexCW
• Traversing the edge cycle of a face in either direction with h. faceCCW and h. faceCW
• Moving to the halfedge on the opposite side with h.mate.

Of course, h.vertexCCW .vertexCW = h and h. faceCCW . faceCW = h and vice versa, and h = h.mate .mate. As an
example for mesh navigation consider the triangles in Fig. 4.4 (c). In this case it is possible to use a (face,vertex) pair
instead of a (face,integer) pair to denote a halfedge. So consider triangle f3 with vertices (v1,v5,v4) , and let h = ( f3,v5).
Then h′ := h. faceCCW = ( f3,v4) , h′′ := h′.mate = ( f2,v1) , and h′′′ := h′′.vertexCCW = ( f0,v1) . The resulting path
over the mesh is illustrated in Fig. 4.6 (b-e). Slightly abusing C++ style path expressions, this can also be concisely
expressed as:

( f3,v5). faceCCW .mate .vertexCCW = ( f0,v1)
One of the requirements for mesh data structures is that these operations are performed very fast, ideally in constant time.
With the shared vertex data structure, faceCW and faceCCW are just a matter of computing (i−1)mod3 and (i+1)mod3,
respectively. When the mate operation is available, vertexCW and vertexCCW can be realized as

• h.vertexCW = h.mate . faceCCW
• h.vertexCCW = h.mate . faceCW

Note the reversal of orientations due to the duality of vertices and faces. – So the mate operation is indeed quite useful.

Problems of the shared vertex data structure. One consequence of the design may be not so obvious: There may be
problems to determine the opposite halfedge, the mate (g, j) of a given halfedge ( f , i), in case of degenerate triangles.

Definition 4.3 (Degenerate triangle)
A triangle is topologically degenerate if it references two times the same vertex, or two times the same face, or even

both. It is geometrically degenerate if it collapses to a line or a point because different vertices share the same position.
Consequently, a double-sided triangle is degenerate, as well as a pair of triangles forming an ‘ear’, i.e., triangles that are
mutual neighbours on two of three edges.

Let ( f , i) be an edge of a topologically degenerate triangle for which the mate (g, j) is to be determined. The face g on the
opposite side is readily found as g = f .n[i]. To find j, the edge must be found that f shares with g. It is not sufficient to
determine j as the neighbour of g pointing to f , since this is not unique when f references two times the same face. To be
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template<class T r a i t >
struct MeshDE : public T r a i t
{

typedef MeshDE< T r a i t > Mesh ;

struct Vertex : public T r a i t : : V
{

i n t oneEdge ;
} ;

struct Edge : public T r a i t : : E
{

Edge∗ Edge : : mate (Mesh& mesh ) {
return &mesh . edges [ mate ] ;

}
i n t ver tex , mate ;

} ;

typedef T r a i t : : F Face ;

vec to r<Vertex > ve r t i c e s ;
vec to r<Edge> edges ;
vec to r<Face> faces ;

} ;

face face 0 face 1 face 2 face 3
edge 0 1 2 3 4 5 6 7 8 9 10 11
vertex 0 1 3 1 2 5 1 4 3 1 5 4
mate -1 8 -1 -1 -1 9 11 12 1 5 15 6

face face 4 face 5 face 6
edge 12 13 14 15 16 17 18 19 20
vertex 3 4 6 4 5 7 4 7 6
mate 7 20 -1 10 -1 18 17 -1 13
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Figure 4.7: Directed Edge triangle mesh. Left: Half-edges are explicitly represented by the type Edge. It is derived
from Trait::E, so halfedges can also carry information. Right: A mesh with 7 faces corresponds to an edge array of
length 21. Every 3 halfedges implicitly belong to one face, so that the halfedge can refer to its mate directly: Edge
6 is incident to (v1, f2), its mate edge 11 to (v4, f3).

safe, it must additionally be checked whether g.v[ j] = f .v[i+1] and g.v[ j+1] = f .v[i] . In this case j is unique provided
that the triangles are not ‘extremely’ degenerate, i.e., not all of the vertices coincide.

Degeneracies like ears and double-sided triangles, or coincident vertex references, are special cases that need to be
checked in order to avoid errors. The problem with special cases is not only that they are sometimes hard to detect, but
also that to check for them binds computing resources: In practically all cases the triangles are not degenerate and there is
only a single j so that g.n[ j] = f – but to be sure, one has to check always. Another possibility is to design algorithms in
a way that the special cases can (provably) not occur.

Both alternatives are just as error prone as they are tedious. In the long run, it is much better to design the data structure
more carefully, namely in a way that special cases are no longer special cases. This may require more effort, but it pays off
as the resulting data structures are more sustainable. Taking the STL as model, the specification of a mesh data structure
should rather be formulated in terms of the operations on the mesh and their costs, than on the objects involved. The set
of mesh operations should of course be closed and sufficient (c.f. theorem 2.29).

4.1.4 Beyond Shared Vertices: Campagna’s Directed Edges and Hoppe’s Wedges

The problem with the shared vertex data structure is that neighbourhood information is only stored on a per face basis:
The neighbour face is directly accessible, but to determine which of the neighbour’s edges is the mate of the given edge
requires some testing. To make these tests robust against degeneracies causes even more overhead. This is hardly tolerable,
since the mate operation is used very frequently.

Directed edges. This issue can be solved if the halfedges, which have proven quite useful in the last section, are explicitly
represented in the data structure. This appears like a large space overhead, because there are so many of them – six times
as many as vertices (Theorem 4.1). But note that a shared vertex mesh also stores six references per face, to three vertices
and to three neighbour faces, which is nothing but two references per halfedge.

With a simple trick, the space requirement remains the same, but halfedges can be referenced directly: Just store the
mate halfedge ( fi, j) with j ∈ {0,1,2} as the integer number k = 3 · i + j in the neighbour field, instead of just storing i .
This combined number k is called a halfedge index. It can be directly used as an array index if all halfedges are contained
within one coherent array: The face is split up into three (vertex, halfedge index) pairs, the directed edges. The resulting
directed edge data structure was introduced by Swen Campagna [Cam98, CKS98]. It appears that it has been re-invented
a number of times, in any case it is probably the standard triangle mesh representation today.
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template<class T r a i t >
struct MeshDEW : public T r a i t
{

typedef typename T r a i t : : V V;
typedef typename T r a i t : :W W;
typedef typename T r a i t : : E E;
typedef typename T r a i t : : F F ;

struct Vertex : public V { i n t oneEdge ; } ;
struct Wedge : public W { i n t ver tex ; } ;
struct Edge : public E { i n t wedge , mate ; } ;

typedef F Face ;

vec to r<Vertex > ve r t i c e s ;
vec to r<Wedge> wedges ;
vec to r<Edge> edges ;
vec to r<Face> faces ;

} ;

Figure 4.8: The wedge problem. Left side: (a) Some vertices lie in the interior of a surface, others are corners,
or lie along creases between surface patches. (b) Wedges are consecutive corners around a vertex. (c) A corner
vertex adjacent to 12 different triangles, and with 3 different attribute sets. (d) Interior vertices have only a single
face normal, vertices on a crease have two. Right side: The directed edge data structure where halfedges do not
reference vertices, but wedges, which then reference vertices.

Campagna argues that it is worthwhile to trade the space for storing a mate index against a few computations to obtain it.

• Halfedges 3 i , 3 i+1, and 3 i+2 all belong to triangle i,
• halfedge k directly stores a reference to its mate k′, and
• the mate k′ belongs to triangle k′ /3 (integer division rounds down).
• faceCCW is realized by (k % 3 == 2 ) ? k - 2 : k + 1
• faceCW is realized by (k % 3 == 0 ) ? k + 2 : k - 1

The already familiar example mesh is shown in Fig. 4.7. Note that the type Edge actually denotes a halfedge. The
function Edge::mate() shows how path expressions can be used with index references: To return an Edge*, the function
needs access to the mesh. – In the diagram, the edge between vertices 1 and 4 is highlighted. The two respective halfedges
can be found in positions 6 and 11 in the edge array (table). They mutually refer to each other as mates. From the indices
alone it is clear that they belong to faces 6/3 = 2 and 11/3 = 3, and the vertex fields of these halfedges reveal that they
refer to vertices 1 and 4. The connectivity is entirely defined by the halfedges. With this method the connectivity is also
robust against degenerate triangles: There are no special cases to take care of.

Note that there are different ways to store face number i and index j together. With 4 · i+ j, the lower two bits code
the index, so that division and modulo can be replaced by bit shift and masking, which is faster. But then, the combined
number can no longer be directly used as an array index. This is an example of coding additional information into an
integer reference, which is not possible with pointers. Another application, also pointed out by Campagna, is to use the
sign bit as a flag for non-manifold configurations: While a mate value of−1 denotes a border edge, a value of -2 might be
used to mark complex edges. A negative value−k of the oneEdge field can flag a complex vertex, and k is used as an index
into an array with a set of halfedge indices, one for each edge cycle the complex vertex is incident to. The possibility to
represent non-manifold configurations is very important, e.g., for mesh simplification using the non-edge collapse, which
will be presented in the next section.

The wedge problem, and Hoppe’s solution to it. A very particular problem has not yet been considered: A vertex may
very well have more than one normal vector attached to it. Fig. 4.8 (c) and (d) illustrate the problem. Most of the vertices
use to lie in the interior of a surface region, where they have only a single normal vector, and only a single vertex attribute.
A group of vertices that are to approximate a smooth surface patch is also called smoothing group. The boundary where
different patches meet may be discontinuous to form a crease in the surface. Consequently, the tesselation may comprise
vertices with different sets of attributes, depending on which face the vertex is used with: The normal vector, but also for
instance a vertex color, or texture coordinates, are conceptually per-vertex-per-face attributes.
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QUADRICSIMPLIFICATION(V = {v1 . .vn},E,F)
1 for all vertices v1 . .vn compute Qi

2 for all valid pairs (vi,v j)
3 do Qi j← Qi +Qj

4 vi j←MINIMALERROR(Qi j)
5 ci j← vT

i j Qi j vi j

6 HEAPINSERT(ci j , (vi,v j,vi j))
7 while heap not empty
8 do (vi,v j,vi j)← HEAPMINIMUM

9 v̄← PAIRCONTRACT(vi,v j,vi j)
10 UPDATENEIGHBOURHOOD( v̄)

Figure 4.9: Two forms of pair contraction. Right: The edge contract merges two triangle vertices into one, thereby
removing two triangles, three edges, and one vertex from the triangulation. A non-edge contract creates a complex
non-manifold vertex from a pair of vertices that are close but not connected via an edge. It can merge different
shells together and bridge topological holes. Left: Outline of the simplification procedure.

One solution would be to store the vertex attributes in the halfeges, rather than the vertices. But besides the large
number of halfedges, the space overhead is excessive, since the average number of different attribute sets per vertex
is much lower than the average vertex valence. So this raises again the question how to handle special cases without
impairing the average case. The solution proposed by Hugues Hoppe in [Hop98] is to insert one layer in between vertices
and faces, the wedge. A wedge is a part of a vertex’s edge cycle, i.e., a number of consecutive edges around a vertex. Each
edge cycle is composed of a number of wedges, every two consecutive wedges sharing a common edge. The image Fig.
4.8 (b) shows three wedges, made of four, two, and one corners. A corner is just a vertex of a face, plus the two respective
edges of the face boundary.

Faces (or halfedges) do not refer directly to vertices, but to wedges, and all wedges of one cycle of course refer to
the same vertex. Wedges carry the attributes of the vertex with respect to the faces of the wedge, i.e., with respect to the
corners. The source code to the right in Fig. 4.8 demonstrates that the space overhead is one reference per vertex, the
reference from the wedge to the vertex. This means that a mesh with with v vertices and f faces requires (5+ 2 · 6)v =
17v ≈ 8.5 f references, or 68v ≈ 34 f bytes, i.e., 34 bytes per triangle. This is 2 bytes/∆ more than with a directed edge
data structure, but with the latter multiple attributes per vertex are simply not possible.

4.1.5 Automatic Mesh Simplification using Error Quadrics

The purpose of automatic mesh simplification is to remove redundant mesh entities to obtain a mesh that is smaller than
the given mesh. The crucial question is: What is a good approximation? And which entities are redundant? The answer
is usually given in terms of an error measure that quantifies the distance between the original mesh and the simplified
version. Simplification is an iterative process, and by monitoring the error, a tolerable approximation can be found.

The idea of the approach from Garland and Heckbert is to track for each vertex the sum of the squared distances from
the vertex to a set of planes from surrounding triangles [GH97]. In the beginning this distance is zero for every vertex.
Then pairs of vertices are iteratively merged into one, either by contracting an edge, or by a non-edge contraction in case
two vertices are very close but not connected via an edge (Fig 4.9, left). The error functions of both vertices are combined,
so that the combined vertex inherits all the planes from the merged vertices. The error of the combined vertex is not zero,
since it is generally not the case that all the planes from the merged vertices intersect in a single point.

The pseudocode in Fig. 4.9 gives an outline of the algorithm. Every vertex is assigned a quadric Q that is generated
from the plane equations of the incident triangles. The distance from a vertex v to a plane can be expressed as a scalar
product if the vertex position p is given as 4-dimensional vector p = (x,y,z,1) in homogeneous coordinates. Let q =
(a,b,c,d) represent the plane defined by the equation ax+ by+ cz+ d = 0, with a2 + b2 + c2 = 1 so that (a,b,c) is the
normalized plane normal vector.
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The signed distance from p to q is qT p = (a,b,c,d)T · (x,y,z,1). When this distance is squared, it can be expressed as
a quadratic form Q that is the dyadic product of the plane equation with itself:

(qT p)2 = (pT q)(qT p) = pT (qqT ) p =: pT Q p = (x,y,z,1)
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When v has valence k, it is incident to k faces with plane equations q1, . . . ,qk , and the sum of the squared distances is
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Instead of explicitly storing all the plane equations associated with a vertex they are simply summed into a single quadric
Q. A quadric is a symmetric 4×4 matrix, and it is positively definite, i.e., pT Q p≥ 0 for all p. It can be stored using only
the 10 floats for the upper half, and the same is also true for the sum of the quadrics.

The main idea of the simplification is to assign a cost to every potential contraction. So the algorithm proceeds by
assigning cost values ci j to all edges in the mesh. Vertices that are not connected by an edge are also evaluated, but only
if they are very close to each other, i.e., their distance is smaller than a preset threshold. Together they form the set of
valid pairs. The error that is introduced when a pair (vi,v j) of vertices is collapsed into a single vertex v̄ can be measured
as the capability of this point to satisfy simultaneously all the plane equations that vi and v j have to satisfy. One way to
achieve this is by simply adding the quadrics from the vertices of a valid pair to obtain Qi j = Qi +Qj. So when a pair
(vi,v j) is contracted into a single vertex v̄ at position p̄, the error introduced is p̄T (Qi j) p̄. This is defined as the cost of
this contraction. Note that the two triangles incident to the edge are counted twice when adding the quadrics. Garland and
Heckbert argue that this is tolerable.

Of course, the position p̄ has to be chosen in an optimal way, so as to minimize the cost. But a quadric, or quadratic
form, is just a function c : R

3→ R that is quadratic in x, y, and z :

c(p) = pT Qp = a2x2 +b2y2 + c2z2 +2abxy+2bc yz+2ac zx+2ad x+2bd y+2cd z+d2

This means that the constant-error iso-surface E(ε) = {p∈R
3 |c(p) = ε} is an ellipsoid. Every (non-degenerate) quadratic

function has a unique minimum, so there is only a single point (x,y,z,1) for which the gradient is zero:
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Assuming that the 3×3 submatrix from the first three columns is invertible, the minimum point p̄ can be readily computed
by solving a linear system. If it is not invertible, for instance if the quadric is made of summing up identical planes, p̄ is
chosen in the middle between vi and v j. The hypothetical vertex is returned by the procedure MINIMALERROR.

All valid pairs are sorted into a heap, according to their cost. A heap permits to quickly identify the minimum cost
contraction. When this contraction is performed, Qi j becomes the quadric of v̄ (in the procedure PAIRCONTRACT). All
edges that before were incident to vi and v j then become incident to v̄. Especially after a non-edge contraction it is
important to clean up and remove degenerate triangles, i.e., triangles that are incident to the same vertex or neighbour face
more than once. After cleanup, new incidences have been established, especially to the new vertex v̄. This means that new
valid pairs are formed, others have become obsolete, and the heap must be updated accordingly, as part of the procedure
UPDATENEIGHBOURHOOD in the last line of the algorithm in Fig. 4.9).

The possibility to glue different shells together is very important if a seemingly connected object is composed of
a multitude of different shells: A tree for instance might very well be modeled by replicating the leafs, so that many
identical copies, or just references to a ‘master leaf’, are floating in space, which are not attached to the trees. Garland
and Heckbert give the example of a set of closely spaced but unconnected cubes, which can be merged into a single big
box when non-edge contractions are possible.

Both operations, edge and non-edge contractions, can change the genus of a surface. In particular, topological holes
can be closed, which is important, e.g., when processing medical data sets. But as a subtlety note that also an edge
contraction can lead to degeneracies, for instance when removing a topological hole. Right before removal, the hole
consists of only two edges eA and eB, both being incident to the same vertices vi, v j; but the edges are each incident to
different faces. When edge eA is contracted, vi and v j collapse into v̄, and eB becomes a loop. This makes both triangles
on eB degenerate, and they must be removed.
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4.1.6 Progressive Triangle Meshes

Redundant mesh entities can be removed by methods for automatic simplification, such as the technique from Garland
and Heckbert in the previous section. But this redundancy is very often only relative, and not absolute: When an object is
inspected at a close distance, one would like to see the object at the greatest available resolution.

In 1996, Hugues Hoppe has presented an idea to make the simplification reversible [Hop96]. Entities are removed
step by step, applying simple local operations such as edge and non-edge contractions. Focusing on one of them, the edge
contraction, he noticed that it is invertible. This pair of mutually inverse operators was called edge collapse and vertex
split, or ecol and vsplit for short, shown in Fig. 4.10.

In order to create a progressive mesh, or short PM, a simplification algorithm is made to continue its work until no
more detail can be removed, e.g., until just a tetrahedron remains from a genus 0 object. This mesh is called the basemesh,
and all operations applied during simplification, leading from the original mesh to the basemesh, are logged.

Definition 4.4 (Progressive Mesh)
A progressive mesh consists of a base mesh M0 = (V 0,E0,F0) and a sequence (r0, . . . ,rk) of split records, the split
sequence. Let n = |V 0| and m = |F0|. Each split record ri permits to insert one vertex vn+i , two triangles fm+2i , fm+2i+1 ,
and three edges into the mesh using a vertex split, and to also remove them again using an edge collapse.

When a triangle mesh is converted to a progressive mesh, any desired resolution between the coarse base mesh and
the highest resolution can be quickly adjusted. Vertices and faces can be progressively added or removed by executing the
appropriate split records, i.e. by traversing the split sequence in either direction. This means that the object is converted
into a multi-resolution mesh. One central observation is that progressive meshes take a fundamentally different view on
surfaces, which is in fact a paradigm change: A mesh is understood as the result of applying a sequence of operations –
rather than some static tables or lists of mesh entities.

Applications of progressive meshes. The basic idea has proven to be very fruitful, and a number of extensions and
variations build upon progressive meshes. They have also grown into a semi-standard: Hugues Hoppe works for Microsoft
research, and Microsoft’s DirectX contains progressive meshes since version 5.0, so that they can be used by application
programmers to provide 3D applications with level of detail control.

• Continuous level of detail.
A progressive mesh permits to adaptively adjust the needed level of detail in the mesh. This is extremely important for
the ability to process scanned datasets, which may contain hundreds of millions, or even billions of triangles [LPC∗00,
IG03]. But very often only a coarsified 3D object is not sufficient, e.g., with medical application the availability of the
highest resolution is mandatory, for legal reasons. The enormous amount of data from scanning is shown in Fig. 4.11.

• Geomorphs.
The insertion and removal of vertices and faces can be animated, which turns a progressive mesh into a ‘geomorph’
object. This avoids the ‘popping artifacts’ from suddenly appearing triangles, which disrupt the impression of a contin-
uous, static surfacee. This is achieved by gradually moving a vertex to its target position before changing the topology.
So the discontinuous change in Fig. 4.10 (top row) is replaced by the animation in the lower row, in either direction.

• Progressive transmission.
Some image formats, such as JPEG 2000 [jpe00], permit to inspect a refining preview of an image while this image is
being transported over a low-bandwidth connection like a modem. The idea of progressive encoding and transmission
is that supplemental data refine, but do not replace, the data already received. The same is possible with progressive
meshes, replacing the wavelet decomposition by a hierarchy of unfolding vertices. Precautions must be taken against
data loss: When a split record is missed, one pair of vertices cannot be created, but also none of their descendants.

• View-dependent refinement.
A vertex a can already be split if it exists in the mesh, and it is incident to the two vertices c and d from Fig. 4.10, to
create triangles abc and adb with them (or their ‘closest living ancestors’, see [Hop97]). This implies a dependency
relation between the vertices, which can be exploited to coarsen and refine the mesh on demand. Splits and collapses
can be executed ‘out of order’, not only in the strictly linear order prescribed by the split sequence. This permits for
view-dependent mesh refinement, which acts as a level-of-detail mechanism, to increase the rendering performance.

• Losless compression.
Before progressive meshes, multiple discrete levels of detail were realized by storing several versions of the same
object at different resolutions, thereby greatly increasing the size of the dataset. Progressive meshes not only provide a
continuous level of detail, but surprisingly they can also be encoded in a way that the file size is even smaller than that
of a standard indexed face set. Concerning the geometry, for instance, the 3D positions in a split record use to be in
close distance, which can be exploited by delta encoding.
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Figure 4.10: Edge collapse & vertex split, and geomorph. Top: Each split record from progressive meshes
contains data to perform both edge collapse and vertex split, to coarsen and refine the model resolution. Bottom:
By animating the edge collapse, popping artifacts are avoided. This is called a geometry morph, or short geomorph.

An implementation. To evaluate the approach a mesh simplifier and an implementation of progressive meshes were
realized. They use a shared vertex mesh with neighbourhood pointers, parameterized by a trait, similar to the MeshSVN
class from Fig. 4.2. The simplifier is based on the method from Garland and Heckbert, but it is more restricted: It uses
only edge contractions (i.e., edge collapse), no non-edge contractions, and processes only closed manifold meshes. This
is a serious limitation for its applicability to real-world problems. Especially meshes obtained from laser range scanning
may be highly non-manifold, i.e., exhibit complications such as those listed in Fig. 2.28.

As explained earlier in sec. 4.1.3, for the shared vertex meshes to work either degenerate triangles must always be
avoided, or the mate method to find the opposite halfedge must perform two additional checks. The choice was to do the
first, as the implementation is restricted to the manifold case anyways. The restriction to the manifold case had also other
consequences. It was found that two checks are important in order to avoid degenerate triangles in both the geometric and
the topological sense. If either of these tests fails, the edge collapse is illegal and may not be performed:

• Flipover test: The face normals of the triangles incident to both vertices that are to be collapsed must be compared
before and after the collapse: The collape operation may not flip a triangle, e.g., the face normals may not deviate
by more than 90 degrees before and after the collapse.
• Triple connect test: Suppose an edge a,b as in 4.10 is to be collapsed. The neighbourhoods of a and b share two

vertices c and d. In case they share also a third vertex, a collapse results in a double edge. This can lead to a pair of
degenerate triangles forming an ‘ear’.

Despite the overhead from these tests, the speed of the simplification is quite acceptable: About 10,000 vertices per second
are removed on a moderate PC2. For a mesh with 53858 vertices, the reduction rate is 12903 vertices/s, for a larger mesh
with 94953 vertices the rate is a bit lower, 10101 vertices/s. This is due to the cost of the heap. It contains all edges of the
mesh, arranged according to the cost of a potential collapse. So overall its complexity is O(|E| log |E|), i.e., it increases
more than linearly.

The result of the simplification is an .obj file containing the basemesh and the split records. With a slight extension of
the .obj syntax, it was possible to encode them in the same file. A split record begins with the pm tag:

pm ia jabc kadb aold
x aold

y aold
z anew

x anew
y anew

z bnew
x bnew

y bnew
z matidabc matidadb

The tag is followed by the index ia of the vertex a to be split, and the indices jabc and kadb of the faces to be created
on either side of the new edge. They specify the position in the mesh where the split is to take place. Then follows the
old vertex’s position, and two positions of the new vertices. The index of the newly created vertex is determined by the
position of the record in the split sequence: If the basemesh has n vertices, the first split record always creates vertex n+1,
etc. Finally, the record contains the materials of the new faces after the split. One pm line in the file directly corresponds
to a SplitRecord structure that stores it in memory, which contains five integers and three Vec3f.

The speed of the progressive meshes is of course much higher than the simplification rate. On the same machine,
inserting 577114 vertices takes just 4.29 s, an insertion rate of 134,570 vertices/s. Removal is even about twice as fast, to
remove 537699 vertices takes just 2.135 s, which is a rate of 251,835 vertices per second. These results were obtained by
only linearly traversing the split sequence, not using a more sophisticated out-of-order or view-dependent refinement.

2500 MHz Pentium III with 256 MB RAM running Linux, gcc version 2.96 with -O3
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Figure 4.11: Simplification of scanned data. The original medical data set has 598,026 vertices and 1,194,668
triangles. It is reduced to 117658 (20%), 17648 (3%), and only 5882 (1%) of the vertices.

Figure 4.12: Adaptive level of detail with progressive meshes. The low resolution has only 14%, or 558 from
3992 vertices. At a low pixel resolution (a,c), the difference is hardly noticeable, despite the distortion of (b).

Figure 4.13: Simplification implies smoothing. The stonehenge-like object with 53855, 10770 (20%), 2692 (5%),
and 538 (1%) vertices shows how low-resolution triangles are fitted to whole surface regions.
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Figure 4.14: Level of detail of a ionic column. The CAD dataset has 12007 vertices, and it is reduced to 50%,
20%, and 10%, with 6003, 2401, and 1200 vertices. Note that each ridge is simplified differently.

Some results. A series of experiments was carried out to assess the efficiency of progressive meshes in conjunction
with automatic simplification. The examples confirm that the method is most useful for densely sampled meshes, be they
exported from CAD systems or obtained from scanning. To better judge the surface quality, flat shading was used in all
images. The appearance is of course much smoother if instead vertex normals are used with Gouraud shading.

The first example is a CAD dataset, the ionic column in Fig. 4.14. It contains 12K vertices, which is good for manu-
facturing, but slightly oversampled for interactive visualization: A greek temple typically contains dozens of columns, and
24K∆ per column is excessive. Remarkably, the column can be reduced to only 10% without much visual degradation.
Only at close inspection, and with wireframes, the irregularity of the triangulation is visible. The medical dataset in Fig.
4.11 shows how mesh simplification can actually remove artifacts: The hip was scanned in slices that are clearly visible
in the highest resolution. Even at 20% the slices are still present, and only at extremely high reduction rates the model
becomes smooth without slices – as the bones supposedly are. This raises the fundamental question of what the ‘true’
object is. The house model in Fig. 4.12 shows the use of progressive meshes for view-dependent rendering: When the
house covers only 93× 100 = 9300 pixels, there is not much use for the high-resolution model with 4K vertices; a 14%
version with 0.5 K vertices delivers almost an identical image, even if the low-resolution model exhibits serious distortion
(b). The low-resolution images are made with 8-times accumulation buffer antialising. Simplification also has a smoothing
effect. The Garland/Heckbert method integrates more and more plane equations into the quadrics of the mesh vertices. So
after a number of steps, the vertex positions are sort of a least squares fit to a number of planes from a whole region of the
original object. This fitting property then also carries over to the larger triangles, in (c) and (d).

Also with some synthetic examples simplification behaves surprisingly well. The subdivision surface in Fig. 4.15 (a)
was created by extruding each quad face of a distorted L-shape. At a certain point, automatic simplification recovers
exactly the original quads, and approximates the added geometry faithfully as a four-sided pyramid (b). Less surprising
is that a subdivided box indeed becomes a box at some stage. The high-valence vertices in (d) are a result of the heap
implementation: All edges in the plane all have identical contraction cost, but an edge from the last processed vertex is
sorted to become most likely also the minimum in the next step.

Other synthetic objects reveal the limitations of automatic simplification. The window as well as the temple model
in Fig. 4.16 are already low-resolution objects, with 319 and 209 vertices, respectively. Whenever vertex positions are
carefully chosen so that they best represent a given object, simplification introduces noticeable distortions. Another
objection is that different but symmetric parts of the same object are most likely not simplified the in same way. This
applies to the faces that make up the holes in the window, as well as to the stairs in the temple model and the ionic column
(Fig. 4.14). This is the reason why carefully designed discrete levels of detail are still in service today – especially when
the aesthetic appearance is key, for instance in skillfully designed 3D computer games.

Issues with automatic simplification and progressive meshes. Mesh simplification and PMs are fascinating subjects
of study. Especially PMs have triggered a wealth of research contributions also in related fields, from progressive encoding
and transmission schemes to out-of-core simplification, progressive point clouds, and many more. Yet the experiments
revealed that there are some practical, and also some fundamental issues with this technique.
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Figure 4.15: Detail preservation. At certain points, automatic simplification can reveal the ‘true’ object structure.

Figure 4.16: Simplification breaks symmetry.

• Automatic simplification breaks symmetry.
Especially when the input shape is very regular, it is not easy to simplify it without introducing irregularities. For
the column model in Fig. 4.14, for instance, the fact that each of the ridges is simplified in a different way is quite
annoying. The differences between the ridges are perceived as artifacts much before actual simplification artifacts
become apparent. This is even more so with ‘light’ objects that have fewer, but more important vertices (Fig. 4.16).

• Highest resolution is limited.
Other than, e.g., with free-form surfaces, the highest surface resolution is limited by the resolution of the input mesh.
Also at close inspection, detail cannot be synthesized beyond the input mesh resolution, for instance by a finer sampling
of an underlying ‘true’ surface.

• Per frame LOD adjustment overhead.
View-dependent LOD tries to identify a suitable resolution on the level of individual triangles. In every frame, triangles
are removed and inserted, which imposes a constant run-time load to the renderer. Also triangle strips must be gathered
at run-time [Hop97] from individual triangles that may show up in an incoherent fashion somewhere on the mesh,
wherever a vertex happens to be ‘unfolded’. Unlike in the mid-90s, current3 graphics hardware renders triangles very
fast compared to the CPU speed, so that to bother with individual triangles becomes inefficient at some point.

• No real-time mesh modifications.
The simplification works offline, as a pre-processing step, to turn a high-resolution mesh into a multi-resolution mesh.
When the input mesh is changed, just to re-run the simplification on the changed high-resolution parts is not enough:
Simplification is a hierarchical process, and since it works by combining vertices, the changes are propagated also to
un-changed surface regions, especially at lower resolutions.

• No ‘real’ compression.
The PM representation may be smaller in size than the input mesh, but it is still in the same order of complexity. The
same is true for other mesh compression methods: They spend a very small, but asymptotically constant, number of bits
per vertex to encode a mesh. In the ionic column example, however, a compression rate beyond that could be achieved
if all the ridges would exist only once in a file, plus the information where the object has ridges.

To summarize, individual triangles are at a very low level of abstraction. A reasonable alternative, and one that also
resolves some of these issues, is to group triangles together so that they form surface patches. With per-patch LOD
adjustment, for instance, it is possible to switch between different resolutions of a whole group of triangles at a time.

3in 2004
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(to) 0 1 1 2 2 3 3 4 4 5 5 6 6 0 1 6 3 1 1 7 3 7 4 7 5 7 6 7
face 0 2 0 3 0 3 0 5 0 6 0 7 0 2 1 2 4 3 4 1 5 4 6 5 7 6 1 7
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face face 0 face 1 face 2 face 3 face 4 face 5 face 6 face 7
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edges 12 10 8 6 4 2 0 26 14 19 15 13 1 17 3 5 21 18 16 23 20 7 25 22 9 27 24 11

Figure 4.17: B-rep connectivity example. Upper table: The connectivity is defined by the halfedges, consecutive
halfedges 2 i and 2 i+1 form one edge. Each halfedge has three references, the (to) row just list the mate vertex to
increase readability. Lower table: Halfedges sorted according to face boundaries. Face 0 is the backface.

4.2 Boundary Representations and B-Rep Meshes

The term boundary representation is the name of the general approach to represent a real-world 3D object, or a 3D solid, in
a digital computer solely by representing its surface. A 3D solid is bounded by a closed manifold surface, and this surface
can be divided into discrete sets of 2-, 1-, and 0-cells. A variety of examples was given in chapter 2. The canonical,
genuine domain of boundary representations is the class of closed manifold 2-complexes.

This term, and especially its shorter form B-rep, has also a more concrete, technical connotation. It denotes a class
of data structures, a particular form of meshes with faces that can have any degree and possibly also holes. So they are
a generalization of triangle meshes, but not only with respect to the face degree. B-reps can also realize more general
embeddings, which makes them a data structure for representing patch complexes (Def. 2.34 in sec. 2.4). It is important
to note that there is no such thing as ‘the’ B-rep data structure. B-reps can be implemented in many different ways. The
reason is the broad applicability of the general B-rep approach.

A classical, important application domain for B-reps is computer aided design, CAD, where the surface of the objects
is composed of trimmed B-spline or NURBS patches. Every NURBS patch is glued to other patches, with special continu-
ity conditions along the borders. B-reps help to maintain the consistency of the CAD solids by storing their connectivity:
They can keep patch references in their faces, and references to trim curves in the edges, for example.

Half-edge data structure. In the mid-80s quite a few different data structures for B-reps have been developed, besides
the half-edge data structure most notably Baumgart’s winged edge data structure [Bau75], and the quad-edge data structure
from Guibas and Stolfi [GS85]. They have different design tradeoffs, but they are all theoretically more or less equivalent
as nicely summarized, e.g., by Lutz Kettner [Ket99].

For the same reasons as outlined for the directed edge-implementation in 4.1.4, a half-edge data structure was chosen.
Another reason for this choice was compatibility: It seems that the half-edge data structure is today the most widely used
B-rep data structure. This may be due to the fact that halfedges are quite useful and convenient to use as mesh iterators
(sec. 4.1.3): A halfedge uniquely identifies a position on the mesh, i.e., one (vertex,edge,face) combination. With halfedge
objects, a whole combination can be uniquely identified with a single pointer, the pointer to the respective halfedge object.

Which references to store in a halfedge? The halfedge data structure is an edge-centered data structure, i.e., the
connectivity is entirely defined by the edges. The goal is to permit quick access to all incident entities, ideally in constant
time, with a minimal space overhead in the data structure. Indexed face sets have one reference per halfedge, a vertex
index. Directed edges need only two and can grant constant time access: faceCCW, faceCW, vertexCCW, vertexCW, and
mate all have complexity O(1). On the other hand, the maximum number of references is five: To the vertex and face, to
the mate, and to the next and previous halfedges along the face boundary.

Since B-rep faces can have arbitrary degree it is not possible to group any fixed number of halfedges together, like
three for the directed edge triangle meshes. Consequently, at least one more reference must be spent to connect the edges
of a boundary cycle (without a proof). With only one reference, the face boundary is only a singly connected cyclic list.
The consequence is that not all access functions have constant complexity any more – in one direction, the access time
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Figure 4.18: Red artifact edges to split up rings. When all rings are connected to the outer boundary, the face
becomes a 2-cell (a). Artifact edges are somewhat arbitrary, it should be the job of the triangulation to correctly
partition the face (b). Practically, this is annoying for instance when setting windows into a building façade (c).
(d): Faces (A and C) and rings (B) are represented by the same C++ class Face that references one boundary cycle.
But faces and rings know each other: A.nextring = B , B.nextring = NULL , and B.baseface = A.baseface = A.

is valence dependent (see faceCW code in Fig. 4.20 (a)). As it is no longer possible to derive the face index from the
halfedge index a face reference is also mandatory. This is very redundant, indeed, as all face references in a boundary
cycle are identical.

For B-reps, both face degrees and vertex valences are variable. The only constant valence incidence remaining is that
in manifold surfaces, halfedges have only a single mate. This can be exploited to make an explicit mate pointer redundant,
trading speed for space: The idea is to store pairs of halfedges together, i.e., both halfedges that make up an edge are
stored in consecutive array positions. So in total, halfedges contain three references: To one vertex, one face, and to the
next edge in the boundary cycle. As one example the familiar triangle mesh is listed in Fig. 4.17. The only higher degree
face is the backface. The backface is not mandatory, the halfedges could equally point to NULL to flag a border. But note
that due to the halfedge pairing, the halfedges on the other side of the the border are inevitable.

Duality: Face and vertex classes are (almost) symmetric. Note that halfedges connect the face boundaries as well as
the edge cycles around vertices. Vertices and faces provide a single edge reference, just to make sure they are not a dead
end for navigation. The roles of vertices and faces are symmetric and, in fact, exchangeable. Consequently, the dual of
the abstract complex is directly accessible from the (primal) B-rep.

This symmetry is broken only by the fact that faces can have rings. As explained in sec. 2.2.4 (makeEF), this means
that the dual graph can have complex vertices. Equivalently, to restore the symmetry of the data structure, vertices might
also be allowed to be incident to more than one edge cycle. This would permit to represent also non-manifold vertices.

Faces can have rings. A design decision is that faces can have holes, i.e., multiple borders. The original motivation
for rings is trimming: With trim curves, arbitrarily shaped holes can be cut out of the surface. It is extremely convenient
when openings can be inserted into, e.g., a NURBS patch without having to split the patch up, which can be a complicated
operation. When rings are not available, artifact edges have to be inserted. Artifact entities are entities that do not have to
be inserted because of the logic of the model, but only because of technical requirements – or deficiencies.

In the spirit of patch complexes, B-rep faces are a device for grouping many triangles, or low-level cells, together
that make up a surface. Triangles are required for technical reasons, but they should be generated automatically. The
triangulation of a face with holes is shown in 4.18 (b): These triangles are only derived from another model representation
that is adapted to the requirements of modeling, and to the inner logic of the model.

Without rings, interior loops have to be connected to the outer face boundary – but the choice, which pair of vertices
is to be connected, is completely arbitrary. There is nothing special with the pair of vertices, e.g., in step 8 from Fig. 2.15.
This is even worse when faces have multiple openings, as in Fig. 4.18. In order to remove all rings, and to make the face
homeomorphic to the open 2-disc, all rings must be connected with non-intersecting paths to the outer face boundary.
This introduces many edges that are incident to the same face on both sides. – Remind that with the Euler operators from
section 2.2 an arbitrarily shaped opening in a polygonal face can be created with a single killFmakeRH.

To integrate rings into the data structure, note that faces reference only a single boundary cycle so far. This can be
elegantly resolved by using the same class for faces and rings. This class is extendend so that a face can reference another
face, which is then a ring. In Fig. 4.18 (d), the neighbour of baseface C is ring B, whose baseface is A.

Implementation. The B-rep data structure is presented in Fig. 4.19. It is no surprise that it is based on a trait (from
section 4.1.2). Some of its features and data structure design decisions are summarized in the table in Fig. 4.21.
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struct Vertex : public V
{

Vertex ( ) { }
Vertex ( const V& data ) : V( data ) { }

i n t & deadID ( ) { return s ta tus ; }
bool ac t i ve ( ) { return s ta tus >=0 ; }
i n t s ta tus ;

Edge∗ oneEdge ;
} ;

struct Edge : public E
{

Edge ( ) { }
Edge ( const E& data ) : E( data ) { }

Edge∗ faceCW ( ) ;
Edge∗ faceCCW ( ) { return next ; }
Edge∗ vertexCW ( ) { return mate ( )→next ; }
Edge∗ vertexCCW ( ) ;
Edge∗ mate ( ) { return ( ( s ta tus &1)==0)

? th is + 1 : th is −1; }

i n t & deadID ( ) { return s ta tus ; }
bool ac t i ve ( ) { return s ta tus >=0 ; }
i n t s ta tus ;

Vertex ∗ ver tex ;
Edge∗ next ;
Face∗ face ;

} ;

struct Face : public F
{

Face ( ) { }
Face ( const F& data ) : F ( data ) { }

bool isBaseface ( ) { return baseface== th is ; }
bool hasRings ( ) { return nex t r i ng !=NULL ; }

i n t & deadID ( ) { return ( i n t &)oneEdge ; }
bool ac t i ve ( ) { return baseface !=NULL ; }

Edge∗ oneEdge ;
Face∗ nex t r i ng ;
Face∗ baseface ;

} ;

template<class T r a i t >
struct BRepMesh : public T r a i t
{

typedef BRepMesh< T r a i t > Mesh ;
typedef typename T r a i t : : V V;
typedef typename T r a i t : : E E;
typedef typename T r a i t : : F F ;

struct Vertex { . . . see code to the l e f t }
struct Edge { . . . see code to the l e f t }
struct Face { . . . see code to the l e f t }

BRepMesh ( ) { }
~BRepMesh ( ) { }

/ / Sk ipvec to r f u n c t i o n a l i t y
void c l ea r ( ) ;
bool reserve ( i n t kv , i n t ke , i n t k f ) ;
void purge ( i n t ∗ cv , i n t ∗ ce , i n t ∗ c f ) ;
bool r e l oca te ( ) ;

Vertex ∗ newVertex ( const V& v ) ;
Edge∗ newEdges ( const E& e0 , const E& e1 ) ;
Face∗ newFace ( const F& f ) ;
void de le teVer tex ( Vertex ∗ v ) ;
void deleteEdges ( Edge∗ e ) ;
void deleteFace ( Face∗ f ) ;

Sk ipvec to r<Face> faces ;
Sk ipvec to r<Edge> edges ;
Sk ipvec to r<Vertex > ve r t i c e s ;

} ;

struct Tra i t_VpFntc
{

struct V { Vec3f pos i t i o n ; } ;
struct E { } ;
struct F { Vec3f normal ;

i n t t r iChunk ; } ;

void t r i a n gu l a t e ( ) ;
void render ( ) ;

Skipchunk<GLuint > t r i a n g l e s ;
} ;
template struct BRepMesh<Tra i t_VpFntc >;

Figure 4.19: B-rep mesh as a container. The entity classes (left) are local classes of the B-rep class (right).
The B-rep uses the Skipvector container, the respective methods are explained in sec. 4.2.1. For newEdges and
deleteEdges see Fig. 4.20 below. The trait adds to the container data structure the functionality to triangulate and
render the faces, which is further explained in 4.2.2.

Edge∗ Edge : : faceCW ( )
{

Edge∗ e1 = ( Edge∗ ) th is ;
Edge∗ e0 ;
do {

e0=e1 ;
e1=e1→next ;

} while ( e1 != th is ) ;
return e0 ;

}

Edge∗ Mesh : : newEdges ( const E& e0 ,
const E& e1 )

{
Edge∗ e = edges . a c t i v a t e ( e0 ) ;
edges . a c t i v a t e ( e1 )→s ta tus = 1 ;
return e ;

}

void Mesh : : deleteEdges (Edge∗ e )
{

i f ( ( e→s ta tus &1 ) == 0 ) {
edges . deac t i va te ( e+1) ;
edges . deac t i va te ( e ) ;

} else {
edges . deac t i va te ( e ) ;
edges . deac t i va te ( e−1);

}
}

Figure 4.20: Some B-rep functions. (a) : Since edges have no pointer to the previous boundary halfedge, faceCW
must be realized with (m−1)× faceCCW. The vertexCCW navigation function is very similar. (b, c): Halfedges
(i, i+1) are activated as pair, and must be deactivated in reversed order (i+1, i) , so that they can be recycled.
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1. Entities are derived from their attributes. The reason for this has already been discussed in sec. 4.1.2.

2. References are pointers. Besides the pros and cons from sec. 4.1.2, C++ path expressions have proven to greatly
improve the readability of the source code, which makes it easier to maintain, and more robust. Second, mesh
entities can act autonomously, and many functions, e.g., for finding all edges of a connected component, do not
need access to a mesh, but only a halfedge to start from. Path expressions are also possible with index references
(see code in Fig. 4.7), but then look like this: edge→ faceCCW(mesh)→mate(mesh)→ faceCCW(mesh)

3. Incidence conventions. Vertices and faces have only a pointer to one arbitrary incident halfedge: Faces to one
boundary halfedge, vertices to one outgoing halfedge. A halfedge points to the vertex it emanates from, to the
face to its left, and to the CCW next edge on the face boundary (CW next for rings).

4. Face boundaries are singly connected. It may be theoretically appealing that faceCW and vertexCCW are con-
stant time face boundaries are doubly linked (otherwhise, see faceCW code in 4.20 a). But adding one Edge::prev
reference to each halfedge is quite a bit of overhead, since |Halfedges | ≈ 2 · (|V |+ |F |). And in practice the ben-
efit is only small, since average face degrees use to be not very high. Second, it is remarkably seldom that there
is no alternative to using faceCW and vertexCCW. In most cases, faceCCW and vertexCW can be used instead.

5. No mate pointer: Halfedges are allocated in pairs. Halfedges at consecutive array positions form one mesh
edge. Let i be the index of a halfedge. If i is even, its mate has index i+1, and i−1 if i is odd. The mate can only
be determined with access to the mesh: mate = ( (edge - mesh.edges.begin()) &1)==1 ? edge+1 : edge-1;

Consequently, the Edge::mate function, and also Edge::vertexCCW, need to get a mesh pointer. – As an alterna-
tive, one bit of the status field is used to distinguish between odd and even indices, which is explained in section
4.2.1.

6. Faces can have rings. A Face object is either a baseface, or a ring. In either case it references only one halfedge,
from a single boundary cycle. The edge cycle of all rings is CW oriented, whereas the basefaces are CCW. This
is consistent in that the face interior is always to the left when walking along the boundary.

7. Faces contain explicit ring pointers. A face is a baseface if its baseface pointer points to itself. A singly
connected list of rings is realized by the nextring pointer, which is NULL for the last ring – or for the baseface, if
it has no rings.

Most faces do not have rings, and to spend two references for potential rings is much (8 bytes on 32 bit). Alterna-
tively, the status field could be used to flag that a face has rings, or is a ring. The respective ring references would
then have to be stored in a separate list.

8. Navigation functions. Since halfedges are autonomous objects, the navigation functions can be part of the
halfedge class. From a single halfedge object, the whole connected component is reachable by just using the five
halfedge navigation functions, together with Face::nextring and Face::baseface.

9. Faces have no Vertex pointer. The minimal genus 0-object is the pointed sphere (Fig. 2.2), which consists
of only one vertex and one face – but no edges. Yet with an edge-based data structure, there is no connection
between vertices and faces without edges. So due to a lack of references, neither a face nor a ring containing just
an unconnected vertex can be represented.

A direct face-vertex connection could be realized by using a status bit flag: When the flag is on, the Ver-
tex::oneEdge field, or Face::oneEdge, points not to an edge, but to a face, or a vertex, respectively.

10. No NULL pointers. All connectivity pointers must target valid entities. Boundaries can be realized only as
boundary components, i.e., by inserting dummy faces (hollows). In particular there may be no isolated faces or
vertices, i.e., the oneEdge must always point to a valid halfedge.

11. No shell maintenance. Arbitrarily many solid objects can be stored in the same mesh. There is no explicit list of
connected components. One reason is that on the level of local mesh modifications, it is not possible to determine
in constant time whether a certain operation finally cuts an object apart. Second, there is no 1:1 relation between
shells and objects. Object administration is the job of higher software layers. It is often not even clear what an
‘object’ is.

Figure 4.21: Design decisions of class BRepMesh. This is a summary of the essential options and alternatives,
and the decisions that have been made. The result is a set of conventions to decide whether a mesh is valid.
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4.2.1 Skipvectors and Skipchunks

Modeling implies that objects can be changed. Changeable meshes have also many applications beyond modeling, just to
mention level-of-detail and view-dependent refinement. It is crucial for the performance to have low-level data structures
that efficiently support quickly varying data. In the case of meshes, it must be possible to add and remove lots of mesh
entities on a per-frame basis. The code in Fig. 4.19 uses a new data structure for vertex, edge, and face lists, the skipvector.

A skipvector is a container data structure that contains a sequence of items, that is (a) organized as an array, but (b)
supports quick insertion and deletion. It therefore combines the advantages of arrays, the direct random access to elements,
and of lists, namely flexible insertion and deletion. – To achieve the full performance with skipvectors, it is necessary to
know the mechanism behind. The implementation is not completely hidden away, like with STL’s vector or list containers.

Arrays versus lists. The STL specification [SL95] says that the vector container is for static, and list for dynamic data.
The vector permits O(1) insertion and deletion only at the end. Deleting other objects has linear cost, since the gap in the
array must be closed. The obvious implementation of a vector is as a C++ array.

The list container permits O(1) insertion and deletion everywhere but, other than the vector, it does not permit random
access: The kth element can only be accessed by (k−1)-times stepwise iteration, starting from the beginning. The obvious
implementation of a list is as a doubly-linked list, with two references prev, next per element. The danger when using lists
is memory fragmentation: After many insertions and deletions it may be that consecutive list elements reside in distant
locations in memory. list implementations exist that by default allocate each single element individually using new. This
fragmentation kills the cache coherence of the CPU, and can impair performance drastically. Tests have shown that the
time needed to simply iterate over a list with n elements can increase by a factor of 10 after many random insertions and
deletions – and this factor can even (discontinuously) increase with greater n.

The conclusion is to use arrays whenever possible, since they guarantee that all objects reside in a coherent chunk of
memory – were there only not the deletion issue.

Skipvectors are almost vectors. A skipvector maintains an array of objects of a given parameter type T. The deletion
issue is resolved by switching elements off, instead of actually deleting them. This leads to an unusual requirement for
the containee, class T, of a Skipvector<T>. Each element of type T must provide the following functions:

• T: :T() the standard constructor for initialization,
• T: :∼T() the standard destructor,
• int& T: :deadID() a place to store an integer, and
• bool T: :active() const a user-defined flag to tell whether an object is active or inactive.

In case an object is to be deleted from the array, this element has to offer a place where the skipvector can store a negative
integer. What for? The skipvector maintains a reference, an index i, of the element that was last recently deleted. In
case another element j is deleted, (−2− i) is stored in the deadID() of j, and j now becomes the skipvector’s last recently
deleted object. No destructor is called for i, or j, so all deleted elements are actually still ‘alive’, but have become inactive.
It is in the responsibility of the programmer to make active return false when an object is deactivated.

In case a new object is needed, the last recently deleted object j is recycled. That is, the skipvector looks at item j
and sets k = item[ j].deadID() and now takes (−2−k) as last recently deleted object. It then stores the value 0 in deadID()
of j , and eventually returns a pointer to j for its re-use. No constructor is called. It is in the responsibility of the user to
properly initialize the object. A skipvector can therefore be seen as an ‘array with gaps’. When looping over the array
elements, inactive elements need to be skipped (hence the name). An additional if-statement in the loop body is the price
to pay for the ability to remove elements from an array in constant time:

for ( Face∗ face =mesh . faces . begin ( ) ; face !=mesh . faces . end ( ) ; + + face ) {
i f ( face→ ac t i ve ( ) ) { render ( face ) ; }

}

Garbage collection. It may happen that loops become very inefficient when relatively few elements are sparsely dis-
tributed in a big array. To find out whether the majority of all elements is deactivated, the size of the active elements can
be compared against the range that the elements span, which equals (end− begin). The skipvector provides a garbage
collection, the purge function, that can be applied when for instance range > 3 · size .

The purge function moves all active items to the beginning of the array, removing all gaps between them, and moves
all inactive items behind them. It uses memcpy from the standard C library to do that. Thereby, it changes the location
of items in the array, a situation similar to the relocation problem: Pointers on array elements must be updated. Since
items do not leave the array, the update can be done by adding an integer offset to existing pointers. The purge stores the
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template<class T>
struct Sk ipvec to r
{

Sk ipvec to r ( ) ;
~Sk ipvec to r ( ) ;

T∗ ac t i v a t e ( ) ;
T∗ ac t i v a t e ( const T&) ;
void deac t i va te ( T∗ i tem ) ;

T∗ begin ( ) ;
T∗ end ( ) ;
T∗& oldBegin ( ) ;
T∗ operator ( ) ( i n t index ) ;
T& operator [ ] ( i n t index ) ;

bool c l ea r ( ) ;
bool reserve ( i n t n ) ;
bool purge ( i n t ∗ c ) ;
void r e l oca te (T∗& t ) ;
i n t s ize ( ) ;
i n t range ( ) ;
i n t capac i t y ( ) ;

} ;

template<class T>
struct Skipchunk
{

Skipchunk ( ) ;
~Skipchunk ( ) ;

i n t ac t i v a t e ( i n t s ize =−1);
T∗ addToChunk ( i n t s ize ) ;
void deac t i va te ( i n t i d ) ;

T∗ chunkBegin ( i n t i d )
T∗ chunkEnd ( i n t i d )
i n t s ize ( i n t i d )
i n t s t a r t ( i n t i d )

void c l ea r ( ) ;
bool reserve ( i n t n ) ;
void purge ( i n t ∗ i dc ) ;

i n t s ize ( ) ;
i n t range ( ) ;
i n t capac i t y ( ) ;

} ;

void BRepMesh : : purge ( i n t ∗ cv ,
i n t ∗ ce , i n t ∗ c f )

{
v e r t i c e s . purge ( cv ) ;
edges . purge ( ce ) ;
faces . purge ( c f ) ;
for ( Vertex ∗ v = ve r t i c e s . begin ( ) ;

v != ve r t i c e s . end ( ) ; + + v ) {
edges . re l oca te ( v→oneEdge ) ;

}
for (Edge∗ e =edges . begin ( ) ;

e != edges . end ( ) ; + + e ) {
v e r t i c e s . r e l oca te ( e→ver tex ) ;
edges . re l oca te ( e→next ) ;
faces . r e l oca te ( e→ face ) ;

}
for ( Face∗ f = faces . begin ( ) ;

f != faces . end ( ) ; + + f ) {
edges . re l oca te ( f→oneEdge ) ] ;
faces . r e l oca te ( f→nex t r i ng ) ] ;
faces . r e l oca te ( f→baseface ) ] ;

}
}

Figure 4.22: Skipvector and Skipchunk interfaces. Right: Implementation of the purge routine from Fig. 4.19.

individual offset values into an integer array c, whose size must be at least the skipvector range. If t is a pointer into the
array, then t can be corrected with if ( t !=NULL ) { t += c[ t-begin() ]; }

The skipvector provides the relocate method to do this correction. As an example, Fig. 4.22 (c) shows the garbage
collection of mesh entities. This is the implementation of BRepMesh::purge (Fig. 4.19 c), which is very similar to the
relocation repair. Note that (a) the correction arrays are expected to be allocated outside of BRepMesh::purge, and (b)
loops no longer have to test the active flag after purging the skipvector (until the next deletion).

The cost of purging an array is linear in its range, each element must be memcopied at most twice. It is worthwhile
when, after a sequence of insertions and deletions, many loops have to be made over the array.

Memory allocation strategy and relocations. When more objects are needed than were deleted, the skipvector follows
the same strategy as the STL vector: The array is dynamically resized to twice its size (using realloc from the standard C
library), which may lead to a relocation. As discussed in sec. 4.1.2, the problem is that pointers on array elements must
be updated. This is to be done by a user-defined relocation repair, similar to the function in Fig. 4.5. The code may be
simpler though, in the fashion of Fig. 4.22 (c), because the relocate function also serves for relocation repair. A relocation
has happened when oldBegin()!=NULL. The oldBegin must be set to NULL after the relocation has been properly repaired.

A relocation may happen with activate and reserve, since they increase the size, and with purge, which cleans up
unused items. In case of a purge relocation, the purge repair can be safely performed after the relocation repair. The
reserve function should be used whenever the number of objects to be inserted is known in advance. The number may be
roughly, but conservatively, approximated. After a sufficiently large reserve no relocations can happen any more, and no
relocation checks are necessary after activate etc.

The deactivate method only switches items off, and clear just sets end to begin. Both functions affects the size and
possibly the range, but not the capacity. The only way to reduce the capacity, i.e., the memory consumption, is to purge
the skipvector. After a purge, the capacity is the next power of two greater than the size. It is vital that in case items of type
T contain dynamic data, i.e., when each vertex contains for instance a set, these data are released before either deactivate
or clear. To execute, e.g., T::clear, if it exists, is in the responsibility of the user.

Skipchunks. It happens that it must be possible to dynamically allocate and delete not only individual data elements,
but whole arrays of data elements. A notable example is polygon triangulation: When the polygon is edited, the list of
triangles must be updated, e.g., deleted and replaced.

The skipchunk (see Fig. 4.22 b) is a container data structure that permits to request whole arrays of elements of a given
type T. The activate method returns the ID of the chunk as an integer. This ID can be used to traverse the chunk, get its
size, etc. The last activated chunk can also be expanded using addToChunk. Note that the purge routine returns chunk ID
offsets, not pointer offsets. There is no functionality to iterate over all chunks.
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start-point (in) start-point (out) bend-point (up) bend-point (down) end-point (in) end-point (out)

Figure 4.23: Sweep-line triangulation from Mehlhorn. Top rows: Situations before and after the sweepline passes.
The un-triangulated interior is grey. The algorithm maintains a list of ‘pockets’ sorted in vertical direction. A
start-node opens a pocket or splits one in two, an end-node closes or unites different pockets. As many triangles as
possible are added in every step, so that the pockets are always concave. Bottom rows: Irrespective of the sampling
density, the boundary polygon has 6 critical points (3 start-, 3 end-points).

4.2.2 Polygon Triangulation

The linear embedding of a B-rep is an embedding such that edges are straight line segments, and all edges and vertices
that belong to a face are contained within the same plane. So each face of a linear B-rep is an arbitrarily shaped polygon,
possibly with holes, floating in 3-space. In order to display it using a low-level graphics API, it must be tesselated, i.e.,
partitioned into triangles. Polygon triangulation is not a very complex problem, and a variety of different efficient methods
exist. This is also indicated by the fact that the size of the output, the number of triangles, basically equals the input size,
the number of vertices and holes.

Theorem 4.5 (Size of a triangulation)
Any triangulation of a polygon with n vertices and r rings contains t = v+2r−2 triangles.

To prove this, the triangulated polygon can be considered as a connected planar 2-complex. This complex contains
f = t + r + 1 faces: besides the triangles also one face for each ring, and one surrounding unbounded or backface. The
idea now is to count the edges twice by counting the triangles. This yields 2e = 3t + v, since by counting three edges per
triangle, all interior edges of the triangulation are counted twice; but not so the edges of the polygon. But irrespective
of the number of holes, every polygon with v points also has v edges, since one edge belongs to every vertex. On the
other hand, the Euler-Poincaré equation says that v− e+ f = 2 ⇔ 2v+ 2 f − 4 = 2e . Since f = t + r + 1, this equals
2v+2(t + r+1)−4 = 2e = 3t + v, which proves the theorem.

A sweepline algorithm. Computational geometry offers triangulation algorithms that use a partition into monotone
pieces [dvOS97], or very efficient randomized methods such as the O(n log∗ n) algorithm from Raimund Seidel [Sei91].
Another particularly useful paradigm from computational geometry is the class of sweepline algorithms. The idea is to
sort all input vertices, e.g., from left to right, and to process them one by one. This can be imagined as a continuously
moving vertical line, the sweep line. Mehlhorn has presented a sweepline algorithm for polygon triangulation [Meh84],
which is illustrated in Fig. 4.23: Every polygon vertex is an event point, and whenever the blue sweepline passes a vertex,
some triangles are added to the triangulation, according to the type of the event point.
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struct Tr iangu la tePolygon
{

typedef unsigned in t ID ;
typedef vec to r<ID > IDs ;
struct Tr iang le { ID t [ 3 ] ; } ;
typedef vec to r<Tr iang le > Tr iang les ;

Tr iangu la tePolygon ( ) ;
~Tr iangu la tePolygon ( ) ;

void se tPo in tAr ray ( void ∗ po in t s ,
i n t s t r i d e ) ;

void beginFace ( const Vec3f& n ) ;
IDs& po in t s ( ) ;
IDs& loops ( ) ;
bool t r i a n gu l a t e ( ) ;
T r iang les & t r i a n g l e s ( ) ;

} ;

nodes() 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
loops() 16 22

void Tra i t_VpFntc : : t r i a n gu l a t e ( ) { . . . ( i n i t )
Face ∗ face , ∗ r i n g ;
Edge ∗edge , ∗ edgeEnd ;
i n t i , k , n , c ;
Tr iangu la tePolygon po ly t r i ;
po ly t r i . se tPo in tA r ray (& ve r t i c e s . begin ( )→pos i t i o n ,

sizeof ( Vertex ) ) ;
for ( face = faces . begin ( ) ; face != faces . end ( ) ; + + face ) {

i f ( face→ac t i ve ( ) && face→ isBaseface ( ) ) {
po ly t r i . beginFace ( face→normal ) ;
r i n g = face ;
i = 0 ;
do {

edge = r i ng→oneEdge ;
edgeEnd = edge ;
do {

i ++;
k = edge − edges . begin ( ) ;
po ly t r i . nodes ( ) . push_back ( k ) ;
edge = edge→faceCCW ( ) ;

} while ( edgeEnd !=edge ) ;
po ly t r i . loops ( ) . push_back ( i ) ;
r i n g = r i ng→nex t r i ng ;

} while ( r i n g !=NULL ) ;

i f ( po ly t r i . t r i a n gu l a t e ( ) ) {
n = 3 ∗ po ly t r i . t r i a n g l e s ( ) . s i ze ( ) ;
c = t r i a n g l e s . a c t i v a t e ( n ) ;
face→ t r iChunk = c ;
memcpy( t r i a n g l e s . chunk ( c ) ,

&∗po ly t r i . t r i a n g l e s ( ) . begin ( ) ,
n∗sizeof ( ID ) ) ;

}
}

}
}

Figure 4.24: Triangulation API.

Care must be taken with vertical polygon segments, since both vertices pass the sweepline simultaneously. This case
can be reduced to the standard case by ‘simulation of simplicity’: The sweepline is imagined to be slightly slanted to the
left, so that from two vertices with equal x-coordinate, the vertex with smaller y-coordinate is processed first.

The triangle aspect ratio issue. There is a practical problem with this algorithm, and in fact with any triangulation
algorithm that uses only polygon vertices: When the polygon boundary is densely sampled, many long and thin triangles
are created, as in Fig 4.23, bottom right. Especially with specular materials, this gives visible artifacts when using Gouraud
shading: the illumination is computed at the vertices, and only interpolated in the triangle interior. To resolve this issue,
and to produce triangles with better aspect ratios, the triangulation must also use sample points from the polygon interior,
e.g., the so-called Steiner points [Epp92].

On the other hand, the left-to-right order of the triangle creation is also a feature of this algorithm, since it can greatly
speed-up the rendering. There are usually much fewer start- and end points than bend points. When triangulating, e.g.,
a convex shape, all except two points are bend points, and the triangles basically form a triangle strip. Today’s graphics
hardware can exploit this in fact even when the triangles are not rendered using the triangle strip primitive (cf. Fig. 2.25
from sec. 2.3.2), but arrive as index triplets. The graphics hardware maintains a vertex cache [Hop99], so that recently
processed (transformed, lit, etc.) vertices can be identified by their index and can, thus, be re-used.

To retain this feature, but still remedy the shading artifacts, another alternative is to use a shading model other than
Gouraud shading. The solution today is to use pixel shaders [MTP∗04].

The triangulation API. The actual triangulation algorithm can be completely hidden behind a suitable interface (API).
Fig. 4.24 gives a very explicit code example that not only demonstrates the usage of a TriangulatePolygon object (high-
lighted in bold as polytri) – it also gives a practical example of boundary traversal using halfedge navigation.

Similar as with OpenGL vertex arrays, the polygon vertices from each face are fed into the triangulation algorithm
only as indices. These indices directly refer to the vertex array of the B-rep, with the position field of the first vertex as
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void Tra i t_VpFntc : : render ( ) { . . . ( i n i t )
g lEnab leC l ien tS ta te (GL_VERTEX_ARRAY) ;
g lVe r texPo in te r ( 3 ,GL_FLOAT, sizeof ( Vertex ) , & ve r t i c e s . begin ( )→pos i t i o n ) ;
for ( Face∗ face = faces . begin ( ) ; face != faces . end ( ) ; + + face ) {

i f ( face→ac t i ve ( ) && face→ isBaseface ( ) ) {
g lNormal3f ( face→normal . x , face→normal . y , face→normal . z ) ;
glDrawElements ( GL_TRIANGLES , t r i a n g l e s . s ize ( face→ t r iChunk ) ,

GL_UNSIGNED_INT , t r i a n g l e s . chunk ( face→ t r iChunk ) ) ;
}

}
g lD i sab l eC l i en tS ta t e (GL_VERTEX_ARRAY) ;

}

Figure 4.25: Rendering a triangulated B-rep.

node with index 0. Since the skipvector holds the B-rep vertices in an array, the i-th next node can be found by adding an
offset of i ·sizeof(Vertex) bytes, which gives the location of mesh.vertices[i].position . Similar to OpenGL’s glVertexPointer,
the setPointArray method expects a stride, the memory offset between consecutive vertices, or nodes.

The loop iterate over all B-rep basefaces. The body of the loop consists of two parts. The first part demonstrates the
typical code to traverse all edges of a polygon with holes by using halfedge navigation functions. The face boundary is
cyclic, so it is usually traversed using do .. while together with faceCCW, rather than in a for-loop. This inner loop is
enclosed by another do .. while loop to iterate over all rings of the face (if it has any).

Projection to a principal plane. For each face, the triangulation is initialized with polytri.beginFace(n). Using the
normal vector n, one of the six principal planes is chosen, i.e., one of the xy, yz, zx, and xz, zy, yx planes. The face polygon
lies on an arbitrary plane in 3D, the face plane; but triangulation is a 2D problem. Fortunately, the triangulation of a
polygon is affinely invariant: The projected triangulation is also a triangulation of the projected polygon. As an example,
the projections to principal planes of the example polygon are illustrated in the image in Fig. 4.24.

For numerical stability, the best principal plane is selected according to which of the normal coordinates (nx,ny,nz)
has the largest absolute value. The sign of this coordinate determines the plane orientation, to choose between xy or yx,
etc. Note that the projection on the principal planes is special since it can be performed without any calculations, by just
leaving one coordinate away.

Storage order and rendering. During traversal, the node indices are collected into one coherent points() array. In
order to distinguish the different closed polygon loops, a second loop() array contains the index of the first node after the
respective loop. This is shown in the table above the image in Fig. 4.24 for the example polygon with 22 nodes. When the
nodes are in the same order as the point coordinate array, the node list is the identity. The loop list contains 16 and 22, for
the lengths of outer boundary and ring, which are 16 and 6.

The result of calling the triangulate() method is a sequence of n = v+ 2r− 2 consecutive index triplets, one for each
triangle of the triangulation. They can be directly memcopied to a chunk of 3 ·n indices reserved in a skipchunk, namely
the Trait_VpFn::triangles from Fig. 4.19. To later retrieve the chunk, its integer ID is stored in the face.

The net benefit of this effort is that rendering the triangulated B-rep becomes very easy. The code in Fig. 4.25 is
extremely concise. Again the B-rep’s vertex array is taken directly as the source for the point coordinates, using the same
stride sizeof(Vertex). All that needs to be done is to call glDrawElements for each face with the triangle indices stored in
the triangle chunk of the face.
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Figure 4.26: Combined B-rep Example: Arcade. Lower row: All column capitals have an identical control mesh,
only the sharpness flags of the edges are different. A range of different shapes can be achieved by combining
smooth transitions with sharp creases in various ways. Upper row: The polygonal control mesh has only 144
vertices and 126 faces, and also three rings. The bases of the column are rings of the floor, which is respected by
the tesselation. This works also with the left column where the ring at the base is a B-spline curve (1c).

4.3 Combined B-Rep Meshes

The combined B-rep, short cB-rep, is a multiresolution data structure for interactive modeling and visualization of models
composed of both free-form and polygonal parts. It is based on a half-edge data structure combined with Catmull/Clark
subdivision surfaces, hence its name. Combined B-reps bridge the gap between polygonal models on the one hand, and
free-form modeling on the other, and join both into one unified shape data structure.

This flexibility is achieved by attaching just one bit of information to every edge in the mesh, namely a sharpness
flag, to distinguish between sharp edges (red) and smooth edges (green). In regions with only sharp edges, B-rep faces
are rendered using standard polygon rendering, while in smooth regions the B-rep is regarded as a control mesh for
Catmull/Clark surfaces to create smooth free-form shapes.

From a user’s perspective, the great thing is that not too many degrees of freedom are added to the mesh: The shape of
the object is completely determined by the vertex positions and the sharpness bits, and, of course, the mesh connectivity.
Usually the shape of a model is just modified by moving control points, or mesh vertices – which is quite intuitive, but
can be tedious. With combined B-reps, there is another, powerful way to modify the shape, by flipping the sharpness of
some edges. This is in fact quite intuitive as well, an artist just has to keep in mind that

• for vertices, the number of incident sharp edges counts, and that
• all faces with a smooth edge are rendered as subdivision surfaces.

An example for the expressive power gained with this extension to the B-rep meshes from the last section is shown in Fig.
4.26. Combined B-reps allow to describe a complex shape very concisely: It is sufficient to basically just paint the edges
of a mesh either green or red. But beyond just a more flexible and concise shape description, combined B-reps also offer
two features that are indispensable when interactive shape design is the goal:

• Interactive Visualization: View-dependent, adaptive level-of-detail
A combined B-rep is a multi-resolution mesh. The free-form parts of the surface are partitioned into patches using the
technique that was presented section 3.4. In every frame, the resolution of each patch is chosen so as to provide an
optimal balance between display quality and rendering performance.

• Interactive Modeling: The mesh can be changed at runtime
The user is free to make arbitrary modifications to the mesh. Vertices can be moved around, the sharpness of any edge
can be toggled, and the connectivity can be modified as well (but must remain manifold). The tesselation of changed
surface parts is incrementally updated in real-time. By tesselation on demand, only the changed parts of the tesselation
are re-computed, and only in the resolution that is needed – without any lengthy offline pre-processing.
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Figure 4.27: Combined B-rep Example: Temple. Changing the sharpness of edges can have drastic effects.
The right temple is an attempt to smoothen as many edges as possible without introducing artifacts, like self-
intersections or triangulation problems. The roof pulls itself together and forms a shape that looks like the head of
a mushroom. The high-valence faces to the right and left sides of the steps very much attract the steps’ surface.

4.3.1 Background on Combined B-Reps and Related Work

The initial motivation for the development of combined B-reps was the quest for a surface representation suitable for
interactive modeling. The surface was supposed to render quickly, to have adequate – not too many and not too few –
degrees of freedom, and, most importantly, should cope efficiently with incremental shape changes through some kind of
selective update scheme.

When designing an object representation for 3D models, there is a certain trade-off between ease-of-manipulation
and rendering efficiency. For many surface representations, e. g. NURBS, quite efficient adaptive rendering schemes have
been developed, from Kumar’s torpedo room [KML96] to the fat borders from Balázs et al. [BGK03]. Alternatively,
surface models can be tessellated and represented by triangle soups, or using simplification and multi-resolution meshes.
An obvious drawback of all these approaches is that if an object undergoes shape changes, the costly preprocessing has
to be re-done. In all application areas where 3D objects are to be changed on-line, in unforeseeable ways, and based on
user interaction, instant visual feedback is the key. Offline preprocessing is not an alternative then. Apparently, the only
possible way out of this dilemma is

• to intertwine the preprocessing with the interactive display, and
• to design update-able data structures, which permit to selectively re-compute only parts of the pre-processing.

Unfortunately, the subject of suitable shape representations, especially for changeable shapes with both free-form and
polygonal parts, has received relatively little attention so far as a subject in its own right.

Representation of deformable models. This question is only treated as a side-issue in the large body of literature on
interactively deformable models. These approaches are all based on some kind of underlying shape representation that
permits real-time manipulation, e.g., triangle meshes [WW94, Gai00, GD99], implicit surfaces [Baj96, BCX95, HQ01,
DTG96, MCCH99], volumetric simplicial complexes [CFM∗94], discrete levels of detail [DDCB01], subdivision solids
[MQ02, McD03], or even point clouds [PKKG03a]. The focus of these papers, though, is in most cases the modeling
functionality rather than the underlying shape infrastructure. The subject of incremental tesselation updates is only treated
by Li and Lau [LL99] in greater detail, for the case of deforming NURBS surfaces.

One problem of NURBS, as well as Sederberg’s non-uniform subdivision surfaces [SZSS98], is that they offer too
many degrees of freedom. On the other hand, not all control points of a patch can be freely moved, there are invisible
dependencies between some of them. With NURBS in particular there are the well-known problems of maintaining the
geometric continuity with an irregular patch layout (see Farin’s book [Far02]). This impairs their usability in interactive
design, especially in comparison with subdivision surfaces. For the latter, practically instant feed-back can be guaranteed
for interactive modifications involving several hundred control mesh faces, due to very fast tesselation algorithms.

For Catmull/Clark surfaces, Bolz and Schröder [BS02a] report rates of 5.5 million quads that can be generated per
second using their tesselation scheme. This raises the question of whether caching the tesselation data is worthwhile
altogether, as 180K quads can be created at 30 fps with this approach. But doing this imposes a 100% CPU load – while
with the approach presented in section 3.4.3, no further computation is necessary for adaptive display, once the caches are
filled. And the generation is only one component, equally important is adaptive display without cracks.
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Figure 4.28: Combined B-rep Examples: Non-planar Faces and Tunnel. Top row: Subdivision surfaces are most
useful with non-planar faces. The surface follows the control mesh in an intuitive way, other than the triangulation,
which can break with weird, curved face boundaries that do not admit a projection without self-intersections.
Bottom: The tunnel shows how easy it is to switch between a sharp, CSG-like joint, and a smooth blended joint. It
is just a matter of whether the edges in the corner form a crease, or not.

Multi-resolution mesh editing. There is also a body of literature on editing multi-resolution triangle meshes, summa-
rized e.g. in [KBB∗00]. Using a decomposition operator, a fine-to-coarse hierarchy is established, and the shape can be
edited at any level. Shape detail is transferred back on the shape using the inverse operator, e.g. by subdivision. The
correspondence between different levels is maintained during modeling, either through a semi-regular connectivity (cf.
[ZSS97]), or via local parametrizations like in [KBS00]. The combined B-rep approach is different since it restricts the
modeling operations to the base mesh. The control mesh captures the complete shape information, there are no detail
coefficients. The obvious drawback is that with ‘pure’ Catmull/Clark, there is no fine level feature editing; no editing of
the basic shape while preserving high-frequency detail is possible.

A major problem when editing multi-resolution meshes is to keep the tesselation consistent. Approaches that maintain
several different levels of detail explicitly have limitations with large-scale modifications, especially with genus changes.
Cheng et al. present a quite interesting approach in [CDES01] for a consistent adaptive triangulation of a skin surface,
basically an implicit surface derived from a set of moving weighted points, e. g., spheres. Their mesh update is based on
local operations (collapse/split), but also has operations to change genus. This makes smooth transitions possible even
between objects that differ in genus. Their approach could eventually be extended to produce a multi-resolution mesh,
i. e., when the modifications are carried out simultaneously on different levels.

Advantages of the combined B-rep approach. But all approaches that explictly manipulate low-level triangles, such
as [GD99, Gai00], suffer from the fact that (i) to bother with individual triangles is inefficient when the graphics hardware
can display them faster than the CPU processes them, and (ii) local modifications interfere with rendering optimizations
and triangle strip generation. The combined B-rep approach does not have these problems: It is strictly top-down, on a
per-patch per-face basis, where the Catmull/Clark surface is regular and the tesselation scheme can be highly optimized.
Irregular cases are captured on an intermediate level, using the vertex and face rings from section 3.4.2. Second, the tech-
nique of multi-resolution rendering by patch sub-sampling from section section 3.4.3 permits to pre-compute optimized
triangle strips, avoiding cracks in the tesselation even with arbitrary depth differences of neighbouring faces.

The tessellation is considered a transient artifact which can be quickly (re-)generated on demand, and may also be
deleted if no longer needed. From this point of view, B-rep edges are feature edges, which are distinguished from artifact
edges in the face interior, generated automatically by triangulation or subdivision.

Combined B-reps in the architectual domain. The suitability of combined B-reps was demonstrated for the faithful
representation of architectural features, e.g., in the VAST conference in Glyfada in [HF01]. The following Figures 4.29,
4.30, and 4.31 give an impression of their usefulness for this domain.
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Figure 4.29: Combined B-rep example: Ornamental detail. In classical architecture, most often profiles are
rounded only in vertical direction. This can be concisely expressed with combined B-reps by making paths of
horizontal edges smooth. The side section, a sharp face, nicely shows the resulting B-spline control polygon.

Figure 4.30: Combined B-rep example: Levels of window detail. Architectural models typically exhibit rounded
features only in few, but very distinct places. Efficient LOD control is vital for interactive inspection of interesting
building details (c). But when the user just passes by a house with many windows, a low LOD is needed (a).

Figure 4.31: Combined B-rep example: Window decoration. Upper row: The lean model (1a) demonstrates
smooth, horizontal sharp, and vertical sharp decorations. Sharp paths emphasize the ‘flow’ of an ornament (1d, e).
Lower row: Very coarse, but regular models are sufficient to create very smooth, realistic architectural shapes. The
crucial question always is: What is the ‘right’ control mesh for a particular type of construction?
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Figure 4.32: Combined B-rep classification example. The input mesh (a) is specified by the user. Mesh entities
are classified and set up by commitUpdate and prepared for LOD assignment, tesselation, and rendering.
Vertices and faces are classified according to tables 3.1 and 3.2. Vertex 1 is smooth, 3 is a dart, 0 and 2 are crease
vertices, and 4, 5, 6, 7, 8 are corners. The multi-resolution faces, smooth faces 0, 1, 3, 4, 5, 7, and sharp faces 2
and 8, have resolution depth=4. Face 6 is a polygonal quad. Note that smooth faces can have corners, and that at
least one neighbour of a sharp face must be a smooth face.

4.3.2 Combined B-Reps from a User’s Perspective: Manipulation, Update, and Rendering

This sub-section discusses how combined B-reps, or cB-reps for short, are used. The term ‘user’ means here ‘application
programmer’, and not the end user of the application. The cB-rep data structure is listed in Fig. 4.33. It uses the trait
mechanism to realize a patch complex by adding tesselation data as attributes to mesh entities. It is organized as (a) a
mesh trait class, containing local classes V, E, and F for the entity attributes, and (b) the class BRepCombined that provides
the API with all the methods for mesh manipulation and update, tesselation, and display. Although the entities carry a lot
of information, there is a clear distinction between the input data that are specified by the user, and output data that store
the tesselation computed by BRepCombined::commitUpdate (discussed in detail in the next section 4.3.3). As mentioned
before, the amount of input is quite limited, essentially just two kinds of data:

• BRepCombined::Vertex::position is a 3D vector of type Vec3f,
• BRepCombined::Edge::sharp is the boolean flag for the edge sharpness (the same for both halfedges)
• existing entities may be changed, but they must be touched then.

According to a few rules, the user can arbitrarily create, change, and delete mesh entities as much as she wants. After a
series of modifications, the tesselation of the surface needs to be set up, so that it is again in sync with the input data, and
the object can be displayed. Technically, the function commitUpdate must be called, which takes care of the output data
consistency for all entities.

A slight complication arises from the fact that the Vertex, Edge, and Face classes contain links to dynamically allocated
data: chunks of points and triangles, patches, vertex and face rings. All dynamic data are stored in skipchunks and
skipvectors (see sec. 4.2.1). This implies that the dynamic data must first be recovered, and put back to the pool for later
re-use, when entites are manipulated or deleted. This leads to a few rules that must be respected when changing a mesh.

1. Allocation/deallocation methods.

Allocation of new entities is unproblematic. The NewVertex etc. methods are provided just for convenience, allo-
cation can equally be done by directly accessing the mesh entity skipvectors. Note that combined B-reps use the
Edge::status field to speed up the mate function (see BRepMesh::newEdges from Fig. 4.20).

Deallocation must be done with the deleteVertex|Edge|Face methods. They are very lean, since their only effect
is to set the deadID field to the symbolic constant DELETE (halfedges: for the pair). Marked entities remain alive
until commitUpdate is called.

2. Manipulations and touching.

Arbitrary changes can be applied to the connectivity. All oneEdge, vertex, face, and next pointers from Fig. 4.19
can be freely changed, as long as the mesh remains manifold, and the conventions from Fig. 4.21 are respected: no
isolated entities, no NULL pointers, etc. All vertex positions and edge sharpness flags may also be changed at will.
It is only mandatory to touch all changed entites, since otherwise changes are not detected and properly processed
by commitUpdate. The following rules specify which entities need to be touched after changes.
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struct BRepCombinedTrait
{

struct V {
typedef enum { CornerVertex ,

CreaseVertex ,
Dar tVer tex ,
SmoothVertex } Type ;

Vec3f posit ion ; / / <=== INPUT DATA
Type type ;
i n t r i ng ID ;

/ / i n t s ta tus ; / / added by BRepMesh : : Vertex
} ;

struct E {
bool sharp ; / / <=== INPUT DATA
i n t patchID ;
i n t sourceID ; / / pcB−rep ID

/ / i n t s ta tus ; / / added by BRepMesh : : Edge
} ;

struct F {
typedef enum { HollowFace ,

SmoothFace ,
SharpFace ,
PolygonalFace } Type ;

Type type ;
i n t r i ng ID ;
i n t s ta tus ;
i n t depth ; / / <=== PER FRAME
i n t depthSharp ; / / <=== PER FRAME

i n t mate r ia l ID ;
i n t t r iChunk ;
i n t sharpTriChunk [ 5 ] ;
i n t sharpPtChunk ;

Vec3f normal ;
f l oa t normalDis t ;
f l oa t normalCone ;
Vec3f sphereMid ;
f l oa t sphereRad ;

} ;
} ;

void render (BRepCombined& cbrep , f l oa t & q u a l i t y ,
bool cbrep_was_changed )

{
i f ( cbrep_was_changed ) {

cbrep . commitUpdate ( ) ;
}

Vec3f eyepoin t , z d i r ;
f l oa t dx , dy ;
getViewConeGL ( eyepoin t , z d i r , dx , dy ) ;
cbrep . framePrepare ( ) ;
cbrep . determineDepth ( eyepoin t , z d i r , dx , dy , q u a l i t y ) ;
cbrep . tesselateMesh ( ) ;

BRepCombined : : Face∗ face ;
for ( face = cbrep . faces . begin ( ) ;

face ! = cbrep . faces . end ( ) ; + + face ) {
i f ( face→ac t i ve ( ) && face→depth !=−1) {

cbrep . render ( face ) ;
}

}
q u a l i t y = cbrep . f rameFin ish ( q u a l i t y ) ;

}

struct BRepCombined
{

typedef BRepCombinedTrait T r a i t ;
typedef BRepMesh< T r a i t > Mesh ;
typedef Mesh : : Vertex Vertex ;
typedef Mesh : : Edge Edge ;
typedef Mesh : : Face Face ;
typedef T r a i t : : V V ;
typedef T r a i t : : E E ;
typedef T r a i t : : F F ;

// =========================================
/ / 0 . incrementa l a l l o c a t i o n / dea l l o ca t i on

Vertex ∗ newVertex ( const Vec3f& posit ion ) ;
Edge∗ newEdges ( bool sharp ) ;
Face∗ newFace ( ) ;
void de le teVer tex ( Vertex ∗ v ) ;
void deleteEdges (Edge∗ e ) ;
void deleteFace ( Face∗ f ) ;

// =========================================
/ / 1 . mark changes

bool touch ( Vertex ∗ v ) ;
bool touch (Edge∗ e ) ;
bool touch ( Face∗ f ) ;
void t ouch Inc iden t ( Vertex ∗ v ) ;
void t ouch Inc iden t ( Face∗ f ) ;

// =========================================
/ / 2 . process changes

void commitUpdate ( ) ;

// =========================================
/ / 3 . per frame : assign LOD

void ass ignSta t icDepth ( i n t depth ) ;
void determineDepth ( const Vec3f& eyepoin t ,

const Vec3f& zd i r ,
f l oa t dx , f l oa t dy ,
f l oa t q u a l i t y ) ;

void maxDepthSharpFaces ( ) ;

// =========================================
/ / 4 . per frame : t esse l a t e faces

void t e sse l a t e ( ) ;
void t e sse l a t e ( Face∗ face ) ;

// =========================================
/ / 5 . per frame : render

void framePrepare ( ) ;
void render ( Face∗ face ) ;
f l oa t f rameFin ish ( f l oa t q u a l i t y ) ;

Mesh mesh ;
Tr iangu la tePolygon t r i a n g u l a t o r ;
Tesse la teCatmul lC lark t e s se l a t o r ;
Skipchunk<ID > po lygona lT r iang les ;
Skipchunk<ID > sharpTr iang les ;
Skipchunk<Vec3f > sharpPoints ;

} ;

Figure 4.33: Combined B-rep trait.
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Figure 4.34: Multi-triangulation of sharp faces. Since smooth faces can be displayed in five different resolutions,
sharp faces must have the same capability. The resolution of a sharp face equals the maximum resolution (depth) of
its smooth neighbour faces. This is determined by maxDepthSharp. Note that neighbours with a lower resolution
can adapt to this resolution: Smooth faces faces can always adapt to higher refined neighbours (see Fig. 3.37).
Note that these triangulations are computed only on demand, i.e., all five Face::sharpTriChunk are set to−1 at first.

• Basefaces and vertices where the connectivity changes must be touched. More precisely, a vertex must be touched
when its edge ring changess. A face must be touched if its face boundary changes. In case of multiple bound-
aries, i.e., rings, the baseface must be notified in case any of the rings changes. In particular, entities that lose
connections (ring removal) must also be touched!

• If the sharpness of an edge is changed (both halfedges), the edge must be touched. Note that touching an edge
just means to touch the vertices and faces of the two halfedges.

• When a vertex is moved to a new position, all incident faces must be touched. This involves a loop, which is
provided for convenience as CombinedBRep::touchIncident(Vertex*). The reason is that the influence of a smooth
vertex reaches out into its 2-neighbourhood, as it was illustrated in Fig. 3.17.

3. Render preparation: commitUpdate

After an arbitrary sequence of manipulations, commitUpdate must be called to prepare the rendering. Besides setting
up the tesselation, it also (re-)computes the face normals, boundary spheres, planes, and normal cones.

Note that commitUpdate does not compute any tesselations. All the tesselations are computed only on demand. This
means that, e.g., the triangulation of a sharp face, or a specific patch resolution, is not available until it is requested.
When it is computed, it is cached though, to speed up the rendering in later frames.

4. Per Frame Step 1: LOD assignment.

The tesselation requests are formulated by setting the depth field of all basefaces, which may vary from frame to
frame. For smooth faces, depth can be one of 0,1,2,3,4. This determines the number of subdivision steps, and
thus the tesselation quality. For visible polygonal or sharp faces it is just 0. When a baseface (of any type) is not
visible, because it is back-facing, or out of the view-frustum, its depth can be set to -1. After LOD assignment, the
maxDepthSharpFaces function must be called, which determines the depth of all visible sharp faces (see Fig. 4.34).

For convenience, the determineDepth function is provided, which expects the current view cone, and assigns a LOD
to all faces according to an overall quality, usually between 0 and 1. The view cone is defined by the current eye
position, a normalized view direction, and an opening angle (dx,dy): dx is the ‘min-LOD’ distance, usually the
far plane distance, and dy is the maximum distance of a visible point on the min-LOD plane from the view axis.
determineDepth also executes maxDepthSharpFaces.

5. Per Frame Step 2: Tesselation.

It may be that for some faces, the requested LOD is not available from the cache, and must be computed. The
tesselate routine loops over all faces to assure all triangulations and subdivisions exist in the respective caches.

LOD assignment and tesselation are not integrated with the actual render routine to permit the use of multi-
threading, so that the tesselation is computed in a separate worker-thread, possibly running on a second CPU.

6. Per Frame Step 3: Rendering.

This involves just to call render for all visible faces. This can be done in any order, in particular, faces can be
grouped by material, as to reduce OpenGL material state switches. This can have a great impact on performance.

The framePrepare and frameFinish routines are provided for convenience. They measure the time it took to render,
and adjust the overall quality, as to keep the frame rate always just above 20 fps.
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Figure 4.35: One Catmull/Clark patch of 9×9 vertices and normals belongs to every halfedge of a smooth face.
Its ID is stored in the patchID field of the halfedge. It is −1 if the halfedge’s face is not smooth. Note: It is the
patch at the halfedge’s source vertex which belongs to a halfedge. This is consistent with the rule that edge->vertex
is the source vertex of a half-edge. This is also the vertex point of the patch, whereas the face midpoint is the face
point of the patch.

4.3.3 The Combined B-Rep Data Structure

The previous section has given an outline of how to use the combined B-rep data structure. This section looks ‘under
the hood’ and discusses the data items of the CombinedBRep from Fig. 4.33 in more detail. This is important, e.g.,
for accessing the different bits of information stored at the different locations. Note that in the actual implementation,
space can be saved by combining different data items with limited ranges (e.g., F::depth) into one bit-field, and also by
alternative uses: A sharp face has no ringID, and a smooth face has no sharpPtChunk (explained below).

The data in BRepCombined::Vertex. According to table 3.1, the vertex type is essentially the number of sharp edges
incident to a vertex. An example of a classification is shown Fig. 4.32. A vertex of any type may be incident to a smooth
face, in which case ringID is the index of the vertex ring, stored with TesselateCatmullClark. For corners without any
incident smooth faces, ringID is −1.

Due to the wedge problem (sec. 4.1.4), a cB-rep vertex contains no vertex normal: The normal is only defined with
respect to a face. For an incident smooth face, the vertex normal, and also the ‘true’ position of the vertex on the surface,
can be accessed via a vertex ring, explained in the next section 4.3.4. Also see sec. 3.4.1 for background information on
vertex rings. For polygonal or sharp faces (with corner or crease vertices), the vertex normal is just the face normal, since
such faces are assumed to be planar. The vertex normal with respect to a smooth face can also be directly accessed, with
a method that is presented in section 4.3.4.

The status is set to the symbolic value NEW=0 for new vertices, READY for active vertices, and DELETE if the vertex
is marked for deletion. It is eventually removed the next time when commitUpdate is called, which performs the actual
deactivation. When the vertex needs just an update, the status is TOUCHED.

The data in BRepCombined::Edge. In case the edge’s face is smooth, patchID is the index of a Catmull/Clark patch,
and −1 otherwise, see Fig. 4.35 for the example of a degree 4 face. Patches are maintained by the TesselateCatmullClark
class from the next section. To speed up the mate method, the Edge::status is 0 for the first, and 1 for the second halfedge
of a halfedge pair (see no. 5 in Fig. 4.21). The sourceID is for the progressive version of combined B-reps (section 4.4).

The data in BRepCombined::Face. The type is the face classification (smooth, sharp, polygonal, hollow) from table
3.2, also see Fig. 4.32. When the face is smooth, ringID is the face ring index from TesselateCatmullClark, −1 otherwise.
When the face is sharp, sharpTriChunk and sharpPtChunk store a multi-triangulation for the face (see Fig. 4.34).

The depth field is the LOD of smooth faces, 0 for visible polygonal faces, and determined automatically for visible
sharp faces by maxDepthSharpFaces. It is set to −1 for faces that are not to be shown. Polygonal faces provide only a
single resolution, and they store only a single chunk of triangles, whose ID resides in triChunk. But note that all faces have
a triChunk, and may thus be rendered as polygonal faces. That makes it possible to switch back to polygonal rendering
altogether, which can sometimes be quite informative.

The normal and normalDist store the (approximate) face plane equation. The normalCone is the sine of the opening
angle of the face normal cone, determined by the maximum deviation of the tesselation normals from the face normal.
The sphereMid is the face midpoint for polygonal and sharp faces, and the face point for smooth faces. The sphereRad is
the maximum distance of any point from the tesselation from the midpoint sphereMid.

The status is NEW=0 when a face is new, READY for active faces, and DELETE if the face has been marked for
deactivation, i.e., to be removed by commitUpdate. When the face has been manipulated, the status is TOUCHED. The
materialID establishes the link to some given material library.
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Figure 4.36: Illustration of the data in a patch structure. Every halfedge has a patch attached to its source vertex.

The data in BRepCombined. Vertices, edges, and faces have only handles to dynamic tesselation data. The location
where these data are actually stored are the five data members of BRepCombined:

• triangulator is one instance of the polygon triangulation algorithm from sec. 4.2.2 (code in Fig. 4.24). Since it
generates (and contains) dynamic data, it is more efficient to keep one instance alive, than to create and destroy a
triangulator every time one is needed. The triangulator is used both for polygonal and sharp faces.
• polygonalTriangles contains the triangulation of polygonal faces. There is one chunk for each face, produced, e.g.,

as in Trait_VpFntc::triangulate() from Fig. 4.24, so that a polygonal face can be rendered just as in Fig. 4.25: The
IDs in the triangulation are the vertex IDs, e.g., they directly refer to mesh.vertices.
• sharpPoints and sharpTriangles contain the triangulation of sharp faces. The vertices of sharp faces are not mesh

vertices, since part of the boundary is a B-spline curve. So the boundary is sampled at the highest resolution po-
tentially needed to match a smooth neighbour, at 16 points per B-rep edge. The sampling is stored in the face’s
sharpPtChunk, which refers to the sharpPoints skipchunk. Each face can have up to five triangulations, correspond-
ing to boundary resolutions of 1, 2, 4, 8, or 16 line segments per mesh edge (see Fig. 4.34). For each of these
triangulations, there is one chunk of triangles in sharpTriangles. The indices of these triangulations all refer to the
same boundary sharpPtChunk.

• tesselator is a separate data structure that stores vertex rings, face rings, and patches (see next section 4.3.4).

Sharp faces contain indeed five different triangulations since, in general, coarser triangulations cannot be simply obtained
by straightforward downsampling of triangulations from a higher level. This is especially the case for non-convex faces,
as can be seen not only in Fig. 4.34, but also in Fig. 4.23, which actually shows three different triangulations of a sharp
face. Although this looks like a large overhead, it requires only essentially twice the space of the highest resolution: The
triangulation of a simple polygon with n vertices has n−2 triangles, so the triangulation of a sharp face with n crease ver-
tices has 16n−2 triangles, which is more than the (8n−2)+(4n−2)+(2n−2)+(n−2) = 15n−8 triangles for the other
four triangulations. The ratio is worse, of course, when a face has many corner vertices on its boundary, so that it contains
straight line segments that are no B-spline curves. The distinction between BRepCombined and BRepCombinedTrait is for
purely technical reasons: BRepCombined has member functions such as render(Face*), but Face* is only properly defined
after the definition of the trait, and not within the trait.

4.3.4 The Data Structure for the Tesselation of Smooth Faces

The tesselation of smooth faces of the mesh is stored in a stand-alone data structure, the class TesselateCatmullClark,
shown in Fig. 4.37. This class does not know anything about meshes. It replicates all relevant information from the
mesh, so that it can do without any pointers to mesh entities. The advantage is that the somewhat complicated subdivision
computations are localized in memory, which greatly improves performance, because CPU cache misses are minimized.
The price to pay is a temporary memory overhead: In principle, most of the replicated data can be thrown away as soon
as the patch computation is completed, i.e., the patch grids are entirely filled with valid points.

The TesselateCatmullClark class defines two local classes Ring and Patch. Every smooth face of the mesh, and every
vertex that is incident to a smooth face, contains one ringID index, which refers to a skipvector of rings, TesselateCat-
mullClark::rings. Every halfedge of the mesh that belongs to a smooth face contains one patchID index, referring to the
skipvector TesselateCatmullClark::patches. Rings and patches, in turn, also directly refer to each other via indices.

Besides these skipvectors, and a skipchunk for the ring ring points, TesselateCatmullClark contains a table of the
various subdivision weights (from sections 3.1.4, 3.1.5, and 3.1.6) for each valence, which can also be extended on
demand. Finally, it contains the pre-computed triangle strip indices for the configurations from section 3.4.3.
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struct Ring {
i n t type ;

Vec3f po in t [ 4 ] ;
Vec3f l i m i t P o i n t , l im i tNo rma l ;
i n t chunkID ;
i n t nex t r i ng ;
i n t valence ;
i n t depthMax ;

Vec3f& po in t ( ) { return po in t [ 0 ] ; }

i n t & deadID ( ) ;
bool ac t i ve ( ) const ;

} ;

struct Patch {
Vec3f edgepoint ;
Vec3f l im i tEdgePo in t
Vec3f l imi tEdgeNormal ;

bool sharpLe f t , sharpTop ;
i n t ver texRing , ver tex Index ;
i n t faceRing , faceIndex ;
i n t patchBL , patchTR ;
i n t depthMax ;
i n t s ta tus ;

i n t depth , dep thLe f t , depthTop ;

f l oa t ver tex [81∗3 ] ;
f l oa t normal [ 81∗3 ] ;

i n t & deadID ( ) ;
bool ac t i ve ( ) const ;

} ;

struct Tesse la teCatmul lC lark
{

Tesse la teCatmul lC lark ( ) { }
~Tesse la teCatmul lC lark ( ) { }

struct Ring { . . . see code to the l e f t } ;
struct Patch { . . . see code to the l e f t } ;

/ / 1 . setup sharpness & face po in t s =============
void faceRingBegin ( i n t f a ce r i ng ) ;
void faceRingEdge ( bool isSharp , i n t patchID ,

const Vec3f& vertexpos ) ;
void faceRingEnd ( ) ;

/ / 2 . setup ver tex r i ngs ========================
void ver texBegin ( i n t ve r t e x r i ng , i n t type ,

const Vec3f& vertexpos ) ;
void vertexEdge ( i n t patch0 , i n t patch1 ,

const Vec3f& matepos ) ;
void vertexEnd ( ) ;
void setTR ( i n t dest , i n t src ) ;
void setBL ( i n t dest , i n t src ) ;

/ / 3 . setup patch connec t i v i t y ==================
void faceBegin ( i n t f a ce r i ng ) ;
void faceEdge ( i n t ve r t e x r i ng , i n t patchID ) ;
void faceEnd ( ) ;

/ / 4 . i n i t i a l i z e changed patches ================
void setupPatches ( ) ;

/ / 5 . t esse l a t e =================================
void t e sse l a t e ( i n t patchID , i n t depth ,

i n t depthLe f t , i n t depthTop ) ;

/ / 6 . render ====================================
void render ( i n t patchID ) ;

void setupVertexRing ( ) ;
void re f i neR ing ( Ring ∗ r i n g ) ;
void setupPatch ( Patch ∗ patch ) ;
void computeWeights ( i n t n ) ;

Sk ipvec to r<Patch > patches ;
Sk ipvec to r<Ring > r i ngs ;
Skipchunk<Vec3f > r i n gpo i n t s ;
Skipchunk< f l oa t > weightTable ;
vec to r<ID > s t r i p I n d i c e s ;

} ;

Figure 4.37: The Catmull/Clark tesselation class with its local classes Ring and Patch.

Figure 4.38: The patch control mesh is made up of seven CVs from the vertex and face rings on each level.
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Figure 4.39: Different uniform patch resolutions, and the corresponding point enumerations.

Patch data. The relation between rings and patches is detailed in Figs. 4.36 and 4.38. Fig. 4.36 (a) first shows the
essential components of a halfedge’s patch: The grid of 81 points (and normals, not shown here), stored in the float arrays
Patch::vertex and Patch::normal, the edge point Patch::edgepoint from the first subdivision, and the limit edge point with
its normal, Patch::limitEdgePoint and Patch::limitEdgeNormal. The latter two are replicated from the grid for faster access.

The orientation of the patch in Fig. 4.36, with the halfedge pointing downwards, is no coincidence: The four bound-
aries of the patch are denoted the top, bottom, left, and right boundaries, or T, B, L, and R for short. This orientation also
corresponds to the row-wise enumeration of the points in the grid (see Fig. 4.39, which also shows the vertex normals):

• the TL grid vertex has index 0, and is the vertex limit point
• the TR grid vertex has index 8, and is the edge limit point of the CCW previous patch
• the BL grid vertex has index 72, and is the edge limit point of the patch
• the BR grid vertex has index 80, and is the face limit point.

The right and bottom boundaries lie in the face interior, so they are always smooth. Only the top or left boundaries may be
sharp, which affects the choice of the tesselation scheme to be used. The patch therefore stores the respective sharpnesses
as Patch::sharpLeft and Patch::sharpTop, which makes for the four different possible combinations.

In the standard case, where both edges are smooth, the control mesh of the patch is given by the vertex and face rings,
and two supplemental points in the top right and bottom left corners. Since the edges are smooth, the respective neighbour
faces are also smooth, and the CVs are in fact edge points, as illustrated in Fig. 4.36 (b):

• the TR CV is the Patch::edgepoint from edge→ faceCW()→mate()→ faceCCW()
• the BL CV is the Patch::edgepoint from edge→mate()→ faceCW()

Since there is no connection to the mesh, the patch actually stores the indices of the respective patches containing these
points, in Patch::patchBL and Patch::patchTR.

Each patch is incident to one vertex ring and one face ring, which capture the potential irregularity of the vertex
and face (explained in detail in section 3.4.1 from chapter 3), whose indices are Patch::vertexRing and Patch::faceRing.
But only seven CVs from the rings on each level are actually relevant for the patch. The relative position of the patch
with respect to the rings is given by Patch::vertexIndex and Patch::faceIndex. These two indices tell the index of the
Patch::edgepoint in both of the rings. In Fig. 4.36 (c) and (d), this happens to be 2 for the vertex ring, and 2 for the face
ring (again note the CW orientation of the vertex ring and the CCW orientation of the face ring).

From these informations, the control mesh of the patch on the different levels can be readily obtained. Fig. 4.38 (a)
shows the patch control mesh from the first subdivision, in this example made of the CVs (6,7,0,1,2,3,4) from both the
vertex ring and the face ring, and the TR and BL CVs.
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Figure 4.40: Top row (1a-d): Illustration of face ring data. Lower rows (2a-d) and (3a-d): Different cases of vertex
rings. (2a, b): Smooth vertex with no sharp edges. (2c, d): Corner vertex with more than two sharp edges. (3a):
dart vertex with one sharp edge. (3b, c, d): Crease vertex with two sharp edges.

Ring data. The same data structure is used for vertex and face rings, namely TesselateCatmullClark::Ring, illustrated in
Fig. 4.40 (1a-d) for the case of a face ring. The valence of this face is 4, which is stored in Ring::valence. The number of
CVs in such a closed ring is 2 · valence. But a ring must be available on all subdivision levels 1-4, so in fact 4 ·2 · valence
ring points are stored. They are contained in one consecutive array, always beginning with an (arbitrarily chosen) edge
point. The canonical enumeration order for the 32 points in the face ring of a valence 4 face is illustrated in Fig. 4.40 (1a).
Since the ring point array is of dynamic size, it is stored in a skipchunk, whose ID is stored in Ring::chunkID, referring to
TesselateCatmullClark::ringpoints.

The face points for all levels are sored in the array Ring::point[4]. Point 0 in it, or Ring::point(), is the face point from
the first subdivision. Together with the rings on the various levels they define the ring of quadrangles around the face
center, shown in Fig. 4.40 (1b). The situation in the center is zoomed in closer to in Figs. 4.40 (1c) and (1d): The face
point, shown as blue, green, yellow, and cyan balls in (1d), rapidly converges to the limit position and normal (grey),
which is stored in Ring::limitPoint and Ring::limitNormal.

The situation for vertex rings can be a little more complicated. Vertices can be incident to any sequence of smooth
and sharp edges. The number of sharp edges determines the vertex type, and is stored in Ring::type, which can be 0,1,2,
or 3. The different cases are shown in the lower two rows of Fig. 4.40. The organization of smooth vertex rings (4.40, 2a)
is identical to the one of face rings, except for the CW orientation. A vertex ring also starts with an edge point, and there
is a unique limit vertex position (4.40, 2b). For dart vertices, the vertex ring starts with the edge point of the sharp edge
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(4.40, 3a). This principle also applies to the case of several sharp edges: The vertex ring of a crease vertex both starts and
ends with a sharp edge. In this case, the Ring::valence is not the same as the vertex valence. Instead, the ring valence is
the valence of the smooth wedge, i.e., the number of consecutive smooth faces. Fig. 4.40 (3b, c, d) show a crease vertex
ring with valence 3, where each of the four levels contains (2 · valence+1) points. The enumeration scheme is analogous
to the previous examples.

Corner vertices finally can also exhibit alternating configurations of polygonal and smooth wedges. Fig. 4.37 shows a
valence 6 corner vertex with two smooth wedges of valence 2 each. In case of more than one smooth wedge (which may
also happen with crease vertices), the Ring::nextring field permits to access all vertex rings attached to one mesh vertex
(via the Vertex::ring field, of course). Yet from a patch, the respective vertex ring can always be directly accessed with
Patch::vertexRing. Of course, there does not have to be a polygonal wedge between smooth wedges; and a smooth wedge
may very well consist of only a single face. This is illustrated in Fig. 4.40 (2c) and (2d).

Vertex normals. The described mechanism also eventually yields a method to access the vertex normal with respect
to smooth faces. With every smooth wedge, a mesh vertex has a unique normal vector. So the vertex normal is well
defined only with respect to a particular face incident to the vertex. A face, however, can be selected by choosing one
outgoing halfedge: Recall that the edge→vertex is the halfedge’s source vertex. So given a halfedge, the vertex normal is
determined as follows:

• If the face is polygonal or sharp, or the vertex belongs to a ring of a polygonal or sharp face,
the vertex normal is the face normal: edge→ face→normal.
• If the face is smooth, the vertex normal is the limit normal of the vertex ring of the halfedge’s patch:

rings[ patches[edge→patchID].vertexRing ].limitNormal

4.3.5 CommitUpdate, Tesselation, and Rendering

The previous sections described the various data items in a valid combined B-rep. This section shows now how the output
data are generated in the first place, and how they are used for depth assignment, tesselation, and rendering.

The commitUpdate routine. This routine is called when a new mesh with valid input parameters (vertex positions and
edge sharpness) is created, and whenever a valid combined B-rep has been manipulated and all affected entities were
touched. The name commitUpdate is motivated by a useful analogy to database interfaces, where sequences of atomic
update operations are temporarily stored, until they are finally committed to actually change the contents of the database.
The signal that commitment is necessary for combined B-rep mesh entities is realized by the status field. Recall that
vertices and faces have a status field that can have either of the symbolic values NEW, READY, TOUCHED, or DELETE.
The routine has to proceed in six stages, which are summarized in the following, to make all active entities READY again.

1. Garbage collection for triangulation data

Skipchunks use one large array that contains all chunks, each of them a coherent array of small data items, usually
IDs or floats. Deletion of a chunk only switches off one sub-array, new chunks are always allocated at the end. The
large array is purged only when the number of deleted items becomes too large, which is for instance the case when
range() > 5·size(). This is an issue for the triangulation data for polygonal and sharp faces: polygonalTriangles,
sharpTriangles, and sharpPoints from BRepCombined. Unused items are removed in a garbage collection fashion,
all three skipchunks are purged if the criterion applies to either of them. Purging implies that the Face chunk IDs
are updated.

2. Propagate TOUCH from faces to vertices

This involves an iteration over all halfedges. Touching is face-centered: When a face is touched, all neighbouring
faces may become subject to re-classification, due to the range of subdivision (see Fig. 3.17 from section 3.2.1).
This is realized by touching a halfedge’s vertex whenever its (base-) face is touched. At the same time, halfedge
pairs marked for deletion are deactivated (in inverse order, for later re-use), together with the patches they have.

3. Classify touched vertices, propagate TOUCH from vertices to faces

This involves an iteration over all vertices. New and touched vertices must be classified before their faces can be
classified. With one vertexCW loop around each such vertex, the incident sharp edges are counted to determine the
vertex type: smooth, dart, crease, or corner. In case the vertex has vertex rings (i.e., it was previously incident to one
or more smooth wedges), but the number of smooth edges found is zero, the vertex ring has to be precautionarily
deleted: In this case it may be that the vertex is surrounded exclusively by polygonal faces. – In the same loop, the
vertices marked for deletion are deactivated, together with their vertex rings, if they have any.
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4. Classify touched faces, prepare face rings for smooth faces

This involves an iteration over all faces. The first thing to do for new or touched faces is to remove the (sharp and/or
polygonal) triangulation, if there is one. Then the face type is determined as follows:

• If the face is a ring, its type is HollowFace.
• If the face has rings, its type is SharpFace in case it has a crease vertex, and PolygonalFace otherwise.

This classification is irrespective of whether the face has any smooth edges: Smooth faces cannot have rings.
• The face is classified as SmoothFace only if it has a smooth edge where the respective neighbour face does

not have rings. Otherwise, this edge is not counted as a smooth edge.
• As a last resort, the face is classified as sharp or polygonal, depending on whether it has a crease vertex.

If the face is not smooth, but has a face ring, the face ring is deactivated. If the face is a sharp face, the boundary
polygon is sampled (with 16 line segments per B-spline edge), creating the face’s sharpPtChunk. For all sharp and
polygonal faces, the (approximate) face normal vector with respect to the face’s B-rep vertices is computed, as well
as the (approximate) bounding sphere. Its midpoint lies in the face plane, which is determined as well.

If the face is smooth, one cyclic loop along along the face boundary provides all halfedges with patches. At the
same time, the faceRingBegin, faceRingEdge, and finally faceRingEnd routines from TesselateCatmullClark set the
sharpness flags for the patches, set the face ring valence, and compute the face point of the 1st subdivision as the
centroid of the vertex positions. Note that the face ring can not be collected already at this stage, since the edge
points have not yet been computed.

All the smooth faces, as well as all of their vertices, are temporarily tagged with a new status SMOOTHFACE. All
other vertices and sharp or polygonal faces receive the status READY. All their triangulation chunk IDs are set to
−1: Triangulations are computed only on demand.

5. Set up vertex rings for vertices of smooth faces

This involves a loop over all vertices tagged as SMOOTHFACE vertices. The number of smooth wedges is deter-
mined, and for each vertex at least one vertex ring is set up, by one vertexCW loop starting from the first sharp
edge found (if there is any). This involves calling the functions vertexBegin once, then vertexEdge for each edge,
and finally vertexEnd, from TesselateCatmullClark. These functions take care of properly beginning and finishing
one vertex ring for each smooth wedge, i.e., for each sequence of consecutive smooth faces. In the same vertexCW
loop, the indices of the BL and TR patches, as well as the vertexRing and vertexIndex, are set for each visited patch.
These visited patches are just the patches for which the control mesh may have changed (compare with Fig. 4.38).
They are labeled as TOUCHED using the Patch::status field. Note that a touched patch does not have to belong to a
face that was touched.

Also note that vertexEdge has to do the same as vertexEnd, namely call setupVertexRing, whenever a smooth wedge
is finished. This is the case when the wedge’s closing sharp edge arrives, which can be told from the sharpness flags
stored in the patches: For each outgoing halfedge, vertexEdge is called with the mate vertex position, and the
patchID indices of both the edge and its mate (which may also be −1, in case of incident non-smooth faces). This
provides enough information to also compute the edge points (from the 1st subdivision), because all face points
computed in stage 4 now properly exist. The edge points are stored in the patches, and edge points and face
centroids are copied to the first level vertex ring. Whenever a smooth wedge is finished, the ring valence is set,
space for higher level rings is allocated, and the vertex limit point and normal are readily computed. Finally, the
vertex is marked as READY.

6. Set up face rings, normal cones, and bounding spheres of smooth faces

This involves a loop over all faces tagged as SMOOTHFACE. One pass over the face boundary eventually yields the
face ring, the alternating sequence of edge and vertex points from the 1st subdivision, as well as the limit point and
normal of the face point. And it is only now that the faceRing and faceIndex can be stored in the face’s patches.

The (approximate) bounding sphere of a smooth face is obtained via an axis-aligned bounding box containing all
vertices as well as the limit vertex positions, and the face limit point; the center of the box becomes the center of
the bounding sphere. The view cone is the sine of the maximum angle between the face limit normal and a vertex
limit normal. This completes the face setup, and the face status can now be set to READY.

Finally, all patches with status TOUCHED are initialized: The four grid corners (with indices 0, 8, 72, and 80) are
initialized from the vertex, face, and edge limit points and normals, and the patch status becomes READY as well.
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Figure 4.41: Apex translation of the view cone. (1a): The apex is translated in negative view direction to reduce
the intersection test between face bounding sphere and view cone to a point-in-cone test. (1b): Lengths dx and dy

are determined once for the unit sphere. (1c): The view cone has a slight excess with respect to the view frustum,
but culling is much faster to compute. (1d): The intersection of the view cone and a plane is a conic section.

Bottom, (2a): The bounding sphere of a smooth face contains the vertices, their limit points, and the face limit
point. It is more efficient to compute than the exact bounding sphere of the tesselation, and appropriate for culling:
(2b) shows a view, and (2c) shows the view frustum and cone (ellipse) from above. (2d): The peak of the hill is
correctly clipped away, since the corner ray of the view frustum does not hit it. (2e): A problem with bounding
spheres is that a long, thin face (yellow, with yellow vertices) leads to an overly large bounding sphere (cyan).

View frustum culling using the view cone. In each and every frame, the first thing to do is to find out which faces are
visible. All mesh faces have face normals and bounding spheres. Smooth faces additionally provide a normal cone, which
measures the curvature of the patches that make up the face. These bits of information can be used to quickly identify
faces that lie outside of the view frustum, and faces that are back-facing: The great advantage of combined B-reps, as a
realization of the ‘patch complex’ idea from section 2.4, is that their faces usually comprise a greater number of triangles.
This makes culling worthwhile.

Frustum culling is done for each face via apex translation of the view cone, as shown in Fig. 4.41. The use of a view
cone instead of a view frustum is based on the assumption that the aspect ratio of the viewport is usually close to 1. The
cone is determined only once per frame. It is defined by an apex acone, which is the eye position, the axis vcone, and the
slope scone (instead of the opening angle). The axis goes through the midpoints mnear and mfar of near- and far-plane (in
case of a symmetric view frustum). The apex is the intersection of the line through two frustum corners cnear, cfar and the
cone axis. Using OpenGL, the world coordinates of frustum corners can be obtained using gluUnProject. The slope is the
width increment per depth, i.e., scone = |mfar− cfar| / |mfar−acone|.

The crucial observation is that the overlap test between the view cone and a bounding sphere (mf,rf) of a given face f
can be reduced to a point-in-cone test, simply by using a translated apex af = acone−(rf dx)vcone . The ‘unit displacements’
dx and dy are the displacements that would be needed for apex translation in case of a unit sphere. They are determined
only once (per frame) by solving two equations. The first equation is dy/dx = scone ⇔ dy = dx scone . The second equation
states that the height of the right triangle with catheta dx and dy is 1 . Using similar triangles (Fig. 4.41, 1b), this gives:
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Since the view vector vcone is normalized, no square root is necessary for testing whether the sphere center mf is inside the
cone with modified apex af : Let wf := mf−af (red vector in Fig. 4.41 (a)), be the vector from af to the midpoint mf. It
can be written as the decomposition wf = (xf + rf dx) · vcone + yf · vcone into orthogonal components vcone and vcone with
〈vcone,vcone〉 = 0 and |vcone | = |vcone | = 1. The distance from the apex to the foot-point from mf onto the view axis is
xf = 〈wf,vcone〉 , and rf dx is the distance from the apex to the translated apex. The component orthogonal to the axis is
wf := wf− xf · vcone = yf · vcone . So the squared length of this vector is y2

f = 〈wf,wf〉 . The midpoint is inside the translated
cone if and only if y2

f / (xf + rf dx)2 < s2
cone . – So view cone culling is extremely fast to compute.
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Figure 4.42: Back-patch culling using the normal cone. For every smooth face, the maximum deviation of a
vertex normal (red) from the main face normal (blue) is measured (a),(b). This yields the (blue) normal cone with
opening angle 2α. (c,d): The face is visible if the eye point lies the ‘eye’ section, or, equivalently, if the negative
eye direction lies in ‘view’. (e): The angle between view direction and face normal must be larger than π

2 −α.

Back-patch culling. A face that passes the view cone test may still not be visible because it is back-facing. At least for
closed manifold surfaces, the backside is always occluded by the front-facing parts, which are closer to the viewer, and the
back-facing faces can simply be skipped. For sharp or polygonal faces, which are supposed to be planar, this amounts to
testing the angle between view vector and face normal: Let nf be the face normal, pf a point on the face plane, for instance
the mid-point of the bounding sphere, and let vf = pf−acone be the view vector from the eye to the point, not normalized.
A planar face is front-facing only if ∠(vf,nf) > π

2 ⇔ 〈vf,nf 〉< 0.
Surprisingly, it is possible to also detect back-facing curved faces with about the same effort, by using the normal

cone technique. This method is also treated in some detail by Hoppe [HDD∗94], and by Luebke and Erikson [LE97] in
the context of triangle meshes. The normal cone measures the variation of the normal vectors over a piece of surface.
To determine it accurately, an infinite number of normals on the continuous surface must be evaluated: A normal vector
can be considered as a point on the unit sphere (taking vectors for points). The set Nf of all normals from a smooth face
f spans a solid angle, which corresponds to a 2-cell on the unit sphere. The axis of the view cone is then the vector a
where the maximum angle to all other vectors from Nf is minimum, which is mina∈S2(maxn∈Nf ∠(n,a)). The respective
maximum angle is the opening angle of the normal cone.

This can be approximated by taking the limit normal at the limit face point, located near the center of the face, as
the direction vector. Then the maximum deviation of all vertex limit normals of the face from the main direction gives
an estimate of the normal cone angle. This approximation can be justified by the smoothness of the limit surface and its
normal field: Extreme deviations are expected at the face boundary.

The principle of back-patch culling is shown in Fig. 4.42 in a two-dimensional setting. The main face normal n, the
limit normal of the face point, is taken as cone axis, and the normal cone angle αf is the maximum of the angles to the
vertex normals. Note that the opening angle of the cone is 2αf . This works quite well if the face normal is close to the
‘median’ of the vertex normals (4.42, a). In case the face normal is similar to one of the vertex normals, the opening angle
may quickly come close to 180 degrees (4.42, b). The larger the normal cone is, the larger is also the angular region from
where the face is visible (4.42, c,d). The view vector vf = pf−acone is just the reversed direction to the eye. Analogously
to the planar case, a curved face is visible if the angle ∠(vf,nf)+αf > π

2 . Since the cosine is decreasing in [0,π], and
symmetric to the y-axis, this yields a visibility test for curved faces that is just as simple as the test for planar faces:

cos(∠(vf,nf)) < cos
(π

2 −αf
)

= cos
(
αf− π

2

)
⇐⇒

〈
vf

|vf|
,nf

〉
< sin αf

So the view vector vf needs to be normalized. The sine of the opening angle can be simply computed as sin αf =√
1− cos2αf =

√
1−〈nf,nv

max〉2, where nv
max is the vertex normal with the largest angular deviation. Also note that

the angle never has to be computed explicitly, since 〈nf,nv
max〉= 〈nf,nv〉min . But αf must be limited to π

2 , i.e., the opening
angle may not be more than 180 degrees, otherwise the sine is ambiguous, since sin(π2 −α) = sin(π2 +α).

Depth assignment: The distribution of resolutions. What remains to prepare for tesselation is to assign a subdivision
depth to all smooth faces that have passed the culling tests. This reflects a trade-off, since a low resolution gives a bad
quality, and a high resolution impairs the rendering performance, as measured in ‘frames per second’ (fps). It depends on
both the power of the machine and of the scene complexity. When a minimum frame rate is required, e.g., 20 fps, this
determines a triangle budget, or, for combined B-reps, an overall resolution budget as a sum over all visible faces.
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Figure 4.43: The projected size heuristic. With q = 2.0 faces with half the diameter of the view cone are shown
in full resolution (1a). Whenever the distance is doubled, the resolution is reduced (1b-1d). The screen is covered
by the same number of quads, distributed among more faces. With more than 16×16 faces, the depth becomes 0
(1e). Second row: The intersection of the model plane with the view cone (circle) compared to the view frustum.

Figure 4.44: Excess of the view cone at grazing angles. Nearby quads have about the same projected size as quads
in the back. Second row: At grazing angles, the view cone incorrectly marks many invisible faces as visible (2a-c).
The rounded faces have a view cone angle of nearly 45 degrees, so they are subdivided ‘earlier’ (2d, 2e).

Figure 4.45: The curvature and crease heuristics. For curved faces, the resolution is increased ‘earlier’ (1a-d). The
refinement pattern gives interesting visual insights, showing which faces are more curved than others (1e).
Second row: The crease heuristic is activated halfway between one resolution and the next higher resolution.
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The question is how to distribute the quality budget among the visible smooth faces. One possibility is to minimize
an error measure, for instance the (average) pixel error between two images: The scene rendered at highest resolution is
the reference image, and it is compared to an image of a lower resolution scene, obeying the resolution budget. Then the
resolution distribution is best which minimizes the image difference. – But unfortunately, the pixel error is not very well
adapted to the human perception: for instance the eye is quite sensitive for detecting high color gradients, such as at the
object silhouette, or at creases ([Fel92, BFH∗98]). Due to these complications, the visual importance of a smooth face is
ranked according to a set of plausible heuristics, instead of using a strict error metric.

• Projected size: All quadrangles of the tesselation should have roughly the same size when projected on the screen.
This means that a patch going away twice as far should have its depth decremented by one. A patch
with a bounding box diameter twice as large has its depth incremented by one.

• Curvature: The angle between normals of neighbouring quadrangles should not exceed a threshold. This means
that a face whose normal cone angle is twice as wide should have its depth incremented by one.

• Silhouette: Faces which are neither completely front-facing nor completely back-facing are silhouette faces. As
a rule of thumb, their depth can be incremented by one.

• Crease: Accuracy is incremented by one along a crease: Let d be the maximum of the depth values from the
faces on both sides of the crease. For both patches, the neighbour depth is then set to d + 1, while
their actual depth values are not changed.

The projected size of a face can be roughly approximated by the size of the bounding sphere, relative to the view
cone. This does not, however, take the orientation of the face into account, but only the size of the bounding sphere rf,
relative to the size of the cone. The latter varies with increasing distance to the viewer: At distance xf (cf. Fig. 4.41 a),
the diameter of the cone is xf scone. Consequently, the projected size of the bounding sphere, relative to the view cone, is
pf = rf / xf scone.

The projected size heuristic states the subdivision depth Face::depth depends logarithmically on the projected size.
So let q be an overall quality parameter that works a threshold: A face is shown at full resolution only when its relative
projected size is greater than 1/q. With q = 10 for instance, all faces covering more than 10% of the viewport (in
diameter!) receive depth 4. Consequently, faces with projected bounding sphere diameter of more than 1/2q, 1/4q,
1/8q, and 1/16q receive depths 3, 2, 1, and 0. The effect of this rule is demonstrated in Fig. 4.43. The depth can be
computed with the expression �log2(q pf)�+4, since for example log2(q

1
16q ) =−4.

The curvature heuristic is realized by using the normal cone. Every smooth face contains sinαf , which is roughly
proportional to the face curvature: It is 0 if the face is flat, 1/

√
2≈ 0.71 if the opening angle is 90 degrees (so αf = π

4 ), and
1 if the normal cone degenerates to a half-space when the opening angle is 180 degrees. To integrate it with the projected
size heuristic, a higher curvature can be used to virtually increase the projected size, using q pf(1+ sinαf). When feeding
this into the logarithm, this increases the resolution of a curved face by one much earlier than for a flat face.

The reason why the projected size is multiplied, instead of adding sinαf to the result of the logarithm, is efficiency:
One challenging aspect of depth assignment is that it must be fast – because it is performed for each face in each frame.
Evaluating log2 for each smooth face is inefficient, but it can be avoided using a simple trick: The IEEE floating point
format stores numbers as exponent plus mantissa. For 32 bit floats, the exponent is a signed 8-bit integer number in bits
23-30 of the 32 bits, bit 31 is the sign bit of the mantissa. Surprisingly, the projected size and curvature heuristics can both
be evaluated with only two lines of code, and the crease heuristic with a third line:

f l oa t q_f = q u a l i t y ∗ ( r _ f / ( x_ f∗s_cone ) ) ∗ ( 1 . 0 + face→normalCone ) ;
depth = ( ( ( ( i n t &) q_f )>>23)&255)−123;
depthSharp = ( ( ( ( i n t &) q_f )>>22)&1) ;

For numbers in [1.0,2.0), the exponent is 127, this is why −127+4 =−123 is added to the isolated exponent. The depth
value must of course then be clamped to the integer range 0 . . .4. – Bit 22 is the highest bit of the mantissa, and it is 0,
e.g., for numbers in [1.0,1.5), and 1 for numbers in [1.5,2.0). So bit 22 can be used to increase the resolution along sharp
creases: The crease resolution is increased just before the face resolution is increased. Practical experience shows that this
feature should be optional, since it can greatly affect the rendering load from sharp faces. – The silhouette heuristic can
be added in a similar fashion as sinαf , e.g., by using 1−|〈vf,vcone〉| as measure for the silhouette-ness of a face.

Tesselation. All three procedures, view-frustum culling, back-patch culling, and depth assignment, are performed to-
gether in the BRepCombined::determineDepth function. It is by no means mandatory, however, to use it: The Face::depth
and Face::depthSharp values can be freely set, according to any application-specific metrics or requirements. One possi-
bility, for instance, is to execute determineDepth with a low basic quality q, and then to ‘highlight’ more important parts
in the surface by assigning a higher resolution. This is especially important when surface properties must be taken into
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void BRepCombined : : t esse l a t e ( Face∗ face )
{ . . . ( processing non−smooth faces )

short depth = face→depth ;
Edge∗ edge = face→oneEdge ;
short depthLe f t ;
short depthTop = edge→mate ( )→ face→depth ;

edge = edge→faceCCW ( ) ;
Edge∗ edgeEnd = edge ;
do {

dep thLe f t = edge→mate ( )→ face→depth ;
t e s se l a t o r . t esse l a t e ( edge→patch , depth−1,

dep thLe f t−1, depthTop−1);
depthTop = depthLe f t ;
edge=edge→faceCCW ( ) ;

} while ( edge !=edgeEnd ) ;
}

Figure 4.46: Tesselation of smooth faces. Each patch also needs the resolution of two neighbour faces (depthTop,
depthLeft), since each of them may potentially require the patch to refine adaptively. The tesselator does the actual
work (see section 3.4.2). The depth values are stored in the patch, so that it can be rendered without further access
to the neighbours. Note: To avoid confusion, this example shows only the part concerning smooth faces, and it
does not show how depthSharp is taken into account.
Right: Illustration of back-patch culling using an inverted object with CW front-faces (a). Slightly slanting the
object forward (from (b) to (d)) makes the top face vanish. With the normal cone, exclusively front-facing faces
can be identified quite accurately, as in the upper part of (c).

account that determineDepth can not know about, for instance specular materials that require a high resolution to exhibit
faithful highlights, or when transparent materials are used.

Once a resolution is assigned to all smooth faces, maxDepthSharpFaces performs one additional, but unavoidable, pass
over the sharp faces. It sets the resolution, i.e., Face::depth, of visible sharp faces (and of all their rings) to the maximum
resolution of its smooth neighbour faces. Sharp faces always have Face::depthSharp=0. The BRepCombined::tesselate
routine iterates over all visible faces to assure the required tesselation exists in the respective caches. The most time
consuming processing require the smooth faces.

• For visible polygonal faces with missing triangulation, face→ triChunk = -1, the triangulator computes it, with
respect to the mesh vertices, and allocates a chunk of triangles in BRepCombined::polygonalTriangles.

• For visible sharp faces with missing triangulation, face→sharpTriChunk[face→depth] = -1, the triangulator com-
putes it in the required resolution, with respect to the boundary sampling in face→sharpPtChunk.

• The boundary of visible smooth faces is cyclically traversed and for each patch TesselateCatmullClark::tesselate is
called with the patch ID, the face resolution, and the resolution of the two neighbour faces adjacent to the patch.

The first two case distinctions are quite lean: Once a polygonal face was visible, and once a specific sharp face resolution
was requested, the respective triangulations are computed and stored in the chunks. This is both time and space efficient,
since the triangulations are only computed when they are really needed; it may very well be that a resolution 4 triangulation
of a sharp face is never requested, in which case it is also never computed.

The treatment of smooth faces is more expensive because it involves halfedge navigation, and one access to the depth
of each neighbour face. The reason is that a patch can refine towards a more subdivided neighbour, but in order to do
so, the neighbour resolution must at least be known to the patch. The code in Fig. 4.46 shows the tesselation routine
of a smooth face schematically. The expensive part is really just the traversal itself, especially when several thousand
smooth faces are visible in low resolution. Note that caching is of course also done for smooth faces: As explained in
detail in section 3.4, the tesselation grid in each patch (Patch::vertex, normal) is adaptively refined on demand. Once a
particular patch is computed to the required depth, all that the tesselator.tesselate call does is to store the current depth,
depthTop, and depthLeft settings in the patch; otherwise, i.e., when Patch::depthMax is still smaller than max(depth,
depthTop, depthLeft), it computes the subdivision. Note that the depth values are decremented by one: The job of the
TesselateCatmullClark class starts after the first subdivision has partitioned the smooth faces into quadrangular patches.

Rendering. The BRepCombined::render(Face*) routine finally renders sharp and polygonal faces just like in the code
in Fig. 4.25 each with a single glDrawElements call. For smooth faces, the boundary is traversed, and for each halfedge,
TesselateCatmullClark::render(edge->patchID) is called. Only in case depth=0 a triangle fan is rendered instead.
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4.4 Progressive Combined B-Rep Meshes

Combined B-reps are meshes composed of both free-form and polygonal parts, and their special feature is that they for
allow on-line manipulation of the control mesh. This is a vital property especially for two purposes:

• Interactive Mesh Modeling.
A shape is typically composed and refined by applying shape modeling tools. The parameters of each tool are interac-
tively tweaked and tuned, until, by visual inspection or measuring, the shape matches the specifications and the ideas
of the artist. Technically, this implies that the mesh can be restored to the state before the tool was applied, to re-apply
the tool with slightly different parameters. This feature is referred to as the undo capability of a modeler.

• Semantic Level-of-Detail.
Smooth faces are displayed at an adaptive LOD that can be adjusted on a per-face, per-frame basis. But with very large
control meshes, this mechanism ceases to guarantee the interactivity, for two reasons: It can not reduce the LOD of
polygonal faces, and every face of the control mesh must be processed in every frame. In such cases the control mesh
itself must be coarsened. So the solution is to remove detail from the control mesh, and to add it again when it is needed.
The removal should happen in a controlled fashion, according to the model semantics.

Automatic simplification, as presented in section 4.1.5, turns a triangle mesh into a progressive mesh (section 4.1.6).
The level of detail of a progressive mesh can be freely adjusted by traversing the split sequence in either direction. This
means that a static shape is turned into a multiresolution mesh. One drawback of this approach is that simplification breaks
symmetry (cf. Fig. 4.16): the simplification routine has no information about the intended structure of the 3D model, and
it has, in case of synthetic shapes, no connection to the modeling history. Consequently, symmetries and regularities in a
simplified model are broken, and even a quite regular mesh is turned into a “triangle soup”.

This can be avoided if more control over the split sequence is granted to the user: The application generating a mesh,
i. e. the modeler, has got all the information it needs to generate the refinement operations directly from the modeling
history. The generated multiple resolutions can also be supervised by the user during the modeling process, to ensure that
also a very coarse LOD still exhibits some regularity, and respects the basic structure of the model.

Progressive meshes realize a paradigm change, because they transfer a static model into a sequence of operations. The
same is possible for other multi-resolution shape representation methods with a (closed and complete) set of construction
operations. The great benefit is that it gives to the creative mind a method for authoring multiresolution models.

4.4.1 Euler Operators for Mesh Manipulation

Combined B-reps can of course be manipulated by directly accessing the mesh entities, in conjunction with touching and
update, as it was outlined in section 4.3.2. While this may be indispensable for some applications, the drawback is that it
can be tedious to assert the mesh consistency in all cases, and to realize the undo capability, if it is needed.

The alternative is to use an operator set with ‘built-in’ consistency, generality, and undo capability, such as the Euler
operators from section 2.2, where they have been introduced only in an abstract way (shown in Fig. 2.13). To use them
with meshes, they need to be operationalized, i.e., provided with a concrete interface. One way to do this is by a set of
functions that exclusively operate on halfedges and entity attributes. As discussed in section 4.1.3, a halfedge represents
a unique position in a mesh, i.e., one (vertex,edge,face) combination. Euler operators can be adapted to combined B-reps
in a straightforward way: For every mesh entity, there is exactly one Euler operation that creates it. So it is sufficient to
augment the Euler operators with additional parameters that specify the entity attributes.

• operations creating an edge are provided with a boolean sharpness flag
• operations creating a vertex are provided with a vertex position of type Vec3f
• operations creating a face are provided with a material ID, which is just an integer

This results in a very concise set of 13 extended Euler operators for mesh manipulation: Five Euler operators, five inverse
operators, and three operators to change the sharpness, position, and material attributes of existing entities (they are self-
inverse). The mesh operations are illustrated in Fig. 4.47, and the API, the BRepProgressive class, is listed in Fig. 4.48.
Note that the parameter order is always crucial when using Euler operators.

The makeVEFS operator. A notable difference between the abstract and concrete operator sets is that the latter has
no makeVFS, but only a makeVEFS operator. This is consistent with the B-rep design decision that there is no direct link
between vertices and faces, but that they are connected only via halfedges (see 9 and 10 in Fig. 4.21). Both operator sets
are compatible, though, since makeVEFS is nothing but makeVFS followed by makeEV. This means that the vertex of the
newly created edge lies at position p1 (Fig. 4.47 1a).



180 CHAPTER 4. PRACTICAL MESHES

p0 p1 e

makeVEFS(p0, p1)

killVEFS(e)
p

e0 e

makeEV(e0,e0, p)

killEV(e)

p
e0 e1

e
makeEV(e0,e1, p)

killEV(e)

e0

e1 e

makeEF(e0,e1)

killEF(e)

p

e0
e1

emakeEV(e0,e1, p)

killEV(e)

e0
e

makeEF(e0,e0)

killEF(e)

makeEkillR(e0,e1)

killEmakeR(e)

e1

e0

e makeFkillRH(e0)

killFmakeRH(e0,e1)
e0e0

e1

Figure 4.47: Mesh manipulation through Euler operators. The halfedges show how the abstract operators from
Fig. 2.13 are operationalized. These functions are part of progressive combined B-rep meshes (Fig. 4.48).

The makeEV operator. Its parameters are two halfedges e0 and e1, the position p of the new vertex, and the edge
sharpness. Both e0 and e1 must be incident to the same vertex v. When both halfedges are identical (Fig. 4.47, 1b), a
dangling vertex is created. This raises the face degree by 2, since v = e0→vertex lies now twice in the face boundary.

When the halfedges are different, the vertex is split. The two halfedges partition v’s edges into two disjoint sets, as
indicated by the dotted lines in 4.47 (2a): The sets are {e0, e0→vertexCW, e0→vertexCW→vertexCW}, and analogously
for e1. The vertex is split so that the edge set of e0 is incident to the newly introduced e→vertex. This can also be used
for inserting a vertex into an existing edge (4.47, 3a) : When e1 = e0→vertexCW, the set of e0 consists of only a single
edge, and the newly introduced edge is e = e0→vertexCW.

Symmetrically, the inverse operator killEV is an edge collapse. It unites the edge rings of two neighbouring vertices.

The makeEF operator. Its parameters are two halfedges e0 and e1, and the material of the face to be created. Both
halfedges e0 and e1 must be part of the boundary of the same face f . When the halfedges are different, it splits a face in
two by inserting a diagonal (4.47, 2b): The two edges partition the face boundary in two disjoint sets e0, e0→ faceCCW,
etc. Note that after the split, e0 is incident to the new face, and e1 to the old face. Also note that e1 and e share the same
vertex, e1→vertex = e→vertex. – When the halfedges are identical, a loop is created in the interior of f .

The inverse operator killEF merges two different faces into one.

The makeEkillR operator. It receives two halfedges e0 of a ring and e1 of the ring’s baseface, and joins the two
boundaries into one (4.47, 3a). The resulting edge e is incident to the ring vertex. So geometrical care must be taken with
the inverse operation killEmakeR(e): e’s vertex becomes a ring vertex. The only check performed is that killEmakeR(e)
can only be applied to an edge with the same face on both sides, i.e., it assures that e→ face == e→mate→ face.

The makeFkillRH operator. It just expects a halfedge of a ring. As usual, it is the simplest, but also the most abstract
operation. It converts a ring into a face of its own, which does not change the mesh geometry, but affects only its topology,
i.e., the number of holes and/or connected components. In the Fig. 4.47 (3b), to the right, this is expressed by the halfedge
in false direction (bright red). This halfedge is part of the backside of the quad, which has just become a face of its own.
The inverse killFmakeRH(e0,e1) turns e0’s face (which must not be a ring) into a ring of e1’s face. So the order here is
‘ring first’. If e0 and e1 are confused, the result can most likely not be triangulated (ring outside of face boundary).
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class BRepProgressive
{
public :

typedef BRepCombined : : Mesh Mesh ;
. . . e tc .

struct Record { . . . see code to the r i g h t } ;
struct Macro { . . . see code to the r i g h t } ;

BRepProgressive (BRepCombined& cbrep ) ;
~BRepProgressive ( ) ;

// =========================================
/ / 1 . macro management

void c l ea r ( ) ;
Macro∗ newMacro ( ) ;
Macro∗ clearMacro ( Macro∗ macro ) ;
void currentMacro ( Macro∗ macro ) ;
Macro∗ currentMacro ( ) ;
void groundMacro ( Macro∗ macro ) ;
void deleteMacro ( Macro∗ macro ) ;

// =========================================
/ / 2 . mesh manipu la t ion

Edge∗ makeVEFS ( const Vec3f& p0 , const Vec3f& p1 ,
bool s , i n t mat ) ;

Edge∗ makeEV (Edge∗ e0 , Edge∗ e1 , bool s , const Vec3f& p ) ;
Edge∗ makeEF (Edge∗ e0 , Edge∗ e1 , bool s , i n t mat ) ;
Edge∗ makeEkil lR (Edge∗ eR , Edge∗ eF , bool s ) ;
bool makeFkillRH ( Edge∗ eR , i n t mat ) ;
bool k i l lVEFS (Edge∗ e ) ;
bool k i l l EV (Edge∗ e ) ;
bool k i l l E F (Edge∗ e ) ;
Edge∗ ki l lEmakeR (Edge∗ e ) ;
bool kil lFmakeRH ( Edge∗ eR , Edge∗ eB ) ;
bool moveV (Edge∗ e , const Vec3f& p ) ;
bool sharpE (Edge∗ e , bool s ) ;
bool mater ia lF (Edge∗ e , i n t matid ) ;

// =========================================
/ / 3 . saving edges

bool edgeToIndex ( i n t & rec , i n t & macro , i n t & stamp , Edge∗ e ) ;
Edge∗ indexToEdge ( i n t rec , i n t macro , i n t stamp ) ;

// =========================================
/ / 4 . update , undo and redo .

bool assertCommitUpdate ( ) ;
void undo ( Macro∗ macro ) ;
void redo ( Macro∗ macro , i n t depth ) ;

private :
void undo ( Record∗ rec ) ;
void redo ( Record∗ rec ) ;

/ / i n t e r n a l Euler opera tors do the ac tua l work
Edge∗ _makeEV ( Edge∗ e0 , Edge∗ e1 , bool s , const Vec3f& p ) ;
Edge∗ _makeEV ( Edge∗ e , bool s , const Vec3f& p ) ;
. . .

i n t t imestamp ;
BRepCombined∗ cbrep ;
Sk ipvec to r<Record > records ;
Sk ipvec to r<Macro> macros ;
vec to r< i n t > macroDAG;

} ;

struct Record {
i n t & deadID ( ) { . . . }
bool ac t i ve ( ) { . . . }

short op ;
i n t sourceId ;
i n t prev ;
i n t next ;

i n t edge0 , edge1 , edge2 ;
i n t newEdge ;
Vec3f p0 , p1 ;
bool sharp ;

} ;

struct Macro {
i n t & deadID ( ) { . . . }
bool ac t i ve ( ) { . . . }

i n t s ta tus ;
i n t f i r s tOp ;
i n t lastOp ;
i n t s ize ;
i n t t imestamp ;

Box3f box ;
Vec3f chi ldSphereMid ;
f l oa t childSphereRad ;

set< i n t > ch i l d r en ;
set< i n t > parents ;

} ;

BRepProgressive : : Edge∗
BRepProgressive : : _makeEV (

Edge∗ eOld , bool sharp , const Vec3f& p )
{

i f ( cbrep→mesh→ reserve ( 1 , 2 , 0 ) ) {
cbrep→mesh→ r e l oca te ( eOld ) ;

}
Vertex ∗ vOld = eOld→ver tex ;
Face∗ fO ld = eOld→ face ;
Vertex ∗ vNew = new_Vertex ( p0 ) ;
Edge∗ eNew1 = new_Edges ( sharp , sharp ) ;
Edge∗ eNew0 = eNew1 + 1 ;

touch ( vOld ) ;
touch ( fOld ) ;

eNew0→ face = fOld ;
eNew1→ face = fOld ;
eNew0→ver tex = vOld ;
eNew1→ver tex = vNew ;
eNew0→next = eNew1 ;
fOld→oneEdge = eNew0 ;
fOld→oneVertex = vOld ;
vOld→oneEdge = eNew0 ;
vNew→oneEdge = eNew1 ;

eOld→faceCW ( )→next = eNew0 ;
eNew1 →next = eOld ;

return eNew1 ;
}

Figure 4.48: The Progressive B-Rep class.
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operation edges attributes # #ID
e = makeVEFS(p0, p1,m,s) e p0, p1, m, s 5 8(1)

killVEFS(e) e e→vertex→p, e→ face→material,
e→mate→vertex→p, e→sharp 5 8(1)

e = makeEV(e0,e1, p,s) e, e0, e1 p, s 5 6(1)

killEV(e) e, e→ faceCCW, (e→vertexCW)∗ e→vertex→p, e→sharp 5 6(1)

e = makeEF(e0,e1,s,m) e, e0, e1 s, m 5 4(1)

killEF(e) e, (e→ faceCCW)∗, e→vertexCW e→sharp, e→ face→material 5 4(1)

e = makeEkillR(e0,e1,s) e, e0, e1 s 4 3(1)

killEmakeR(e) e, e→ faceCCW, e→vertexCW e→sharp 4 3(1)

makeFkillRH(e,m) e, e→ face→baseface→oneEdge m 3 3
killFmakeRH(e0,e1) e0, e1 e0→ face→material 3 3
moveV(e, p) e p, e→vertex→p 3 7
sharpE(e,s) e s, e→sharp 3 1(2)

materialF(e,m) e m, e→ face→material 3 3

Figure 4.49: Data in log records of the extended set of 13 Euler operations, derived from Fig. 4.47.

4.4.2 The Euler Operator Sequence

The execution of the thirteen extended Euler operators can be logged. This creates one log record for each operator, which
contains both the undo-information, to restore the mesh state before the operation, and the redo-information, to re-apply
the operation hereafter. The result is a sequence of operations, the Euler sequence, very much like the split sequence of
progressive triangle meshes.

Euler operators are more general though than the progressive meshes operators: A vertex split creates one vertex,
two faces, and three edges, corresponding to the Euler sequence makeEV, makeEF, makeEF. Consequently, a PM split
sequence could equivalently be expressed as an Euler sequence, exploiting its invertibility for coarsening and refinement.
But an Euler sequence operates at a finer granularity, and it is also more general, in that not only one pair of operations
is encoded in the sequence, but all 13 Euler operations can – and sometimes have to – be used for modeling. Examples
include the removal of edges between coplanar faces and the deletion of an edge to create a ring using killEmakeR.

The log record of an Euler operator. The signatures of the Euler operators and the individual fields of the log records
are summarized in Table 4.49, the respective struct Record is defined in Fig. 4.48, top right. It is derived from the
configurations in Fig. 4.47. The record for an operation op needs to store the construction parameters of both op and its
inverse inv(op): The record for killEF(e) must also store the parameters needed by makeEF to reconstruct the deleted edge,
namely e→ faceCCW and e→vertexCW. Consequently, every pair of mutually inverse operators has the same number of
items in their records, listed in the ‘#’ column of Table 4.49. The vertex→position is referred to as vertex→p in this table.
The last column shows the space needed for the log records: A Vec3f with three floats needs three times the space of an
ID, which is 4 bytes on 32 bit architectures. The superscript indicates single bits that must be stored for sharpness flags.
The records in the actual log are of equal size. They match the union of the signatures of the Euler operators: A log record
of type Record can hold three edge indices, one material index, two points, and a boolean. Space could be saved by using
integers and floats in a union fashion. All log records are stored in the skipvector BRepProgressive::records .

There is an issue concerning the deletion of loops and dangling vertices with killEF and killEV. The entries in 4.49
marked with an ∗ are then set to e→vertexCW for killEF, and to e→ faceCCW for killEV, to duplicate the respective other
entry. The inverse makeEF and makeEV operators then correctly create a loop (4.47, 3b) and a dangling vertex (4.47, 1b).
It must also be marked, though, which of the two halfedges was deleted. Consider Fig. 4.47 (1b), but with the mate killed
instead using killEV(e→mate). The inverse operation must then yield makeEV(e→mate)→mate) ; and analogously for
makeEF in case of loops. This can be signaled by setting the entries marked with ∗ to NULL.

Inverting an Euler sequence, and the sourceID. The inversion of Euler operators is somewhat complicated by the fact
that it makes sense to also use operations that actually delete entities. So let [. . . ,(makeEV)i , . . . ,(killEV) j , . . .] be an Euler
sequence where operation j kills the edge created by operation i, so i < j. To invert the sequence, the operators are inverted
and the sequence is reversed, which yields [. . . ,(makeEV) j = inv(killEV) j , . . . ,(killEV)i = inv(makeEV)i , . . .] . Care must
be taken that the inverse (killEV)i kills the right edge, because makeEV) j probably recreates the edge in a different memory
location than before, due to the behavior of the skipvector (see section 4.2.1).
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The solution to this problem comes from the observation that every existing edge has a unique original creator, i.e.,
one operation that has created it. The index i of the respective log record is stored in the BRepCombined::Edge::sourceID
at the time when the edge is created (this eventually demystifies the last combined B-rep data field left to explain). Now
for a reference to an edge, not the edge’s current array index is stored in the log record, but only the edge→sourceID.
This applies to all the references in the ‘edges’ column of table 4.49, only with the exception of edges that are created by
a record: When an operator such as e = makeEV(...) creates an edge e, the array index of e is stored in the log record.

So the log record of an edge’s creator is the unique place where the edge’s current array index is stored.
In the above example, (makeEV)i creates edge e. Its array index is stored in reci, and e→sourceId is set to i. Operation

j later in the sequence, (killEV) j , wants to delete e. But before, it stores the edge’s sourceId i as a reference to e’s creator
in its log record rec j . Now suppose an ‘undo’ of the sequence is requested, and everything is to be done in reverse.
The inverse (makeEV) j recreates the edge as e′ in a different location. But to restore the previous situation, it sets the
e′→sourceId to the original creator i, and it writes the new array index of e′ back to reci as the current location of the
edge. Then (makeEV)i can also be safely undone.

Matters are slightly complicated by the fact that half-edges encode a direction. This issue can be resolved by reserving
the least significant bit of the sourceId for the distinction between mates. In the example, e′→sourceId is actually not set
to i but to 2i, while the sourceId of e′→mate, created together with e′, is set to (2i+1). Accordingly, if operation j is not
killEV(e′), but killEV(e′→mate), the array position of e′→mate is written back to reci. – Note that when the skipvector
BRepProgressive::records is purged, the Edge::sourceID indices of all edges have to be updated.

Dummy records for externally created edges. A progressive combined B-rep is initialized with a reference to a com-
bined B-rep mesh (see the constructor in Fig. 4.48). This mesh does not have to be empty, and it shall be possible to apply
(extended) Euler operators to change it.

The mesh may have been read from a file, or constructed with other modeling methods. In either case, when it is
not constructed from scratch with Euler operators, the sourceIDs of the edges are invalid, i.e., −1. There are no source
operations to refer to when applying an Euler operator that is to be logged. In this case, a dummy record is inserted into
the operator sequence for each original edge that is referenced. It serves as a synthetic unique source record for the edge,
so that Euler operators can refer to it. Consequently, the index of this record is put into the edge’s sourceID field. With
this extension, all modeling operations can be invertibly applied also to externally created meshes.

4.4.3 Euler Macros and Semantic LOD

The Euler sequence is just one long, unstructured sequence of operations, stored in BRepProgressive::records. But one
of the goals of progressive combined B-reps is to allow for selective updates: A part of the model should be changeable
without having to rebuild the whole sequence. The way this is realized is by introducing a grouping facility for Euler
operations, the Euler macros.

Every log record belongs to an Euler macro. The Euler macros, of type Macro, are stored in the skipvector BRep-
Progressive::macros. Just like halfedges, log records also have a sourceID field, which is the index of the macro the log
record belongs to. The log records of a macro are contained in a doubly-linked list. It can be iterated through in either
direction, in undo-direction from macro.lastOp following record.prev, and in redo-direction from macro.lastOp following
the record.next indices. All these log records have the same sourceID.

Internal Euler operators and the current macro. Each of the extended Euler operations in the public part of the
BRepProgressive class (part 2. of the BRepProgressive class in Fig. 4.48, left) actually does three things when it is called:

• It executes the respective internal (private) Euler operator _makeVEFS, _makeEV etc.,
• it appends a properly filled out log record to the record list of the current macro, and
• it checks for dependency between macros (see below).

The internal Euler operators do the actual work in the mesh: They allocate entities, set attributes, maintain a valid
connectivity, and touch surrounding entities. As one example, the implementation of the internal _makeEV operator is
given in Fig. 4.48 (lower right). As their main work is to connect pointers, internal Euler operators execute very fast.

The current macro is the macro that receives the log record when a public Euler operator is executed. A macro can
be made current with the newMacro, currentMacro, and clearMacro calls from BRepProgressive. It also is possible to
switch between different current macros: The log records have explicit prev and next references, so a macro’s log records
do not have to be at successive array positions. With currentMacro(NULL), there is no longer a current macro, and the
BRepProgressive class switches to forward modeling mode (see below).
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Figure 4.50: The dependency relation of Euler macros. Left: Two colums, each with its own Euler macro, are
connected with a third macro to form an arcade. The ‘bridge’ is a child of the column macros, which are its parents.
The top face of the bridge has faces that were created by, and thus ‘belong’ to, three different macros.
Right: The extrusion is a child of the cube, and the decoration is a child of both the cube and its extrusion. To undo
the extrusion, the decoration must be undone first. Cube deletion first deletes the decoration, then the extrusion.

Macro undo and redo. A macro can be in either of two states, active or inactive. A macro is active when it was executed,
and its edges exist. This is the case right after its creation, or after redo. Undoing a macro puts it in state inactive. In order
to undo a macro with undo(Macro*), the record sequence is traversed in reverse direction from lastOp to firstOp, and the
private function undo(Record*) is called for each record. It executes the respective inverse private Euler operator, with the
proper parameters to restore the mesh state before the macro was executed. Symmetrically, for redo(Macro*), the record
sequence is traversed from firstOp to lastOp and the (private) function redo(Record*) is called for each record, which in
turn calls the internal Euler operators.

The macro dependency graph. There is a canonical dependency relation between macros: Operators that belong to a
macro mA may use halfedges produced by operators from another macro mB. In this case mB is called a child macro of mA,
and mA is a parent macro of mB. An undo of mA will first undo mB. To redo mB, first mA must be redone. So all parents of
active macros are also active, and all children of inactive macros are also inactive. The dependency graph induced by the
parent-child relation can be regarded, and used, as the continuation of a scene graph below the object level.

As the dependency graph is directed and acyclic (a DAG), a partial order exists. It is stored in BRepProgres-
sive::macroDAG as a linear array of macro indices. The linear order is such that for any given macro, its parents are
located before, and children after its own position in the sequence. The macro DAG is computed from two explicit sets
of parents and children contained with each Macro. Macros can be dynamically added (with newMacro) and deleted (with
deleteMacro). In order to completely delete an active macro, first all children are recursively deleted, then the macro itself
is undone. Finally, the macro’s records are deactivated, i.e., returned to the skipvector for later reuse.

Note that a single operator can actually change the dependency graph: Each operator using an edge of another macro
m′ makes the current macro m a child of m′. The examples shown in Fig. 4.50 also demonstrate that in general, neither
vertices nor faces belong to only one macro: Both vertices and faces can be incident to edges that were created by different
macros. A macro’s Euler operations can in fact be scattered arbitrarily over the whole model.

AssertCommitUpdate and stable edge references. Whenever the mesh is changed, by modeling or by undo/redo of
macros, the tesselation of the combined B-rep must be updated to prepare for the rendering (see section 4.3.5). Addi-
tionally, after any changes in the dependency graph, the partial order must be recomputed. This is possible in linear
time using depth first search [CLR90]. Such update issues are taken care of by the assertCommitUpdate function of
BRepProgressive. It can be used instead of, but also together with BRepCombined::commitUpdate.

Macro undo and redo may shuffle the mesh entity arrays. Let mA and mB be two independent macros. While a LIFO
order such as undo(mA); undo(mB); redo(mB); redo(mA) re-creates entities in exactly the same places, this is not true for the
mixed order undo(mA); undo(mB); redo(mA); redo(mB) . This raises the problem of reliably referencing a mesh halfedge.

Recall from the previous section 4.4.2 that an edge’s log record is the place that always contains the current array index
of the (full) edge. But to refer to a half edge, the sourceID is to be used: It contains the record index, but also encodes
a direction in its least significant bit. This alone is still not sufficient, because when a macro is deleted, the record is
deactivated for later re-use. Yet the same is also true for the macro itself; and the following sequence may lead to re-using
the same record r with a new, different macro that has actually the same index:

m = newMacro(); ...(euler operators, 1st version)... deleteMacro(m); m = newMacro(); ...(euler operators, 2nd version)...

Let r be the last record of the first version of m. When m is deleted, r is released last, and due to the LIFO behaviour
of the record skipvector, it will be the first record allocated by the second version of m. But macros also reside in a
skipvector, and for the same reason, m is just at the same location, and has the same index in both versions.
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Figure 4.51: Inconsistent intermediate configurations.

The solution is to use a triple index (sourceID,macroID, timestamp). Each macro has got a time stamp, which is
just an integer in BRepProgressive that is incremented each time newMacro and clearMacro is called. The timestamp is
initialized with a random number at construction time. So a macro can be reliably identified only with a pair of integers
(macroID, timestamp) to make sure one does not get a re-used version of it. The BRepProgressive provides two functions
edgeToIndex and indexToEdge to convert back and forth between integer triplets and halfedge pointers.

The forward modeling mode, and ‘grounding’ a macro. Sometimes it is favourable not to log mesh manipulations:
It may be that the user is certain that a manipulation will not have to be un-done. For animations, logging also does not
make sense: Animations move mesh vertices incrementally, and in a controlled way. It is not necessary to restore the
mesh to its original state each time before applying another animation step.

Logging is switched off by setting the current macro to NULL. This puts the BRepCombined class into forward mod-
eling mode. In this mode, the Euler operators only execute the internal Euler operators, but do not allocate log records; all
sourceIDs of halfedges created in forward modeling mode are set to -1. Undo is no longer possible, and detail cannot be
removed at runtime any more, so the mesh changes are permanent.

It is important to realize that forward modeling can interfere with existing Euler macros: When an edge from an
existing macro m is affected by a non-reversible forward modeling action, then m is no longer reversible either. The
consequence is that m is grounded: Grounding a macro means to activate it, and then to delete it, together with its
children. All log records are recursively deleted, and the sourceID of all edges created from these records is set to −1. So
the effect of a grounded macro is made permanent and can no longer be reversed.

Grounding a macro, with groundMacro(m), may be quite useful, for instance when, after a series of interactive adjust-
ments, a certain type of mesh modification finally is to persist.

Semantic Level-of-Detail. In database terms, an Euler operation is an atomic operation, and an arbitrary sequence of
them forms a transaction, which is an Euler macro. Euler macros are the basic unit for undo/redo, unlike PMs, where
individual edge-collapse/vertex-splits are the undo/redo unit. The granularity of the macros with respect to the length of
the operator sequence is not prescribed. A PM could be emulated by a sequence of Euler macros, each containing just
three Euler operations. But Euler macros were developed with a different idea in mind: Semantic LOD.

It is based on the observation that experienced modelers often work in a coarse-to-fine fashion: They start with some
basic shapes or primitives and successively refine them by adding detail. This modeling style nicely lines up with the
macro concept, when a new macro is started every now and then in the modeling process.

The drawback of a low macro granularity is that undo/redo gives popping artifacts. But the advantage on the pro
side is that the user – or, synonymously, a higher software layer – can steer the refinement process, and actually author
a multi-resolution mesh. It is possible to group arbitrary modeling operations together that belong to the same level of
structural refinement. Thus, user-defined macros can be based on the model semantics instead of the output of a cost
measure for automatic simplification. And in terms of progressive meshes, the edges of a pcB-rep are feature edges – and
changing them always produces artifacts, unless the object covers just a few pixels. This is the usual way to hide popping
when using LOD. Another reason for a grouping facility is that it helps to avoid geometrically inconsistent intermediate
configurations. There is not much use for detail such as a beveled edge or a profile being only constructed halfway. This
is illustrated in Fig. 4.51: The user can determine to which construction steps shall be grouped together in a macro. At
runtime, the respective detail can be switched on or off.

The window model in Fig. 4.52 is one example of a shape that is modeled using hierarchical refinements. Model
hierarchies can be exploited in various ways with macro undo/redo to remove visually unimportant parts:

• Detail size measure, to determine how much (projected) detail a macro adds with respect to its parent
• Macro depth criterion, to unfold the macro DAG just to a fixed depth, such as only to m1 of all windows
• Occlusion culling, especially important in a city walkthrough scenario, to remove occluded buildings and detail

Such criteria can be used as undo/redo oracle for a macro-based LOD, which is also called macro culling.
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m0 m0 . .m1 m0 . .m2 m0 . .m3 m0 . .m4 m0 . .m5 m0 . .m6 m0 . .m7

undo(m0) undo(m1) undo(m2) undo(m3) undo(m4) undo(m5) undo(m6) undo(m7)

redo(m0) redo(m1) redo(m2) redo(m3) redo(m4) redo(m5) redo(m6) redo(m7)

Figure 4.52: Euler macro hierarchy example. Row 1 shows how the window control mesh corresponds to the
Euler macro boxes, and to the respective child spheres. The boxes are tight if the model is axis aligned.

Row 2 shows the different steps of the window construction, each step corresponding to one Euler macro: m0

creates the wall and a quad for the window. This is subdivided by m1 creating the three yellow fields. These are
provided with the actual grey windows by m2, m3, and m4. The decoration in the top is created independently from
the wall in two steps by m5 and m6 , and finally attached to the wall by m7. So m7 has two parents, m0 and m5, that
are independent from each other. Window and decoration have no edges in common.

Row 3 shows what happens if the model is completed (2h), and then one of the macros is switched off. This
illustrates the child relationship, because it implies recursive undo of the children. Undo(m0) turns off all macros,
except m5 and m6, because the decoration was created independently. Undo(m1) does not affect its parent, the wall,
but only its children m2, m3, and m4. Undoing them does not affect other macros, because they are leafs in the
DAG. m5 and m6 can be switched off without affecting the wall. Interestingly, m7 is not a child of m6. Undo(m7)
finally only disconnects the two sub-models, wall/window and decoration.

Row 4 demonstrates the effect of switching off everything, and then only a single macro is switched on again. This
illustrates the parent relationship, because it implies a redo of all the macro’s direct and indirect parents. m0 has
no parents, but it is parent of m1. Yet a redo of m2, m3, m4 switches on m1 and, as a consequence, also m0. m5 and
m6 act independently, and the last image shows that m7’s parents are indeed only m0 and m5.
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4.4.4 Macro Culling

The idea of macro culling is the semantic magnifying glass. This is useful in a scenario with a great number of highly
detailed models at greater distance, such as a city scene. It does not make sense to render small details such as window
frames, ornaments, or door knobs of distant houses. Even if displayed at a low LOD, this slows down the rendering
process intolerably; and combined B-rep LOD does not help with polygonal detail at all. So the goal is to switch off Euler
macros that do not significantly contribute to the rendered image. This requires again to formalize the concept of visual
importance, and to identify a set of plausible heuristics, like in section 4.3.5 for the depth assignment of smooth faces.

The undo/redo oracle. For macro culling, this amounts to finding an oracle that, given the eye position, tells whether
a particular Euler macro is to be switched on or off. This decision should be stable, i.e., hold for a number of frames, to
prevent the renderer from having to undo and redo Euler macros all the time. Recall that whenever the mesh has changed,
the commitUpdate routine from section 4.3.5 must restore the tesselation. CommitUpdate is fast, but considerably slower
than the LOD based on depth assignment. The machine performance determines an undo/redo budget, the maximum
number of changes that can be made to a given mesh without violating the mandatory frame rate of 20 fps.

One consequence is that the oracle should not take the view direction into account. The view direction usually varies
much faster than the position of the viewer, considering for instance the city walkthrough scenario. High detail should be
present in the vicinity of the viewer, gradually decreasing with greater distance. Size plays a rôle as well, which again
brings in the solid angle as heuristic measure. And finally the oracle should be compatible with the recursive structure of
Euler macros: It makes no sense if the oracle tells to redo a macro, but to undo one of its parents. An oracle that never
simultaneously declares a child visible, and one of its (direct or indirect) parents invisible, is said to respect the macro
parent-child relation.

The active front. In articles from Hoppe [Hop97] and Luebke [LE97] the active tree technique has been proposed for
view-dependent refinement of progressive triangle meshes. It is based on the observation that the dependency graph of
vertex splits is a binary tree: When a vertex is split, two new vertices are created, which can be split as well. The vertices
that are present in a given resolution form the active tree. The active front are the active vertices with inactive children,
i.e., vertices that have not been split, but may be split. Since vertex unfolding starts from the coarse base mesh, the active
front is the boundary between the active tree, near the root, and the yet unfolded high detail near the leafs of the vertex
split tree. In every frame, it is sufficient to test only the vertices from the active front, to decide whether they should be
removed (collapsed), or further expanded.

Literally the same is possible with Euler macros. The active front contains all active macros that have inactive children.
Macros that neither have children nor parents are always part of the active front. In every frame the oracle is evaluated for
each macro in the active front. To resolve the stability issue, the oracle returns a float value instead of a binary decision.
This value is tested against two threshold values sundo and sredo .

• If the oracle value of an active macro, i.e., its importance, drops below sundo, it is recursively deactivated (undo).
In this case, if the macro has parents, they are added to the active front, and the macro itself is removed from it.
• If the oracle value of an inactive macro has become greater than sredo, it is activated (redo),

and added to the active front. When all children are active, the macro is removed from the active front.

The thresholds are chosen such that sundo < sredo. For Euler macros whose importance is between sundo and sredo, this
means that they keep their status: if they are active, they remain active, and if they are inactive, they remain inactive.

The sphere tree oracle. This is a first attempt to realize a simple oracle. For every Euler macro, a region of influence
is maintained, which is an axis-aligned bounding box (or AABBox) of type Box3f, represented by two 3D vectors (of type
Vec3f) as (xmin,ymin,zmin) and (xmax,ymax,zmax). It is stored in Macro::box. The box includes the vertex positions of every
halfedge referenced by an operator from the macro’s log record sequence. Additionally, every macro contains a bounding
sphere, the child sphere. It is recursively defined as containing the macro’s bounding box, and the bounding spheres of the
macro’s children. Due to the complexity of the enclosing sphere problem [dvOS97], it is computed in a simplistic fashion
from the macro’s bounding box, which is expanded to contain all child spheres.

The sphere tree oracle simply returns the projected size of a macro’s child sphere, relative to the viewport. So it uses
the same type of calculations as in the projected size heuristic for depth assignment, presented in section 4.3.5. This oracle
respects the parent-child relation: If mB is a direct or indirect child of mA, then the child sphere of mB is contained in the
child sphere of mA. So from all directions the projected size of the latter is at least the projected size of the first.

Some results obtained by the sphere tree oracle are shown in Fig. 4.53. For demonstration purposes, they deliberately
use undo/redo thresholds that are quite large. To efficiently avoid popping artifacts, the thresholds should be much smaller.
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Figure 4.53: Macro culling example with large undo/redo thresholds. Row 1: Each flower-like object is made of
three macros m0 (red), m1 (green), and m2 (yellow). The DAG is just a linear sequence. The child sphere of m2

encloses the macro box tightly, and the child sphere of m0 is biggest, since it encloses those of m1 and m2. The
circle representing the child sphere is green if the macro is active, and red otherwise.

Row 2: The user is approaching an inactive object. The spacing of the green grid represents the activation threshold
sredo. Whenever the projected size of a child sphere exceeds the threshold, an inactive macro is activated.
Row 3: The user recedes from an active object. The spacing of the red grid represents the de-activation threshold
sundo. Whenever the projected size of a child sphere drops below this threshold, an active macro is deactivated.

Row 4: When approaching a grid of inactive equal-sized flower objects, the projected child sphere heuristic boils
down to a distance heuristic. For each macro type m0 etc., the activation thresholds turns into a distance threshold:
When inside a certain distance interval [distundo,distredo], an inactive macro remains inactive, and an active macro
remains active.

Row 5: When the flowers have different sizes, the undo/redo behaviour is less uniform. Larger flowers are activated
to full detail much earlier than small flowers. They are also tesselated at a higher level of detail due to the projected
size heuristic of the combined B-rep’s depth assignment (section 4.3.5).
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4.5 Mesh Modeling Tools

The progressive combined B-rep class BRepProgressive provides only the low-level Euler operators as an interface for
mesh creation and manipulation. They allow to insert individual edges and vertices, to split faces, etc. They are not
suitable as end user interface, e.g., for artists. Instead, end user tools should be implemented on top of the Euler operators.
This section presents some examples of more complex modeling tools that hide away the intricacies of Euler operators.

Modeling tools must maintain geometric consistency. Euler operators maintain the mesh connectivity consistent. This
means that the abstract 2-complex is consistent in the sense of the mesh definition 2.30 : One can only be sure that an
embedding exists that is also geometrically consistent. Yet Euler operators – deliberately – do not check for geometric
consistency. The reason is that it cannot be decided on the level of Euler operators. During modeling, intermediate
configurations can occur that are not consistent. One example was given in Fig. 4.51. It produces heavily non-planar faces
during the construction process, whereas the end product contains only planar faces. Another example is Fig. 4.46 with
an object that is inside out for demonstration purposes. So the notion of consistency in general depends on the intended
purpose of a model. When designing mesh modeling tools, two different approaches are possible to ensure geometric
consistency. The second approach is more flexible, but the first approach may introduce less overhead:

• to build consistency checks into each tool, so that a tool either
refuses to work with infeasible input, or it even tries to ‘repair’ the input, or
• to create inspection tools that check different aspects of an existing mesh,

for instance a tool that make a set of faces ‘as planar as possible’.

4.5.1 Converting a polygon into a double-sided face

For practical modeling, the point of departure when creating an object is most often not just a single edge with a degree 2
face (the result of makeVEFS), but a higher degree double-sided face. The poly2doubleface operator converts a polygon,
given simply as a sequence of n 3D points, to a new shell with n vertices, n edges (2n halfedges), and two faces. Formally,
the poly2doubleface operator is a complex operator.

Definition 4.6 (Complex modeling operator, tool)
A complex operator, also called a modeling tool, is a modeling operation that uses a parameterized sequence of other
modeling operations to create a shape. These modeling operations can be either also complex operators, or they are
elementary operators.

This notion of a modeling tool is very general, and applicable to all shape representation methods that provide a set
of elementary shape construction operators. For the combined B-reps representation, these are the 13 extended Euler
operators. The double-sided face is created using a slight generalization of steps 1, 2, 3 from the quad torus example in
Fig. 2.15, i.e., by 1× makeVEFS, n× makeEV, and finally 1× makeEF.

The code example for poly2doublefaceSIMPLE is shown in Fig. 4.54. The input consistency is only checked in so far
as the polygon must contain n ≥ 3 points p0, . . , pn−1 (line 7). As soon as the output size is known (or can be estimated
conservatively), the mesh entities that will be allocated must be reserved in advance (line 8). This is important to avoid
mesh relocations during the operator execution (in the loop), which would invalidate, e.g., the e0 pointer (see sections
4.1.2 and 4.2.1). Line 10 begins the new shell with makeVEFS, which is just makeVFS followed by makeEV. The vertex
position of the resulting edge is p1, and its mate (at p0) is saved as e0 for makeEF (line 16). The final faceCCW assures
that the halfedge returned by poly2doubleface is always incident to the vertex at position p0 from the input polygon. Such
a deterministic behaviour is most desirable when the returned edge is to be used by other modeling tools.

Dealing with ill-defined input. Modeling tools should be designed such as to provide maximal flexibility within a
well-defined specification, related to all possible configurations of the input variables. In particular, this applies to ill-
defined input configurations that can sometimes be made to produce very particular output configurations. The input of
poly2doubleface should be a simple, i.e., non-intersecting, planar polygon. The planarity, though, is not checked, and
consequently, self-intersections can in general not be detected either. This decision is based on the following arguments:

• In case one knows the polygon is planar, checking for planarity is an overhead.
• When the polygon is not planar, this may be intentional: Non-planarity is not a problem, e.g., with smooth faces.
• The polygon may have to be projected to a face plane, but there are several ways to determine such a plane.
• If the polygon is planar but intersects itself, it is not clear how to resolve that situation.

So poly2doubleface is specified quite modestly as to process the input polygon ‘as it is’, assuming it has been processed
so that it conforms to the user’s requirements.
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1 Edge∗ poly2doublefaceSIMPLE ( BRepProgressive& pcbrep ,
2 const Vec3f∗ p ,
3 const Vec3f∗ pEnd ,
4 i n t sharpmode )
5 {
6 i n t n = pEnd−p ;
7 i f ( n < 3 ) { return NULL ; }
8 pcbrep .mesh ( ) . reserve ( n , 2∗n , 1 ) ;
9 bool sharp = ( sharpmode==1) ;

10 Edge∗ e = pcbrep .makeVEFS(p [ 0 ] , p [ 1 ] , sharp ) ;
11 Edge∗ e0 = e→mate ( ) ;
12
13 for ( p+=2; p !=pEnd ; ++p ) {
14 e = pcbrep .makeEV(e , e , sharp ,∗p ) ;
15 }
16 return pcbrep .makeEF( e0 , e , sharp )→faceCCW ( ) ;
17 }

Figure 4.54: The simple version of poly2doubleface. It
does not check for multiple vertices. The sharpmode
parameter determines the sharpness of the edges created.

Figure 4.55: Extrusion illustrated. The makeEV and
makeEF work such that the newly created face is a side
quad. Note that in this example the face is also shrunk.

1 Edge∗ extrudeSIMPLE ( BRepProgressive& pcbrep ,
2 Edge∗ edge , const Vec3f& d i r ,
3 i n t sharpmode )
4 {
5 bool vSharp = ( ( sharpmode&1)==1);
6 bool hSharp = ( ( sharpmode&2)==2);
7 i n t edgeid = pcbrep . index ( edge ) ;
8 i n t n = edge→ face→degree ( ) ;
9

10 pcbrep .mesh ( ) . reserve ( n,2∗2∗n , n ) ;
11 edge = pcbrep . edge ( edgeid ) ;
12 Vec3f p = edge→ver tex→posit ion + d i r ;
13 Edge∗ e0 = pcbrep .makeEV( edge , edge , vSharp , p ) ;
14 Edge∗ e1 ;
15 Edge∗ eEnd = e0→mate ( ) ;
16 edge = edge→faceCCW ( ) ;
17
18 do {
19 p = edge→ver tex→posit ion + d i r ;
20 e1 = pcbrep .makeEV( edge , edge , vSharp , p ) ;
21 pcbrep .makeEF( e0 , e1 , hSharp ) ;
22 e0 = e1 ;
23 edge = edge→faceCCW ( ) ;
24 } while ( edge !=eEnd ) ;
25
26 eEnd = eEnd→faceCCW ( ) ;
27 pcbrep .makeEF( e0 , eEnd , hSharp ) ;
28 return eEnd ;
29 }

Figure 4.56: The simple version of an extrusion. The
same displacement vector dir is added to all vertex posi-
tions of the existing face to create the new vertices.

1 Edge∗ bridgeFacesSIMPLE ( BRepProgressive& pcbrep ,
2 Edge∗ e0 ,
3 Edge∗ e1 , i n t sharpmode )
4 {
5 i f ( e0→hasRings ( ) | | e1→hasRings ( ) | |
6 ! e0→ face→ isBaseface ( ) | | e0==e1 | |
7 ! e1→ face→ isBaseface ( ) | | ) { return NULL ; }
8
9 i n t n = 0 ;

10 Edge∗ eA = e0 ;
11 Edge∗ eB = e1 ;
12 do {
13 eA = eA→faceCCW ( ) ;
14 eB = eB→faceCCW ( ) ;
15 n++;
16 } while (eA!=e0 && eB!=e1 ) ;
17 i f (eA!=e0 | | eB!=e1 ) { return NULL ; }
18
19 bool sharp = ( sharpmode==1) ;
20 i n t e0id = pcbrep . index ( e0 ) ;
21 i n t e1id = pcbrep . index ( e1 ) ;
22 pcbrep .mesh ( ) . reserve (0 , 2∗n , n ) ;
23 e0 = pcbrep . edge ( e0id ) ;
24 e1 = pcbrep . edge ( e1id ) ;
25
26 pcbrep . kil lFmakeRH ( e0 , e1 ) ;
27 eA = pcbrep . makeEkil lR ( e0 , e1 , sharp )
28 eA = eA→faceCW ( ) ;
29 eB = e1→faceCCW ( ) ;
30 while (eA!=e0 ) {
31 eA = pcbrep .makeEF(eA , eB , sharp ) ;
32 eA = eA→mate ( )→faceCW ( ) ;
33 eB = eB→faceCCW ( ) ;
34 }
35 return eB ;
36 }

Figure 4.57: The simple version of bridgeFaces. A pair
of different faces with the same degree is connected by a
bridge, or a tunnel, made of quads. Input edge pointers
must be converted to indices since reserve may issue an
array relocation.
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Figure 4.58: Bridging two faces. The first connecting
edge is created with makeEkillRH(e0,e1), and eA and eB

traverse the face boundaries of the faces of e0 and e1 in
CW and CCW directions.
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More flexibility with temporary vertex flags. One type of infeasible input configurations can be detected, though:
successive polygon vertices that are at the same position, also called multiple vertices. They must be removed to avoid
zero-length edges. But multiple vertices can be used for a purpose, namely to specify corners in the resulting face: The
vertex type of a multiple vertex is set to CornerVertex, whereas singular vertices are flagged as SmoothVertex. This rule is
inspired by B-spline curves, where multiple knot values can also be used to define a smooth curve with corners.

The vertex type assignments are only temporary, though: The actual vertex classification (see Fig. 4.32) is done
in pcbrep.assertCommitUpdate() (Fig. 4.48), or cbrep.commitUpdate() (Fig. 4.33), respectively. Note that the vertices
produced by poly2doubleface have valence 2, so they can actually never be corners if sharpmode = 0 in the function from
Fig. 4.54. But the update functions are only executed after a sequence of modeling operations, just before rendering. So
the temporary vertex flags can in fact serve as ‘hints’ for other modeling operations in the same sequence which further
modify the double sided face that was just produced.

The extended poly2doubleface routine uses the sharpmode parameter to specify the temporary vertex type setting:

• sharpmode = 0 or 1 : The vertex type is set to SmoothVertex for all vertices
• sharpmode = 2 or 3 : The vertex type is set to CornerVertex for all vertices
• sharpmode = 4 or 5 : The vertex type is set according to the multiplicity of the polygon vertex
• sharpmode = 6 or 7 : The vertex type is not set

Bit 0 of sharpmode specifies the sharpness of the edges created, just as in the simple version of poly2doubleface from Fig.
4.54. Note that in case the double-sided face is not further modified, the vertex type settings have no effect.

4.5.2 Bridging two Faces

BridgeFaces is another complex operator that creates a bridge, or a tunnel, between two faces f0 and f1 that have the
same degree. A bridge is created if f0 and f1 are facing each other. A bridge can be either a connection between two
different shells, merging them into one, or it creates a topological hole when the faces belong to the same shell (as in Fig.
2.29 (d) from chapter 2). When the faces are facing away from each other, bridgeFaces also creates a topological hole.
But this time the hole goes through the object’s interior, so it is called a tunnel. When both faces are facing away from
each other, but belong to different shells, the result is a surface self-intersection. So the bridgeFaces operator changes the
numerus, or the genus, of a mesh: It either decrements the number of shells, or it increments the number of topological
holes by one. Both effects can be achieved by literally the same sequence of Euler operators. Note that bridgeFaces is
purely topological in nature, and it does not involve any geometric computations.

The code of bridgeFacesSIMPLE is shown in Fig. 4.57. It realizes only a very simple consistency check: f0 and
f1 must be different basefaces without rings (lines 5-6) and with the same face degree n (lines 8-16). Just like in the
previous section, it is wise to reserve 2n halfedges and n faces in advance, to prevent mesh relocations during the loop.
A relocation, however, may happen as the result of the reserve call. Therefore, the two input halfedge pointers e0 and e1

must be converted to edge indices before reserve, and converted back to pointers after it (lines 19-23). Note that it is not
necessary to use stable edge references here (see section 4.4.3) :

• stable edge references are index triplets that survive (i.e., remain valid) arbitrary macro undo/redo actions
• entitity indices, in particular edge indices, survive relocation

It is advisable to store all references that are supposed to remain valid for a longer time as stable edge references. Ref-
erences that are to be used during the whole modeling process (between two commitUpdate calls) should be stored as
indices, and the inner loops should use pointer references for faster access.

The actual bridge is created in lines 25-33. Crucial is the beginning, with the sequence killFmakeRH, to make f0 =
e0→ face a ring of f1 = e1→ face, and makeEkillR, to immediately kill the ring with a first connecting edge (lines 25-26,
and Fig. 4.58). The other vertices are connected, a pair at a time, with makeEF creating quad faces: eA traverses the
boundary of f0 in CW direction, and eB correspondingly f1 in CW direction. Note that eA is derived from the return value
of makeEF by mate()→ faceCW(). It might as well use vertexCCW()→mate(), which is faster if the vertex valence is
smaller than the face degree: Neither vertexCCW nor faceCW are constant time operations (Fig. 4.21, no. 4). – The edge
returned by bridgeFaces is the mate of the first edge, created by makeEkillR. It is incident to the vertex of input edge e1.

More flexibility with temporary vertex flags. A more advanced version of bridgeRings can take the vertex flags into
account that might have been created, e.g., by poly2doubleface from the last section.

• sharpmode = 0 or 1 : The edge is sharp only if sharpmode = 1
• sharpmode = 2 : The edge is sharp only if both eA→vertex and eB→vertex are corners
• sharpmode = 3 : The edge is sharp only if eA→vertex or eB→vertex are corners
• sharpmode = 4 : The edge is sharp only if eA→vertex (from f0) is a corner
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Figure 4.59: Computing the vertices of the offset polygon. The offset vertex position p′1 may be computed as the
intersection of two lines parallel to the segments p0p1 and p1p2 in distance d.

Figure 4.60: Polygon scaling vs. edge offsets. Difference between scaling (a) with respect to a pivot point and
horizontal edge offset (b) becomes especially apparent with a non-convex polygon.

4.5.3 A Simple Extrude Tool

Extrusion is a very versatile modeling tool with a variety of different incarnations. In its simplest form, to extrude a hori-
zontal, planar face means to duplicate it, and to gradually move the duplicate in vertical direction. During displacement,
each boundary edge ‘sweeps out’ one quadrangular side face. Each of these side quads is formed by one boundary edge,
its displaced duplicate, and the two vertical edges swept out by the boundary edge’s end vertices.

Another way to look at extrusion is to convert a face to a polygon and to displace the polygon in normal direction. The
displaced polygon is converted to a double-sided face, and the bridgeFaces operator from the previous section is applied,
just as it is shown in Fig. 4.58. The application of bridgeFaces also yields a number of quadrangle faces as the side quads
of the extrusion. This basic idea can be varied in several ways.

• It can be generalized in a straightforward fashion to an extrusion of faces with holes. Conceptually, this works using
bridgeFaces to create tunnels for the extrusions of the rings.

• The shape of the extruded face can be varied. As an example, it is possible to move the copied vertices not only in
vertical (i.e., face normal) direction, but also in horizontal direction, i.e., within the (displaced) face plane.

• Vertices may in fact be put in arbitrary positions, which may especially be useful with non-planar smooth faces –
and this may also be the only option in cases where the face to be extruded is not planar, so that the normal direction
is not well defined.

The code for the simplest version of an extrusion is shown in Fig. 4.56. It does not use any consistency checks, in particular
it does not check whether the face has any holes. This sounds dangerous, but can in fact even be useful. The reason is
that on the B-rep level the extruded face is identical to the original face: The side quads are each created by performing
makeEV, makeEF – and the makeEF is oriented such that the newly created face is the quad. This can be nicely seen in
Fig. 4.55, which also demonstrates horizontal vertex displacement (shrinking).

So in the end, the outer boundary of the extruded face has the same degree as before, and its rings still belong to it. So
when a planar face with rings is extruded, geometric consistency with the rings can be restored by either extruding them
as well, or by just moving them geometrically. So also this very simple version of extrude is a versatile tool.

Horizontal edge offsets. There are many ways to shift the vertices horizontally, e.g., within the displaced face plane.
One possibility is uniform or non-uniform scaling with respect to some pivot point c, for instance the centroid, of the
extruded face. For a displaced vertex p′v = pv +d ·n, with n the face normal, uniform scaling by a factor of s is realized
as p′′v = c+ s(p′v− c). It appears though that scaling a face is not very useful when constructing real-world objects. A
different rule is used much more frequently, the offset rule: Just as the edges of the scaled polygon, offset edges are also
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Figure 4.61: Sharpness modes for extrusion.

parallel to the original edges. But offset edges lie some distance d apart from the original edges, and this distance is the
same for all edges. Offset edges lie to the left (inwards, i.e. shrinking) if d > 0 and to the right (expanding) if d < 0. The
vertex positions may be computed as the intersections of consecutive displaced edge segments.

Figs. 4.59 (a) and (b) show how the position of an offset vertex is computed. Let p0, p1, p2 be three consecutive
vertices on the face boundary. Then the vectors n× (p1 − p0) and n× (p2 − p1) point inwards in the positive offset
directions (left of boundary). These vectors are normalized to obtain two unit displacement vectors d01 and d12. Their
sum d012 = d01 + d12 is the angular bisector of the angle between them. So the offset vertex of p1 has to lie in direction
d012 from p1. But in which distance? The scale factor w must be chosen such that w ·d012−d ·d01 is orthogonal to d01.

〈d01 ,w ·d012−d ·d01〉= 0 ⇐⇒ w 〈d01,d012〉= d 〈d01,d01〉 ⇐⇒ w = d · 〈d01,d01〉
〈d01,d012〉

=
d

〈d01,d012〉

The crucial point with this formula is that, unlike the line intersection, it is computationally stable also in the special case
when the two polygon segments are more or less collinear. This happens frequently, for example the polygon from Fig.
4.60 contains a point with collinear segments near the upper right. This diagram also shows that scaling keeps the relative
lengths of the line segment constant, whereas the offset operation just faithfully ‘thickens the boundary’.

More flexibility with temporary vertex flags. Just like with the previous tools, it is possible to use the temporarily set
vertex type to derive the edge sharpness assignments. An extrusion creates two kinds of edges, the boundary edges of
the displaced face, which may be called horizontal edges, and for each vertex one vertical edge. The vertex type may or
may not be used to derive the sharpness of these vertical edges, according to the following table. In any case, bit 0 of
sharpmode specifies the sharpness of the horizontal edges, i.e., the edges of the displaced face.

• sharpmode = 0 or 1 “smooth” All vertical edges are smooth
• sharpmode = 2 or 3 “sharp” All vertical edges are sharp
• sharpmode = 4 or 5 “like vertex” A vertical edge is smooth if and only if the vertex type is ‘smooth vertex’
• sharpmode = 6 or 7 “continue” Vertical edge sharpness equal to sharpness of last corresponding vertical edge

The different possible combinations are illustrated in Fig. 4.61. The continuation modes 6/7 are somewhat special. They
are supposed take into account the sharpness of vertical edges created by previous extrusions. Considering the code
in Fig. 4.56, the vertical edges are created as dangling edges using makeEV(e,e,sharp,p). With modes 6/7 the edge
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Figure 4.62: Column basis created by multiple extrusion from basis (a) with profile (b).

e→mate()→ faceCCW() is assumed to be created by the previous extrusion, and the sharpness of this edge gives the
sharpness of the new vertical edge.

In case temporary vertex flags are set appropriately, the modes 4/5 yield the identical configurations as modes 6/7,
which is demonstrated in columns 4’/5’ in Fig. 4.61 (left side). To the right, the result of modes 4/5 is shown in the
absence of temporary vertex flags, for instance when the two vertical edges below the start face have just been made sharp
explicitly using edge->sharp=true. In this case modes 4/5 are identical to modes 0/1, and the continuation modes 6/7
should be used instead. The continuation modes, on the other hand, are not very handy when an extrusion is applied either
to a face whose neighbours are not all (side-)quads, or to a double-sided face. This is the reason why both types of modes
are necessary.

Multiple extrusions. So some effort was taken to assert a reasonable behaviour of the extrude operation with respect to
a previous extrusion. This effort is justified by the importance of multiple extrusions. Multiple extrusions can be regarded
as an important special case of sweeping, a very common operation in modeling. Sweeping means to create a surface from
two curves, a profile curve and a spine curve. The surface is created by moving the profile along the spine, possibly at the
same time scaling or rotating the profile. Since for extrusions the face plane of the extruded face is parallel to the plane of
the original face, multiple extrusions are much like sweeping with a straight spine.
So far, every single extrusion has to be specified with three parameters, two floating point parameters and a mode flag:

• h, the amount of horizontal displacement of each edge within the face plane for shrinking or expanding,
• d, the amount of vertical displacement which determines how far the face is lifted up, and
• m, one of the edge sharpness modes 0-7 that were illustrated in Fig. 4.61.

These three parameters can be combined into a single 3D vector (h,d,m) of type Vec3f. Although it may seem strange
to put the integer sharpness mode into the z-coordinate of a 3D vector, the great advantage is that a single parameter is
sufficient to specify one extrusion. Multiple extrusions then correspond to an array of 3D points, which are essentially a
profile curve. The modeling tool for multiple extrusions is a function declared as follows:

bool extrudeMulti(BRepProgressive& pcbrep, Edge* edge, const Vec3f* profileBegin, const Vec3f* profileEnd);

A demonstration of the power of this simple function is shown in Fig. 4.62. The basis (a) was created by concatenating
four arrays for the four sides of the column, each array containing six points. The points in the (sharp) corners appear
twice in the concatenated array so that the poly2doubleface operator with mode 5 can set the temporary vertex flags
appropriately. One mode 5 extrusion creates the basis which accordingly contains just four vertical sharp edges.

Then the profile curve (b) is applied using the extrudeMulti tool declared above. The x-axis stands for the horizontal
and the y-axis for the vertical displacement; so the large blue dot in the origin is the start point (0-displacement). The
polygon dots stand for the extrusion mode, which is either continuation mode 6 (green, horizontal edges smooth) or 7 (red,
horizontal edges sharp). They correspond to roundings in the profile, as can clearly be seen in (c), and simply indicate the
smoothness of the respective edges from the control mesh (d).

To finally create the classical column basis (e) is just a matter of calling extrudeMulti with the 12 profile CVs from (b):
(-1,0,6), (-1,2,6), (1,2,7), (1,2.4,7), (3,3,6), (3,3.9,6), (1.8,3.9,7), (1.8,4.3,7), (1,4.3,6), (1,5,6), (3,6,7), (3,10,7)
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Figure 4.63: The principle of path extrusion. Standard extrusion creates stacks of slices, whereas path extrusion
follows a sequence of halfedges, a halfedge path. Profiles may also be applied only partially around the object.

4.5.4 Path Extrusion

The extrude operator from the last section operates on a single face in the direction of the face normal. It permits not only
to lift the (copied) face but also to shrink or expand it during extrusion. This is very much like a sweeping operation with
a spine that is restricted to be straight vertical. More general tools are possible with additional parameters for instance to
rotate the extruded face, either around the face normal, or around an axis within the face plane, or both.

But the face extrusion operator has one fundamental restriction, the construction order: Extrusions are stacked on each
other and must be executed one after another, which results in a strictly linear construction sequence.

Fig. 4.63 shows an example in (1a-1d): First the base is created, then the profile, and then the upper part. Such a
strict linear order does not permit to insert a profile slice ‘in the middle’, in a situation like in (2a): The profile slice was
forgotten and it must be inserted subsequently. – Another problematic case is a profile that is supposed to reach only
partially around. This is relevant, e.g., for creating columns that do not stand freely, but are attached to a wall.

The solution is path extrusion. It operates along a connected path of halfedges. Path extrusion creates a displaced copy
of the edges from the original path; the latter are also called the horizontal edges. As before, this creates quadrangles, one
for each edge along the path. A duplicated edge is always parallel to the respective original edge. It can be translated in
two independent directions (i.e., in the plane normal to the edge), as shown in Fig. 4.64: Within the face plane (red), and
normal to the face plane (green). So as before, an extrusion can be specified with a 3D vector (h,d,m), where

• h is the amount of horizontal displacement of a copied edge within the face plane (red, x-coordinate),
• d is the amount of vertical displacement, normal to the face plane (green, y-coordinate), and, as usual,
• m is the edge sharpness mode.

Figure 4.64: Parameters of path extrusion. For an (x,y) extrusion, the x-coordinate is the displacement within the
face plane (red arrow along vertical edge), and y is normal to it (green arrow in bisector plane, also see Fig. 4.59).
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Figure 4.65: Typical façade profiles created with path extrusion. Same paths can be used with different profiles.

Note that despite the explanation of the parameters is identical to those of face extrusion (see section 4.5.3), the notions
of ‘horizontal’ and ‘vertical’ are exchanged: In order to obtain the same profile with multiple path extrusions as it was
obtained with multiple face extrusions, the h and d components of the profile need to be swapped.

An example of a path with four halfedges is shown in Fig. 4.63, (2a). Path extrusion yields the same profile as
before in (1a-1c), but it is applied only in the front of the object (2b). The detail close-up images (2c) and (2d) show the
behaviour at the end and the beginning of the path, respectively: The profile vertices are made to lie in the face plane of
the respective neighbour faces (if possible). Also the profile runs only partially around the object, which is not possible
with face extrusion.

Path Consistency conditions. First of all, the halfedge path needs to be singly connected, i.e., for every pair of suc-
cessive halfedges ei, ei+1 in the sequence, ei→mate and ei+1 must share the same vertex. But not every connected
halfedge path is accepted by path extrusion. An additional requirement is that there may be at most one “vertical” edge
between successive halfedges. For ei, ei+1 this means that either ei→ faceCCW= ei+1 (no vertical edge, same faces), or
ei→ faceCCW→vertexCW= ei+1 (one vertical edge). An example of a vertical edge is shown in Fig. 4.64 (red arrow).

In case of a vertical edge, there is still another constraint, the reflection property (Fig. 4.66). It poses a geometric
restriction on the angle the path edges may have with the vertical edge between them: Both angles must either be equeal
or sum to 180 degrees.

Multiple vertical edges are not allowed in order to avoid too complicated configurations. With a double vertical edge
for instance ei→ faceCCW→vertexCW→vertexCW= ei+1 for one i. Both ei→ faceCCW and ei→ faceCCW→vertexCW
are vertical edges where displaced vertices must be inserted. They must be connected by another edge, which corresponds
to no edge on the path, so it is not an offset edge; and instead of a quadrangle, it creates a triangle. Furthermore, at all
inserted vertices the reflection property must hold, which requires a very special geometric edge configuration.

It may seem that profile extrusion is not very useful since so many constraints need to be met. But all on the contrary,
it is a versatile tool for the domain of architecture; for instance the decoration above the window in Fig. 4.52 was created
with it. A path on a surface is a very natural concept, and the separation between path and profile permits much flexibility.
The example in Fig. 4.65 demonstrates switching of profiles, and it uses a path without vertical edges around the windows.

α
d

α α α α
π−α

α

Figure 4.66: Reflection property. The offset edges in fixed distance d only meet in one point if both angles are
equal, or if they sum to 180 degrees. Note that this holds also if the left and right surface normals are different.
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Figure 4.67: The straight skeleton. When building roofs, simple extrusion leads to self-intersections. It is very in-
structive to consider the way carpenters build a roof. Lower row: Two types of problems occur when the horizontal
offsets become larger, collapsing edges (a-c) and intersecting angular bisectors of reflex vertices (d-f).

4.5.5 Intersection-free Extrusion and the Straight Skeleton

One particular problem for any kind of extrusion that includes offset operations, such as to shrink or expand a contour, is
the possibility that self-intersections can occur. The amount of offset that is legal and does not lead to self-intersections is
often not known beforehand. Recall the example from Fig. 4.60 (b), where the offset contours from opposite sides of the
non-convex polygon nearly touch at its narrowest waist. It is very tedious to determine the interval of legal offset distances
by trial and error; and if the offset operation is applied to a polygon that is dynamically generated, for instance as a part
of a complex construction, self-intersections must be reliably repaired automatically, rather than only avoided.

Reasons for self-intersections. Analyzing the problem one finds that two types of situations lead to self-intersections.
They are shown in Fig. 4.67, lower row. The first three pictures (2a-c) illustrate the problem of collapsing edges: The
offset copies of the left and right edges get shorter and shorter, until they collapse to a single point. The second type of
problem arises when an offset vertex approaches an offset edge (or vertex) on the opposite side, as shown in the three
pictures to the right, Fig. 4.67 (2d-f). Such a vertex is called a reflex vertex: The interior polygon angle is more than 180
degrees. Traveling CCW along the polygon boundary one has to turn right at a reflex vertex, rather than left as usual.
Every non-convex polygon has at least one reflex vertex, and vice versa.

Fix self-intersections from collapsing edges. Both situations can be resolved in basically the same way. The idea is to
imagine a carpenter building a roof. It is economic to build up a roof of planar parts, each part attached to one wall. It is
also reasonable for all planar roof parts to mount with the identical slope. Each of the walls corresponds to one edge of
the ground polygon of the house. So to plan the roof is basically a 2D problem: Every polygon edge is offset inwards to
determine the position of the next roof lath; in reality the individual roof tiles are attached to these laths. For consecutive
polygon edges, the laths meet in the angular bisector of the interior angle at the common vertex. A single angular bisector
ray, also just called the bisector, emanates from every vertex of the polygon. This property holds also when an edge
collapses to a single vertex: The left and right neighbour faces now become neighbours, and their line of contact is also
the angular bisector of their respective base edges. This is shown in 4.67 (b). When all remaining offset edges eventually
collapse to a point or a line, as in 4.67 (c) and (f), the roof plan is finished. This plan is called the straight skeleton.

Fix reflex rays that hit opposite edges. The bisector from a reflex vertex can split an opposite edge in two, as in 4.67
(e,f). A new vertex is inserted at the end of the bisector. Note that this vertex has the same distance from three lines in 2D:
From the line trough the opposite polygon edge, and from the lines through the two edges that meet at the reflex vertex.
Just as in the case of a collapsing edge, faces become neighbours that were not neighbours before. Two new bisectors
emanate from the new vertex, computed from the relative orientation of the respective original polygon edges.

Note that many different special cases are possible: It may be that several edges collapse at the same time, for instance
when vertices lie on a circle. The bisector of a reflex vertex may meet with another reflex bisector from the opposite side,
or with a collapsing edge. But they may also just fail to meet exactly: The straight skeleton is quite unstable sometimes.
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Figure 4.68: Examples of the straight skeleton. Every red line corresponds to one or more edge, split, or vertex
events. Rings contain mostly reflex vertices (1a-e). Whenever a reflex bisector hits an offset edge (split event), it
splits the polygon in two (1a,b). The new vertex belongs to both, with two new bisector rays in either direction
(1d). Reflex bisectors may hit not only edges but also other reflex bisectors (2a-c) in a vertex event. But they may
also just fail to do so (2e): One of the two edges in (2d) is slightly perturbed, and the vertex event turns into a
series of edge events. The straight skeleton is an unstable problem, since small variatons of the vertex positions
can sometimes yield greatly different skeletons (3a-d). Approaching parallel lines collapse into a line rather than a
point, with several split events (4b) and edge events happening at the same time (4c). With coincident events, the
correct geometric and temporal order is crucial (Rows 5, 6).
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Figure 4.69: Straight skeleton of points on a circle. The angle between 72 consecutive points on the unit circle
was randomly distorted by 0.5 (b) and 3.5 degrees (c) to simulate the effect of an uneven sampling of a smooth
curve. The straight skeleton is very sensitive to this sampling noise. The resulting subdivision surface (d) exhibits
wobbling (e) since the control polygon has many very short edges near the circle center (f).

Figure 4.70: The medial axis of a polygon is the set of the centers of all maximal circles lying inside the polygon
(a)-(c). For reflex vertices, the medial axis contains also curved (parabolic) parts (a). The medial axis can also be
obtained from an offset operation. Considering the polygon boundary as point set, the Euclidean distance leads to
an offset curve that, unlike the straight skeleton (e), contains also curved (circular) segments for reflex vertices (d).

The straight skeleton and the medial axis. In the computational geometry literature the straight skeleton was first
introduced by Aichholzer and Aurenhammer in 1995 in [AAAG95]. They observed that the construction of a roof was
similar, but not identical to the medial axis of a polygon. The latter is a well known concept in computational geometry
with a huge number of applications. The medial axis of a polygon is defined as the set of points with more that one closest
point on the polygon boundary. In case the polygon is convex, it is a network of straight line segments. But in case the
polygon contains reflex vertices, the medial axis contains also curved parabolic segments, as shown in Fig. 4.70.

The reason is that the locus of the points that have the same distance from a given point and a given line is a parabola.
This is easy to see, e.g., considering the set of points (x,y) ∈ R

2 that have the same distance from the x-axis and the point
(1,0). The length of the difference vector (x−0,y−1) must be identical to the height y. This yields a parabola:

y =
√

(x−0)2 +(y−1)2 ⇔ y2 = x2 + y2−2y+1 ⇔ y = 1
2 (x2 +1)

The medial axis can also be characterized as a part of the Voronoi diagram of the polygon vertices and edges. Another
way to construct it is by an offset operation, where the polygon is used as the path of a circular pen (Fig. 4.70 d). The
breakpoints between consecutive line segments and radial arcs trace out the medial axis [EE99]. But the resulting offset
curve contains also curved (circle) segments for each reflex vertex, which is not desirable. The solution is the straight
skeleton: It considers the distance from the line through a polygon edge, rather than from the polygon edge as a point set.
The straight polygon itself as well as all offset polygons contain only straight line segments (Fig. 4.70 e), hence the name.
As observed by Eppstein and Erickson in [EE99], the difference between medial axis and straight skeleton can also be
characterized by the distinction between line joints in vector drawing programs, the rounded and the mitered joint styles.

Literature on the straight skeleton. It may be surprising that the medial axis can be computed in linear time, which was
shown by Chin et al. in [CSW95]. But unfortunately, equally efficient algorithms for the straight skeleton are not known.
The original straight skeleton algorithm from Aichholzer and Aurenhammer in [AAAG95, AA96] has time complexity
O(n2 logn) for a polygon with n vertices. It can be improved with a quadtree to achieve a quadratic complexity of
O(nr + n logn) = O(n2), where is r < n is the number of reflex vertices, as it was reported by Eppstein and Erickson
in their beautiful article on “Raising Roofs, Crashing Cycles, and Playing Pool” [EE99]. In this article they propose
another, more involved, ‘reflex-sensitive’ approach for computing the straight skeleton that runs in sub-quadratic time
O(n1+ε + n8/11+εr9/11+ε) = O(n17/11+ε). They claim that a ‘practical variant’ of their algorithm runs in O(n logn+ nr)
time with O(n + r2) space. This bound is improved by Cheng and Vigneron in [CV02] who propose a randomized
algorithm that runs in O(n log2 n+ r17/11+ε) for degenerate polygons (with vertex events) and in O(n log2 n+ r

√
r logr)

otherwise. Their algorithm cannot handle polygons with holes, though.
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INTERSECTIONFREEOFFSET(PolygonP,d)
1 for all vertices: compute angular bisector and identify reflex vertices
2 for all polygon segments: compute edge events
3 for all reflex vertices: compute split events and vertex events
4 Create event queue Q from all events with event time t < d, sorted by t
5 while Q not empty process next event according to event type
6 do remove or split boundary segments of the offset polygon
7 create the edges, vertices, and faces of the straight skeleton
8 update Q according to the changes made to the polygon
9 for all vertices: create dangling vertices on bisector rays

10 for all polygon segments: add ‘horizontal’ edges at distance d

Figure 4.71: Intersection-free offset polygon at distance d > 0. First all events that occur in the interval [0,d] are
executed (a,c). Then the vertical and horizontal edges are inserted (red). The horizontal edges form the boundaries
of the actual offset polygons, shown in green (b,d). These boundaries are in distance d from the original polygon.

Computation of the straight skeleton. The offset distance at which a polygon segment collapses can be computed in
constant time. It is the distance between the 2D line along the segment and the point c that is the intersection of the two
bisector rays from its end vertices. In case both of them are reflex vertices, the intersection point lies on the exterior side,
and the segment’s edge event time is negative; it may as well be infinite in the special case of parallel bisector rays.

The effect of the reflex bisectors is more difficult to compute since by its nature it is non-local. Note that the reflex
bisector for unit edge speed can become arbitrarily long if the interior angle approaches 360 degrees. One source of
difficulties are multiple reflex bisectors that meet in a single point, as in the center of the cross in Fig. 4.68 (2a)-(2c). This
case is treated separately as a new event type by Eppstein et al, who call it a vertex event. The reason is that unlike edge
or split events, a vertex event can introduce a new reflex vertex into the shrinking polygon. The failure to process a vertex
event appropriately can have a drastic effect on the straight skeleton, as shown in Fig. 4.68 (3a)-(3d): A vertex event
is a very special case that can be thought of as being surrounded by split events on either side. In any case very small
variations of the input polygon may drastically change the result.

Both with split and vertex events the total number of reflex vertices decreases, since also each vertex event removes
(at least) two reflex vertices. Vertex events are a special case because they do not occur when the vertices are in general
position. So polygons whose straight skeletons have vertex events are considered degenerate by most authors. It appears
however that they are quite important in practice, e.g., for constructing roofs.

Intersection-free offsets/extrusions and the straight skeleton. A straight skeleton algorithm takes basically the form
of a sweepline algorithm, similar to the triangulation algorithm in section 4.2.2. But instead of a single sweep line, the
sweep parameter measures the offset distance from the polygon boundary. This offset distance can be seen as a time
parameter (of the sweeping motion), as well as the increasing height of the roof. Three types of events are processed:

• edge event: a polygon segments vanishes because the bisectors of its two end vertices cross, see Fig. 4.67 (2b)
• split event: a polygon segment is split because it is hit by the bisector of a reflex vertex, see Fig. 4.67 (2e)
• vertex event: two or more reflex bisectors meet in a single point, see Fig. 4.68 (2a)

It must also be noted when an event makes a sub-polygon completely vanish, e.g., when all remaining edges collapse at
the same time (Fig. 4.67 (1a)), or when only 2-gons remain (Fig. 4.67 (1b-d)). The basic outline of a straight skeleton
algorithm is given in Fig. 4.71. The computationally most expensive part is to find out which polygon segment is hit by a
reflex bisector. A priori this can be any other segment, so that step 3 has complexity O(rn) when all segments need to be
tested with each reflex bisector. This algorithm can be used to compute

• the straight skeleton: The offset d = dmax is so large that no more events happen after it
• an intersection-free offset: Part of the 2D straight skeleton and the offset polygon at distance d < dmax

• an intersection-free extrusion: In addition to the offset distance d the elevation h is specified (roof slope d/h)
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Figure 4.72: The roof of a castle. The roof would be very hard to realize without an automatic straight skeleton
computation, due to the many possible control mesh configurations from different angles between the aisles.

Building roofs and vertex events. Especially for building roofs, the degenerate polygons where the straight skeleton
exhibits vertex events are indispensable. Carpenters actually favorize corner configurations like in Fig. 4.67 (1c) and (1d),
because they keep the shape of the individual roof parts simple. Also reflex vertices are not always a special case. First,
it is sometimes desirable to compute the straight skeleton in outward rather than inward direction, i.e., to inflate rather
than to shrink the polygon. In this case all normal (convex) vertices become reflex vertices and vice versa. Second, if a
polygon has rings, normal ring vertices are also reflex vertices for inward offsets, as in rows 1, 4, and 6 of Fig. 4.68.

A refined example of a roof that is exclusively built with intersection-free extrusion is shown in Fig. 4.72. It is made
by multiple extrusions with different slopes, and after some of them the horizontal edges of the extruded faces were made
smooth. The second row of images shows the power of this approach, since the intersection-free extrusion permits to
generate the roof automatically despite the problematic ground polygon that leads to coincident edge collapse events of a
high degree at the circle centers, as well as to many vertex events.

Straight skeleton of polygons sampled from a smooth curve. Every edge event collapses an edge, removes (at least)
one boundary component, and thus, destroys information. It is interesting to examine the straight skeleton from polygons
that approximate a smooth curve by discrete samples. The example in Fig. 4.73 shows the straight skeleton of the polygon
from Fig. 4.60, which was generated from a B-spline curve. With increasing sampling density the angular bisectors
converge to the 2D normal vectors of the polygon boundary. But a smooth curvature variation implies that nearby points
have similar osculatory circles, and the respective normal vectors point to the centers of these circles. In case of a convex,
smoothly rounded curve all normal vectors nearly intersect in a common point, the approximate midpoint of the osculatory
circles. In case the rounding is not a perfect circle, the midpoint degenerates to a curve. Smooth elongated shapes therefore
exhibit the phenomenon of a ‘spine’, which may also bifurcate. It is plausible that the medial axis and the straight skeleton
converge to the same limit spine, e.g., the red spine shown in Fig. 4.70 (e): Note that in case of a convex polygon, the
straight skeleton is identical to the medial axis.

One especially interesting smooth curve is the circle. The experiment in Fig. 4.75 (1c) and (1d) shows a parabola that
appears as the projection of the intersection of two surfaces: (i) the offset surface swept from a half circle, and (ii) the
offset surface swept from a line. So in this case also the straight skeleton produces (an approximation to) a parabola. This
shows again the tight relation between the medial axis and the straight skeleton.

The straight skeleton, however, is extremely sensitive to sampling noise. This is illustrated with the experiment in
Fig. 4.69. It shows in (a) the projection of the straight skeleton of a regular 72-gon: a perfect polyhedral cone where all
bisectors meet in the center in one large edge event. But then jitter is introduced, with the vertices sliding along the circle,
but keeping the same distance to the center. With increasing jitter, the bisectors more (b) and more (c) deviate from the
true circle normals. As a consequence, the intersection points are more and more spead as well.

The subdivision surface from a straight skeleton. Applying the intersection-free offset to a polygon sampled from a
smooth curve immediately raises the question whether the skeleton can also be used to generate a smooth surface. The
straight skeleton from the jittered 72-gon on the unit circle exhibits very short edges near the center, shown in Fig. 4.69
(d,f). They attract the surface unproportionally strong, which leads to wobbles that may result in surface folding (e).
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Figure 4.73: Comparison between polygonal offset and straight skeleton of the sampled curve from Fig. 4.60. The
straight skeleton forms a spine curve (5c). It appears gradually, beginning with a reflex part from the non-convex
part in the middle (1c) and the high-curvature part at the right end (2c). The high curvature leads to a ‘focal
self-intersection’ artifact (5b) from bisectors in the right and left shape ends that (almost) meet in single points.

Figure 4.74: Subdivision surface from irregular straight skeleton. The small edges in the center of the left end
lead to surface wobbling (1a, 1b, 2a), an effect that is explained in Fig. 4.69. The surface on the thin end is not
completely smooth either because of the varying surface degrees. Also note that the spine curve contains several
slight hills (1c,2c). The reason is that more bisector rays from the outer than from the inner part of the polygon
boundary arrive at the spine. So the rays from the outer boundary are slighly longer, i.e., they reach higher.
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Figure 4.75: The offset operation is not always invertible since every edge collapse event removes information. A
shape (non-convex red contour) is first offset inwards (1a,2c,2e) and then outwards (1b,2d,2f). If any edges were
collapsed during the first offset, the reversed offset does not reconstruct the original shape. A parabolic curve can
be obtained also with the straight skeleton, with the offset of a circle segment set into a straight line (1c,d).

Better results can of course be achieved with more evenly spread curve samples. But a closer inspection of Fig. 4.73
reveals that the wobbles are an inherent problem of this method and can not always be avoided. The images (5b) and (5c)
show a direct comparison between simple and intersection-free extrusion. The simple extrusion suffers of course from
self-intersections. But the surface subdivision proceeds locally, and the tesselation of the subdivision surface in (5a) is
much more regular than the one in (5d), which exhibits some irregularities.

They were further examined in Fig. 4.74. On the left (bigger) part of the polygon, the accumulation of the intersection
points near the top of the hill leads to an effect similar to 4.69 (d): Short control mesh edges attract the surface and lead to
wobbles (1b). Another source of wobbles is the uneven distribution of face degrees, the reason for which becomes evident
at the right (small) end of the polygon: Although the sampling rate is very similar on both sides, more bisector rays reach
the spine from the exterior (right) side; consequently the faces on the inner side have higher degrees, thus they attract the
surface more.

Reversible offset operation and the need for multiple intersection-free extrusion. Every collapse event removes
information, as clearly illustrated in Figs. 4.75 (1a) and (1b). This is a difference to simple extrusion and offsetting
where all vertices remain in the polygon irrespective of the geometric inconsistencies they cause. One consequence is that
intersection-free extrusion is not reversible, i.e., the original polygon cannot be reconstructed from the offset polygon. It
is not possible to go back from (1b) to (1a) by applying an exterior offset. Considering Fig. 4.73 it may be quite interesting
though to determine all polygons (or smooth curves) that result in the same spine (also see Fig. 4.70 (f)).

Note that also simplel extrusion is no longer invertible as soon as one edge gets reversed. This is shown in Fig. 4.76
(c): Whenever the polygon intersects itself, e.g., it forms an ‘8’ shape, also called a bowtie, the wrong side of one edge
is considered as inside, and the direction of the bisector ray suddenly flips by 90 degrees. Therefore 4.76 (b) can not be
reconstructed from 4.76 (c) either, although no vertices got removed.

Also note that intersection-free shrinking can be reversed in case exclusively split events took place. An example are
the three triangles in Fig. 4.68 (1b), from which it is possible to reconstruct the original quad with the triangular hole.

An important motivation for a reversible offset operation are multiple intersection-free extrusions. The usefulness
of multiple extrusion was demonstrated, e.g., in the column from Fig. 4.62. During the vertical extrude motion, the
polygon can be shrunk and expanded, which basically means to apply a vertical profile. Without multiple intersection-free
extrusion, one has only two options, both of which are equally unsatisfactory:

• to limit the shrinking/expansion rate of the vertical profile so that the (horizontal) polygon
experiences no self-intersections – this option was chosen in Fig. 4.62 –, or
• to use only monotone profiles that, unlike the profile from Fig. 4.62, either only shrink or only expand the polygon.

This solution is at least acceptable for creating (most) roofs.
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Figure 4.76: Flipping bisector angles due to bowtie offsets. Also with multiple extrusions, the bisector direction
remains the same (a,b). An exception occurs only when an edge is reversed because of an unhandled edge collapse
event (c),(d): The dashed bisectors in (c) now point outwards rather than inwards, and they are flipped by 90
degrees. As a consequence, the offset is no longer reversible. (e): The edge event is correctly processed.

Figure 4.77: Reversible multiple offsets. Information lost with edge collapse events (1b) is re-inserted by issuing
the respective inverse Euler operations (2b). This enables arbitrary stacking of multiple offset operations (right).

Multiple intersection-free extrusion. The input parameters are one (or more) planar (or co-planar) mesh faces and the
vertical profile. The profile is a sequence of (x,y,s) triplets, where as before x is the horizontal offset distance for shrinking
(x > 0) or expansion (x < 0), y is the height of the vertical extrusion at distance x, and s is the sharpness of the horizontal
edges. The sharpness is not a mode flag but just either 0 or 1. The key to realize an ‘invertible straight skeleton’ is now to
divide the original algorithm from Fig. 4.71 into two different phases. First of all the interval [xmin,xmax] of the required
expansion and shrinking of the polygon is determined, with xmin ≤ 0 and xmax ≥ 0. The two phases are the following:

1. Compute all the events in [xmin,xmax]
First compute only two sequences of events, namely the the collapse, split, and vertex events that occur
when going from offset distance 0 to xmin ≤ 0 (expand), and, in a second pass, from 0 to xmax ≥ 0 (shrink).

2. Process the profile
Each item from the profile, from begin to end, is processed. This involves first to execute all the events on the
way from offset distances xi−1 to xi, and also in the right vertical height linearly interpolated between yi−1 and yi.
Second, the horizontal edges for the respective item are created, with the prescribed sharpness s, thereby inserting
also the missing vertical edges.

By the separation into two phases the manipulation of the mesh is decoupled from the computation of the events. This is the
key for processing arbitrarily complex vertical profiles with any combination of positive or negative vertical displacements
and any expansion and shrinking – which makes it very easy to create complex models such as in Fig. 4.77 (right).

Subtleties with numerical calculations. The first phase of the algorithm, the computation of the events, uses geometric
predicates that pose delicate numerical problems because many practically relevant polygons are degenerate. Numerical
issues are not addressed by the cited publications; they are usually delegated to general computational geometry libraries
such as CGAL [FGK∗00] or LEDA [KN04]. But this is not always necessary. – Since both the extent of the polygon and
the maximum extent of the profile are known, the extent of the result is bounded. This means that fix-point arithmetic can
be used that provides much higher accuracy with the same number of bits. When the vertex coordinates are transferred to
integer numbers, the slope of two lines can be compared more accurately. Then the intersection of nearly parallel lines,
such as neighbouring bisector rays of a densely sampled curve, can be determined with a guaranteed tolerance.
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Figure 4.78: Two ways to build a tower with four corner towers. Tower A (yellow, left) is built from an intermediate
level while tower B (reddish, right) is built from the ground. Polygon A (1c) has greater extent, but polygon B (1d)
contains more information, the full circles of the corner towers. So the hats of tower B are more complete (2b).

Reversible intersection-free offset. The processing of every event corresponds to a short sequence of Euler operators.
An edge event leads to one new vertex connected to two (or more) bisector rays. A typical case is one (or more)

triangles made of two bisector rays and a horizontal edge, such as in the left of Fig. 4.71 (c). It corresponds to one
dangling makeEV followed by one or more makeEF.

A split event leads to a single, dangling, bisector edge, such as for example the three upward edges in Fig. 4.71 (a). It
is created by the dangling edge version of the makeEV Euler operator (see Fig. 4.47 (1b)).

A vertex event is the special case of two or more reflex rays that meet in a single point, such as in Fig. 4.68 row 2, and
(3b), as opposed to (3a) and (3c). It also corresponds to a dangling makeEV followed by one (as in 4.68 3b) or more (as
in 4.68 2a) makeEF operators.

Note that in all of these cases, it may be that applying makeEF is not legal because the two vertices to be joined come
from two different rings or connected components. This can happen especially when an expanding offset is applied to a
polygon that is not connected, i.e., that has several connected components, as in Fig. 4.78 (1d). In such cases a slightly
more complex procedure must be used to join the two vertices.

The main idea for a reversible intersection-free offset is to find Euler operations that correspond to the inverse of an
event. After an edge event, for instance, a single (non-reflex) bisector ray emanates from the newly inserted vertex. So the
inverse edge event contains this bisector in reversed direction, leading to the event point, from where two (or more) rays
emanate in the inverse direction of the original bisectors.

In a similar fashion Euler operations can be found for inverse split and vertex events.

Results: Multiple extrusions and building church towers. The great benefit from a reversible intersection-free offset
operation can be clearly seen in Fig. 4.77. Subsequent shrinking yields the original polygon only when the intersection-
free offset is reversible (2b). Multiple stacking of the intersection-free offsets yields a CSG-like result, the union of a
distorted cylinder and a distorted box. Both the horizontal and the vertical resolution can be arbitrarily increased without
loss of information, a process that also converges towards a well defined surface in the limit.

The reversible intersection-free offset permits much more flexibility in modeling. This is also illustrated with the
example of a tower with four smaller corner towers in Fig. 4.78. Without the reversible intersection-free offset, it is best
to start at the level where the polygon has the greatest extent, which is the intermediate level at the base of the roof (2a).
One way to build the tower is to combine four 270 degree circle segments in the corners into one polygon, which is then
turned into a double-sided polygon (1c). Towards the roof, it is shrunk until it collapses at the tip of the tower. Towards
the base, it is only slightly offset inwards (2c) and then vertically extruded to the ground.

But instead of starting with the largest polygon, it is better to start with the polygon that contains the most information.
This is a polygon with 5 connected components, four full circles and a square, located at the ground (1d,2a). It is offset
outwards such that the circles touch the square to create the actual base polygon (2d). The great advantage of using one
multiple extrusion is now that the full circles re-appear when the roofs of the corner towers are created. This gives a more
natural result than with the first alternative, as revealed by the direct comparison in 4.78 (1b,2b).
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Figure 4.79: Ornamental profile using reversible offset. Highly non-convex shapes require a reversible straight
skeleton approach. In the right colum (3c-7c) the same profile is used as in Fig. 4.62.
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Figure 4.80: Tubular shapes through intersection-free extrusion with a half-circle profile. Unlike in Fig. 4.79 the
regions are directly attached to each other: Every pair of adjacent circles share a vertex.
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Figure 4.81: Problem with intelligent modeling tools. In case the extrusions do not shrink the polygon the result
(2c) is perceived inconsistent because it has the same connectivity as (1c). Remedy is either (2d), which is like
(1d), or (2e). The problem is that both remedies can only be applied in quite special situations that can also be hard
to detect automatically. And as a consequence, the output of intelligent modeling tools may vary intransparently.

Results: Decorated circular window. This example demonstrates the full power of multiple reversible intersection-
free extrusion: Intersection free extrusion permits to apply offsets to arbitrarily shaped simple polygons, and its reversible
version adds the possibility to arbitrarily mix expansion and shrinking in the vertical profile. In combination, it permits to
obtain impressive results such as the rosette windows from Fig. 4.79 in a very simple way.

The image 4.79 (1a) shows a large circle polygon (i.e., a regular n-gon) with four non-convex rings (yellow) composed
of circle segments. Three of the rings contain very acute angles so that hardly any shrinking is possible without self-
intersections (1b). It is mandatory to use the intersection-free offset (1c), especially when the sampling rate of the circle
segments is increased (1d). The offset operation can be combined with an extrusion (2a), but the elevation can also be
downwards when using negative y-values in the profile (2b).

The reversible intersection-free offset permits to expand the polygon to its original size, which also re-creates the
three rings that were removed completely by the previous shrinking step (2c). When an expansion to the original size is
combined with a negative extrusion, a few applications of killFmakeRH yield the circular window with actual holes shown
in (2d). Note that since the vertical profile is symmetric, the front and back sides of the model in (2d) look the same.

Distribution of the edge sharpness flags. The first column (a) with the five images (3a)-(7a) in Fig. 4.79 illustrates the
sharpness rules for intersection-free extrusion. Every vertex of the polygon that is to be treated as a corner must carry a
temporary ‘corner’-vertex flag. Only vertical (bisector) edges from corner vertices are sharp, all other vertical edges are
smooth. The vertex introduced by an edge event is a corner if and only if at least one of the bisectors that meet comes
from a corner. This way a crease in the surface is continued, which is a natural behaviour. The sharpness rules for vertex
and split events are more complex but similar in that they attempt to continue crease curves. They are consistent so that
variations of the sampling rate of smooth boundary curves do not dramatically change the sharpness flag distribution.

A close-up of the first model (a) shows that the three fingers that seem to be stuck into each other near the center
are in fact correctly joined by sharp edges(7a). The model in the second column (b) is similar to (a) but it contains a
smooth extrusion, with smooth horizontal edges (4b) that are the effect of a smooth profile point (x,y,s) with s = 0. The
resulting subdivision surface is bent in two directions, but it shows only very few wobbles (5b,7b). The horizontal offset
is smaller than in the first model (a), so a small hole remains in the three fillets (7b), and unlike the first model, the front-
and back-parts of the fillets remain connected. The last column (c) finally combines all these effects and shows what can
be achieved with a reversible intersection-free offset, combined with rules for smooth and sharp edges. It uses a much
more complex profile, basically the symmetric version of the profile from the classical column basis in Fig. 4.62.

Intersecting tubes by intersection-free extrusion of adjacent faces. When polygons and rings are composed of circle
segments, an obvious idea is to use circle segments also for the profile. The first row of Fig. 4.80 shows a profile with a
circle segment applied to a polygon similar to the one from Fig. 4.79, only now with six foils and fillets. The nice result
in 4.80 (1c) suggests another idea: To join the circle segments on the interior side and the fillet side in order to create a
network of branching tubes.

But to achieve this the space between center and fillet polygons must be removed as shown in the second row: Instead
of inserting several rings into a single front-face, there is only one ring that contains all fields. The seven circles in (2a)
are directly connected, and all boundaries that seem to touch indeed share a vertex. The seven circles are then extruded
with a symmetric profile, followed by killFmakeRH to turn the extruded faces into rings of the back side face to create the
actual holes (2b). When the same is done with all fillets (2c) the result is the desired network of tubes (2d).
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With a variety of profiles the impression of a curved front-facing profile remains prominent (3a-d). The close-up of the
resulting shapes (4a-d) reveals that despite the fact that touching circles share a vertex, the surface of the tubes is smooth
also at the joints. The tubes have no visible artifacts even when the circular profile is densely sampled (5a-d).

4.5.6 Refined Modeling Tools

This section has so far presented an exemplaric collection of mesh modeling tools. They demonstrate the capabilities of
combined B-reps and show how the edge sharpness flags can be set automatically, rather than to specify them explicitly
edge by edge. The purpose of these tools is also to serve as concrete examples that demonstrate how the clean low-level
mesh manipulation interface, the Euler operators, can be used to assemble more user friendly higher-level modeling tools.
In particular, the following tools were presented and discussed, now formulated as operations:

• 4.5.1 polygon to doubleface convert a sequence of points to a double-sided face
• 4.5.2 bridge faces connect the vertices two face that have the same degree
• 4.5.3 simple extrude lift a face by a specified amount of elevation, sweeping out side quad faces
• 4.5.4 path extrude apply a profile to a whole connected path of halfedges
• 4.5.5 intersection-free extrude apply arbitrary profiles also to non-convex faces

This list is of course by no means exhaustive. It is only a matter of creative fantasy to extend it – and of practical modeling
problems that need to be solved. In particular, the following tools may be good candidates for a more complete mesh
modeling tool box:

• gluing two faces with the same degree directly together by pairwise merging of their vertices
• gluing together a pair of overlapping coplanar faces with opposite orientation, possibly with rings
• to determine the intersection path of a 2-dimensional plane with a mesh
• to determine the intersection path of two connected components of a mesh, or the set of all such paths
• to cut away one part of an object, as specified by a closed halfedge path
• tools for mesh deformation that include rules for subdividing entities that are too much bent

Some items on this list would also be part of a CSG toolbox, as described by Mäntylä in his book [Män88], to compute
the boundary representation of objects created by boolean set operations, i.e., the union, intersection, and difference of 3D
solids. But as explained below, it may be preferable to have the individual building blocks of the CSG method available,
rather than to completely rely on CSG as the one and only way to model 3D solids.

User-friendly interactive modeling. Of course more than modeling tools is needed for a complete interactive modeler.
The first vital ingredient is a flexible mechanism for selection: To specify which objects and which parts of their surface
are affected by a modeling operation, and to restrict operations to some selected set of vertices, edges, and faces.

Second, modelers use to support the artist by ‘soft’ techniques that are part of the user interface, such as snap modes:
While dragging a handle interactively with a 2D mouse the cursor automatically jumps to special locations nearby, such
as the intersection of two curves, the foot of a perpendicular, or a tangent point on a curve.

A third very important technique is that interactive modelers offer intelligent tools that try to guess what the artist may
probably want. This means usually that the tool secretly examines the shape configuration to avoid configurations that
might be perceived as inconsistent. One example is the extrusion of neighbouring coplanar faces, shown in Fig. 4.81.

The drawback of intelligent modeling tools is that they are influenced by hidden parameters, which may sometimes
lead to an intransparent behaviour. Furthermore they behave differently in different local shape situations, which may be
a serious problem, e.g., if a fixed sequence of modeling operations is to be applied subsequently.

Can there ever be enough modeling tools? It is a very interesting question whether any list of high-level modeling
tools can in fact ever be exhaustive. The problem is that to some extent, the distinction between a parameterized model
and a modeling tool is only arbitrary: The model of a screw for instance can be regarded as a 3D mesh, but also as the
result of a specific deformation, namely a twist or lathe operation.

But note that a screw can also be created by multiple extrusions, each extrusion being followed by a small rotation of
the extruded face. So it might well be true that there is only a limited number of generic high-level modeling operations
from which most other high-level modeling operations can be composed, depending on the shape domain. If this is indeed
the case then the most vital ingredient for efficient 3D modeling will be a facility that permits to flexibly combine existing
tools to create new tools from them. One approach to achieve this is presented in the next chapter.
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Chapter 5

The Generative Modeling Language GML

This chapter presents the Generative Modeling Language (GML). The GML is a simple stack-based language, and its
purpose is to serve as a smallest common denominator for the representation of procedural models – similar to the rôle of
triangles for representing surfaces. It realizes a paradigm change in low-level shape representations since it uses operations
instead of objects: A shape is represented by its generating functions; hence the name generative modeling. But the GML
is also capable of representing primitive lists efficiently, i.e., it is compatible to legacy data formats.

A central idea of the GML is to combine simple shape construction operations to obtain more involved operations.
This solves the problem stated the previous section 4.5.6, the possibly unlimited number of required modeling tools: The
GML permits to define domain-dependent modeling tools. It also supports and facilitates the maintenance of the tools
already produced because it offers the concept of hierarchical tools libraries. It is only by a digital library of modeling
tools that existing solutions for specific modeling tasks, and thus the valuable procedural knowledge they contain, can be
preserved for later re-use.

Originally, the second principal research goal besides better re-usability was to improve the changeability of intricate
shapes and constructions. Usual modelers allow to interactively apply high-level modeling tools until the resulting shape
matches the idea of the artist. The GML however is not a modeler but a file format with an interpreter and a runtime
component. Unlike other low-level file formats it is capable of representing a description of the construction process. So
it permits the artist to express his ideas of how an object is build, rather than only the result of the modeling process.

Every particular shape can be understood as being only an instance of a more general shape class – or of many shape
classes in fact, corresponding to the many possible parametrizations. The GML supports the idea of shape classes because
it allows to switch back and forth between free and bound parameters. Second, it encourages the separation of input data
from processing instructions to obtain the description of a general construction, also from a single given object instance. It
can often be even much simpler to generate a GML shape class than a ‘frozen’ instance without any parameters – simply
because it is the nature of man-made assemblies that they are built up from similar parts.

5.1 Putting the Pieces together –
Why and how realizes the GML the Idea of Generative Modeling?

Perhaps the most important contribution of the GML is that it is a practical solution to a theoretically and technically very
challenging problem: Although the idea of generative modeling has been recognized for some time as being theoretically
very appealing, there is still no suitably successful and broadly accepted concrete realization for it today.

This section elaborates on the question whether, and in which ways, the GML might be a solution to this problem.
The argumentation below partly overlaps with what was said before in this thesis. But to better appreciate the rest of this
chapter it is important to review what has been achieved so far in a condensed form.

The nature of man-made shape: Structural similarity. Almost all man-made objects contain parts that are similar:
Similar in shape, in style, in the degree and resolution of detail, or in function and purpose. A very strong incentive to
make things similar is the way objects are physically produced: Industrial manufacturing with assembly lines is rational
and efficient only if basically the same means and machines can be employed for the different parts of a product. And
then the different parts have to fit together, so standardized styles and measures are also mandatory. Everybody who has
ever assembled IKEA furniture knows about this – and about the pros and cons of system furniture.

And structural similarity is even more a prerequisite for today’s mass customization development which tries to aban-
don any static product palette and where every single product item may have a parameter set of its own.
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Figure 5.1: Structural similarity that exists in shape data can only be suitably expressed with a procedural model
representation. This leads inevitably to a programming language approach for representing 3D shapes.

Primitive-based shape representations fail to capture structural similarity adequately. All shape representations
that are based on lists of geometric primites share the same fundamental problem (see Fig. 5.1). As mentioned in section
1.5 it was most pointedly formulated by Jim Kajiya in the foreword of Snyder’s book ‘Generative Modeling’ [Sny92]:

“With a sculpted surface there’s really no difference between a spoon shape and a chair shape;
it’s all a matter of positioning the control points in the right places. But a spoon shape has an
inner logic, shared by all spoons – and that logic is completely different from that of a chair.”

The central problem is the absence of semantic information in the model; to mention just a few problems caused by that:
Shape features such as sharp edges, planar regions, connected regions and shape segments (segmentation problem), are
not explicitly represented but must be retrieved by costly and error prone automatic feature detection methods. A single
triangle that is part of a large triangle soup does not know whether it is part of a wall, a door, or a car. Post-processing
methods, e.g., automatic simplification and the generation of multiresolution hierarchies, break the model symmetry
and destroy the links back to the modeling history. Post-processed models can no longer be edited and changed. The
maximum model resolution is limited by the resolution of the exported mesh. To deliver enough resolution also for close
detail inspection, curved parts are usually exported in a highly oversampled manner with many millions of vertices.

These problems were formulated for triangle soups but they are shared by all pritmitive based model representations:
points, triangles, spheres, NURBS patches, subdivision surfaces, implicit functions etc. Triangle- or point-based methods
are charming because they are broadly applicable, to laser-range scanning data as well as to tesselated CAD data sets. But
on the other hand it should be possible to do better with synthetic models, i.e., models created in a 3D modeler or CAD
system: It does not seem reasonable to export intelligent objects to a primitive list, and thereby to remove all semantic
information that needs to be re-invented whenever the model is to be used for a non-trival purpose afterwards.

Paradigm shift from objects to operations. The solution to this problem offered by generative modeling is not to store
the result of a design process, but to represent a model by the design process itself: Store the tools used rather than the
models created. The model can be re-generated from the operations whenever it is needed, and at any resolution that is
needed. – This approach has great advantages, but also a number of important consequences, which justifies to call it a
paradigm change indeed. Note that it is a true generalization of the primitive based approach, since any static piece of
data can also be regarded as an operation, namely a constant one.
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The principle of information unfolding. The concern of generative modeling is to help identify meaningful degrees
of freedom. Most complex constructions rely on a few powerful high-level parameters. Varying the width or height of
a building as in Fig. 5.1 has a complex effect on the façade. A triangle mesh has a huge number of degrees of freedom
(DOFs), the vertex coordinates and the mesh connectivity. These DOFs are not completely independent, and the vertex
positions are not random. Generative modeling shall help to reduce the number of parameters, or even identify the few
essential ones, which are then unfolded by a suitable sequence of operations, eventually producing a displayable triangle
mesh. This idea can be formulated more generally as the principle of information unfolding:

To store only few but powerful data from which a great number of less powerful data can be generated on demand,
and as efficiently as possible.

The important rôle of Reparametrization. Whenever a shape is designed, many similar shapes are actually designed
with it at the same time. The obvious way to make them accessible is by using parameterized instead of static models.
Shapes may be considered ‘close’ only because they use roughly the same underlying design principles, or because they
can really be obtained by a slight variation of the parameters.

But a well known problem is that the parametrization of a shape is not unique. A simple shape such as axis-aligned
box (AABox) can be specified with 6 floats, via two points (midpoint,extent), or via (pmin, pmax). Suppose only the latter
parametrization is available, but it turns out that the center m of the box is actually fixed. Then three free parameters
e = (ex,ey,ez) remain for the extent of the box; only they need to feed the box parameters pmin = m−e and pmax = m+e.
And when the box suddenly needs to be rotated, a 3×4 matrix may be an even better representation.

Consequently the key to reducing the degrees of freedom, as well as to finding the right DOFs, is the possibility to
re-parameterize a shape in arbitrary ways. But note that especially for procedural shapes a reparametrization is not always
just an algebraic expression, but may have to be procedural as well.

The picking problem as the main obstacle to automization. Three-dimensional shape data are highly structured.
Parameterized generative models permit to represent the dependencies between shape parameters explicitly. Furthermore,
it becomes possible to concisely represent all kinds of regularity between data items. This is the basis for a gradual
transition from a list of primitives to a fully parameterized model. But of course ‘there is no free lunch’: The dependenies
must be understood before they can be made explicit.

The problem also with the greatest interactive tools is that the user must use them interactively. It is somewhat ironic
that despite the support from very powerful computer technology, to create a three-dimensional object requires a great
amount of manual intervention. Why is the degree of automization not higher? One important obstacle seems like a
technicality at first, but is in fact fundamental: The picking problem. Interactive selection is extremely hard to automatize
since the computer has to guess why which data item (vertex, edge, face, etc.) was picked by the artist. The automatic
inference can of course be facilitated when the number of items to pick is (radically) diminished.

Meaningful 3D interaction and the vision of a ‘cyberspace’. The original motivation for the Virtual Reality Modeling
Language (VRML), later X3D, [VRM97, X3d03a, X3D03b] was to promote the use of 3D technology for all different
purposes and application domains; but unfortunately VRML is just not a modeling language.

Buzz-words like ‘cyberspace’ and ‘immersive virtual reality’ were popular and hip in the late 1980s. But it turned
out that a responsive, entertaining 3D world is quite expensive, and that 3D is all in all a very cost- and labour-intensive
technology. It requires skillfull artists to design the world, and much programming to define the behaviour of items
and avatars in it. Such an effort is commercially viable only in the computer games sector. But even then, much of
the behaviour is static and pre-scripted; all the roads to go and the possible events need to be defined in advance. The
interaction with the ‘virtual world’ is in most cases limited to killing virtual enemies.

An unprecedented level of interactivity is possible in VR on the basis of generative technology. When objects are
replaced by operations, static geometry can be dynamically re-generated. This permits not only meaningful 3D interaction
by manipulating powerful high-level parameters. It opens also an even more thrilling perspective, the interactive assembly
of pre-defined shapes and behaviours, and the partial re-creation of a responsive virtual world while being immersed in it.

Abolish the distinction between modeler and viewer. When generative models are displayed interactively it is natural
to require that the shape parameters should also be interactively changeable. The important consequence is that the whole
modeler must be part of the viewer then, and the separation between authoring tool (model export) and 3D viewer (model
import) becomes obsolete. Generative modeling makes sense only with a software architecture that realizes both aspects,
a modeler optimized for rendering at interactive rates, and a viewer with full modeling capabilities.

This is technically quite demanding with respect to the underlying shape representation. Snyder, who invented the
method, has used composition operators for real functions. But the objective of this thesis is to demonstrate the feasibility
and power of generative modeling operating on meshes, which eventually leads to using combined B-reps.
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1. small set of shape generating operators
• set should be closed and complete
• operators should be invertible for undo/redo

2. expressiveness by meaningful degrees of freedom
• powerful: few operations create a complex shape
• convenient: parameters are intuitive

3. tesselation leads back to semantics
• optimized adaptive display
• link back to generating function exists

4. selective updates are possible
• amortized preprocessing
• tesselation on demand

Figure 5.2: Requirements for a shape representation to be
suitable for generative modeling. The combined B-reps fulfill
these requirements.

5.2 GML
generative modeling language

4.4 Progressive Combined B-reps
Euler operators and Euler macros

4.3 Combined B-reps
B-rep mesh and tesselation data

3.4 Catmull/Clark surfaces
adaptive multiresolution rendering

Figure 5.3: Layered software architecture.
High-level information is unfolded to create
more explicit data from one layer to the next.

Combined B-reps as a paradigmatic low-level shape representation for generative modeling. Generative models
are models created by shape generating functions. These shape operators need to operate on some shape domain. So
generative modeling requires an underlying shape representation. But not all shape representations harmonize equally
well with the generative approach. The desirable properties are summarized in Fig. 5.2.

The first requirement is that shapes can be generated with operators at all. This is not always the case; bare indexed
face sets for instance (as in Fig. 2.23) only consist of two static arrays for vertices and faces. Arrays of course do offer
an operator interface, e.g., to push_back and pop_back items as with STL vectors. These operators contradict the other
requirements, for instance they are not convenient, and they do not support selective updates: An edge collapse requires
index updates for two neighbouring faces (linear search without neighbourhood information), and the deletion of a vertex
decrements the indices of all following vertices. Consequently insertion and deletion of array elements is feasible only at
the end. Despite this limitation this approach is sufficient to ensure the backwards compatibility of generative modeling to
legacy shape representations based on lists of primitives (see Figs. 5.61 and 5.60 later). The Euler operators are of course
a much better suited mesh interface since they have both properties demanded by the first requirement.

The second requirement deals with the principle of information unfolding as another view on generative modeling.
The desired DOF reduction can be supported by the shape representation, as exemplarically demonstrated by the combined
B-reps. One feature is that they combine polygonal modeling with freeform modeling by the means of a boolean edge
sharpness flag. In curved regions a single quad face of the control mesh unfolds to a tesselation with 2 · 16 · 16 = 512
triangles on the fourth refinement level. But not every freeform shape representation is automatically well suited for DOF
reduction. When a NURBS patch is to be deformed at a location where no CV is, an additional DOF must be inserted.
But knot insertion leads to a whole new column (or row) of CVs. The possibility of irregular refinement was the reason
for choosing subdivision surfaces instead of NURBS for implementing patch complexes (idea from section 2.4).

The third requirement is that the tesselation is not a ‘dead end’: It should be possible to find out whether a given
triangle belongs to a wall, a door, or a car. This is the technical prerequisite for identifying the generating function of a
specific part and also its construction parameters by ray intersection, or by interactive picking with a pointing device. –
Note that the requirement to maintain the link back to semantics is technically somewhat demanding when the tesselation
is also to be optimized for adaptive display. Adaptivity means that the tesselation must be available in multiple resolutions.
But in other terms this means that unlike with automatic simplification a multiresolution tesselation is required that does
not break the link back to the modeling history. As explained in section 4.4.3 the combined B-reps fulfill this requirement
with a multiresolution tesselation that is over and beyond that organized in hardware friendly triangle strips.

The fourth requirement rules out shape representations that may have powerful degrees of freedom, but for which the
tesselation can not be re-computed at interactive rates, 20 times per second (implicit surfaces, CSG). Fast undo/redo is
mandatory for interactive parameter variations. Even if a generative description is available, it is not feasible to completely
delete and re-generate a very compex model at interactive rates. This has an important technical consequence: Undo and
redo must also be possible out-of-order. So when the description builds independent parts A, B, and C in this order, it must
be possible to undo B, and to redo B with slightly different parameters, without affecting A and C.

The combination of all four requirements has lead to the layered software architecture in Fig. 5.3. It is inspired by
the principle of information unfolding: The GML issues Euler operators (directly or indirectly) that are stored in pcB-rep
Euler macros. Euler macros are the unit for undo/redo, which changes the mesh stored in the cB-rep. And eventually the
Catmull/Clark tesselation computes and caches the multiresolution tesselation of the curved surface parts.
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Procedural models deserve a procedural representation. Perhaps the most striking consequence of the generative
approach is that a data format for an operator-based shape description needs to be a full programming language, i.e.,
Turing complete. Most interestingly 3D modeling and programming have a lot in common. When writing a computer
program, a complex task needs to be suitably modularized into well-defined sub-tasks. The resulting function library or
class hierarchy should avoid redundancy and provide sufficient functionality to fulfill the task.

Another very concrete argument is that loops and conditional decisions occur very frequently in 3D modeling. They
are especially important for highly regular shapes with slight variations. This can be verified, e.g., with the building façade
from 5.1, as well as with the examples of linear and circular sequences in Figs. 1.2 and 1.4 from the Introduction.

Furthermore, all interactive shape modeling is procedural modeling. It is an iterative process where an artist interac-
tively applies different modeling tools to manipulate the shape of an object. But the selection of the next operation is not
arbitrary; it is based on an idea, on a plan in the artist’s mind. This plan usually proceeds coarse-to-fine, and it involves
modularization, conditional decisions and branching as well as loops and sub-tasks. But unfortunately the modeling tool
does not allow the artist to formulate this plan explicitly. Today’s artists are in fact programming their shapes, probably
without noticing that, and with not much support for it from their modeling software. – The problem remaining is to find
a suitable file format standard for procedural models.

There is no exchange standard for procedural models. Most if not all commercial high-end modeling and CAD
systems use an intelligent internal model representation, one that encodes also procedural aspects, because of its many
advantages (size, changeability, etc.). But unfortunately there is no common exchange standard for procedural models.
This makes the exchange of intelligent models between different vendors often impossible. Always possible is exchange
only on a low primitive level, for a single ‘frozen’ instance of an intelligent model.

The reason is not (only) that the vendors deny the usefulness of any common high-level exchange standard. There is
also a more fundamental reason. Suppose an intelligent shape a is created in system A and transferred to a target system
B, where it is to be used as a component in a larger assembly. The advantage of using an intelligent shape is that it can
adapt to changes in the target assembly. But of course a uses the modeling tools of system A, where it was created; and
it needs access to these tools when the model parameter change. So to transmit only the construction descriptions is not
sufficient; the implementation of the modeling tools needs to be transmitted as well. But this would essentially mean that
when a is loaded into B, the system A must be integrated with B, or attached to B. But this would require applications A
and B to be compatible on the binary level. To achieve this is definitely illusionary.

This is a serious problem for industrial CAD. One way to alleviate the problem is to define a common minimum
standard of modeling operations supported by all CAD tools. This is pursued by the STEP consortium, as it was reported
by the leader of the working group XYZ, ZZ, at SMI 2004 in Genova. But the inherent problem of this approach is that
CAD vendors seek to gain advantage over their competitors by offering outstanding modeling features.

The code generation problem, and Adobe’sPostScript as a solution for it. Most modern modeling software contains
an integrated scripting language that allows for the automation of tedious manual modeling tasks. But it is questionable
whether a text editor is the ideal device to enter processing instructions for three-dimensional shapes. And of course artists
shall not do literal programming. The problem is that most good artists are not also good programmers.

There is one very nasty technical problem when using a programming language as a model representation, namely the
question which language paradigm to choose for a file format. This is the code generation problem:

• to design a generative shape means to ‘write’ a computer program
• to save a generative model means to generate syntactically valid program source code
• to load a generative model means to parse and execute program source code, which requires an interpreter

In a first attempt the scripting language Python [v∗] was used as a model representation; it soon became clear though that
generating and manipulating Python code was too cumbersome and error prone, despite the beauty of this language.

The solution was to have a look at approaches that work well for 2D graphics. This turned the attention quickly to
the well known PostScript document standard from Adobe Inc. Less well known is that PostScript is a programming
language. Users are typically not aware that printing a document on a PostScript printer makes the printer in fact to
execute a program that, as a side effect, creates the bitmap that eventually appears on a sheet of paper. PostScript as a
programming language is quite concisely described in the chapter 3 of the PostScript Language Reference, also known as
the PostScript Redbook [Ado99]. This fabulous chapter applies, to some extent, also to the GML.

The outstanding feature the GML inherits from PostScript is the simplicty of code generation. This is witnessed by
the great number of Postscript printer drivers available. In terms of quantity of automatically generated code, Postscript is
most certainly unparalleled by any other programming language.
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5.2 Language Introduction

The GML is a very simple stack based programming language. The stack, more precisely the operand stack, is used for
exchanging parameters between functions. Each function pops its input parameters from the stack, processes them, and
stores one or more results back on the stack. These results, and the items that were on the stack before, then become
the input parameters for the next operation. So technically the job of the GML interpreter is only to shift data from
one function to the next, and to feed data produced by one operation into another. Just as bitmaps with PostScript, a
three-dimensional shape is generated by the GML only as a side-effect of the program execution.

There are two kinds of functions: Elementary built-in functions implemented in C++, called atomic operators, and
composed operators made of data and calls to other atomic or composed operators. The GML is so simple that it does not
even have a grammar. Instead, the language is best described semantically by a dozen simple rules. They are concisely
summarized in Fig. 5.5. The tokenizer patterns from rule 2 are also shown in Fig. 5.4.

5.2.1 The Language Rules

The first very basic example shall only illustrate how the GML rules work together. It reads “2 3 add 4 mul→ 20”.
This notation means that the code to the left, when evaluated, produces the value to the right on the stack. As far as

the stack is concerned, both pieces of code are equivalent.
A stack is usually thought of as growing upwards, like a pile or stack of real items, where every item naturally lands on

top of the pile. While still retaining this metaphor, a horizontal rather than vertical notation is often more useful, where the
stack grows to the right and the ‘stack top’ is the rightmost element. In this case the stack can be directly read as program
code. Both pieces of code are readily understandable as being ‘stack equivalent’, i.e., they produce the same result on the
stack. But of course they do not need to have the same side effects, e.g., they may not produce the same 3D shapes.

Execution according to the rules. When the code of the GML program 2 3 add 4 mul is tokenized, the result is an
executable array of five tokens (rules 1,2). To execute this program then means to execute each of them one after another
(rule 6a). First the tokens 2 and 3 are executed. They are literals (rule 2), so they are just pushed (rule 6b). The token add
is an executable name (rule 2) that, when executed, is looked up (rule 6c). One dictionary is by default on the dictionary
stack (rule 7), the global dictionary. Under the name add it stores the add-operator, which is then executed for the name
(rule 6c). The add-operator is atomic, so it pops its two arguments and pushes the result 2+ 3 = 5 (rule 12). Then the
literal 4 is pushed, the mul operator first pops the stack top 4 and then the 5, and finally pushes the end result 4 ·5 = 20.

The advantage of the postfix notation is that no brackets are needed for arithmetic expressions. The familiar infix
notation (2+3) ·4 needs brackets because of the precedence of · over +. All operators have equal rights in postfix notation,
also called reversed polish notation (RPN) [wika], which has therefore been quite successfully used in commercial and in
pocket calculators, such as the famous HP48 from Hewlett-Packard [R∗].

Almost any string can be tokenized. One consequence of the tokenizer rules 1 and 2 from Fig. 5.5 is that the tokenizer
accepts almost any character string as GML code. The reason is the fallback rule that any coherent sequence of non-stop
characters is just tokenized as an executable name. This means that variables or functions may be referred to with very
uncommon identifiers, as demonstrated in Fig. 5.4. Only the two extensions to the original PostScript syntax, path names
and registers, make the tokenizer a bit more rejective. Still there are only five syntactic errors:

• unterminated string error: an odd number of " characters
• unterminated function error: more } than { characters
• prefix error: prefix character ( . / ! : ; ) followed by whitespace
• register usage error: no usereg appears before the first !name
• register not set: :name appears before !name

22 → int (1.1,2.2) → 2D point
23.2 → float (1.1,2.2,3.3) → 3D point
“hallo” → string /name → literal name
[ { } → marker .name → path name

+n&a#m-e* → executable name, fallback rule if everything else fails

Figure 5.4: Tokenizer patterns for literal tokens.
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1. GML code consists of individual tokens, separated by stop characters such as whitespaces.

The GML has no parser but only a tokenizer to convert ASCII text into an executable array of fixed-size tokens.
Further stop characters are one-character tokens [, ], {, }, the / and . start literal and path names, " encloses strings,
and !, :, ; are for registers. A comment starts by % and is read, with the rest of the line, as a single newline.

2. Every token has a unique type from a fixed but extensible type set.

Built-in atomic data types are integer 123, float 123.45, vec2f (1.2,3.4), vec3f (1.2,3.4,5.6), marker [, {, }, string
"abc", and literal name /myname. The type set can be extended on the C++ level where new tokenizer rules can
be added. The other builtin token types are dictionary, array, operator, path name, and name. A token for which
no other rule applies gets the type executable name, and is entered into the global (string, ID) map.

3. The only built-in compound data structures are arrays, dictionaries (‘dicts’), and strings.

An array is a heterogeneous token sequence, i.e., the individual tokens may be of any type. Arrays are cyclic, so
index −1 refers to the last, and index n to the first element of an n-element array. The first element has index 0.
A dictionary is a map with (name,token) pairs where the name (i.e., its ID) is a unique key.

4. Tokens for compound data types contain only a reference.

All tokens have the same size, 16 bytes = 128 bit = 4× 32 bit. Therefore tokens for variable size data types
contain only a reference to the actual data. This applies to the built-in types array, dictionary, and string, as well
as to names: The GML interpreter maintains a global (string, ID) map that is used to tokenize all names.

5. Tokens can be either literal or executable.

Atomic and user-defined tokens and also dictionaries are always literal. Operators and path names are always
executable. Name and array tokens may be both literal or executable, depending on their executable flag.

6. (a) To execute an executable array means to execute each of its tokens, from begin to end.
(b) To execute a literal token simply means to put it on the stack.
(c) To execute an executable name means to look it up and to execute the object found.

7. Flexible scoping: Name lookup uses the dictionary stack.

The topmost dictionary on the dictionary stack that contains the requested name as a key also defines the value.
Dictionaries can be pushed on and popped from the dictionary stack at any time with the operators begin and end.

8. The opening marker [ and the closing bracket operator ] create literal arrays.

When the ] operator is executed it looks through the operand stack for the first [ marker. It pops all tokens in
between, puts them into a literal array, pops the marker, and pushes the array (i.e., an array token that refers to it).

9. From each matching pair of { and } brackets an executable array is created.

An executable array is also called a function. The first { marker puts the interpreter in deferred mode so that it
treats all tokens as literals and puts them on the stack, until it finds the matching } (pairs can be nested). The
resulting executable array is only pushed on the stack, not executed.

10. Path name extension: Navigation in dictionary hierarchies.

The semantics of the dot prefix is that when a path name .myname is executed, it pops a dictionary from the stack,
and the token that is found in it under myname is pushed. So it replaces the dictionary as topmost stack element,
which makes C++-like path expressions man.arm.hand.finger possible.

11. Named register extension: !x pops and stores, :x executes, and ;x pushes the value of register x.

Registers can only be used within a function, after a new register frame was opened with the usereg operator. The
register frame ends automatically with the function. Registers are faster than dictionaries or the operand stack.

12. All functionality comes from atomic operators.

An operator is executed by calling the execute method of the appropriate C++ class. It pops its inputs from the
stack, processes them, and pushes the results back on the stack. The GML interpreter has no fixed set of keywords
or any built-in functions. It only manages an extensible set of operators, organized in libaries (dictionaries).

Figure 5.5: The twelve GML rules. A dozen rules are completely sufficient to describe the language.
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Tokens cvlit cvx exec type
Stack clear cleartomark count counttomark dup exch index pop roll
Arrays aload append array arrayappend length popback
Dictionaries def undef dict begin end currentdict keys known values where load
Arrays and dictionaries copy get put
Comparison eq ne ge gt le lt
Flow control if ifelse repeat for forall map loop exit

Figure 5.6: Essential GML operators (core library). They behave just like the respective PostScript operators.

GML language core. The GML interpreter has no built-in functions; all functionality comes from operator libraries.
The core library contains the basic atomic operators to make the language work, shown in Fig. 5.6. Not each of them is
discussed in this section, for a detailed specification refer to the PostScript Reference [Ado99].

Since the principle of a stack-based language is at least mentioned in most introductory courses on programming, the
basics should be known: count pushes the stack depth, clear removes all items from the stack, cleartomark and counttomark
do the same until the first [-marker, dup duplicates the stack top, exch swaps the top elements, k index pushes a copy of the
k’th stack element. pop removes the stack top, and roll is essential for PostScript but practically never used in the GML.
Important array operators are [ 1 2 3 ] aload→ 1 2 3 to put array items on the stack, [ 1 2 ] dup 3 append→ [ 1 2 3 ]
to append an element, [ 1 2 3 4 ] 2 popback→ [ 1 2 ] to remove the last 2 array elements, arrayappend to concatenate
arrays, length pushes the array length, [ 10 11 12 ] 1 get→ 11 retrieves, and put replaces an element.

Arrays and inline computation. GML arrays are heterogeneous, so an array may contain tokens of any type. An
example of a valid array is [ 22 4.7 (0,1) (2.2,3.3,4.4) “hi” ]. There is an important difference between the starting and
ending brackets: [ is a literal marker but ] is an operator. The [ is a usual token, and it can be pushed, popped, duplicated,
exchanged, and stored in variables just like any other token. In particular it is legal to push any number of [ on the stack.
An array however is created only when the array construction operator ] is executed. At this point, at least one [ must be
on the stack, so that an array can be created from the items in between; otherwise the program execution stops with an
unmatched mark error. The [ may the stack top element, so [ dup ] ] creates an array that contains another empty array.

The array creation operator pushes an array token on the stack. As explained in rule 5, there are no variable-sized
tokens; all tokens have the same size of 16 bytes. A token can only refer to a variable size data structure, so array and
dictionary tokens behave more like pointers; they contain just a type flag and the ID of the respective array or dictionary.
The manipulation of arrays and dictionaries is therefore always by reference. There is no overhead when pushing arrays,
dicts, or strings on the stack.

• In [ 1 2 3 ] dup→ [ 1 2 3 ] [ 1 2 3 ] the duplication has exactly the same cost as in 12 dup→12 12
• Changes have an impact on all references to the same array: [ 1 2 3 ] dup dup 1 20 put→ [ 1 20 3 ] [ 1 20 3 ]

Naturally arrays can be nested, so [ 1 2 [ 3 4 ] 5 6 ] is just an array of length five. Its tokens 1, 2, 3 (and also 6, 7, 8) have the
types integer, array, integer. Note that GML arrays start with index 0, and they are cyclic (rule 3). One of the extremely
convenient features the GML inherits from PostScript is array inline computation: [ 4 5 mul 6 7 ]→ [ 20 6 7 ]

Executable arrays are functions, and functions are executable arrays. Just like PostScript the GML has a remarkable
property: It is a functional language, in the sense that functions are ‘first level citizens’. Functions are just one data type
among others; functions can be both parameters and return values of other functions, new functions can be created at
runtime, and existing functions can be changed. Technically this is achieved by providing arrays (like names) with
an executable flag. This makes it possible to switch between data and functions in a very simple way, since both are
implemented with arrays. So a freshly assembled array of data can be turned right away into a function using cvx (’convert
to executable’) and back with cvlit, which both just affect the executable flag.

[ 1 2 3 ] cvx → { 1 2 3 } { 1 2 3 } exec → 1 2 3
{ 1 2 3 } cvlit → [ 1 2 3 ] [ 1 2 3 ] exec → [ 1 2 3 ]

Note that there is a subtle difference when being executed: A literal array is just pushed on the stack, whereas an executable
array is executed token by token. Note that in case all array tokens are literals, to convert an array to a function and to
execute it is the same as to apply aload to the array: All items are individually put on the stack. – The great advantage
now is that all array manipulation operations can be equally applied to functions:

{ do some thing } { and something else } arrayappend → { do some thing and something else }
{ do some thing 14 times } dup 3 1000 put → { do some thing 1000 times }
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[ 0 60 360 { tan } for ] { dup mul } map → [

[ 0 60 360 { tan } for ] { dup mul } map → [ 0

[ 0 60 360 { tan } for ] { dup mul } map → [ 0 60

[ 0 60 360 { tan } for ] { dup mul } map → [ 0 60 360

[ 0 60 360 { tan } for ] { dup mul } map → [ 0 60 360 {

[ 0 60 360 { tan } for ] { dup mul } map → [ 0 60 360 { tan

[ 0 60 360 { tan } for ] { dup mul } map → [ 0 60 360 { tan }

[ 0 60 360 { tan } for ] { dup mul } map → [ 0.0 1.73205 -1.73205 0 1.73205 -1.73205

[ 0 60 360 { tan } for ] { dup mul } map → [ 0.0 1.73205 -1.73205 0 1.73205 -1.73205]

[ 0 60 360 { tan } for ] { dup mul } map → [ 0.0 1.73205 -1.73205 0 1.73205 -1.73205] {

[ 0 60 360 { tan } for ] { dup mul } map → [ 0.0 1.73205 -1.73205 0 1.73205 -1.73205] { dup

[ 0 60 360 { tan } for ] { dup mul } map → [ 0.0 1.73205 -1.73205 0 1.73205 -1.73205] { dup mul

[ 0 60 360 { tan } for ] { dup mul } map → [ 0.0 1.73205 -1.73205 0 1.73205 -1.73205] { dup mul }

[ 0 60 360 { tan } for ] { dup mul } map → [ 0.0 3.0 3.0 0.0 3.0 3.0 ]

Figure 5.7: Step by step execution of the GML code [ 0 60 360 { tan } for ] { dup mul } map .

So the output of a GML program can be a processing pipeline that is defined and assembled at runtime. The construction
history of a shape can for instance be obtained by concatenating the individual processing steps; the result is a single
function. Even self-modifying code is possible (but maybe not so useful).

Flow control and function calls. Loops and conditional branching are essential features for any programming language.
Unlike other languages such as C/C++ the GML does not need any special syntax rules or reserved keywords ‘if’ and ‘for’.
Instead, flow control can be elegantly realized with flow control operators, thanks to the flexible array mechanism. The
branching operator is an ordinary atomic operator with the signature ‘flag proc if → -’. The signature is a semi-formal
notation that describes the effect of an operator to the the stack. It means that the if-operator takes two tokens from the
stack, first a ‘procedure’, then a numeric flag. As one might expect proc is executed by the if-operator only in case the flag
is not zero (integer or float).

The GML feature used here is that operators can execute tokens, including executable arrays they pop from the stack.
This is just the same as a function call (see below). But note that the proc token does not have to be a function at all; it can
as well be any literal. The same feature was used above with the exec-operator; the only difference between if and exec is
that the latter executes the token unconditionally. The other flow control operators follow the same approach.

flag proc if → - executes proc if flag �= 0
flag proc1 proc0 ifelse → - executes proc1 if flag �= 0 and proc0 otherwise

proc loop → - continues to execute proc until the exit-operator is called
n proc repeat → - executes proc n times

a s b proc for → - Pushes values a, a+ s, a+ 2s, . . . on the stack and executes proc each
time, until the value > b (if s > 0) or value < b (in case s < 0)

[ a1 .. an ] proc forall → - pushes each element on the stack and executes proc each time
[ a1 .. an ] proc map → [ b1 .. bn ] pushes a1, executes proc, pops b1, then pushes a2, executes proc, pops

b2, and so forth; this maps one array to another array

One example of a for-loop in the GML is 0 1 3 { 2 mul } for→ 0 2 4 6 . Note that none of the flow control operators except
map push return values (’→ -’ notation), but of course proc may leave values on the stack: 0 0.5 2 { } for→ 0.0 0.5 1.0
1.5 2.0 . The decision flag for if and ifelse is usually generated by comparison operations like gt, lt, ne which read ‘greater
equal’, ‘less than’, ‘not equal’ (see Fig. 5.6). Their result is an integer as the GML has no Boolean type.

The step-by-step execution of a slightly more complex piece of GML code using for and map is shown in Fig. 5.7. As
a detail note that the construction of executable arrays via the deferred mode (rule 9) is a large overhead. It means that the
nested if-clause in 20 { dup 10 gt { dup mul } if } repeat is created 20 times. In the actual implementation the function is
created only once, by the tokenizer and not at runtime: When the tokenizer reads a { it calls itself recursively. A reference
to the executable array it produces at the matching } is directly inserted into the calling function. – The execution rules
are slightly changed to behave exactly as described in Fig. 5.5, just more efficiently.
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Flexible scoping and name lookup. In C/C++ each function call opens automatically a new scope for locally defined
‘automatic variables’. This is not so in the GML, where a scope can be started and ended only explicitly, completely
decoupled from any function calls. It may even be that one function begins and another ends a scope.

• the dict operator pushes a new empty dictionary
• the begin operator pops a dictionary from the operand stack and pushes it on the dictionary stack
• the end operator pops the current dictionary

The current dictionary is the topmost dictionary on the dictionary stack. It is queried first when a name is looked up.
It can be modified with the def operator which pops a literal /name and a value token to make (name,token) an entry
in the current dictionary for subsequent name lookup. Note that when a name lookup leads to an executable array, it is
immediately executed (rules 6c+6a). This is a function call in the GML, which can also be nested.
The following examples show varying the scope with dictionaries. The second example demonstrates temporarily over-
writing the name x; the third how an ‘often used’ operator sequence, dup mul which multiplies the stack top with itself,
is turned into a function. Note that there is no difference between using a built-in or a user-defined function. Examples
four and five are equivalent, both define a function abs to compute a number’s absolute value. The load operator pops
a (literal) name, looks it up, and pushes the value. This is different from an executable name lookup which executes the
value. This makes a difference in case the value is executable, such as the mul operator.

dict begin /x 20 def x x end → 20 20
dict begin /x 20 def dict begin x /x "hello" def x end x end → 20 "hello" 20
/sqr { dup mul } def 4 sqr 5 sqr sqr → 16 625
/abs { dup 0 lt { -1 mul } if } def 2 abs -13 abs → 2 13
/abs { dup 0 lt -1 /mul load 2 array cvx if } def 2 abs -13 abs → 2 13

Names are used as identifiers and can of course have any length. The GML interpreter maintains a global map with a
unique integer for each character string that has appeared (so far) as a name. The tokenizer uses this map to convert
the variable-size name string to a fixed-size name token. This assures that no string operations occur for names during
program execution; furthermore dictionaries can then be efficiently implemented as map<int,Token>.

PostScript permits to redefine (overwrite) built-in operators. This is not easily possible with the GML because the
tokenizer performs what is called early binding in PostScript (section 3.12 in [Ado99]): Every executable name of an
operator is immediately replaced by (a reference to) the operator itself. The reason is that this gives substantial speed-ups,
and speed is an important issue for the GML because it is used interactively.

The named register extension. Some people think that stack-based languages are horrible to program because stack
acrobatics was inevitable. A serious objection to PostScript as a programming language is that it can be a nightmare to
keep track of the stack, which items it contains and in which order. PostScript offers basically two methods to store a
value for later use: On the stack, which can be tedious to keep track of, and in dictionaries, which is relatively slow.

Named registers were added in the GML as a third alternative. They are very efficient, register set/get is faster than
any stack rolling. Other than dictionaries, registers are bound to the call stack (5.5, rule 11), like the automatic scope in
C++. Their main purpose is to provide functions with fast local variables, and they improve both the readability and the
efficiency of GML functions. It is good programming style to begin a function by popping all needed parameters into
registers. This convention makes also the (reversed) signature of the function explicit. Values needed later, intermediate
values, and values needed multiple times in a function are all stored in registers. This leads to a much more procedural
programming style than in PostScript, and the infamous roll stack operator is practically never used in GML.

The most important thing about registers is that they are valid only within a function. Whenever a function ends the
interpreter looks whether a register frame was opened in it with usereg; this frame is then discarded, and all register values
are cleared. The general rule is that no reference to a named register may leave a function. Only weird examples such as
the following violate this rule: { 12 usereg !x { :x } } exec exec The result is not 12 but an error.

Object-oriented programming (OOP) and the path name extension. Just like arrays, dictionaries also serve multiple
purposes. Although it may sound weird at first, they are the basis for realizing an object-oriented programming style in the
GML. In an object-oriented programming (OOP) language like C++, a class is a mixture of data and operations. Through
inheritance, a derived class can add data and functions, and overwrite virtual member functions. Exactly the same is
possible with GML dictionaries. Dictionaries are in fact even more flexible than C++ classes since both data members
and member functions may be added, deleted, and modified at runtime. Class members, i.e., dictionary entries, may even
switch between being just literal data or functions, as shown above.

GML path names permit to navigate through complex dictionary hierarchies in a familiar way. A tool, e.g., from a
library for modeling Gothic architecture can be used with Gothic.Window.Tools.pointed-arch (see 5.4.1). With relative
names, the ‘modeling vocabulary’ can even be switched: Arabic.Window.Tools begin ... pointed-arch ... end
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5.3 Examples for Shape Generation with Mesh Modeling Operators

One of the main incentives for a stack-based modeling language comes from the code generation problem and the resulting
dilemma: On the one hand procedural models need to be represented by a programming language, on the other hand to
program a shape in a text editor is not an ideal user interface.

But shape modeling and programming have a lot in common. This section seeks to point out what these similarities
are, and it works out a number of concrete examples. This uses the programming approach indeed, but more as a formal
calculus than as a user interface. It is important to examine the expressiveness of the GML to assess its suitability for
representing descriptions for shape construction. Is it really suitable as ‘smallest common denominator’ for procedural
models?

This is a very general question, and the answer to it depends also on the shape representation. This chapter focuses
on the question whether the GML is suitable for mesh modeling. This uses the combined B-reps as low-level shape
representation. A number operators from the CBRep library of the GML are therefore introduced in this chapter, as well
as the literal types Halfedge and Eulermacro added by this library.

5.3.1 Example Operator Chaining and Creating a Loop

1 de le tea l lmacros newmacro
2 app le t−c l ea r c l ea r usereg
3 7 ! n
4
5 / gold se t cu r r en tma te r i a l
6 ( 0 , 0 , 0 ) ( 0 , 0 , 1 ) 2 : n c i r c l e
7 5 poly2doubleface
8 ( 0 , 1 , 3 ) ext rude
9

10 / s tdgrey se t cu r r en tma te r i a l
11 : n 2 d iv {
12 dup 1 2 {
13 edgemate ( 0 , 0 . 2 , 3 ) ext rude
14 } repeat
15 exch faceCCW
16 } repeat

Figure 5.8: Basic modeling techniques ‘operator chaining’ and ‘loop creation’.

Halfedges and basic modeling tools from the CBRep library. This first example presents two basic techniques, a
simple way to create a mesh and the iterative development of a loop. – It was already mentioned that the GML type set is
extensible. All mesh operations use the custom type Halfedge from the CBRep library of the GML. Its string representation
is, e.g., E19,2,23423 , which identifies uniquely one halfedge of a mesh. From the point of view of modeling though,
the three integers are are basically random as they are different every time a function is called (see section 4.4.3 on stable
edge references: index in euler sequence, macro index, timestamp). So halfedges may be stored, compared, and retrieved,
and they may appear on the stack. But they may not appear in the GML code.

de le tea l lmacros newmacro
app le t−c l ea r c l ea r usereg
7 ! n
/ gold se t cu r r en tma te r i a l
( 0 , 0 , 0 ) ( 0 , 0 , 1 ) 2 : n c i r c l e → ( a )
5 poly2doubleface → ( b )
( 0 , 1 , 3 ) ext rude → ( c )
/ s tdgrey se t cu r r en tma te r i a l

Figure 5.9: A simple way to create a solid.

Standard startup lines. The first two lines of code are the standard way to clear all visible items in the runtime engine:
The mesh is reset by deleting all Euler macros and a new Euler macro is started that logs all modeling operations to
come. All applets are cleared; applets are special GML resources that can be plugged into the GML runtime engine as
extensions. The stack is cleared since by default the runtime engine displays all stack items that are renderable: points,
polygons, halfedges etc. Finally usereg starts a new register frame, which concludes the two startup lines.
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Operator chaining. The three lines 6, 7, 8 from Fig. 5.8 demonstrate an essential benefit of the stack-based approach:
Data can be processed like on an assembly line, the output of one operator is fed into the next. Since the stack is such
a flexible device for parameter passing, the GML assembly line works without any explicit declaration of routes from
output-results to input-parameter.

A simple way to generate a mesh is to create a polygon (a), to convert it to a double sided face (b), and to extrude it
(c). A polygon in the GML is just an array of 3D points, for instance created by the circle operator. The polygon produced
by it is automatically given to poly2doubleface which turns the point array into a halfedge. The extrude operator replaces
this halfedge by a halfedge of the extruded face.

center nrml rad arcn circle → [ p1 .. pn ] Creates a circular n-gon around center with radius rad in the plane normal
to nrml. rad may be a float. It may also be a vector, then its projection to the
plane is the first point of the polygon. n equals arcn when it is an integer;
when it is a float it specifies the arclength and thereby n.

Mode flags and compatible signatures. When designing a new operator or function the prescribed order of the input
parameters be freely chosen. One signature is better than another if it is easier to memorize and more convenient. Many
operators have one principal parameter and a number of mode flags. The principal parameter is the one that was most
probably the result of another operator. It should come first in the signature, followed by the mode flags. Operator chaining
is most efficient with a set of operators that have compatible signatures.

The mode flag of the poly2doubleface operator determines the edge sharpness and the temporary vertex flags of the new
face (see section 4.5.1). It is only an integer, whereas the polygon is more complex and has in many cases been produced
by another operator. Similarly, mesh operators both operate on and produce halfedges; therefore their principal parameter
is the halfedge. An indication for incompatible signatures is that they require often inconvenient stack reordering.

edgemate edgemate ( 0 , 0 . 2 , 3 ) ext rude
edgemate ( 0 , 0 . 2 , 3 ) ext rude
edgemate ( 0 , 0 . 2 , 3 ) ext rude

12 {
edgemate ( 0 , 0 . 2 , 3 ) ext rude

} repeat

Figure 5.10: Designing a loop step by step. The loop body is created first.

‘Iterative’ loop design. A procedural representation is most useful for shapes that exhibit sequential regularity. Its
obvious translation into the generative formalism is a loop. In the GML loops should be created body first: When finished,
the body of a loop should leave the stack in a state similar to the state before. But what means ‘similar’ in each case?

Halfedges are quite useful for mesh traversal using the navigation operators edgemate, vertexCW, vertexCCW, faceCW,
and faceCCW from section 4.1.3 (for B-reps see Fig. 4.19), which all expect a halfedge on the stack and replace it by an-
other. Fig. 5.10 above shows an edgemate (a) followed by an extrusion (b). When this is done twice (c) it leads to a
similar situation as before in Fig. 5.9 (c). So this line is a good candidate for a loop body 5.10 (d).

dup 1 2 {
edgemate ( 0 , 0 . 2 , 3 ) ext rude

} repeat
exch faceCCW

: n 2 d iv {
dup 1 2 {

edgemate ( 0 , 0 . 2 , 3 ) ext rude
} repeat
exch faceCCW

} repeat

Figure 5.11: A stack item is put aside using dup. After a first round of processing it is made current again.

Branching assembly lines. The stack permits of course not only linear processing. At any point a stack item can be
duplicated, which can mean to put it aside for later processing. The loop developed above, even when it is repeated 12
times, just transforms the halfedge on the bottom to the halfedge on top of the staircase. So if the bottom halfedge is put
aside before the loop, it can be simply got back using exch after it. A single faceCCW creates a similar situation as before,
and is consequently a good candidate for the body of another loop.
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5.3.2 Example Segment Intersection

1 de le tea l lmacros newmacro
2 app le t−c l ea r c l ea r usereg
3
4 / gold se t cu r r en tma te r i a l
5 [ (−1 ,−1 ,0 ) (1 ,−1 ,0 ) ( 1 , 1 , 0 )
6 (−1 ,1 ,0 ) (−1 ,−1 ,0 ) ] ! po ly
7
8 [ : po ly
9 : po ly { 0 . 5 mul ( 0 . 5 , 0 . 5 , 0 ) add } map

10 : po ly { 0 . 5 mul ( 0 , 0 . 5 , 0 ) add } map
11 : po ly { 0 . 5 mul (−1 . 5 , 0 . 5 , 0 ) add } map
12 : po ly { 0 . 5 mul ( 0 , 1 . 5 , 0 ) add } map
13 [ (− 1 . 5 ,− 1 . 5 , 0 ) ( 1 . 5 , 1 . 5 , 0 ) ]
14 ] in tersect_segments
15 ( 0 , 0 , 1 ) segs2polygons
16
17 [ exch {
18 1 0 . 0 5 ( 0 , 0 , 1 ) o f f se tpo l ygon
19 } f o r a l l ]
20 ( 0 , 0 , 1 ) 0 po lys2 facesw i th r i ngs
21 aload ! topface
22 : top face edgemate ! backface
23
24 / darkgrey se t cu r r en tma te r i a l
25 : backface (−0 . 2 , 0 . 5 , 3 ) ext rude
26 / brown se t cu r r en tma te r i a l
27 : top face ( 0 , 1 , 3 ) ext rude
28 dup / l i gh tb rown se t f acema te r i a l

Figure 5.12: Segment intersection followed by offset polygon.

Variations of polygon construction. The statement that ‘polygons in the GML are arrays of 3D points’ is a practical
rather than formal rule. It is just convenient to provide operators performing an algorithm on simple polygons with an
interface that expects one – or more – point arrays as input. This permits to take advantage of the ‘syntactic sugar’ for
arrays, inline computation and mappings. Both array features are used in the example shown in Fig. 5.12. After the
standard startup and the material setup, in lines 5-6 a closed quad polygon is constructed and stored in the named register
:poly. The inline computation in lines 8-14 results in an array containing the six simple polygons shown to the left, in 5.12
(2a): :poly, four displaced copies of it, and a line. The map operator is applied to all points in poly, and the body performs
an affine transformation, a scaling by 0.5 followed by a translation.

Operators can be polymorphic. One and the same operator may behave differently depending on the type, and also of
the value, of the parameters it finds on the stack; like in OOP such GML operators are called polymorphic.

n0 n1 mul → n2 product n2 = n0 ·n1 of integer or float numbers n0, n1
n v mul → w product w = (n · vx,n · vy,n · vz) of scalar n and vector v
v n mul → w product w = (n · vx,n · vy,n · vz) of scalar n and vector v
v w mul → n dot product n = vx ·wx + vy ·wy + vz ·wz of two vectors v, w

Note that even the number of parameters an operator pops may vary as a function of types and values of the stack items;
so operators can also have a dynamic signature.

A line segment intersection algorithm. Note that the :poly array contains five points and not just four, the first point is
repeated. This is redundant for polygons since GML arrays are cyclic. The reason is a different use of point arrays:

[ [P0] [P1] .. [Pn] ] intersect_segments → [ p0 q0 p1 q1 .. pm qm ]
computes line segments with startpoints pi and endpoints qi from input segments P0 . . .Pn. The output
segments mutually overlap at most at their end points, and their set-theoretic union equals the union of the
input segments. The input segments may contain more than two points, i.e., may they specify a line strip.

So the line segment end points are all contained in a single big array, they are shown (shrunken) in Fig. 5.12 (2b).
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p0 p1 makeVEFS → e new shell e killVEFS → - delete shell
e0 e1 p makeEV → e vertex split e killEV → - edge collapse

e0 p makeEVone → e dangling edge e0 makeEFone → e dangling loop
e0 e1 makeEF → e split faces e killEF → - join faces

e0r e1f makeEkillR → e attach ring e killEmakeR → e0r detach ring
r makeFkillRH → - ring to face e0 e1f killFmakeRH → - face to ring

Figure 5.13: Euler operators as GML operators. The identifiers e0, e1, etc. are identical to those used in the Euler
operator diagram Fig. 4.47.

Line segments to polygons, and sorting polygons to obtain faces. The result of intersect_segments is another example
of a point array that is not a polygon. It can be converted to polygons though by the segs2polygons operator. This operator
turns a set of line segments into a set of polygons: The line segments partition the plane into disjoint regions, and the
boundaries of these regions are polygons. They are computed using a sweep-line algorithm. Besides the line segments
segs2polygons expects the normal vector of the plane into which the segments are projected (line 15) and in which the
regions reside.

Lines 17-19 introduce another technique to create an array 1 [ exch ]→ [ 1 ] , which can also be used in a variant,
such as [ 1 2 ] [ exch aload 3 ]→ [ 1 2 3 ] . In lines 17-19 it could actually be replaced by a map, though.

The ten polygons produced by segs2polygons at first share the same segments. They become disjoint when they are
offset to their interior by the offsetpolygon operator, as shown in Fig. 5.12 (2c). It produces an array of polygons that then
needs to be turned into a mesh. This is a complexer task since it involves to find out which polygons are contained in
which other polygons. In the example the result is the face with nine rings shown in 5.12 (3a). The face is stored in the
register :topface, its backside mate (blue halfedge) in :backface . The :backface has no rings, which can also be seen from
the extrusion in 5.12 (3b).

Complex algorithms with simple interfaces. This example has shown alternatives to the usual pipeline for creating a
solid, polygon→ double-sided face→ extrusion. Variations exist especially for creating polygons. The current example
demonstrates: line segment intersection→ region boundary polygons→ offsetpolygon→ sorting into topfaces/rings.

Also non-trivial algorithms can have quite simple interfaces. The key to a greater flexibility in setting up processing
pipelines is a careful design of compatible signatures of a variety of algorithms. In particular the following two operators
can be quite flexibly used and are therefore more often employed.

[ p0 .. pn ] closed offset nrml offsetpolygon → [ q0 .. qm ]
returns the polygon with edges offset by distance offset to the left with respect to the plane normal nrml. If
closed is 0 then the point array is treated as line strip, otherwise as closed polygon.

[ [P0] [P1] .. [Pn] ] nrml backrings polys2faceswithrings → [ e0 .. em ]
turns the simple, non-intersecting input polygons into double-sided faces and sorts them according to the
containment relation: If face r is directly contained in another face f , then the backside of r is made a ring
of f . Iff backrings is not 0, then rings are inserted also in the backsides, and rings of rings become again
topfaces, and so forth.

5.3.3 Example Cube with a Hat using Raw Euler Operators

This example presents the solution of a problem that was stated in chapter 2. There Fig. 2.23 shows a ‘cube with a hat’
represented as indexed face set using the VRML and .obj file formats for comparison. A fundamental problem of indexed
face sets was mentioned in section 2.2, namely the missing semantic information. This problem was the motivation for
the introduction of Euler operators in this section.

The generative description of a shape? It is important to note that the representation of a shape as an indexed face
is unique – except for entity permutations and surface approximation quality, of course. So formally, a particular shape
corresponds to an equivalence class of indexed face sets.

For generative models it is not so easy to determine whether two given shape descriptions are equivalent. The gen-
erative realization of the cube with a hat from Fig. 2.23 presented in this section is only one among several possibilities.
One and the same shape can be reasonably partitioned into functional or aesthetic components in many different ways,
resulting in completely different generative descriptions. So there is no such thing as the generative model of a shape.
Still some generative representations are more useful than others: Those that are efficient and can be re-used.
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1 / gold se t cu r r en tma te r i a l
2
3 : v0 : v1 makeVEFS dup
4 [ : v2 : v3 ]
5 { makeEVone } f o r a l l
6 exch edgemate exch makeEF
7
8 : v7 makeEVone
9 dup faceCCW faceCCW

10 [ : v4 : v5 : v6 ]
11 { makeEVone
12 makeEF vertexCW
13 dup faceCCW faceCCW
14 } f o r a l l
15 faceCCW makeEF
16
17 edgemate ! e
18 : e : e facemidpo in t
19 : e facenormal add
20
21 ! p ! e
22 : e : p makeEVone
23 dup edgemate ! e
24 { dup faceCCW faceCCW
25 dup : e eq { e x i t } i f
26 makeEF edgemate
27 } loop

Figure 5.14: Building a cube with Euler operators. Its topology equals the VRML/.obj example from Fig. 2.23,
but unlike the VRML example it uses loops which makes it generalizable. The sixteen images correspond to the
result of the following source lines: (3,5,5,6), (9,11,13,11), (13,11,13,15), (22,26,26,26).

Modeling with Euler operators. This example demonstrates modeling with Euler operators directly, not as before
hiding them in higher-level tools such as poly2doubleface or extrude. The GML versions of the Euler operators are
tabulated in Fig. 5.13. There are five Euler operators and five inverse operators, i.e., a total of ten. For convenience
makeEVone and makeEFone are included to create dangling entities (Fig. 4.47, (1b), (3b)). An Euler operator can create
at most one edge, consequently the lines 3-14 issue in total twelve of them, shown in the first twelve images in Fig. 5.14.

Two loops to build a cube. The GML code for the cube with a hat is shown in Fig. 5.14 (right). The creation of the
cube part is partitioned into two phases, both of them are loops: Creating a double sided face in lines 3-6 (images (1a-d)),
and the extrusion in normal direction in lines 8-15 (images (2a-d), (3a-d)).

The double-sided face is created by a sequence makeVEFS, makeEVone, makeEVone, makeEF. This can be general-
ized in an obvious way to faces of arbitrary degree simply by using a longer point array in line 4. Similarly the extrusion
loop can be applied to higher dgree faces by providing more points in the array in line 10; but note that the first point
inserted in the extrusion, :v7 in line 8, corresponds to the last point of the double-sided face, :v3.

A third loop for the hat. In lines 17-18 a halfedge and a point are pushed on the stack as parameters for the following
lines 21-27. They show the typical constituents of a function: The parameters are popped from the stack and stored in
registers. The last four images in the bottom row show how the hat is created by a single makeEV followed by a number
of makeEF, one fewer than the face degree.

Note that the code for the hat does not need further generalization. It can be applied to faces of any degree as it is. The
hat consists only of triangles, and to find the next triangle vertex it is sufficient to apply two faceCCW to an edge on the
center vertex (line 24). The loop terminates only if this edge equals the first edge inserted with makeEVone (line 25).

Exit as an exception mechanism. The hat code does not use a fixed number of iterations. Instead it uses the loop-
operator that continues to execute the body until the exit-operator is explictly called. It (prematurely) terminates the
innermost loop of any looping operator (loop, repeat, for, forall etc.). The program continues with the token after the
respective looping operator. If exit is called outside all loops it terminates the program.
The exit operator illustrates again that advanced OOP concepts can be easily emulated in the GML, namely exceptions:

101 1 { process condition { 202 exit } if } repeat 202 eq { handle-exception } if
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5.3.4 Example Arch or Door

Figure 5.15: Creating a re-usable arch or door.

1 usereg ! nrml ! backwal l ! wa l l ! po ly
2
3 { usereg ! door ! wa l l
4 : door edgemate : wa l l kil lFmakeRH
5 : door edgemate faceCCW
6 : wa l l makeEkil lR
7 dup faceCCW faceCCW
8 : door edgemate
9 exch makeEF pop

10 faceCCW k i l l E F
11 } ! g lue−r i ng face−edges
12
13 : po ly 0 get ! pr
14 : po ly −1 get ! p l
15 : wa l l ver texpos ! pw0
16 : wa l l edgemate ver texpos ! pw1
17 : pr : pw0 : pw1 p r o j e c t _ p t l i n e ! prb
18 : p l : pw0 : pw1 p r o j e c t _ p t l i n e ! p lb
19 [ : p lb : p lb : prb : prb ]
20 : po ly arrayappend ! po ly
21
22 : po ly : nrml neg : backwal l faceplane
23 pro jec t_po l yp lane
24 5 poly2doubleface edgemate ! backdoor
25 : po ly 5 poly2doubleface ! door
26 : wa l l : door : g lue−r i ng face−edges
27 : backwal l : backdoor : glue−r i ng face−edges
28 : backdoor faceCCW : door 2 b r i dge r i ngs
29
30 ! doorL
31 : doorL edgemate 2 faceCCW edgemate ! doorR
32 : doorL edgemate faceCCW k i l l E F
33 : doorR edgemate faceCCW kil lEmakeR pop
34 : doorL edgemate isBaseface {
35 : doorR edgemate makeFkillRH
36 } i f
37
38 : doorL : doorR

Figure 5.16: A door in a wall as a function.

Consequently pursuing the path from the previous section, this section presents an example of a re-usable tool rather than
a parametric model. Accordingly the code is formulated as a function rather than as a model. The startup lines are missing,
instead the typical function header suggests that four parameters are expected on the stack: one polygon, two edges of the
front- and backsides of a wall, and a vector that will in most cases be the normal of the wall, as further explained below.
The four input parameters are shown in the first picture, Fig. 5.15 (1a).

Gluing a ring to its baseface when two of their edges coincide. When the front side opening is inserted the artist
discovers that the opening for the back side requires exactly the same modeling steps again. As dictated by lazyness he
simply puts a pair of curly brackets around the modeling steps just performed and makes them a function glue-ringface-
edges, shown in Fig. 5.16, lines 3-11. Note that the function is stored in a register, so it is a local function. As such it
might use the same register frame as the function. But then it may never be executed after the finish of the door function,
or an error will result. But it is also legal, and safer, that a register function creates its own new register frame with usereg.
This also prepares the local function for becoming a modeling tool of its own.

The glue-ringface-edges function proceeds as follows. Its input parameters are the wall and the frontside of a double-
sided face. Geometrically, both are usually part of the same plane, which is also the reason for the z-buffer artifacts in
5.15 (1c). The killFmakeRH operator in line 4 makes the backside of the double-sided face a ring of the wall (5.15, 1d),
which removes the artifacts. The ring is then attached to the face boundary (Figs. 5.15, image 2a and 5.16, line 6) so that
the wall face has again only a single boundary. With another edge the wall face is split (2b and line 9). Finally a killEF
joins the newly inserted face with the bottom of the wall (2c and line 10), thereby removing the new face. It is important
to note that the original lower boundary edge of the wall is destroyed by glue-ringface-edges. So it may not be used for
modeling any more since when an operator attempts to dereference the token the interpreter stops with a B-rep error.
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Completing the polygons for the openings. To create a doorway the two edges, the bottom of the wall and the bottom
of the door opening, should be geometrically part of the same line. This is achieved by projecting both the start- and the
end points :pr, :pl of the line strip :poly onto the line through the end points :pw0, :pw1 of the wall bottom edge (lines
13-18). Note that this yields vertical sides only when the wall bottom is horizontal. In case the ground has a slope a line
intersection operator should be used instead. The points on the ground are then the intersection points of two vertical rays
that emanate from :pr and :pl in downdward direction, and the line along the wall bottom. But then also provision must be
taken for the case when these rays do not both properly intersect the ground line.

An array is created from the two intersection points :plb, :prb, in this order (left first) to maintain a CCW orientation,
because :poly is appended to it (line 20). Of course the intersection points could also be appended to :poly. But :poly is a
function parameter (line 1), and array manipulation is always by reference; so the array of the calling function is affected,
a behaviour that should be avoided whenever possible to prevent side effects.

Inserting the openings and connecting them. The new :poly is projected in direction :nrml on the back side of the wall
(lines 22-23 and 2d). Then both polys are inserted into their respective walls using the local function :glue-ringface-edges
discussed before (lines 26-27 and 3a). So in total two projection operators from the GML Geometry library are used in
this example:

p p0 p1 project_ptline → q returns the point q on the line through points p0, p1 that is closest to p.
[ P ] dir n d project_polyplane → [ Q ] creates a copy Q of polygon P by projecting it in direction dir onto the

plane (n,d) with normal vector n and distance d.

Note that the bottom points :plb, :prb are duplicated when creating the array in line 19. The reason is that mode 5 of the
poly2doubleface operator sets the temporary vertex flags according to the multiplicity of the points in the array (see section
4.5.1). This way the double-sided face has corners in the right places, e.g., at the bottom. The temporary vertex flags are
then evaluated by mode 2 of the bridgerings operator to appropriately set the sharpness flags of the edges connecting the
front- and backside openings (line 28 and 3b).

Removing the superfluous floor. The result of e0 e1 mode bridgerings is a halfedge that is uniquely determined: It is
the newly inserted edge that connects the vertices of e0 and e1, and it is on the same vertex as e0. This halfedge is stored
in :doorL in line 30, and it is shown as the left of the two halfedges in image (3c); the right one is :doorR that is obtained
in line 31. To create an actual door the two sides of the wall must be separated at the bottom. This can be easily done.
The faces of the two-sided floor in (3c) are joined with killEF (line 32), resulting in the situation in (3d): A single edge
with the same face on both sides, which can only be removed with killEmakeR. This turns the face below the right side
(:doorR edgemate) into a ring of the face below the left side of the wall (:doorL edgemate). Only in case the latter is not a
ring itself (of yet another face) but a baseface, the ring :doorR edgemate just created must also be made a baseface (lines
34-36). Note that rings can have no further rings, but all rings that belong to the same baseface are equivalent.

The case that the face on the bottom of a wall is a ring is shown in the last two images in 5.15, (4a) and (4b). This
happens when the wall is set onto a ground face. These two pictures also demonstrate the versatility of the modeling
tool just created: A manifold of different arches and doorways can now be created very easily. As few as four powerful
high-level parameters permit to create openings of any desired 2D shape. The tool can even cope with walls whose front-
and backsides are not parallel by utilizing the :nrml parameter.

Parameter conditions for ‘consistent’ results. The parameter polygon :poly must lie in the plane of the front wall,
and it must be oriented leftwards (first point right, last point left) because it represents the upper part of the opening.
Furthermore, the size and orientations of the front- and back face planes must be compatible to the direction of projection,
to assure that the projected polygon lies indeed within the back face. This can be critical at the bottom. When the ground
plane is slanted it may be that :plb and :prb, when projected to the back, are not part of the line along the halfedge :backwall.
– Finally, as mentioned, the ground plane of the wall must be horizontal to assure that the sides of the opening are vertical,
because the sides are perpendicular to the ground plane.

Whenever creating re-usable tools it is vital to examine which conditions the parameters must fulfill to guarantee
non-degenerate results. So under which conditions can the new tool be used? Which limitations exist? This involves a
rigorous analysis of the valid parameter ranges as well as to identify the pre- and post-conditions of the tool.

Formal correctness means only that no GML errors occur and that the resulting mesh is geometrically consistent. But
this is only a part of the correct application of a modeling tool. Much harder to specify precisely is the intended purpose of
a tool: When can a tool be reasonably applied? – And sometimes creativity reveals that a tool is much more versatile than
thought at first, and that it can be used for other purposes than it was conceived for. Remember that intermediate meshes
may very well be geometrically inconsistent, and the end result may still be perfectly consistent (also see the discussion
of consistency in sections 2.3, particularly 2.3.5, and 4.4.3).
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5.4 Gothic Architecture

The main idea behind generative modeling is to describe the way how an object is built, rather than to describe only the
result of the construction process.

The worsts case for generative modeling is when the surface of a three-dimensional object exhibits no regularities at
all. If there is no identifiable relation between the differenct parts of the surface then the surface can only be considered
more or less random. The only way to capture the shape is to sample it, i.e., to approximate it using geometric primitives
(points, triangles, radial basis functions etc.). Note that a random surface is also the worst case for other surface com-
pression schemes. Methods such as delta encoding for instance exploit the fact that a sample of a smooth surface can be
derived from other nearby samples, e.g., by locally fitting a smooth curved or linear surface. The amount of additional
information from each individual sample is only small, and it can be represented with only a few bits [IG03]. – Note that
this in fact means that the surface can be locally described using a reconstruction rule, i.e., a generating function.

The best case for generative modeling is when a surface exhibits regularities, but these regularities are hard to capture
using only a static set of rules, i.e., with something like delta encoding or recursive subdivision. A generative shape
description consists of dynamic rules in the sense that geometric properties such as angles, directions, or distances can
be measured, and they can trigger conditional branches in the rule sequence. Loops and conditionals permit arbitrarily
complex, ‘dynamic’, behaviour within the rules. – But note that not only the rules are dynamic, but also the set of these
rules is dynamic.

The outstanding feature of generative modeling is that it permits to re-combine existing rules to create new rules. This
is a little bit like playing LEGO with rules and not with objects: All LEGO pieces have small cylinders on their top and
little holes below, for the cylinders of other pieces to fit in. Quite similarly the GML permits to plug rules into other rules
if they are compatible: GML operators can be concatenated if they have compatible signatures, which means that the
output of one function can be used as input to the next.

The rule set of Gothic architecture. Gothic architecture, and especially the characteristic decoration of the windows,
the window tracery, exhibits quite complex geometric shape configurations. But this complexity is achieved by combining
only a few basic geometric patterns in ever-varying ways. This makes it an amazingly versatile but also quite challenging
domain for parametric and procedural shape design. The Gothic shape vocabulary is so rich that for each and every church
it can generate a unique set of windows, arches and column, which have almost certainly no duplicate somewhere else in
the world. But still everything fits together seamlessly.

Gothic architecture has the very interesting property that, to some extent, it is the result of an optimization process.
Cathedrals have been built long before the advent of exact methods to calculate masses and loads on walls, columns,
and arches. The medieval builders have therefore used an intuitive trial-and-error method, and they have pushed the new
technology to its limits. Especially in the first decades after 1140 many of the churches built in the new style were instable
and have collapsed. From these painful experiences the builders have learned, and they have developed sets of rules for
cathedrals to keep standing upright for centuries. The rules are proportions that relate certain dimensions of the building to
others. For instance there are rules for the thickness of a wall with respect to its height. But these rules typically take also
the width of the wall into account, i.e., the distance of the supporting pillars to its right and left, and also the dimensions of
these pillars. The pillars can not be chosen arbitrarily either; they are determined by the absolute height of the curch nave,
by the relation of the width to the height of the nave, and by the roof type. As a result, only an amazingly small number
of high-level parameters can be freely chosen, they determine most of the other dimensions of a cathedral by applying the
appropriate rules.
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Figure 5.17: Constructions with compass and ruler. The profiles to the right are swept along the curves to the left.

Gothic construction rules are not public. In medieval times the Gothic proportions and construction rules have never
been published, and they were rarely ever noted down. They were usually given from father to son only, or communicated
only gradually within the building groups with their firm hierarchies. This was an early, and quite efficient, form of
protecting the ‘know-how’ of the builders. Still today the commonly accessible knowledge is very limited, and after all
the centuries there is still a rivalry among stone masons today, who perpetuate this form of knowledge protection1.

To some (limited) extent, reverse-engineering is possible from drawings in older publications. Prof. Harmen Thies,
head of the institute for historic building in the faculty of architecture at the TU Braunschweig, has provided invaluable
advice for understanding Gothic architecture. The advent of the neo-Gothic style at the end of the 19th century gave rise to
a number of books on Gothic proportions and styles. The drawings in Fig. 5.17 were published by von Egle and Fiechter
in 1905, who show a great variety of examples of the basic constructions with compass and ruler [EF05].

The the most comprehensive book with Gothic constructions and the most precise descriptions we have found so far is
the Lehrbuch der Gotischen Konstruktionen from Georg Gottlob Ungewitter (1858), especially its famous fourth edition
from 1904 edited by Karl Mohrmann [UM04]. It appears that the only available original medieval sources (in German)
are six independent small little booklets, the Werkmeisterbücher. They are a written heritage from builders to their sons,
such as for instance the famous Büchlein von der Fialen Gerechtigkeit from Matthias Roriczer (1486) [Ror86]. All six are
presented by Ulrich Coenen in his PhD dissertation who edited, translated, and compared them faithfully [Coe88].

Modern publications on Gothic architecture are mostly descriptive and focus on classification and comparison rather
than the actual execution of a building. Books such as Masswerk from Binding2 [Bin89, Bin02] and also the Baufor-
menlehre from Koch [Koc00] give a good overview about generic parts and the development of the styles. Typical and
generally applicable constructions can also be found in the educational literature for learning stone masonry [Ber96].

Problems when scanning a cathedral. The original motivation for applying the GML to Gothic architecture was to
assess the feasibility of the new shape representation method with a non-trivial example domain.

Another more pragmatic incentive comes from the fact that Gothic architecture is a nightmare for automatic shape
acquisition. The images in this chapter give only a rough idea of how difficult it is to capture a Gothic cathedral with a
laser-range scanner. A central idea of Gothic architecture is to dissolve the static supporting stone structures to remove all
the massiveness from the stone. An overwhelming wealth of small-scale detail is used to camouflage the walls. Larger
plane surfaces are avoided whenever possible, and nearly every visible surface is decorated. The main problems are:

• Small-scale detail everywhere
Small-scale ornamental detail at the centimeter level can potentially appear everywhere. A serious constraint for
the complexity of the decoration is that every part of the surface has to be accessible to the chisel (cf. Fig. 5.21). So
a high sampling density is mandatory over the whole stone surface. Unfortunately, a cathedral can be very large.
• Occlusion problem

Floral decorations exhibit a surprising amount of three-dimensionality (see Fig. 5.20 (2a-c)). Frieses, columns, and
vaults are spatial structures covered with decorating ornaments. So just a small portion of the surface is visible from
any given point of view, and scanning has to be done from multiple viewpoints.

In summary, a cathedral would have to be scanned at very high resolution (millimeter) from a multitude of viewpoints.
Given the typical size of a cathedral this makes scanning just impractical (see Fig. 5.44).

1personal communication with two masters from the stone masonry school in Königslutter, one of four such institutions in Germany
2thanks to Dr. Thorhauer for this hint
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Figure 5.18: The Braunschweig city hall. Building in neo-Gothic style from 1888.

Figure 5.19: Highly coded construction plans from the Braunschweig city hall (from Hochbauamt Braunschweig)
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Figure 5.20: Style and structure. Gothic vaults are based on a strict set of rules (1a-c). Even floral ornaments with
their abundance of free-form detail exhibit a strict regularity (2a-c). The similarity of different windows becomes
apparent when seen from inside (1d,2d). Interior fotos from inside the Braunschweig city hall.

Figure 5.21: For centuries, highly coded construction plans were turned into precise pieces of stone by skilled
stone masons. Only through his experience a stone mason can turn a plan like in Fig. 5.19 into a detailed sequence
of construction steps. Row 1: The plan is re-constructed in 1:1 scale directly on the stone. Row 2: Plane surfaces
and right angles are kept as long as possible, to enable precise measurements. The planes form as tight as possible
bounding boxes for the free-form ornaments. Row 3: The final precision is so high that the boundary between
different stones is hard to tell. – Images of stone masons at work at the Stephan’s cathedral in Vienna, from the
Digital European Cathedral Archive at www.deca-forum.net.

file:www.deca-forum.net
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Figure 5.22: Evolution of Gothic window tracery. Row 1: Bar tracery in the early Gothic period (starting 1140),
Row 2: Evolving standard window patterns and style vocabulary in the high Gothic time (from around 1250 on),
and Row 3: Flamboyant richness and recursive patterns in the late Gothic period in the 14th and 15th centuries.
Drawings are from Egle [EF05].

5.4.1 The construction of a Gothic Window

Window tracery is the very particular and characteristic type of window decoration found in any building of Gothic style.
Gothic architecture, and especially window tracery, exhibits quite complex geometric shape configurations. But this
complexity is achieved by combining only a few basic geometric patterns, namely circles and straight lines. They are
combined and obtained from each other by a limited set of operations, such as intersection, offsetting, and extrusions. The
reason for this lies in the nature of the process how these objects have been physically realized, i.e., through constructions
with compass and ruler. All free-form curves used in Gothic architecture are exclusively made of circle segments. The
reason is the scaling problem: A shape drawn on a piece of paper must somehow be reproduced in 1:1 scale in order to
build the object. How could an arbitrary shape drawn on paper be extremely enlarged? This was only possible when the
drawing could in fact be re-constructed, which made the use of ruler and compass mandatory.

Every single stone of the building has to appear somewhere on a plan, because each stone is individually manufactured
by a stone mason. The traditional way to communicate the construction, e.g., of a particular window, is by a series
of drawings. Over the centuries, these drawings have evolved into a very domain specific, condesed code (as in Fig.
5.19), which was essentially a compressed communication form between the builder (architect) and the stone masons.
The construction process itself, however, has only been based on extensive experience, cf. Fig. 5.21. It has never been
formalized in an unambiguous way so that, e.g., a computer could reproduce results of equal quality.

To do so requires two fundamental steps:

• Analysis: to identify the basic operations used in window construction and decoration, and
• Synthesis: to express the parameterized constructions formally and unambiguously using the GML.

Both the analysis and the synthesis were described in a short paper on the Solid Modeling conference 2004 in Genua, and
in extended form on the VAST 2004 conference in Brussels [HF04a, HF04b].



5.4. GOTHIC ARCHITECTURE 233

pL pR

mL
pL pR

mL
pL pR

mL

Figure 5.23: (1a-c): Gothic arch with varying excess: Four-centered (0.75), equilateral (1.0), and pointed arch
(1.25). (1d): The height of a pointed arch can be kept constant even when its width varies. (1e): The crossing of
two pointed vaults can be realized with a pair of pointed arches. (2a,b): A round arch can be offset by scaling, but
the offset of a pointed arch has a different excess. (2c,d): The height of a round arch is always half of its width

Figure 5.24: International success: Stephan’s Cathedral in Vienna (a), Cologne Cathedral (b), and the Cathedral
in Braunschweig (c,d).

The pointed arch. This is the most distinct basic pattern in Gothic Architecture. Its geometric construction is based
on the intersection of two circles. The circles are tangent continuous to the sides of an arch or a window, given as two
vertical line segments (Fig. 5.23). Consequently the midpoints mL and mR of the left and right circle segments lie on the
horizontal line through the upper endpoints pL and pR of the left and right segments, the arch basis points. The pointed
arch is symmetric, so both circles have the same radius r = dist(pL,mR) = dist(pR,mL).

The ratio r/dist(pL, pR) can be called the excess of the arch. When the excess is 1.0, the circle midpoints coincide with
the upper segment endpoints. Together with the circle intersection, they form an equilateral triangle. This is the standard
pointed arch, also called the equilateral arch. With an excess > 1.0, the circles intersect at a sharper angle, and this is
what is actually called a pointed arch. When the excess is < 1.0, the arch is not so high, and this is called four-centered
arch. The extreme case is the round arch with an excess of 0.5, so that mL,mR coincide in the midpoint between pL, pR.

The historical development of window tracery. The pointed arch was a technological breakthrough that, after its
introduction around 1140, has truly revolutionized the construction of cathedrals. It is a generalization of its predecessor,
the round arch. The pointed arch was first systematically employed by abbot Suger in the renewal of the cathedral of St.
Denis (near Paris, France), and the new style spread over all Europe in just a few decades. It has dominated the European
sacral architecture for more than two hundred years, and gave rise to a veritable footrace between cities, with cathedrals
becoming ever more sophisticated and risky, and tolerances becoming smaller and smaller. The overwhelming success of
the Gothic architecture is witnessed by the great similarity of churches from different countries (Fig. 5.24).

Technologically, the great advantage of the pointed arch over the round arch is the fact that the distance between the
columns could now be varied without affecting the height of the arch (Fig. 5.23 (d)). This leaves greater much flexibility
for positioning the columns, and it helps to solve delicate problems with the design of the ground layout in a cathedral,
especially around the chorus (see Fig. 5.45 (3a)).
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Figure 5.25: Geometry of the prototype window. (a,b). Calculating midpoint and radius of the rosette’s circle
(c,d). Points on the dotted line in (c) have the same distance to both circles. As revealed by (d), it is an ellipse.

Figure 5.26: The fields within a Gothic window. (a,b,c): The seven different fields from Fig. 5.25 (a,b) are shrunk
to embed them in a single border plane. (d): The offset operation changes the excess of a pointed arch, but keeps
the circle midpoints constant. (e,f): Examples for field boundaries in historic drawings from Egle [EF05]. T he
rosette circles are filled with a lying trefoil and a standing quatrefoil. Compare to Figs. 5.17 (3a-c) and 5.29.

Let there be light. Basically the same shape as for an arch can also be used for a window. The idea of Gothic cathedrals
is to make the walls of the church as transparent as possible, in order to let a maximum of light enter the room. With
coloured windows, a cathedral was flooded with light in all colors, which was one of the manifestations of God in the
perception of the medieval christian. The size of the windows in relation to the size of the walls increased, and the walls
actually “dissolved” to the point where they completely lost their supporting function. Gothic cathedrals get their stability
almost exclusively from columns, and not from walls [Bin02].

There is a remarkable development of the ornamental decoration in the upper part of the window, the couronnement
(Fig. 5.22). In the Early Gothic period, starting around 1140, the windows were created by cutting openings into large
stone plates in the wall. This premature form of window tracery is therefore called plate tracery. In the High Gothic
period, from around 1250 on, the stone parts became ever thinner, and the windows covered an increasing portion of the
wall. The glass windows were set into a network of individual stones, the bar tracery (5.22, row 2). The late Gothic period,
in the 14th and 15th centuries, saw a great refinement and sophistication of window tracery. The basic patterns were varied
over and over again, with recursive sub-structures and self-similarity, to the point where the static stone appeared to be
actually flowing. An example is the French and English flamboyant style (5.22, row 3) with its flame symbolics [Bin89].

The prototype window. A very common and basic High Gothic window type is one with two sub-windows that are also
pointed arches, as for example the window in Fig. 5.22 (2a). It exhibits the main shape features, the shape vocabulary,
that was subsequently refined and varied in the Late Gothic period. The sub-windows have most often the same excess as
the main arch, which makes the excess a high-level parameter of the window.

So this window type was chosen as the prototype window for reconstruction, and it is shown in Fig. 5.25. The window
in (a) has excess 1, so that the midpoints of the circular arcs and the basis points pL, pR coincide. They are also basis
points of the subwindow arches. But like in Fig. 5.22 (2a) it is often the case that the sub-arches are set down with respect
to the big arch, in order to create a larger space for the couronnement. So the vertical distance between the basis points of
the outer and inner arches is another high-level parameter of the window (Fig. 5.25 (b)).

Adding a circular rosette. The space between the outer and inner pointed arches can be filled in many different ways.
This decoration is the distinguishing feature of each individual window. In the early days of Gothic, this space was quite
often filled with a circular rosette. Geometrically the problem is to find the midpoint mC and radius rC of a circle that
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Figure 5.27: Construction of rosettes with round foils and pointed foils. (1a): Computing the arc of a rosette with
six rounded foils, so α = 2π

6 . (1b): Relative displacement of m of 1.15 creating midpoints m′ and m′′ to obtain
pointed foils. (1c,1d): Pointed trefoil arch obtained from pointed arch by replacing part of the arcs. (2a,b): The
circle segments partition the rosette into fields which are then shrunk (2b,c) like the window fields in Fig. 5.26

touches the outer arch and two segments of the inner arches. Consider the set of all points in between a big arc and a
sub-arc, for instance arcLR (left sub-window, right arc) and arcR (big arch, right arc), as in Fig. 5.25 (c). The points that
have the same distance to both respective circles, (mR,rR) and (mLR,rLR), are shown as dotted curve.

This curve is an ellipse, which is revealed in Fig. 5.25 (d): Connect a point on it, for instance mC, with both mid-
points mR and mLR. The distance from mC to the upper midpoint mR is less than the radius rR of the big circle (dot-
ted continuation), so dist(mC,mR) = rR− x for some x > 0. Similarly, the distance from mC to the lower midpoint is
dist(mC,mLR) = rLR + y for some y > 0. But mC has the same distance to both circles, so x = y. Then x cancels out from
the sum of both distances, and dist(mC,mR)+ dist(mC,mLR) = rR− x+ rLR + x = rR + rLR is constant. Since this holds
for all points on the dotted curve, it must be an ellipse, and mR and mLR its foci. The midpoint mC of the rosette can then
be obtained as the intersection of this ellipse (mR,mLR,rR + rLR) with the vertical axis of symmetry. Practically it can be
computed by intersecting a unit circle with an affinely transformed line.

Offset curves. The rosette circle and the sub-arches partition the window into disjoint regions or fields. These fields
define the basic structure of the window, which is then further refined. This can be done by simply adding a profile
around the actual window holes to emphasize the shape, or, especially in the later period, by adding sub-structures, again
composed of lines and circular arcs. It is very common that there is a thin planar border between adjacent fields, so that
there is actually a single connected border plane. Geometrically this means that the field border is offset by a certain
distance, as depicted in Fig. 5.26 (a,b), so that one contiguous border plane results (shown in yellow). Regarding the great
variety of examples where this pattern is used, it is reasonable to distinguish between two different offset parameters:

• the interior offset distance of the fields from each other, and
• the offset distance from the ensemble to the outer pointed arch

Both parameters are equal in Fig. 5.26 (a), while in 5.26 (b) the outer offset is doubled, and in 5.26 (c) the interior offset.
One great thing about the circle is that its offset is again a circle. This applies also to curves that are created from a

sequence of circular arcs and line segments, like for instance a pointed arch. But note that if the sequence contains corners,
e.g., two arcs joining in an intersection of the respective circles, the intersection of the offset circles must be computed for
obtaining the offset curve sequence. Simple scaling is not sufficient to create offset curves: The offset of a pointed arch
has a different excess than the original arch, as it is shown in Fig. 5.26 (d), and also before in Fig. 5.23 (2b).

Rosette window with multiple foils. A very common way to fill a circular field is by a rosette with multiple foils, for
example a trefoil or a quatrefoil. The foils come in a variety of different shapes; common variants are round and pointed
foils (Fig. 5.27 (1a,b)). A further distinction is between lying and standing rosettes, shown in Fig. 5.29 (1a,1b) and (2a,2b).

The geometry is fairly straightforward: Given the number n of foils in a unit circle, the radius r of the round foils
is computed as in Fig. 5.27 (2a). Consider the tangent from center c to the circle (m,r). The distance from c to m is
1− r, so the length of the perpendicular from m to the tangent is dist(m,a) = (1− r)sin α

2 . But dist(m,a) = dist(m,b) is
also supposed to be r. This equation gives r = sin α

2 /(1+ sin α
2 ). The perpendicular feet a and b are the endpoints of the

circular arc that is rotated and copied n times to make up the rosette.
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Figure 5.28: Window tracery with flat and round bars. With the flat style (a-c) the front sides of the bars form a
contiguous front plane, of which the window and fillet fields are rings. This is opposed to the french style (d) with
round bars. Compare the french style with the profiles created with stable extrusion in Fig. 4.80. Images are taken
from the Old Town Hall (a) and the Martini church (b-d) in Braunschweig.

Figure 5.29: Basic and sophisticated rosettes. (1a,1b,2a,2b): Lying and standing trefoil and quatrefoil rosettes.
Center: Sophisticated rosettes from the late Gothic period. Right: In illustrations the profile is often drawn right
below the upright image, towards which it needs to be turned by 90 degrees. The drawings are from Egle [EF05].

The pointed foils are a variant of the round foils. Consequently they can be obtained from the round foils, as it is
shown in Fig. 5.27 (2b): The midpoints m′,m′′ are obtained from m by displacement along the lines (a,m) and (b,m).
The pointedness, and thus the radius of the circles, is influenced by the amount of displacement, which can be specified in
relation to the original radius. Points a and b and the intersection point c then specify the arcs which make up the pointed
foils. In order to fit into the original circle, the foils are simply scaled smaller.

Just as described in section 5.4.1, a connected boundary region for the rosette is constructed from the network of
circular arcs. Examples are shown in Fig. 5.27 (1c,d). Note that also these offset curves also only consist of arcs and line
segments.

Further refinements. Circular arcs can be combined very flexibly. Both corners and tangent continuous joints can be
obtained from quite elementary geometric constructions. The pointed trefoil arch in Fig. 5.27 (2c,d) for instance is easily
obtained from a pointed arch: First both arcs are symmetrically split, and then the lower parts are replaced each by a pair
of smaller arcs. When joining circular arcs, tangent continuity is obtained simply by choosing the midpoint of the next
arc on the line through mid- to endpoint of the given arc. This principle is the source of the great variability of geometric
patterns in Gothic architecture. It is also the principle used in the drawings from Egle in Figs. 5.17 (3a-c) and 5.29.

Appearance: Profiles So far the structure of the window is solely defined by a few two-dimensional fields whose
boundaries are composed of circular arcs and line segments. The fascinating and impressive three-dimensionality of
Gothic windows is achieved by profiles that give depth to the two-dimensional geometric figures. In architectural illustra-
tions, profiles can often be found above or below a front view, like in Fig. 5.29 (rightmost). – Sometimes, in more coded
versions, profiles are also set into the drawing itself, for instance in the plans of the Braunschweig city hall in Fig. 5.19.

Technically, these profiles are swept along the field border curves, the profile plane being orthogonal to the tangent of
the curve. At corner points, where the tangent is discontinuous, the sweep is basically continued onto the bisector plane.
This is the plane that is spanned by the bisecting line of the angle in the corner and the normal of the 2D construction
plane. Yet this is only the case when the curve is locally symmetric to the bisector plane. In more general cases, the
discontinuity locally follows the medial axis of the two parts of the curve.
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• excess the excess of the main pointed arch and the sub-arches Fig. 5.23 (a-c)
• arcDown vertical offset of the base points of the sub-arches Fig. 5.25 (b)
• bdOuter offset distance of the fields from the main arch Fig. 5.26 (a-c)
• bdInner interior offset distance of fields from each other Fig. 5.26 (a-c)
• wallSetback distance the whole window is set back into the wall
• heightBott height of the horizontal bottom of the window above the ground
• kseg accuracy for circles and circle segments (n-gon)
• Style high-level style parameter specifying how to fill the seven (eight) fields

Figure 5.30: The parameters of the standard Gothic window. All parameters are stored in a dictionary. The value
of the Style parameter is another dictionary with the four style generating functions (examples in Figs. 5.32, 5.33).

5.4.2 The Gothic Window in GML

The analysis has revealed the elements a standard Gothic window is composed of. The realization as a GML model is a
bit more complicated than the previous examples, but as a matter of fact it is quite straightforward.

The parameters of the window. A generative Gothic window is of course a configurable modeling tool, and using the
GML it is represented as a function. The analysis has shown that this function can potentially have a large number of
parameters. Some of the parameters are more generic than others: The overall shape is a pointed arch, which in any case
has an excess parameter. Furthermore this first realization shall restrict itself to exactly two sub-windows and a circular
rosette. With the prototype window from Fig. 5.25 the height offset between the base points becomes another parameter.

The window is partitioned into seven fields that are set into a common border plane, as shown in Fig. 5.26. When using
combined B-reps as shape representation then a discrete control meshes is needed for the curved parts of the surface. So
another parameter is required to specify approximation quality of the control mesh. All in all the eight parameters listed
in Fig. 5.30 are needed to describe the basic shape of the window.

The larger number of parameters makes the usual parameter passing over the stack a bit inconvenient. Especially when
sets of parameters are to be re-used, or slightly changed, it is more convenient to use a dictionary. The usage of the Gothic
window modeling tool is therefore as depicted in Fig. 5.31: All values are entered in a dictionary which is then used as a
function parameter (line 13). The concrete parameters in line 12 describe the particular wall the window is to be cut into,
two halfedges and the base points of the arch. They should geometrically lie in the face plane of the wall.

Style libraries. The most intricate, and the most interesting, fundamental question is how to describe the Style of a
particular window – especially in the light of the great variety of Gothic forms in the figures so far. This is again a variant
of the shape description problem: All the possible variants can not be described using only a fixed set of concrete values.
With a generative approach for shape description the solution is again to use parameterized functions, and again they are
wrapped in a dictionary.

The value of the Style property used in the example from Fig. 5.31 is Gothic-Window.Styles.Style-1. This is a dictionary
that contains four style generating functions, corresponding to the four types of fields in the window. They must have the
following prescribed signatures:

poly b d eWall eBack style-main-arch → eArch
creates the main arch of the window from poly and returns it as a new face eArch; the distance between the
face planes of eArch and eWall must be d, and b the offset from the inner fields to the outer arch

poly eArch eBack style-fillet → -

decoration of the four fillets, set into the main arch eArch created before, may create opening using eBack

poly eArch eBack m r style-rosette → -

sets the rosette into the main arch, may create opening; poly is the circle polygon of the rosette circle (m, r)

poly eArch eBack arcL bh style-sub-arch → -
realizes the two pointed sub-arches. The pointed arch polygon poly is set into the main arch. arcL is one of
the two arcs from which poly was generated, and bh is the height of the bottom of the sub-arch

The definition of a very simple style with its four functions is shown in Fig. 5.32. All functions do basically the same,
a simple extrusion in different colors. The next idea is to exploit this similarity to set up a library of re-usable profiles.
Consequently pursuing this idea leads to a much more concise representation of much more complex styles.
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An example is the ‘high-level style’ definition in Fig. 5.33, which directly routes the input parameters to prefabricated
functions from the Profile library. In addition to profiles like profile-4 this library contains also utility functions, for instance
rosette-pointed. This function is compatible to the the parameters of style-rosette listed above, but its working must be
further configured with mode flags and a profile parameter that, by the use of the stack, can simply be pushed behind
(5.33, lines 9-10).

Recursive styles. The most fascinating option is based on the fact that the sub-arches are pointed arches as well. This
recursive structure of Gothic architecture can be directly represented in the GML with a recursive style. In this case the
function Profiles.sub-arch-recursive expects another style dictionary, just like the one from Fig. 5.31. In Style-8 from Fig.
5.33 the style dictionary is assembled ‘on the fly’ by another utility function Profiles.make-style-dict.

A recursive style may even be doubly recursive; the definition of Style-7, which is used as sub-style in Style-8, looks
very much like the definition of Style-8 itself. It is also recursive, except that it uses another style Style-4 as style for the
sub-arches. So the recursion in Style-8 has in fact depth two, and the resulting window has 2 · 2 · 2 = 8 sub-windows.
Results with different styles are shown in Fig. 5.40 later.

Like with any other software library a vital prerequisite for a good style library is a good interface definition. This
is also the intellectually most challenging part, since it requires to decide which information is exchanged between the
modules. In case of the window styles, all four style generating functions obtain a polygon poly, i.e., a curve that is
already sampled. The rosette and sub-arch functions though obtain higher level information in addition to the polygon, a
circle and a circle segment (circular arc). They actually make the respective poly parameters redundant. But higher-level
information is needed for all decorations that are more intricate than just a simple profile. To see why this is so it is
necessary to know how circular arcs and pointed arches are actually represented in the GML.

Circle segments in the GML. A 2D plane in 3D can be parameterized in many ways. To minimize redundancy GML
operators expect just a normal vector and the distance from the origin, i.e., a vector and a float, for a plane.

Several possibilities exist also to parameterize a circular arc: By midpoint and two polar angles, by three points on
the arc (as in many drawing programs), by two points plus circle center etc. But to represent a circle segment in general
position in 3-space, all parametrizations using 2D coordinates need a basis for the plane, i.e., two 3D unit vectors e0,
e1 that are perpendicular to each other. This is inconvenient and computationally not very stable: The parametrization
should efficiently support the typical operations on circle segments, like affine 3D transformations (general translations,
rotations), the offset operation, and the conversion to a circle.

Furthermore, since Gothic plans are made of both line and circle segments, their parametrizations should be compat-
ible. The chosen parametrization of a circle segment is therefore like a line segment [ a b ] with start- and endpoint, plus
the midpoint m of the circle (see Fig. 5.27 (2a)). In the GML, this is can be written as an array of three points [ a m b ].
To distinguish between the two possible arcs from a to b, a normal vector n is specified for the orientation as well, with
the convention that the arc is always CCW oriented when the normal points to the viewer. Such a circle segment can the
be converted to a polygon with the circleseg operator:

[ a m b ] nrml n mode circleseg → [ p1 .. pk ]

creates a polygon with evenly spaced points on a circular arc with radius dist(a,m) in the plane with nrml
containing a. mode determines the meaning of n: In mode 0, the polygon is approximately part of an n-gon,
in mode 1 it has n+1 points. In mode 2 the length of the polygon segments is approximately n (as float)

What is ‘the pointed arch’? The interesting property of the pointed arch is that it exists on several different levels of
abstraction. This is also symptomatic for the human perception of shape: ‘A shape’ means in most cases rather a whole
class of shapes, with fuzzy class boundaries. Furthermore there are several different roads to understanding the same
shape, and on several different levels. Each level deserves its own representation, and the transition from one level to
another is of course achieved by a function.

(a) High-level parameters pL pR excess offset heightBott nrml
(b) Closed curve from two circle- and three line segments [ pR mR pT ] [ pT mL pL ] [ pL bL ] [ bL bR ] [ bR pR ]
(c) Closed polygon from sampling the curve [ ... ]
(d) Mesh face created from closed polygon eArch
(e) Control mesh of a highly decorated window frame with ornaments and profiles
( f ) Tesselated high-resolution triangle mesh for display

The steps (a)-(c) are always the same, so they are realized with a ‘static’ function from the Gothic window library . The
steps (d)-(e) are configurable, since they are determined by the choice for a style for the particular window, as in Fig.
5.31. Note that the style can also choose to redo (a)-(c) in a completely different way, and replace the simple pre-sampled
polygon by another, more complex, shape. Steps (e) and (f) finally are taken care of by the combined B-reps.
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Pointed arch: From (a) high-level parameters to (b) circle segments. The pointed arch as a conversion function gw-
pointed-arch is listed in Fig. 5.37. The first line of code just retrieves the parameters from the stack (in reversed order).
Line 3 computes the midpoint of the right arc mR = pR+excess · (pL−pR). Note that it lies to the left, since excess≈ 1.
The radius rad of both circles is computed as the distance from pR to mR minus the desired offset; like with extrusion,
positive offsets are inwards. The points where the two circles intersect are computed with the circle intersection operator;
only one of them is needed. The circular arcs are then assembled inline. They are pushed in the order left, right so that
they are ready to be processed right, left to produce a CCW polygon.

p0 p1 t line_2pt → q computes a point on the line q = p0+ t · (p1−p0) = (1− t) ·p0+ t ·p1
p q t move_2pt → p’ moves p into the direction of q by t absolute units.

m0 r0 m1 r1 nrml intersect_circles → p0 p1 computes the intersection points of the circles (m0,r0) and (m1,r1) in
plane nrml. When nrml points to the viewer and m0 is left and m1 right,
then p0 is below and p1 above the line segment [m0 m1].

Note that the order of the midpoints in line 7 of gw-pointed-arch (5.37) is reversed; mR is the midpoint of the right arc,
which lies to the left. Therefore the second result of intersect_circles is popped, and not the first. – The family of pointed
arches in Fig. 5.23 (a-c) was created using this function by varying the excess parameter. In Fig. 5.26 (a-c) the offset was
varied; the base points are marked there with big dots.

Pointed arch: From (b) line and circle segments to (c) the polygon. Only the two arcs have been computed so far. To
get also the end points bL, bR of the the horizontal line at the bottom it is enough to specify the bottom height, heightBott.
The points are then obtained by setting the end point of the left arc and the start point of the right arc to the bottom height.
This does the function gw-polygon-2arcs-height listed in Fig. 5.38. An arc is an array of three points. With :arcR 0 get :hb
putZ its first point is retrieved and the z coordinate of this point is set to :hb (’height bottom’). In line 3 an array is made
of twice this point, so that the other polygons generated by circleseg in lines 4-5 can be simply concatenated to it. The left
end point is also appended twice in line 6.

Note that the z coordinate is interpreted as ‘height above the ground’. Especially for city modeling it is much more
natural to make the (x,y)-plane the ground plane.

The resulting polygon contains exactly three points twice: The tip of the arch, which is the startpoint of one arc and
the endpoint of the other, and the two points on the bottom. The reason is that the poly2doubleface operator (in mode 5)
creates sharp corners only from all polygon points that appear successively more than once (see section 4.5.1).

The Gothic Window function. It was shown how a single pointed arch is processed across the different stages. This
knowledge can now be applied to create a whole window.

The main window function is gw-gothic-window from the Gothic-Window.Tools library, listed in Fig. 5.36. It has two
tasks: (a) to compute and polygonize of the eight fields making up the window, and (b) to call the style generating functions
with the appropriate polygons. The eight fields are the main arch itself (arcR, arcL), the rosette (rosetteMid, rosetteRad),
the right sub-arch (arcRR,arcRL), the left sub-arch (arcLR,arcLL), and the four fillets.

As explained before the function gw-gothic-window has five parameters: the halfedges on the front- and backsides of
a wall, the left and right base points of the arch, lying in the frontside face plane, and the window dictionary. The latter
contains additional parameters that are accessed via name lookup: The function starts by beginning the window dictionary
(line 5). The next statement Style begin already retrieves the style entry from the window dictionary, and it adds the four
window generating functions to the current modeling vocabulary. – Note that also name overloading is possible; another
previously begun dictionary might for instance contain four default style functions, and the new dictionary overwrites only
one or two of them. – The function can be divided into five parts overall:

• lines 18-21: Decorate the main arch
The main arch is processed via operator chaining: the base points and excess are sent as high-level parameters
to gw-pointed-arch→ line and circle segments plus bottom height to gw-polygon-2arcs-height→directly routed to
the style generating function style-main-arch. This function is then supposed to produce the window front face
edgeArch that is subsequently given to the other style functions.

• lines 25-28: Compute the sub-arcs and the rosette
The points pL, pR are moved into the wall by wallSetback to serve as displaced base points, the resulting displaced
main arch is needed to compute the inner fields. The rosette circle, and consequently also the arcs of the sub-arches,
are computed by another function gw-fillets-arcs-rosette that is described in the next paragraph.

• lines 32-37: Compute and decorate the four fillets
Like the pointed arch the fillets are processed in two stages: First circle segments are computed (gw-compute-
fillets), which are then polygonized (gw-polygon-fillets), to finally apply style-fillet to each of them. The conversion
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functions are not discussed in detail because they employ no new techniques: The arcs are converted to circles, the
circles are enlarged or shrunk by the bdOuter or bdInner offsets, and these offset circles are intersected to compose
new arcs, three for each of the four fillets. The three arrays produced from them by the circleseg are concatenated,
so that there are corners at the intersection points.

• lines 41-44: Decorate the rosette
The rosette circle is polygonized with the circle operator (see section 5.3.1), but the style-rosette function receives
additionally the higher-level parameters midpoint and radius to be able to synthesize, if wanted, a more intricate
window decoration. This is not possible from the polygon alone, only from the higher-level data.

• lines 48-56: Decorate the two sub-arches
The sub-arch is polygonized as before using gw-polygon-2arcs-height, but with a modified bottom height. Note that
also the style-sub-arch function receives high-level information, one of the two sub-arches and the bottom height.
They are needed to replace the standard arch by a more interesting one, using techniques like in Fig. 5.27 (2c-d)

Computation of the window geometry. At the very core of the Gothic window is the computation of the eight fields. It
is performed by gw-fillets-arcs-rosette listed in Fig. 5.39. This function first computes a pointed arch with the same base
points and excess as the main arch, but with a non-zero offset. Instead it uses the outer offset bdOuter. The resulting arch
tightly comprises the interior fields (lines 3-4).

The base points pLL and pRR of the sub-arches are the start- and endpoints of the offset arch, moved vertically down
by arcDown units (lines 6-7); this is the distance between the dotted horizontal lines in Fig. 5.25 (b). The other two
sub-arch base points are obtained as pRL = pM + dpM and pLR = pM− dpM from pM = 1

2 (pLL + pRR), dpM being the
horizontal displacement vector of length 1

2 bdInner. Since the sub-arches have the same excess as the main arch, sufficient
information is available to compute the circle segments of the sub-arcs by using again the gw-pointed-arch function (lines
12-16). A new operator is then employed to compute the midpoint of the rosette circle:

p0 p1 m0 m1 r intersect_line_ellipse → q0 q1 t0 t1

Computes the intersection of the line through (p0,p1) with the ellipse (m0,m1, r) with foci m0 and m1. It
returns the intersection points q0, q1 and their parameters t0, t1 on the line p0+ t(p1−p0), so that t0≤ t1.
The radius r should of course be greater than dist(m0,m1).

Following the analysis from Fig. 5.25 the line is the line of symmetry of the window (lines 18-19). The foci are the
midpoints of the right arc of the displaced main arch, and the right arc of the left sub-arch; the radius is rad + radL−
bdInner. Since the line of symmetry runs downwards, the first result q0 of intersect_line_ellipse is the required center of
the rosette circle. The radius of the rosette is then computed as dist(rosetteMid,marcLR)− radL−bdInner.

A GML function can naturally have multiple return values. The end result of the function gw-fillets-arcs-rosette are
the four arcs of the two sub-arches and the rosette circle center and radius, which are all pushed on the stack.

5.4.3 Gothic Window: Results

The efforts taken in the previous section to map the understanding of the standard Gothic window to the GML is rewarded
by a very flexible and versatile modeling tool. A few example styles and profiles were created to assess the suitability of
this approach.

Separation of content and appearance with window styles. Five examples for basic styles are introduced in Fig. 5.40.
The most important message that the style determines only the appearance of the window. The entries in the window
dictionaries (Fig. 5.30) of the windows are (row-wise) completely identical, except for the Style entry. As can be clearly
seen, all windows realize the same excess, the same inner and outer offset distances, etc.

The same style and appearance is also preserved throughout the recursion (4a-e). Note that also the number of foils
is identical on the different levels, if the style has a rosette with foils (4a-e,5a-e). This is achieved not with the sub-arch-
recursive function from Fig. 5.33 but with a sixth style, the recursive style, which uses two style entries and a window
dictionary. It is set up just like in Fig. 5.31 except for two more entries:

/Style Style-Recursive def /TrueStyle Style-2 def /SubStyle :subwindowdict def

The recursive style ‘camouflages’ itself as the TrueStyle on the current level, and it uses the SubStyle window dictionary
for the sub-arches – which may of course contain the recursive style again.

The purpose of the blind window style 1 in column 5.40 (a) is only to show the four types of fields for the four style
functions. Note how the interior offset between the fields is realized in (3a) so that it creates a contiguous front plane.
Style 2 opens the window and adds a more interesting profile. The window openings are set as rings into the back wall
(3b). Style 3 uses the same profile (3c) as style 2, but it has a ‘rounded rosette’ (i.e., with round foils) in the couronnement,
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1 d i c t dup begin ! windowdict
2 / excess 1 .25 def
3 / arcDown 2 .0 def
4 / bdInner 0 . 4 def
5 / bdOuter 0 . 5 def
6 / wal lSetback 0 . 1 def
7 / he igh tBo t t 2 . 0 def
8 / kseg 6 def
9 / S ty le Gothic−Window . Sty les . Style−1 def

10 end
11
12 : edgeWall : edgeBack (−3 , 0 , 8 ) ( 3 , 0 , 8 )
13 : windowdict
14
15 Gothic−Window . Tools begin
16 gw−gothic−window
17 end

Figure 5.31: Using the Gothic window modeling tool.

1 Gothic−Window . Sty les . Style−1 begin
2
3 { usereg ! edgeBack ! edgeWall
4 ! wal lSetback ! bdOuter ! po ly
5
6 / stdGrey se t cu r r en tma te r i a l
7 : po ly 5 poly2doubleface dup edgemate
8 : edgeWall kil lFmakeRH
9 : bdOuter 4 d iv : wal lSetback neg 5 vector3

10 extrude
11 } / style−main−arch exch def
12
13 { usereg ! edgeBack ! edgeWall ! po ly
14 / stdGreen se t cu r r en tma te r i a l
15 : po ly 5 poly2doubleface ! edge
16 / gold se t cu r r en tma te r i a l
17 : edge edgemate : edgeWall kil lFmakeRH
18 [ : edge ] [ ( 0 . 0 5 ,− 0 . 3 , 1 ) ]
19 ex t rudes tab le pop
20 } / s t y l e− f i l l e t exch def
21
22 { usereg ! rad ! mid ! edgeBack ! edgeWall ! po ly
23 / stdRed se t cu r r en tma te r i a l
24 : po ly 5 poly2doubleface ! edge
25 : edge edgemate : edgeWall kil lFmakeRH
26 / gold se t cu r r en tma te r i a l
27 : edge ( 0 . 05 ,−0 . 3 , 5 ) ext rude ! edge
28 } / style−rosette exch def
29
30 { usereg ! bh ! arcL ! edgeBack ! edgeWall ! po ly
31 / s tdBlue se t cu r r en tma te r i a l
32 : po ly 5 poly2doubleface ! edge
33 : edge edgemate : edgeWall kil lFmakeRH
34 / gold se t cu r r en tma te r i a l
35 : edge ( 0 . 05 ,−0 . 3 , 5 ) ext rude ! edge
36 } / style−sub−arch exch def
37
38 end

Figure 5.32: The style library for the simple style 1

1 Gothic−Window . Sty les . Style−8 begin
2
3 { P r o f i l e s . style−main−arch−2
4 } / style−main−arch exch def
5
6 { P r o f i l e s . p ro f i l e−4
7 } / s t y l e− f i l l e t exch def
8
9 { 6 8 0 . 0 3 1 . 5 0 . 0 1

10 P r o f i l e s / p ro f i l e−4 get
11 P r o f i l e s . roset te−pointed
12 } / style−rosette exch def
13
14 { 0 . 0 5 0 . 1 1 0 . 0 6 0 . 2 5
15 Gothic−Window . Sty les . Style−7
16 P r o f i l e s . make−style−dict
17 P r o f i l e s . sub−arch−recursive
18 } / style−sub−arch exch def
19
20 end

Figure 5.33: Library of the doubly recursive style 8

Figure 5.34: Input parameters of the style functions.
The main arch polygon (a) is pushed into the wall to
embed the circle and sub-arches (b) and the fillets (c)

Figure 5.35: Comparison of styles 1 and 8. The simple
style clearly shows the four types of fields.
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1 usereg ! windowdict
2 ! pBaseR ! pBaseL ! edgeBack ! edgeWall
3 : edgeWall facenormal ! nrml
4
5 : windowdict begin S ty le begin
6
7 %%% DECORATE MAIN ARCH
8
9 : pBaseL : pBaseR excess 0 . 0 : nrml

10 gw−pointed−arch pop
11 he igh tBo t t : nrml kseg
12 gw−polygon−2arcs−height
13 bdOuter wal lSetback : edgeWall : edgeBack
14 style−main−arch ! edgeArch
15
16 %%% COMPUTE SUB−ARCS AND ROSETTE
17
18 : nrml wal lSetback neg mul dup
19 : pBaseL add ! pL
20 : pBaseR add ! pR
21
22 : pL : pR : nrml
23 gw−compute−arcs−rosette
24 ! rosetteRad ! rose t teMid
25 ! arcRR ! arcRL ! arcLR ! arcLL
26
27 %%% COMPUTE AND DECORATE THE FOUR FILLETS
28
29 : arcLL : arcLR : arcRL : arcRR
30 : rose t teMid : rosetteRad : pL : pR : nrml
31 gw−compute− f i l lets
32 gw−polygon− f i l le ts 4 ar ray
33 { : edgeArch : edgeBack s t y l e− f i l l e t }
34 f o r a l l
35
36 %%% DECORATE THE ROSETTE
37
38 : rose t teMid : nrml : rosetteRad kseg 4 mul
39 c i r c l e
40 : edgeArch : edgeBack : rose t teMid : rosetteRad
41 style−rosette
42
43 %%% DECORATE THE TWO SUB−ARCHES
44
45 he igh tBo t t bdOuter add ! he igh t InnerArc
46
47 : arcRL : arcRR : he igh t InnerArc : nrml kseg
48 gw−polygon−2arcs−height
49 : edgeArch : edgeBack : arcRL
50 style−sub−arch
51
52 : arcLL : arcLR : he igh t InnerArc : nrml kseg
53 gw−polygon−2arcs−height
54 : edgeArch : edgeBack : arcLL
55 style−sub−arch
56
57 end end

Figure 5.36: Main window function gw-gothic-window

1 usereg ! nrml ! o f f s e t ! excess ! pR ! pL
2
3 : pR : pL : excess l i ne_2p t !mR
4 : pL : pR : excess l i ne_2p t !mL
5 : pL : pR d i s t : excess mul : o f f s e t sub ! rad
6
7 :mL : rad :mR : rad : nrml
8 i n t e r s e c t _ c i r c l e s pop ! qT
9

10 [ : qT :mL : pL : pR : o f f s e t move_2pt ]
11 [ : pR : pL : o f f s e t move_2pt :mR : qT ] : rad

Figure 5.37: Function gw-pointed-arch

1 usereg ! kseg ! nrml ! hb ! arcR ! arcL
2
3 [ : arcR 0 get : hb putZ dup ]
4 : arcR : nrml : kseg 1 c i r c l e seg arrayappend
5 : arcL : nrml : kseg 1 c i r c l e seg arrayappend
6 [ : arcL 2 get : hb putZ dup ] arrayappend

Figure 5.38: Function gw-polygon-2arcs-height

1 usereg ! nrml ! pR ! pL
2
3 : pL : pR excess bdOuter : nrml
4 gw−pointed−arch ! rad ! arcR ! arcL
5
6 : arcL 2 get ( 0 , 0 ,−1 ) arcDown mul add ! pLL
7 : arcR 0 get ( 0 , 0 ,−1 ) arcDown mul add ! pRR
8 : pLL : pRR midpoin t_2pt !pM
9 :pRR : pLL sub

10 bdInner 0 . 5 mul set length_vec !dpM
11
12 : pLL : pM : dpM sub excess 0 . 0 : nrml
13 gw−pointed−arch ! radL ! arcLR ! arcLL
14
15 :pM : dpM add : pRR excess 0 . 0 : nrml
16 gw−pointed−arch ! radR ! arcRR ! arcRL
17
18 :pM ( 0 , 0 , 1 ) add
19 :pM ( 0 , 0 , 1 ) sub
20 : arcLR 1 get
21 : arcR 1 get
22 : rad : radL add bdInner add
23 i n t e r s e c t _ l i n e _ e l l i p s e 3 pops ! rose t teMid
24
25 : rose t teMid : arcLR 1 get d i s t
26 : radL sub bdInner sub ! rosetteRad
27
28 : arcLL : arcLR
29 : arcRL : arcRR
30 : rose t teMid : rosetteRad

Figure 5.39: Function gw-compute-arcs-rosette
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Style 1 Style 2 Style 3 Style 4 Style 5

Figure 5.40: Five basic Gothic window styles.
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Figure 5.41: Parameter variations in a manifold of Gothic windows.
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Figure 5.42: The principle of information unfolding applied: High output complexity from few input parameters
such as width, height, and base height.
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and the main arch profile is more complicated (also shown in Fig. 5.41 (5d)). Style 4 introduces the pointed rosette, and
it uses a much more interesting profile (3d). This profile ranges much farther than the rosette profile from style 2, which
implies that it must be applied using stable extrusion instead of the standard extrude operator.

[ e0 .. ek ] [ p0 .. pl ] extrudestable → [ e0 .. ek ]
realizes the intersection free extrusion based on the straight skeleton from section 4.5.5. The input faces ei
must be individual faces or rings of the same plane; they may not be direct neighbours or (pairwise) share
a vertex. The profile points pi = (xi,yi,zi) specify the horizontal and vertical offset as explained in 4.5.5.

The benefit of using the intersection-free extrusion can be nicely seen in Fig. 5.40 (5d) and (5e): The style 5 uses also the
pointed rosette, but with again another profile. It also introduces a new feature, since it replaces the standard arch with
the pointed trefoil arch from Fig. 5.27 for the sub-arches (3e). This is an example of utilizing the high-level information
passed on to style-sub-arch, a fact that was already mentioned several times. In style 5 this style function replaces the
already sampled pointed sub-arch.

Parameter variations: A manifold of windows, and the window manifold. Six of the eight parameters in a win-
dow dictionary have a geometric meaning; and even more geometric parameters can be added by the style, for instance
the number of foils when the style employs a rosette. In conjunction with recursion, this permits to set up interesting
dependencies between the variables on the different levels. Some possibilities are illustrated in Fig. 5.41.

Row 1 of Fig. 5.41 shows the effect of an increasing vertical offset of the sub-arch base points with respect to the base
points of the main arch in a doubly recursive window. The size of the windows in the sub-arches is only half the size of
the higher level. For the whole ensemble to be harmonic the sub-windows should therefore have half the vertical offset
of the main window. This rule binds the vertical offset of the sub-windows on both levels of recursion, which were free
parameteres before. The only remaining free high-level parameter is the vertical offset of the main window.

Fig. 5.41 (1e) shows a geometric degeneracy: The right and left fillets are only made of three circle segments but
for larger vertical base point offsets they should also contain a straight line segment. The problem is that the fillets are
explicitly constructed by circle offsets in the way explained in 5.4.2. Also other degeneracies are possible, for instance the
top fillet can completely vanish for four-centered arches (Fig. 5.23 (1a)) with a small excess < 1. But in reality the fillets
are only the remains of the front plane when the circle and the sub-arches are removed. So the solution would be to use
the appropriate method, i.e., a 2D-CSG algorithm that can handle curves made not only of line segments but also of circle
segments. This is planned in the future.

Row 2 of Fig. 5.41 shows the effect of proportions. The three walls in 5.41 (a), (b), and (c) have all the same absolute
size; so (a) shows a small window, (b) a window of medium size, and (c) a large one. The windows in (d) and (e) are
scaled: (e) is the window from (a) scaled to the size of (c), and (d) is the window from (b) scaled to the size of (c). In
absolute units the width of the bars in all windows is the same (same bdInner). This leads to the (correct) impression that
5.41 (e) looks like a ’baby window’ compared to (c) only because of its different proportions.

Row 3 of Fig. 5.41 shows the effect when the main arch of a doubly recursive window is increasingly pushed into
the wall. Following the same approach as before the wallSetback of the sub-windows is (recursively) half the wallSetback
of the window from one level higher. So only the wallSetback of the highest level is a free parameter. The result of this
rule is shown in (5d), the size of the main arch profile decreases by a factor of two with each level of recursion. As the
wallSetback increases from (3a) over (3b) to (3c) it also has an effect on the profiles: They become thinner, and the profiles
of the sub-arches become proportionally thinner as well. The reason is that the style functions from style 3 (in fact from
all styles) measure the distance between the front- and backside planes. This determines a scale factor for the profiles, so
that the x/y proportions of the profile remain the same, i.e., they always look as in 5.41 (5a-c).

Row 3 of Fig. 5.41 shows the windowsills of the different styles. Styles 1-4 use face extrusion, i.e., either the extrude
or extrudestable operator, to apply the profile. Style 5 is different, since it uses path extrusion from section 4.5.4. The
benefit is that this style can provide a beautiful windowsill (4c). The drawback is that path extrusion can not yet handle
self intersections as in 5.40 (5e). Path extrusion with removal of self intersections is future work.

Information unfolding: High output complexity from few input parameters. The benefit of a generative shape
description is most concisely expressed with the unsqueezing of the doubly recursive Gothic window in Fig. 5.42 (1a-c)
with three different window styles on its three levels. The pointed arch, the technological breakthrough from the 12th
century, keeps its promise that the arch base points remain on the same height when the width of the window varies. The
rosette on the next row Fig. 5.42 (2a-d) shows the transition from round foils to increasingly pointed foils. Only two
parameters are varied, the pointedness and the number of foils.

Finally the effectiveness of the principle of information unfolding is demonstrated with the doubly recursive style 4
window in row 3 of Fig. 5.42. The density of the wire frame indicates the overwhelming amount of data produced: Image
(3c) shows only the smallest of the three levels, but in highest refinement, with each smooth face four times subdivided.
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Figure 5.43: Plans of the cathedral in Cologne (Germany). Sections through the nave (a), the walls of the nave
from outside (b) and inside (c), and a typical decoration of Gothic windows: A canopy, also called Gothic gable.
Illustrations are from Egle [EF05].

5.4.4 The Procedural Cathedral

The cathedral of Cologne is one of the greatest Gothic cathedrals in the world. Impressive is its incredible size, with a
height of 157 meters, a length of 145 meters and a width of 86 meters. But equally impressive is the overwhelming wealth
of architectural detail that apparently dissolves its huge mass of 160.000 metric tons of stone. This lightness and fragility,
that even seems to overcome gravity, was a primary goal of its founding builders. The cathedral was begun in 1248 when
Gothic architecture had its high time across all Europe. But the project was so gigantic that in the first 150 years of
construction only the foundations of the two towers and the choir were erected, and in 1410, due to the fading faith at this
time, the project came to a standstill – for 432 years. In the early 19th century Geheimrat Johann W. v. Goethe, the famous
poet, brought his influence as Prussian government official to bear, and in a period of German national enthusiasm the
cathedral was eventually finished in 1841-1880. In this last period the builders faithfully followed the original medieval
plans, but they could also utilize new efficient methods from the emerging industrial age. As a result the Cologne cathedral
exhibits unmatched stylistic purity and clear symmetry – unlike other medieval cathedrals that were built continuously for
so many years that all changes in taste and fashion left their traces on them.

Structure on every level. The cathedral incessantly invites the spectator to decipher its structure, to speculate whether
a certain element might be supporting or just decoration, which measures are determined through constructional reasons,
and which parts are necessary because of style and symmetry. What becomes very clear is that nothing is really redundant,
and no part is just arbitrarily added. The whole cathedral is formed by an intricate composition that determines which
ornaments are to be placed in which positions, which pointed arches are crowned by Gothic gables and which are not,
how to calculate the radii of the circles, and which parts to decompose further into sub-parts. Yet still it is quite enjoyable
to look for ‘errors’ in the building, since there are quite a few (see Fig. 5.44 (2d)).

It is most fascinating how new structures appear on every refinement level: From a distance only the two towers and the
cross-shaped ground layout with the nave and the two transepts are perceived. Then it becomes obvious that the cathedral
has two aisles on each side of the nave. The nave with its height of 43,35 meters is supported by two rows of flying
buttresses that emerge from the aisles. Immense canopies span over enormous windows in the shape of pointed arches,
filled by rich and detailed window tracery. Coming closer the tracery exhibits even more detail: The whole cathedral is
covered over and over by details on a centimeter scale, for instance around 11.000 little towers, each only ≈ 15 cm high.

There is no precise 3D model yet. This building is a very good example for a shape where manual CAD modeling as
well as 3D scanning, as explained earlier in 10, are infeasible. The fotos in Fig. 5.44 give an idea why still as of today, no
precise 3D model of the Cologne cathedral exists. To obtain a good end result both approaches would require very much
manual refurbishing and post-processing. This makes them so cost intensive that for obtaining only a single model, even
if it is the Cologne cathedral, this effort is also hard to justify.



248 CHAPTER 5. THE GENERATIVE MODELING LANGUAGE GML

Figure 5.44: Fotos from the Cologne cathedral. Truly remarkable is the impact of the light that enters through the
huge windows (lower rows).
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Figure 5.45: Plans of the Cologne cathedral. Row 3: Numbering scheme for the grid of pillars.
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type /MainNave (∗) pillar type
coord (4,7) (∗) grid row and column
pos (-15.08,7.53,0) (∗) metric coordinates
top E2929,0,0 top anchor edge
bot E2881,0,0 bottom anchor edge
dir (0,1,0) orientation of the pillar ’front’
wallN <dict> wall to previous row
wallS <dict> wall to next row
wallE <dict> wall to next column
wallW <dict> wall to previous column

Figure 5.46: Entries of a pillar dictionary. The example pillar 407 is in row 4, column 7 (zero-based counting).

Generative reconstruction of the Cologone cathedral. A faithfully produced procedural cathedral model would be
most beneficial, not just to obtain a digital model that is electronically accessible and immediately intelligible in 3D.
A much stronger incentive is the scientific challenge: The hypothesis that Gothic buildings are based on a limited set
of construction principles can be proven only if it is possible to formulate these rules also with a concrete building at
hand. The measure for success is the information reduction that is possible with a generative description of the Cologne
cathedral: How many tokens are necessary to describe it? – Hopefully much fewer than the number of triangles, because
it is probably gigantic.

But if this endeavour has a positive result then not only the model of a single cathedral is obtained by it. With a first
generative cathedral at hand the reconstruction of the second, the third, and the following cathedrals and churches becomes
ever more manageable and efficient. So the benefit would be both practical and theoretical: Obtaining re-usable tools, and
a better understanding of Gothic architecture. – But like with the pointed arch and the Gothic window, the analysis must
precede the synthesis.

The grid of pillars. Fotos such as those in Fig. 5.44 give a great impression and a feeling how the church looks like.
They can also be used to resolve detail problems with the construction. But it is very hard to derive from them exact
measurements, and in particular the high-level parameters for generative models; in fact this is part of future work. Better
suited as a source for the reconstruction are plans. Some of the best illustrations were in fact made for marketing reasons.
Sulpiz Boisseree, a merchant from Cologne, has invested much time and money to let create twenty impressive engravings
that convinced his contemporaries that the cathedral should be finished [Boint] – for example J.W. v. Goethe. Some of the
engravings are shown in Fig. 5.45; some details differ from the realized building, e.g., the crossing tower.

Row 3 shows the ground layout of the cathedral, it is again taken from Egle [EF05]. As explained in detail by Prof.
Thies the principal structuring element in a cathedral are the pillars. For the first reconstruction they were numbered in
the form of a grid, shown with the green markers, in the following way.

• Columns are counted from N to S, rows from W to E, counting starts at zero
• Pillar IDs such as 407 refer to the pillar in row 4, column 7
• Rows continue also in the choir so that three pairs of pillars (416,516), (316,616), (216,716) are connected
• Rows 0,1 have entries only in the northern transept with pillars 7,8,9,10 and 107,108,109,110
• Rows 8,9 have entries only in the southern transept with pillars 807,808,809,810 and 907,908,909,910
• The pillars in the corners of central square, the crossing piers, have IDs 408,409,508,509 (NW,NE,SW,SE)

The generative model. The pillar grid is realized in the GML as a 2-dimensional array of dictionaries with one dictio-
nary per pillar. An example is shown in Fig. 5.46. Mandatory entries are bold: type, coord, and pos, the pillar positions
shown as dots in 5.46 (a). The other entries are added when geometry is created for the pillar. The non-existing entries in
the grid ((0,0)-(0,6) etc.) all refer to the same dummy pillar dictionary.

The pillar type is set in an initializing function set-type-pillars, part of which is shown in Fig. 5.50. Schematic in-
formation can be set using a loop, in this case over the grid columns since, e.g., most of the columns in row 4 are of
type Pillar-Nave (line 4). The getcol function is extremely useful as it allows to directly access each pillar; it expects row
and column and returns the pillar dictionary. Its implementation is almost trivial (Fig. 5.54) as it uses Pillars, the array
of arrays of pillar dictionaries. The orientation dir of the pillars is important because they are usually not symmetric as
they will be attached to different types of walls. By convention the pillars are directed outwards, i.e., the northern pillars
are directed northwards to (0,1,0). The eight different pillar types are listed in Fig. 5.56. Note that the transepts and the
crossing require different pillar types in rows 3 and 4; but the entries in the pillar dictionaries can simply be overwritten.
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usereg

0 1 1 6 { ! i
0 1 9 {

: i ge t co l
dup . type
load exec

} for
} for

Figure 5.47: create-pillars

usereg
0 1 1 6 { ! i

0 1 9 { : i ge tco l ! co l
: co l / wal lN bu i l d−wa l l
: co l / wal lS bu i l d−wa l l
: co l / wallW bu i l d−wa l l
: co l / wallO bu i l d−wa l l

} for
} for

Figure 5.48: create-walls

usereg ! wa l l ! co l

: co l : wa l l known {
: co l : wa l l get ! w a l l d i c t
: w a l l d i c t / f r o n t known not {

: w a l l d i c t dup / type get
load exec

} i f
} i f

Figure 5.49: build-wall

The wall dictionaries, and navigating in the grid. One dictionary is not only made for each pillar but also for each wall
between the pillars. The wall and pillar dictionaries contain direct references to each other. The set-type-walls function
from Fig. 5.51 is similar to the set-type-pillars function from before in that it also loops over the columns to set the wall
type (sometimes preliminarily). A pillar can be adjacent to four walls at most, to the absolute directions north, east, south,
and west within the grid. This corresponds to the wallN, wallE, wallS, wallW entries in the pillar dictionaries. If a pillar
has no wall in some direction, like the northern buttress (2,7) that has no northern wall, the respective dictionary entry
is simply missing. – As a remark, in OOP (C++) all objects that belong to a class have the same member variables and
functions; with GML dictionaries used as class objects this does not have to be the case.

Each wall is attached to two pillars, to its right and left, but for walls right and left are only relative. A wall is set up
with the make-wall function from Fig. 5.52 which expects two pillar index pairs of the left and right pillars and a wall
type, in this order. There are two sorts of walls, Wall-EW-x in east-west direction and Wall-NS-y in north-south direction,
and several types of each sort. As an example, the wall going east from the NE crossing pier (4,9) has this pillar as its left
(colL) and (4,10) as its right (colR). The wall going north from the same crossing pier (4,9) goes to pillar (3,9), which is
the colL of the wall in between. The wall orientation with right/left is defined in set-type-walls as follows:

• for Wall-NS-y the northern pillar is left (lines 2-5)
• for Wall-EW-x in the northern church half the western pillar is left (lines 7-9)
• for Wall-EW-x in the southern church half the eastern pillar is left (lines 10-12)

In summary it is effectively possible to navigate in the grid by going from one pillar to the next over the walls:

4 9 getcol .wallE .colR .wallN .colL .wallW .colL is the yields the same result as 3 9 getcol

This means that to follow the walls east, north, west is just as good as to go north directly.

The semantic network. So far only the network of dictionaries has been set up, not the slightest bit of geometry is
created. This strategy has proven extremely valuable for more complex constructions because the description can still
be changed on a high level. Data can be added to the wall and column dictionaries to provide sub-sub-styles with sup-
plemental information. As an example many of the walls have Gothic windows; and of course it is desirable to re-use
window styles from the previous section 5.4.2. The set-type-walls function shows how to achieve this: The return value
of make-wall is the newly created wall dictionary. Usually it is just popped, but in lines 8, 10, 11, and 13 of set-type-walls
it is used to enter a particular window style dictionary (as set up in 5.31) for the wall.

The semantic network permits to change specific data also after everything has been set up and initialized, but before
the geometry is created. As an example, it is still possible to set the style of just one particular window to a different style.
– Another great advantage is that the network also permits efficient access to the geometry when it is created.

A second or two to build a cathedral. When the semantic network is properly set up two very simple functions are
executed to actually create the mesh, first create-pillars from 5.47, then create-walls from 5.48, which in turn uses build-
wall from 5.49. These functions reveal that the pillar and wall types are more than just names: They are functions that
are loaded and executed. Their respective arguments are the pillar/wall dictionaries they were taken from. To create two
pillars and a single wall between them is as simple as, e.g.,

4 7 getcol dup .type load exec 4 6 getcol dup .type load exec 4 7 getcol /wallW build-wall

One example of a simple pillar generating function is Pillar-Nave listed in Fig. 5.55. It creates a box shape by triple
extrusion, removes some of the edges at the side of the box, and stores the top and bottom faces in the pillar dictionary.
They serve as anchor edges for the next construction steps; it is therefore important that the anchor edges are well specified
and reliably noted. – An important result of this first crude reconstruction is that the required set of anchor edges must be
more carefully selected and specified. Felix Funke and Florian Rudolph are currently taking care of this issue.
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3 1 1 3 { ! i
2 : i ge t co l dup / type / P i l l a r−But t ress put / d i r ( 0 , 1 , 0 ) put
3 : i ge tco l dup / type / P i l l a r−A is l e put / d i r ( 0 , 1 , 0 ) put
4 : i ge tco l dup / type / P i l l a r−Nave put / d i r ( 0 , 1 , 0 ) put
5 : i ge tco l dup / type / P i l l a r−Nave put / d i r ( 0 ,−1 , 0 ) put
6 : i ge tco l dup / type / P i l l a r−A is l e put / d i r ( 0 ,−1 , 0 ) put
7 : i ge tco l dup / type / P i l l a r−But t ress put / d i r ( 0 ,−1 , 0 ) put

} for

Figure 5.50: Part of the function set-type-pillars

3 1 1 2 { dup ! i 0 1 add ! i 1
2 : i 0 3 : i 0 / Wall−NS−Buttress make−wall pop
3 : i 0 4 : i 0 / Wall−NS−Aisle make−wall pop
4 : i 0 5 : i 0 / Wall−NS−Nave make−wall pop
6 : i 0 5 : i 0 / Wall−NS−Aisle make−wall pop
7 : i 0 6 : i 0 / Wall−NS−Buttress make−wall pop

2 : i 0 2 : i 1 / Wall−EW−Aisle−Window make−wall / S ty le : windowstyle put
3 : i 0 3 : i 1 / Wall−EW−Aisle−Arch make−wall pop
4 : i 0 4 : i 1 / Wall−EW−Nave−Window−Canopy make−wall / S ty le : windowstyle put
5 : i 1 5 : i 0 / Wall−EW−Nave−Window−Canopy make−wall / S ty le : windowstyle put
6 : i 1 6 : i 0 / Wall−EW−Aisle−Arch make−wall pop
7 : i 1 7 : i 0 / Wall−EW−Aisle−Window make−wall / S ty le : windowstyle put

} for

Figure 5.51: Part of the function set-type-walls

1 usereg
2 ! wa l l t ype ! bx ! by ! ax ! ay
3
4 : ay : ax ge tco l ! colA
5 : by : bx ge tco l ! colB
6
7 d i c t dup begin ! wa l l
8 : colA / co lL edef
9 : colB / colR edef

10 : wa l l t ype / type edef
11 end
12
13 : ax : bx sub ! dx
14 : ay : by sub ! dy
15
16 : dx −1 eq / wallW i f
17 : dx 1 eq / wallO i f
18 : dy −1 eq / wal lN i f
19 : dy 1 eq / wal lS i f ! wal lB
20
21 : dx −1 eq / wallO i f
22 : dx 1 eq / wallW i f
23 : dy −1 eq / wal lS i f
24 : dy 1 eq / wal lN i f ! wal lA
25
26 : colA : wal lA : wa l l put
27 : colB : wal lB : wa l l put
28
29 : wa l l

Figure 5.52: make-wall is called by
set-type-walls in Fig. 5.51 above

d i c t dup begin
/ pos ( 0 , 0 , 0 ) def
/ coord ( 0 , 0 ) def
/ type / pop def

end

Figure 5.53: make-pillar

exch P i l l a r s
exch get
exch get

Figure 5.54: getcol

1 usereg ! co l
2
3 : co l . pos ! p
4 : co l . d i r dup Hp f e i l e r−b r e i t 0 . 5 mul mul !w
5 ( 0 ,0 ,−1 ) cross Hp f e i l e r−schmal 0 . 5 mul mul ! h
6
7 [ : p :w : h add add
8 : p :w neg : h add add
9 : p :w neg : h neg add add

10 : p :w : h neg add add ]
11 3 poly2doubleface
12
13 dup edgemate faceCCW
14 : co l / bot exch put
15 [ ( 0 , 2 0 , 3 ) ( 0 , 2 6 , 3 ) ( 0 , 4 6 , 3 ) ] ext rude faceCW
16 : co l / top exch put
17
18 : e faceCCW dup k i l l−s ide−edges
19 faceCCW dup k i l l−s ide−edges
20 faceCCW k i l l−s ide−edges

Figure 5.55: Pillar-Nave as a pillar example; set as pillar
type of rows 4,5 in set-type-pillars in Fig. 5.50 above
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Figure 5.56: The eight different pillar types. Twice the basic types on rows 2,3,4, once in the nave and once in
the choir, plus the crossing pier and the two-direction butress.

Figure 5.57: The different wall types.
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Figure 5.58: The transparent cathedral. The Gothic gables above the windows were provided by Florian Rudolph.
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5.5 Discussion and Conclusions

Some of the immediate consequences of the generative modeling approach have been discussed. But there are other
consequences that may be less obvious. In any case it is certainly vital to reflect on what has been achieved so far, which
limitations still exist, and of course whether the results achieved may also be useful for other purposes.

5.5.1 The GML as a Generalization of the Known Ways of 3D Modeling

Operator chaining as generalized modeling history. The assembly line metaphor for 3D modeling is supported by the
fact that the fact that practically all of today’s modeling systems use a modeling history. This concept is quite old, and it
dates back to the first CAD systems in the early eighties. It is sometimes limited though to global operations. In 3D Studio
Max from Kinetix Inc. the history is called the modifier stack [3DS]. 3D Studio permits to apply arbitrary deformations,
twist, warp, and also subdivision to each object. The parameters of every operation can be changed afterwards, and the
object immediately reflects the changes.

The GML generalizes the modifier stack and replaces it with the more general technique of operator chaining. It is
superior, e.g., because it permits branching of the modeling history: Let toolA have not one but two results, let toolB
process one of them, and let toolC recombine the two. Branching is as simple as toolA toolB exch toolB toolC . Second,
it is superior because of the functional background: The sequence toolA { toolB } map toolC will work for result sets of
any size if toolA and toolB are made to create and process a whole array of items at a time.

Generalized data flow networks. The distinguishing feature of the high-end modeling tool houdini from Side Effects
Software Inc. is that it permits to define a data flow network for 3D modeling and animation [Hou]. In fact the whole
software system is based on the concept of processing nodes where output connectors can be routed into input connectors.
Models such as a procedural gear are possible in Houdini with its pre-defined looping constructs.

Another example where a data flow network approach has been quite successfully used is in the werkkzeug toolkit for
procedural texture synthesis [FFCg]. It was produced by the farbrausch group that is very active in the German “demo-
scene”. This is a subversive movement of free non-commercial programmers who take part in an ongoing contest with the
objective to obtain the best possible result with a very small executable computer program; usually the size of the binary
is limited to 64 kilobytes. This task obviously requires heavy use of procedural techniques since almost no data can be
stored within the executable. So these demos use unfolding information to the maximum.

An important contribution of the GML is that it is a generalization of data flow networks. A processing node in the
network is nothing but an operator. Instead of connecting output to input via explicit routes the GML stack can be used
for a much more organized and flexible parameter exchange; e.g., the stack can have any depth. Some data flow networks
permit to collapse a whole sub-network into a single new processing node; in GML terms this is nothing but a combined
operator. All capabilities of data flow networks can be mapped to GML constructs in a straightforward way, so the GML
recommends itself as internal representation and as file format for data flow networks.

And GML is even more powerful: Functions can be parameters of other functions. This opens a new perspective
on the capabilities of the GML. In network terms this means that the result of a processing node in a network can be a
network; a network can also be the input for another node, so a whole network can in fact be transmitted over a network
route; and finally a network can produce other networks as a result.

The software architecture conjecture for procedural 3D modeling. There are good reasons to argue that procedural
modeling exploits only one half of the potential of procedural shape descriptions. The software architecture conjecture
states that a consequent pursuit of procedural and generative modeling will always lead to a combined modeler/viewer
software architecture, rather than to only a modeling software or just to a shape description formalism.

As already explained in section 5.1 most procedural modeling packages have a built-in scripting language; but un-
fortunately there is no common exchange standard for procedural models, and the deeper reason for this is that such an
exchange makes only sense when the modeling tools are exchanged as well, on the binary level. But this is not realistic
since then a software for viewing, e.g., CATIA and Maya models would have to incorporate the complete CATIA [Cat]
and Maya [May] software packages.

The GML software architecture therefore marks a potential way out of this dilemma. Sooner or later the demand
for rich online experiences, the market pressure, will become so strong that some sort of combined modeler/viewer
architecture will be made available. Maybe an upcoming version of the Playstation from Sony or the Gameboy from
Nintendo will have Maya or 3DStudio incorporated. But proprietary approaches have led all too often in the history
of computer graphics to incompatible technologies and, thus, to a standstill. Hopefully the GML operator calculus is
both simple and powerful enough to serve as general shape description language, and the GML engine as combined
modeler/viewer architecture proves extensible enough, to foster the development of a free standard.

http://www.sony.com
http://www.nintendo.com
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/ ob jec t d i c t def
ob jec t begin

/ data 12 def
/ f unc t i on { dup mul } def

end
ob jec t . data ob jec t . f unc t i on → 144

Dialogue−Box begin
/ Width 10 def
/ Height 2 . 8 def
/ Depth 0 .25 def
/ Subdiv ( 5 , 2 , 1 ) def

end

Figure 5.59: GML dictionary as object-oriented class. A dictionary can be used as object in the OOP sense, it may
contain both data and functions (a). This permits to generalize dialogue boxes. (b): dialogue box for a subdivided
box from 3DStudioMax. (c): Its potential representation as a GML dictionary.

GML dictionaries as generalized dialogue boxes. A dictionary containing only data and no functions can be used as a
classical C-style ‘struct’. It also corresponds to a record in a database, and it can be understood as a form to interactively
fill in entries. This is the concept of a dialogue box. They are frequently used in graphical user interfaces to further
configure a specific action. They are also useful for describing objects, in which case they are known as property lists.

The GML can not only efficiently manage and store dialogue boxes and property lists in dictionaries. It opens also a
novel perspective, namely properties containing executable code. Expressions can be used, variables can be referred to,
and, most importantly, function calls can be issued from ordinary dialogue boxes, as suggested in Fig. 5.59.

Dictionaries can take on many roles, especially in conjunction with path names. Note that the latter also have much
in common with the path names used in file systems; just replace the dot by a slash 3. A dictionary hierarchy in turn has
much in common with a hierarchical file system. Even hard links are possible, since a dictionary can be referred to by
many other dictionaries. Rather than of a hierarchy one should therefore speak of a dictionary network, like the network
of wall and pillar dictionaries of the cathedral (section 5.4.4). Note that there is no ‘..’ operator for dictionaries, but a root
dictionary exists.

Intelligent 3D objects, also for internet transmission. Another way to look at parameterized procedural 3D objects is
to see them as small little program snipples or applets that realize one element in a responsive 3D environment. This is
sometimes referred to as an intelligent 3D object and used, e.g., in architectural house planning software. Door, stairways,
roofs etc. are all obvious candidates for being elements from some 3D object library. The most important property of
these object is that they can adapt to the requirements of a particular building, i.e., that they behave ‘intelligently’.

The GML might serve as exchange format for intelligent 3D components. An existing example of an intelligent GML
object is the Gothic window: it adapts automatically to the width of the walls in the cathedral. A capability of the GML
that goes even beyond using intelligent object is that intelligent objects can in fact be created at runtime to expand the
object library.

5.5.2 Persistent Naming and the Picking Problem

An annoying conceptual limitation of the modifier stack method mentioned earlier is that under some circumstances the
stack may need to be frozen. In 3DStudio Max, for instance, this is the case when a deformed primitive (cube, cone,
NURBS patch etc.) is converted to a mesh object. The reason is that the meaning of a mesh modification is not clear at
all when the mesh undergoes more radical changes. A vertex inserted by a beveling operation might disappear when the
bevel parameters change. What to do with an operation later in the sequence that manipulates this vertex?

This is one form of a fundamental problem in 3D modeling, the persistent naming problem. Several aspects of this
problem are concisely listed in the article from Hoffmann and Joan-Arinyo in the Handbook of geometric modeling
[HJA02]. The problem is to assign a name or ID to a part of an object so that it can be uniquely identified also when the
problem undergoes parameter changes, i.e., the ID should persist. Another incarnation of the persistent naming problem is
the picking problem: Assume the user picks, e.g., stair step number 7 of a procedurally generated staircase with ten steps.
Then what should the system do when the number of steps in the door changes? The system cannot guess the rule the
user had in mind when selecting the stair step. Perhaps its persistent name is ‘step 7 from below’ or ’step 4 from above’
or ‘step at 2m height’; in any case an explicit rule is needed for the system to re-generate the new ‘step 7’.

Persistent names in the GML: Do they persist? The GML has two answers to the persistent naming problem. The
first is to avoid picking altogether during the construction of an object. Interactive picking is deemed so very intuitive; but
in fact it is the end of all procedural reasoning whenever meaningful changes are made interactively but the rule behind

3or a back-slash for some
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v −1 −1 −1
v −1 +1 −1
v +1 −1 −1
v +1 +1 −1
v +0 +0 +1

f 1 2 4 3
f 1 3 5
f 3 4 5
f 4 2 5
f 2 1 5

(−1,−1,−1) v
(−1,+1,−1) v
(+1,−1,−1) v
(+1,+1,−1) v
(+0 ,+0 ,+1 ) v

[ 1 2 4 3 ] f
[ 1 3 5 ] f
[ 3 4 5 ] f
[ 4 2 5 ] f
[ 2 1 5 ] f

{ usereg
! faces ! po in t s
: po in t s { addVertex } f o r a l l
: faces { addFace } f o r a l l

} / c reate−IFS exch def

[ (−1,−1,−1) (−1,1,−1)
(+1 ,−1 ,−1 ) (+1 ,1 ,−1 ) (0 , 0 , 1 ) ]

[ [ 1 3 5 ] [ 3 4 5 ]
[ 4 2 5 ] [ 2 1 5 ] [ 1 2 4 3 ] ]

c reate−IFS

Figure 5.60: Versatility of the Postscript syntax. A triangle pyramid as an indexed face set in .obj file format
syntax (a) and how it translates to the GML (b) when v and f are functions. The similarity is obvious, but note the
reversal of the order of keywords and arguments. (c) shows the formulation as re-usable function.

the mouse click is not made explicit. Picking was used in none of the GML examples so far. This is not a conceptual
limitation (see 5.5.4). Instead the GML actually encourages the artist to formulate the construction in terms of rules, as it
offers all the time to re-use (and re-arrange) construction steps from before.

Second, in a more concrete sense persistent identifiers are realized by the construction itself. One example are the
anchor edges in the grid of pillars from the cathedral. They are persistent in the sense that they are in a defined position on
the top or bottom of a pillar. But they are defined by the pillar generating function rather than by the user clicking an edge
and saying ’this is an anchor’. Or, to put it differently, mesh halfedges never appear in the GML code of a construction as
E19,2,23423 (although syntactically they could) but always as a variable, e.g., pillar.topedge or :edge1.

But the persistent naming problem can of course not be avoided altogether; it is fundamental, and to solve it completely
would imply a solution to the problem of shape description. But part of the latter is a creative challenge, which makes it
impossible to solve by the use of a computer. – The concrete form of the problem was already mentioned: Anchor edges
are fine, but which are good anchor edges? The bottom edge of the front side of a wall is good as an anchor edge only as
long as the wall has no door. In the door example in section 5.3.4 the bottom edge is even destroyed. So in the worst case
it may be that all edges of the wall are replaced; in this case the only way to keep a reference to the wall is to make the
wall manipulating functions to explicitly update the persistent anchor.

The dilemma is that in order to, e.g., define an edge to be a persistent anchor, one has to foresee all possible uses of a
construction. No anchor edges have been left inside the decoration of the couronnement of the Gothic window. This was
a deliberate decision because only the style functions are supposed to decorate the couronnement.

5.5.3 A new way to think about Shape? – Shape Understanding and Shape Complexity

The GML is designed as a general file format for 3D model exchange. In principle it can represent indexed face sets and
triangle soups just as efficiently as NURBS patches, scene graphs and implicit functions, as proven in Figs. 5.60 and 5.61.
So the GML can be used as generalized low-level shape representation. A practical advantage of the stack based approach
is that a developer does not have to worry about writing a parser in order to support a particular 3D file format. Instead, all
that needs to be done is to define an appropriate set of operators to extend the set of built-in GML operators. Experience
shows that it is in many cases possible to transform a given ASCII file format directly into GML syntax, e.g., by using a
stream editor.

The Kolmogorov complexity. The great benefit of a simple syntactic transformation into the GML notation is that all
kinds of regularity in the data can be expressed in a concise way – at least in theory. As a very simple example consider
the sequence of natural numbers from 1 to 10:

1 2 3 4 5 6 7 8 9 10

Obviously a much better way to represent this sequence is by means of a very short computer program. The advantage is
not only a reduction in size, but also greater manipulability: By changing only a single data item, one piece of information,
it is possible to generalize on the data. In GML notation, some variations read like this:

1 1 10 { } for −→ 1 2 3 4 5 6 7 8 9 10
1 2 10 { } for −→ 1 3 5 7 9
1 2 20 { } for −→ 1 3 5 7 9 11 13 15 17 19
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Transform {
t r a n s l a t i o n 0 8 0
ch i l d r en [

Shape {
appearance Appearance {

ma te r i a l Ma te r i a l {
d i f f u seCo lo r 0 0 . 5 1

}
}
geometry Cy l inder {

he igh t 18 .0
rad ius 0 . 5

}
} ]

}

Transform
( 0 , 8 , 0 ) t r a n s l a t i o n
[ Shape

Appearance
Ma te r i a l

( 0 , 0 . 5 , 1 ) d i f f u seCo lo r
EndNode ma te r i a l

EndNode appearance
Cy l inder

18 .0 he igh t
0 . 5 rad ius

EndNode geometry
EndNode

] ch i l d r en
EndNode

Figure 5.61: Versatility of the Postscript syntax. The left column shows a portion of a hierarchical scene graph in
VRML syntax. It could be translated to GML by using functions for nodes and fields.

The size of the generative description is not in the order of the output, but of a smaller complexity class: Instead of O(n) it
is O(1). This effect is well-known from information theory, and it is formalized in the Kolmogorov complexity of a given
piece of information.

Definition 5.1 (Kolmogorov complexity)
Assume that a computer model or a computer language is given. Then the Kolmogorov complexity of a bit sequence is
the length of the smallest computer program that produces this bit sequence.

The Kolmogorov complexity is helpful as theoretical device, but unfortunately there is no way to compute it practically.
It is very difficult both to prove or disprove that a candidate program is the shortest possible program. It is clear though
by theory that the Kolmogorov complexity increases with the ’randomness’ of the data. This is consistent with intuition:
If there is no regularity that permits to derive some of the data from other data then every bit must be noted down.

The Kolmogorov complexity forms the background of all (lossy or non-lossy) compression algorithms: Information
is first transformed into a space where it can be ordered according to significance, then optionally the least important data
are removed, and finally entropy minimizing encoding is used (zip). Fractal image compression or the JPEG scheme with
its discrete cosine transform are perfect examples. In the Kolmogorov sense, JPEG and fractal compression are also good
examples for the principle of information unfolding from section 5.1. So this principle is not new at all; and it was never
claimed it was. Its purpose is only to serve as inspiring change of view.

Deciphering structure is key to apply the generative method. A generative shape description is most effective when
(i) a shape is understood and (ii) this understanding can be mapped to a formal description, such as a GML program, to
make it explicit. Unfortunately both steps are not trivial.

It is remarkable that when a human seeks to understand the structure of a 3D shape then he often proceeds by reverse
engineering the object mentally. Typical questions are: How has this been made, which parts are similar, how does it fit
together, is there a reason why this measure is so, which material was used, and which manufacturing method?

Every answer that can be found to questions like these helps to increase the regularity of a shape. With an increasing
portion of the shape becoming amenable to rule-based (re-)generation the amount of ’randomness’, in the Kolmogorov
sense, becomes smaller and smaller. But it is important to realize that for principal reasons this process is not static or
automatic. There is no hope to find any finite list of questions about a 3D object that, when answered, deliver a perfect
generative model. Again arguing with the human perception, a human deciphering shape works not only deductively, but
also inductively, by partly ‘inventing’ the meaning of a shape: In the process of deciphering the structure of a 3D shape a
human in most cases also seeks to generalize the construction. So the result is not necessarily the smallest possible shape
description, i.e., optimal in the Kolmogorov sense. The size reduction may be considerable, but much more in focus is a
decomposition into manageable, re-usable, and understandable components.

Intrinsic and extrinsic shape parameters. The Kolmogorov complexity is defined with respect to a programming
language. In other words the decomposition of a shape into components depends also on the available shape operators.
Different sets of shape operators may be formally equivalent because can more or less describe or approximate the same
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Model ascii zipped tokens dict func Eulerops V E F ∆depth 0 ∆depth 4

Cathedral 131667 18612 10040 17 313 65967 36568 121706 25407 75357 7078485
Window 61860 10261 7018 18 282 29179 16244 57800 12798 32912 6811874
Chateau 32664 4999 1152 1 45 21820 11299 37548 7485 22542 3590473
Rosette 3045 1175 511 0 25 4490 2406 8952 2098 4812 1079100
Gear 1527 592 248 0 4 1030 528 1992 464 1080 223740
Towers 1037 506 117 0 3 908 470 1808 438 932 197820

Figure 5.62: Comparison of the different complexity classes. GML ascii and token size, Euler sequence, mesh
vertices, edges, and faces, and triangles. Note how large the range of triangle sizes is that can be produces.

surfaces. But the question whether a given set of operators (and the shape representation it operates on) is suitable
for generative modeling also depends on the mental process described before. The decomposition into block structures
facilitates the process of describing contemporary architecture; but blocks are less applicable for the Gothic style, or for
describing automobiles. Therefore not only the shape description itself, but also the underlying shape representation need
to be chosen according to the domain.

More formally, what a shape operator set must facilitate is the re-parametrization of shape, i.e., to convert back and
forth between extrinsic and intrinsic parameters. Intrinsic parameters are measures that are not free but determined by
the construction. The height of a square equals its width; and the length of the diagonal is also only a consequence. So
the square has only one externally specifiable, or extrinsic, parameter. But the rectangle has two, its width and its height.
Important is the ability to convert one to the other: A rectangle is specialized to a square by converting one extrinsic to an
intrinsic parameter, i.e., to bind it with a determining rule. The other direction is equally important: To generalize a square
to a rectangle by freeing one of its intrinsic parameters. The inductive method prescribes to first turn the one-parameter
square into the two-parameter rectangle to then re-use the rectangle to define the square by parameter binding.

A shape representation with a set of shape operators that facilitate this conversion is well suited for generative design.

Automatic conversion and generative shape acquisition. When presenting the GML as a new low-level file format
for 3D shapes the most common question is: “Is it possible to convert models from format X to the GML format?” – The
answer to this question is both yes and no.

Formally the answer is of course yes: Every primitive based format can be expressed in GML syntax, and this applies
also to more complicated and hierarchical formats as suggested by Figs. 5.60 and 5.61. But it is important to understand
that this will unfortunately not solve any of the inevitable problems of shape descriptions based on lists of primitive objects.
A conversion to GML syntax alone does not lift a shape on a higher semantic level. But it is nevertheless favorable since
it permits for a gradual transition to exploit more and more of the shape regularities.

Then evenly spaced points, for instance, can at least be generated using a loop.

A new measure for shape complexity. The size of a token is 16 bytes. This is the same as four 32 bit IEEE floating
point numbers or a 3D vector in homogeneous coordinates. As a remark, 3D vertices are on the hardware and driver level
most often represented with four rather than three components, to align the memory to 128 bits for fast vertex access.

The fact that a 4D vertex and a GML token have the same sizes also permits to compare the sizes of generative models
and triangle meshes, as carried out in Fig. 5.62. The cathedral has only three times more vertices (V) than tokens. But
note that only the simplest window style is used in the cathedral; imagine some variations of the window from 5.62 (b)
were used for each of the 78 cathedral windows. This would increase the size of the generative description only negibly,
by the size of few window dictionaries. But the size of the respective triangle mesh would explode. Since the windows
are different, reference instances would not help either. But of course the shape of the cathedral does not become more
complex from an information theoretical point of view only because some of the shape parameters are changing.
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Figure 5.63: The GML as a tool for creating diagrams and interactive applets. All diagrams in this thesis have
been created using the XFig-extension of the GML. Examples (a), (b), (c) are for Figs. 3.33, 3.27, and 5.23. As
diagram elements are allowed to overlap (in Xfig and PostScript) diagrams are 21

2D rather than 2D - so why not
use 3D directly? (d,e): Interactive GML applet to crop the images for Fig. 1.3, 1.5, and 5.1

The GML permits a gradual transition from a primitive-based to a generative shape description, which makes it com-
patible to both worlds. It also permits to compare different approaches for describing the same shape. So we would like
to propose the number of GML tokens needed to a shape as a new general measure for shape complexity, instead of the
less relevant triangle count.

5.5.4 Extending and Embedding the GML

All images and diagrams in this thesis have been exclusively generated with the GML4. This underlines again the power
of generative modeling: Many Figures in this thesis attempt at illustrating different aspects of the same thing. With only
a single image it is not so clear where to direct the focus of attention. A series of images can more distinctly lead to the
interesting aspect if this aspect is varied each time a little bit. This lead to the idea of using serial images. But to generate
a series is obviously much easier when only a few high-level parameters have to be changed from shot to shot.

On the origin of the drawings in this thesis. To use the GML for the drawings was due to a very practical reason.
The first attempts with vector drawing programs such as Xfig and CorelDraw were disappointing since, e.g., intersections
could only be approximated. In fact in many cases the whole ‘true’ drawing could only be approximated. To use AutoCAD
appeared too cumbersome too: despite its very efficient drawing tools it is not easy to create serial images with it. So the
final choice was to use Xfig, but only as a file format and not as a drawing program. The file format of Xfig is pure ascii,
extremely concise [SSS∗02], and exporters from Xfig to PostScript exist. It may seem a little bit artificial to let the GML
generate Xfig drawings that are then converted to PostScript in order to include them in a LaTeX text. But this was in fact
the fastest way to achieve a good diagram facility, and the drawing elements of Xfig are sufficiently powerful.

An image cropping applet. Even some of the foto series were created through using the GML. It is extremely cumber-
some to crop and resize as many images as needed, e.g., for Fig. 1.3 by using an image processing tool. In this particular
type of tabular the heights and widths of the rows and columns can all be different. So each image can have an individual
aspect ratio. Many slight variations based on a simple rule – a great case for the GML.

An interactive image cropping applet was created where the images were used as OpenGL textures for the mesh,
and a frame could be moved interactively over the image. Note that there are four free DOFs: the position (x,y) of the
center and the scaling (sx,sy). These, and only these, DOFs can be manipulated by moving the balls in Fig. 5.63 (e) by
interactive click-and-drag using the mouse. In this case the use of the mouse is justified: No automatic rule can be devised
for cropping the right portion of the image, and each image shall be treated individually.

Interactive GML applets. So far the GML has only been introduced as a formal language for representing generative
shape descriptions. But originally one of the main incentives for developing the GML was the problem of truly rich
interactivity. This aspect will be an important focus of future papers and reports. A brief idea of how it works is given
by the image cropping applet and the interactive CAVE designer in Fig. 5.65. Image (a) shows balls and arrows that can
be interactively dragged into the arrow direction using the mouse. Such elements that are not really part of the scene, but
just stand for operations, are called gizmos. In particular the whole CAVE frame can be moved with them, and all derived
data, e.g., the size of the mirrors necessary for redirecting the projected image, are instantly updated online.
The interactively draggable balls, sticks, and arrows are part of the BnS-extension (for ball and stick) of the GML.

4except the historic images explicitly labeled to come from other sources, and the fotos from Braunschweig and Cologne in section 5.4
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class Token {
short v_type ;
short v_s ta tus ;
union {

i n t v_ i n t [ 3 ] ;
f l oa t v_ f l o a t [ 3 ] ;

} ;
. . .

} ;

class GMLOp
{
public :

v i r t ua l ~GMLOp ( ) { }
v i r t ua l s t r i n g & name ( ) const = 0 ;
v i r t ua l GMLOp∗ create ( ) const = 0 ;
v i r t ua l bool i n i t ( GMLInterpreter & ) ;
v i r t ua l bool execute ( GMLInterpreter & ) = 0 ;

} ;

class GMLOpCross : public GMLOp
{
public :

GMLOpPrelude ( Cross , cross ) ;

v i r t ua l bool execute ( GMLInterpreter & i n t e r ) {
Token∗ v1 = i n t e r . pop_stack ( ) ;
Token∗ v0 = i n t e r . pop_stack_leave ( ) ;

i f ( i n t e r . e r r o r ( ) | | ! ( v0→ isP3 ( ) && v1→ isP3 ( ) ) ) {
return i n t e r . se tE r ro r ( GMLInterpreter : : TypeError ) ;

}

v0→set ( v0→asP3 ( ) . cross ( v1→asP3 ( ) ) ) ;
i n t e r . commit_pop ( ) ;

return true ;
}

} ;

Figure 5.64: GML implementation.

The GML implementation. This was possible only because the implementation of the GML is extremely concise. The
GML interpreter comprises just a single implementation and header file that currently contains only about 90 KB of C++
code. Two of the main ingredients are shown in Fig. 5.64: The Token class and the pure virtual base class GMLOp to derive
GML operators from. The implementation of the cross product operator is shown to the right. Most of the virtual functions
are defined by the GMLOpPrelude macro, so that the programmer can focus on implementing the execute method. Many
GML operators have very short implementation because they are just wrapped library functions like cross.

The next goal is to make the GML interpreter and its runtime engine open source so that they are freely available. This
requires much work to polish the code, though. Many of its features are therefore subject of future reports: Generating
GML ascii source code from tokens alone; GML resources to extend the type set; resource applets to integrate gizmos
and new shape representations; the callback concept for interactive modeling even in distributed environments; and the
simplicity of embedding the GML. This will reveal how applications can be automatized to gain unprecedented flexibility,
like with the following simple replacement of a typical code line used to enter a floating-point value:

f l oa t height = a to f ( textbox→ text ( ) ) ; simply becomes Token code ;
i n t e r p r e t e r→parse ( code , textbox→ text ( ) ) ;
i n t e r p r e t e r→ c a l l ( code ) ;
Token r e s u l t = i n t e r p r e t e r→pop_stack ( ) ;
F loa t height = r e s u l t . asF loat ( ) ;

Figure 5.65: The interactive CAVE planner, a useful GML applet.
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5.6 Future Work – Fields of Application for GML-based Technology

Each and every new computer sold today offers thrilling powerful hardware support for 3D. This development was stim-
ulated by the increasing commercial significance of computer games. But as enjoyable as they are, the use of 3D should
not stop with games as the ultimate 3D killer application. The crucial – open – question is how the undeniable potential
of 3D can be made available to all different areas where computer technology is applied. The technical prerequisites for
3D everywhere and 3D for the masses are there – but how can the vision become reality?

Some advantages of the GML have already been mentioned, but the true potential of the GML approach may go
far beyond that. Some concrete and some more far-fetched – and maybe rather speculative – ideas are sketched in the
following. The central hypothesis is that this is possible only with a radically different type of 3D software technology.
Technically, the key to ‘3D everywhere’ is the integration of 3D modeling capabilites into applications or, even better,
into the OS.

5.6.1 3D Objects for Everybody

Problem. Creating 3D objects is too cumbersome. Today’s modelers all work by providing a (possibly large) set of
primitive objects (triangles, NURBS, spheres etc) that can be manipulated in arbitrary ways. Most users however just do
not wish to design objects from scratch. They would rather take an existing object with well-defined functionality and
configure it according to their needs and wishes. – Consider a scenario where an individual or a company is assembling
a 3D scene, for whatever purpose, where a complicated but generic object is required, for instance a bridge. Probably no
bridge that can be found, e.g., in the internet will perfectly fit: it is either too long or too high, or its style is inappropriate;
and bridges cannot simply be scaled. – Examples of this type show that a wider spread use of 3D is hard to imagine
without a great variety of intelligent, highly customizable 3D objects availabe.

Solution. The GML is not only the ideal device for describing parameterized objects, but it also supports most flexible
forms of customization. Objects can not only be parameterized in terms of floating-point parameters, but also in terms of
the functions for particular features. If taken to the extreme, this makes it possible to define 3D objects in a completely
abstract way. Examples like a bridge are a hierarchical combination of procedural features. The choice of the bridge type
for instance can be further differentiated by a variety of options such as whether to use bars or strings for connections etc.
An abstract 3D object is then only a set of interface definitions or pre/post conditions of the different features. Pre-defined
simple instances of the features may serve as default, more complex features can be plugged in on demand, very much
like the Gothic window from section 5.4.1 with its different styles and style combinations.

A new market for trading procedural objects may result, with companies or gifted individuals offering intelligent
customizable 3D objects commercially for download.

5.6.2 A Variety of Operator-based Shape Representations

Problem. Not all shape types can be equally well represented by combined B-Reps. They were designed as a reasonable
‘work-horse’ that combines the flexibility and generality of meshes with a reduction of degrees of freedom for free-
form parts of the surface. But the guiding idea behind them is information reduction and the principle of unfolding
information: Shapes with fewer degrees of freedom are more managable and more easily ‘understandable’ and, thus,
better suited for procedural parametric design. But for more specific classes of 3D objects other representations from the
large ‘zoo’ of shape representations in computer graphics may be more suitable – which means that for certain domains
other representations are much more manageable than combined B-reps.

Solution. The GML is by no means restricted or specially tied to combined B-reps. To integrate any other shape
representation is just a matter of finding a suitable set of operators to create, modify, and delete parts of a shape. Metaballs
for example, a type of implicit surfaces, can be concisely described by a pair of operators: (x,y,z) radius create-ball→
Metaball to create a metaball and another operator Metaball Metaball blend→ Metaball to set up a tree of blended shapes
with balls in their leafs and blend operations as inner nodes.

The right set of operators creates a ‘shape calculus’ that is both sufficient and closed with respect to the chosen domain.
Another beautiful example are brushes, i.e., convex solids created as the intersection of half spaces. For their very nice

computational properties, brushes are the preferred building block of the thrilling virtual worlds in game engines (Quake
[Qua], Halflife [Hal], etc.).

It will be both intellectually challenging and scientifically rewarding to systematically review the large body of litera-
ture on shape representations in order to discover the right set of operators for each.
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5.6.3 GML + OpenSG to replace VRML/X3D: Scene Graph Scripting with Lazy Evaluation

Problem. VRML is not a modeling language, no fine-level mesh manipulation is possible with indexed face sets. Adap-
tive LOD requires to keep the highest resolution in memory. The only advantage of VRML over a flat list of primitives is
that it is hierarchical. But this does not provide any more higher-level semantics: The internal parameters of the objects
in the scene graph are not explicit and, thus, in no explicit relation to each other. The export from a modeler to VRML is a
dead end because it breaks the link to the modeling history; there is no way to store it with the exported model. To provide
VRML models with interesting behaviour requires not only to master an external modeler for object creation, but also
literal programming in Java or JavaScript for the behaviour. Both commercial artists and programmers are very expensive.

Solution. Our group was active in the OpenSGplus project, a collaborative effort of computer graphics groups in Ger-
many to extend the open source scene graph engine OpenSG [RVB02, Opeb, Opec]. It supports VRML as input format
but has no scripting engine yet. A scene graph is a graph after all, though, and the GML was already shown to be efficient
for creating (cB-rep) meshes. Also GML is good for ’emulating’ VRML (Fig. 5.61), but it can do even better.

First, the scene graph itself, rather than only fields of scene graph nodes, can be dynamically changed. Nodes and
whole sub-trees can be added, removed, moved from one place to the other etc. On the C++ level OpenSG has a similar
mechanism as VRML, with fields and FieldContainers attached to nodes and ‘node cores’. The GML in turn has a facility
to make custom types, added by a GML resource, behave like a GML dictionary. By combining both features it is possible
to use path expressions to navigate conveniently through the scene graph to change and access it.

The most fascinating perspective is a scene graph with lazy evaluation: A GML node as OpenSG custom node type
might contain GML code that creates geometry only on demand. When the node is invisible, the geometry is completely
erased from memory. When it is needed again it can simply be re-generated from scratch. With this mechanism a
complicated, detailed piece of VR furniture might only be created in the moment when the user enters the room – and
destroyed when he leaves. – Björn Gerth is pursuing this idea in his diploma thesis. When the ensemble works then
GML+OpenSG will be a serious alternative to VRML. Unlike VRML the standard will not just comprise a (sloppy)
specification but also offer an open source reference implementation.

5.6.4 Computer Games about Creativity rather than Destruction

Problem. A great problem with many current computer games is that they are simply not interesting for many people,
in particular women, who do not want to waste their time with gaming. The majority of all 3D games is about destruction,
and they basically train the user’s reflexes (and stress resistance) – typical genres range from ego-shooters over war
simulations to space combats; also many racing games fall into this category. Much fewer games are about construction,
and those are mainly from the simulation genre. And only very few games have their focus on creativity – which is at the
heart of the way children for instance play.

Solution. Abstractly spoken the GML permits to define “processes” at runtime. In some sense to create a GML program
is very much like playing with Lego – only plugging compatible operators together rather than compatible plastic bricks.
But the Lego analogy goes even further, as the GML is about 3D. So with GML based technology it is also possible
to play literally with Lego on a computer, provided there is a Lego library – or bricks, or Fischertechnik, or Märklin, or
Playmobil, just to name a few “system toys” known in Germany. The advantages of using GML are (i) of course unlimited
resources (of bricks) and (ii) the possibility to define functions for automatizing cumbersome sub-tasks (building walls).

5.6.5 A Double Layered Market for 3D Components

Problem. It appears that there is practically no market today for trading 3D objects. This is due to the already mentioned
problems of limited changeability and re-usability of the static 3D models. It would only make sense to trade intelligent
components, but high-end parametric technology suffers from incompatible proprietary formats, as already discussed: An
intelligent 3D object in Pro/Engineer is useful only for Pro/Engineer customers. – And IPR protection is an issue.

Solution. GML based technology might be the catalyst for a new 3D market. First a market for binary components,
dynamically linked custom operator libraries (.dll,.so), to extend the built-in operator set (also see section 5.6.10 and the
software architecture conjecture from section 5.5.1). Binary components are also a way to protect intellectual property, to
prevent competitors from stealing the procedural knowledge that, when coded in GML, is openly readable.

The second layer market is about trading GML components: Today an engineering office told to develop a specific
new machine would hand in the plans. In the future it might develop not only a single machine, but a customizable plan
for a machine, i.e., a parameterized manifold of machines instead. – And also recreational modeling might become hip.
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5.6.6 3D Support for all Computer Applications

Problem. All computer applications that deal with real-world data are potential candidates for integrating a 3D visual-
ization. Any management of real entities might at some point need to display the real-world location of the items, or the
spatial relation between them. Many types of data can be efficiently represented in a tabular – but if the tabular becomes
too large, a different, more abstract, presentation is more convenient. Variations in the data must be visualized with vari-
ations in the 3D objecs for which an application requires built-in modeling capabilities. At some point it is not sufficient
to be able only to scale and rotate 3D objects that are externally created and imported; instead the objects must be created
on the fly. – Moreover 3D visualization should not be a one-way road. If the assumption is true that some data are much
more comprehensible when shown in 3D, then it is also true that it is more conventient to manipulate these data in 3D.

Solution. The GML is designed as an embeddable scripting language. To provide an application with a GML-based
3D visualization is as easy as to create a GML interpreter and an OpenGL canvas that the GML can render into. The
interpreter can either load and execute pre-defined libraries, or parse and execute GML code from dynamically assembled
character strings. Both options can also be combined. The descriptions of the parametric objects that are to be created
dynamically are stored in a GML library, and the actual creation of the objects is (in the simplest case) triggered by a
dynamically generated string that contains the current set of parameters.

gmlInterpreter→parseAndExecute("(10,7,0) 3 12.0 HouseLibrary.create-simple-house");

Care was taken that new operators can be created easily, which is especially useful for application-specific operators.
This makes it possible to export some of the functionality of an application to the scripting language. This provides the
way from the 3D visualization back to the application when GML callbacks trigger the execution of application-specific
operators. – The GML was already ported to many skins: fltk, MFC, Qt, ActiveX, Firefox, and Aqua (MacOS X).

5.6.7 True Generalized 3D Documents

Problem. The convergence between conventional forms of textual documents, such as the classical book, and multi-
media content – also called generalized documents – was one of the driving forces of the world wide web. There were
significant developments on both ends of the spectrum to come closer:

• The classical print industry was revolutionized by the use of computers. The whole workflow is digital today,
from the author using a word processor to the physical book, printed on demand, on the end of the chain. Authors
can produce ready-to-print digital documents containing text, figures, diagrams, and photos, and deliver them to the
publishing house or directly to the printer. With digital delivery, readers can even directly download books as PDF
files and print them at home – or read them as electronic books on a portable computer.
• Classical menu-driven computer applications more and more take the form of an electronic document. Almost

everything can be ordered online using html forms, using the web browser as a door to highly complex server-based
computer applications – with menus, forms, and a complete graphical user interface. Parts of the server application
can even be transferred to the client using Java applets, or with JavaScript embedded in html.

This thesis can be printed to read it, or it can be read as an electronic document. The latter provides more functionality: All
references to sections and figures are hyperlinks, which makes it much easier to navigate through it. But concerning the
figures, note that many of them contain series of similar images to make things clearer. Take for example the construction
of the quad torus using Euler operators (Fig. 2.15, 3D) or the evaluation of a B-spline curve (Fig. 3.1, 2D). How much
more instructive were such images and diagrams if the user was allowed to manipulate some of the parameters directly.

Solution. Didactic applets are a great example for the principle of information reduction: The reader may influence just
a small number of high-level parameters and inspect a complicated model derived from these parameters.

A GML web browser plugin already exists. Even more natural would be the integration into the PDF format since
PDF is derived from PostScript just as the GML is. But whereas PostScript is a pure output format, the GML shows that a
stack-based language also efficiently supports interactivity. This is useful not only for embedding live diagrams, but also
for serious purposes: A complete spreadsheet with m×n rows and columns could easily be exported to a PDF-GML file
in a way that its functionality is fully preserved – provided that all spreadsheet functions are available as operators.

To maximize the benefit for the users, the GML should be reliably and tightly integrated with PDF by extending the
standard, rather than by a plugin for the PDF viewer. This solution is also indicated by the similiarity of both approaches.
As a historical remark, the GML shows that PostScript has been completely under-rated as scripting language: The PDF
format has only recently been extended to support forms that can be filled out interactively.

Concerning the size of PDF files note that all the images and diagrams in this thesis were produced using less than 100
kilobytes of GML code (compressed) – compare this to the size of the PDF file.
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5.6.8 The 3D Desktop

Problem. Currently one major development in the operating system market is to provide the user frontend, which
manages windows and determines the look-and-feel, with 3D support.

A 3D desktop may at first resemble a computer game. But advanced visualization concepts can provide very concrete
advantages to make work more efficient: Smooth animated transitions instead of abrupt changes help to keep track of
many windows; non-rectangular windows can save screen real estate; transparent windows show more than one layer of
information; and a smoothly scaled down application window still providing live output is far superior to static icons.
The shift towards 3D desktop was most notably triggered by the Aqua system, the user interface of Apple’s MacOS X
[App04]; Looking Glass is an OpenGL-based window manager for Linux on top of X Windows [KBJ04]. For Microsoft
Windows the successor of Windows XP, called Longhorn, supposedly uses an advanced windowing system that makes
use of the 3D graphics hardware available on every PC today.

The desktop is gradually moving towards 3D – but it seems like a long way to replace the familiar 2D by a true 3D
desktop where applications are represented by objects floating in 3-space. One obstacle on the technical level is that the
window manager must have built-in modeling capabilities: When the frame of a 2D window is a 3D object, then this must
be a parameterized object; resizing a window does not mean to scale it. So static 3D models exported from a 3D modeler
are basically useless; live models are required instead.

Solution. A true 3D window manager requires nothing less than a scene graph with a procedural parametric modeling
engine. As pointed out before, GML based technology is very well suited for creating 3D objects on demand. But for
a full 3D window manager, this is not enough. The real-time functionality of the GML would have to be considerably
extended to be much subtle and permit to handle also low-level resources such as bitmaps and fonts.

A great number of different graphical objects or widgets (user interface elements) is necessary for a full 3D window
manager: Menus, buttons, sliders, icons, panels etc. For a window system, usability is key. More importantly, the 3D
components need to behave intelligently. Again the information reduction principle is key: Event-driven state changes in
GML user interface objects may trigger the execution of callback operators from the underlying system implementing the
user interface logics; and this system may in turn examine the high-level parameters of the GML widgets. – Today the
look-and-feel of user interfaces is often customizable using ‘themes’ or ‘skins’. Such an option nicely corresponds to the
concept of style libraries from the GML.

5.6.9 New forms of Human-Computer Interaction

Problem. A great number of new, low-cost interface devices for human-computer interaction are being developed and
will be available in near future. Inexpensive video cameras and high-resolution digital photo cameras in conjunction with
photogrammetric methods make the computer much more aware of its surroundings than today. Camera-based tracking
is already possible today even on the desktop. A 2D device like a mouse is sufficient for working in planar sections of
3D objects and for selection tasks even in a 3D environment. But for 3D object manipulation 2D devices are felt by most
users as being insufficient for tasks such as moving or placing objects somewhere in space. This makes 3D input devices
mandatory at some point.

On the output side, stereoscopic (augmented) and immmersive imagery can give the illusion of true spatial depth,
especially when combined with head tracking (eye positions). But the projected illusion becomes apparent with the
absence of physical barriers – force feedback is not and will not be practical in the near future. So all physical properties
and events of the virtual world have to be transported via sophisticated graphical means, such as colliding objects changing
colors or spreading particles, or heavy objects moving with some inertia. Such ‘soft’ factors are often critical since
they make the difference between success and failure – especially with 3D, swift usability is key. The many different
combinations of input and output devices requires extremely configurable software.

Solution. Consider a scenario where the same application is to be used in two completely different settings: The first is
as a desktop application with relative 6-DOF device (spacemouse, 10 buttons) together with a conventional 2D mouse as
input devices and static stereo display (i.e., without head tracking). Literally the same executable shall work in a 4-sided
CAVE system with 6-DOF game controller (two 2-axis joysticks, many buttons) and head tracking, which work both in
an absolute coordinate frame. It is not sufficient to configure a device only on the device driver level; also the graphical
user interface has to adopt to a different handling.

When changing input and output devices, a flexible reparametrization is again key. It must be possible to route
the specific device events (’x-value +5’) flexibly to more abstract application events (’move/rotate right’, ‘undo’, ‘twist
object’). But abstract events alone are not sufficient since the reparametrization must also be reconfigurable dynamically:
The navigation in a CAVE is fundamentally different from the navigation on the desktop.
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5.6.10 Operator-based component technology

Problem. With existing technology it is very difficult for average users to define simple procedures and processes
without programming. Every programming language, however, has its tweaks and complications. There is not much
difference between learning a programming language and a foreign language: It takes time, one or two years, until a
person can express him- or herself elegantly, express exactly what he or she wants to say, and avoid misunderstandings.

Component based technology was deemed to be the solution: Highly functional software components with well-
defined interfaces could be glued together by average users using ‘wizards’ to make up custom-tailored applications. The
great problem is that with most technologies, component interfaces are mostly static: A list of properties, basically a form
that can be filled, where every entry can take a numeric or string value. The component is sent a message whenever any
of the values in the form is to be changed, and can react on this event. The underlying model of this approach is basically
a static data flow network: There is a strict distinction between the program (components) on one side and data (property
forms) on the other.

Solution. A GML based component technology would be a true generalization of the existing technology in the sense
that the first can emulate the latter. But GML based components can also offer new functionality beyond this, the reason
being that it abolishes the strict distinction between data and operations. Software components with a GML operator
interface can be glued together much more flexibly. As outlined before, a property form of a software component nicely
corresponds to a GML dictionary. Events and messages to inform the component about changes in the form correspond
to callback functions. – In a GML based component interface it is possible to store equally concrete values, expressions,
function calls, and whole programs, such as branches and iterative computations. The width of a button may be set at
runtime to "67" as easily as to "x 34 mul" – where "x" may be a variable as well as a function call. It may even change its
meaning from time to time, since name lookup depends on the state of the GML dictionary stack (Fig. 5.5, rule 7).

This feature unfolds its full potential in conjunction with another, automatic code generation. Property lists are of
course supposed to be filled out by software and not by a human – imagine every dialogue box in every program could
be made to show only the relevant entries, complete sets of dialogue boxes could be stored and retrieved, etc. A new
generation of flexible user support tools may then indeed generate GML descriptions of complicated applications from a
‘few mouse clicks’. The reason why this is realistic is again the possibility to use customizable procedural descriptions
– yet unlike in 5.6.1 not only to describe the construction of 3D objects, but to describe general applications assembled
from a set of software modules.

5.6.11 Integrating the GML into the Operating System Kernel

Problem. The procedural modeling software architecture conjecture from section 5.5.1 claims that consequently pursu-
ing the procedural/generative approach must lead to an integrated modeler/viewer architecture. The 3D modeler needs to
be called whenever the viewer decides. The GML operator calculus is the glue in between, as the modeling requests are
formulated in terms of GML functions. But in fact both modules interoperate on the binary level.

The previously proposed component technology (section 5.6.10) goes one step beyond that. It requires not only
modeler and viewer, but ultimately all software running on a computer to be interoperable in the same way: Each package
may be used by ach other package.

This may lead to security problems. The GML glues together extension modules in binary form rather than, e.g., Java
bytecode. So GML modules do not run in a ’sandbox’ type of secure environment. The consequence is that users will
hesitate to download binary extension modules. And this, in turn, will be an obstacle to the dissemination of extension
modules. Unfortunately the sandbox approach will not work for the GML: Interactive 3D visualization is quite demanding
in terms of computing resources, so the additional overhead is not tolerable.

Solution. The security problems can only be reliably solved with an integration of the component technology into the
kernel. An onion-like security policy can provide an downloaded module m with a privileges. The privilege determines
which OS services m may use (technically, which libraries m may be linked against). In the 3D context an expert might
have created a highly efficient GML module for interactive CSG on combined B-reps. This module does not need access
to the file system, no connection to the internet, etc. – So it is perfectly content with a low security privilege.

A GML interpreter in the OS kernel would bring the additional benefit that a system call gml("do some thing"); would
be easy to use as printf("do some thing");. Also note that GML tokens are low-level friendly: Tokens are like 4-component
float vectors, their size is fixed 4× 4 bytes = 128 bits. So a GML program, a token sequence, can be stored, e.g., in an
OpenGL vertex array. So token sequences could be used as stored procedures for message passing in the kernel.

And this might also lead to a generalization of unix-style piping of stdin/stdout from one application to the next: A
whole stack of arguments can be piped rather than just a single object.
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5.6.12 GML is stronger than XML

Problem. XML provides a possibility to describe arbitrary kinds of data in a structured way [XML]. The underlying
organization scheme is a strict tree, written down in bracketed infix notation: <node> children .. children </node>. The
great problem is that XML is too ‘modest’ in that it does not specify what to do with the data in the tree. Complicated
extensions enable to break up the strict tree structure, and to validate or transform an XML document using DTD and
XSLT [XSL]. These extensions are complicated, since they require a limited amount of procedural elements (such as if-
clauses) which are not inherently part of the basic formalism: An XSL transformation can be written up in XML notation,
but it requires an interpretation of the content – whereas XML only specifies a syntactic notation, and not an interpretation
(which is even cited as one of the strengths of XML!).

Very simple things are not possible with the fundamental restrictions of this type of technology. Consider a simple
scenario: A user has an (assume secure) E-mail program, an application for tracking personal finances (like Quicken,
GnuCash), and another official program from the state for doing his tax declaration, an (also assume secure) electronic tax
form (Elster in Germany, [Els]).

What the user wants is that the account receipts he receives regularly from his bank via E-mail are automatically
sorted into the right ‘bins’ of his personal finance tracker, and that some (probably not all) of the bins are then summed
and entered correctly to the right places in the tax form, which is eventually sent in time to the server of the tax authority.

Now also assume all these programs have XML in- and output facilities, and they can run in batch mode, i.e., non-
interactively, as software components. But does that help? Probably not. The problem is that XML does not specify
what to do with the data, where to put them, and how the XML output from one program becomes the XML input of
another. One must resort to a second technology, XSLT, to transform the output document into an input document for
the next stage. But then, one is again confronted with the limited procedural capabilities of the XSLT standard. In
order to do simple things like sorting or summing up rows or columns of values, it is eventually inevitable to use a third
technology: Programming, probably by using some Java or JavaScript hooks of XSLT. In by far most of the cases, it
would be possible to get around programming if something like a spreadsheet component was available that can transform
an input spreadsheet into an output spreadsheet; probably with a database enhancement using SQL [SQL91, sql96] to sort
and re-arrange the records from the input XML-’database’ to the output XML-’database’.

Solution. This weird, complicated situation might possibly be resolved in a very simple way: Instead of introducing step
by step different more powerful technologies, enhance the data format so that it can contain data processing instructions
along with the data. As already mentioned, this is exactly what the GML provides; and again, it provides a generalization
of an existing technology, because it can not only do the same, but more.

This is not only true on an abstract level; it may be surprising that there is a remarkably simple transformation from
XML to GML. Line 1 of the following three lines is XML syntax (HTML), line 3 is GML, but note the line in between:

1 <b> t h i s i s bold < i > and i t a l i c t e x t < / i > j u s t bold again < / b>
2 b > t h i s i s bold < i >and i t a l i c t e x t < n i > j u s t bold again < nb
3 b " t h i s i s bold " i " and i t a l i c t e x t " n i " j u s t bold again " nb

Line 2 can be considered a GML program if the tokenizer is made to accept > and < as symbols that open and close
a character string. Leaving away the first ‘<’ and the terminating ‘>’ character just reverses the notion of normal text:
Instead of structured formatting symbols inserted into normal text, the document is now made of character strings that are
arguments to operators. Yet syntactically, there is not much difference. And note that this is just what an XML parser
does, since each chunk of consecutive characters is placed into its own text node in the DOM tree.

For the example above to actually work it is just necessary to provide operators such as b and nb to switch the ‘bold’
property on and off, as a side effect to consuming the text. The next example shows that when using GML, it is not
necessary to resort to a second technology (e.g., DTDs) just to be able to define styles concisely. Lines 1 and 2 show the
XML and GML versions just like above, and line 3 does the same as line 2 but using a style definition.

1 < fon t s ize="+1" co lo r= " red " > t h i s i s l a r ge r red t e x t < / f on t >
2 pushfont +1 f on t s i z e " red " f o n t c o l o r > t h i s i s l a r g e r red t e x t < fontpop
3 / fontA { pushfont +1 f on t s i z e " red " f o n t c o l o r } def fontA > t h i s i s l a r ge r red t e x t < fontpop

When the style myfont1 is declared in the preamble, it can simply be used throughout the whole document, which makes
it much easier to change its definition. This ‘preamble’ technique is used very much in PostScript.

The same technique also helps to finally resolve the ‘automatic tax’ scenario. Assume the bank has defined a standard
GML markup receipt .. end-receipt (instead of <receipt>..</receipt>) for all bank account receipt e-mails it sends. The
e-mail program was told to ’execute’ each arriving account e-mail – but before that it has to execute a special user-defined
header to properly define and overload the default receipt / end-receipt functions. The end-receipt function can then decide
where to sort a receipt, and call the appropriate data base call-back function; and end-message triggers the summing.
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5.7 Epilogue

During the course of this thesis many fruitful and quite controversial discussions took place, especially with members of
the faculty of architecture. The efforts for studying ancient style systems, such as Gothic architecture, has sometimes been
disregarded as being anachronistic, and of only historic value, if at most. But to tell the truth, the initial motivation for
studying the Gothic construction principles was purely pragmatic: To use it as a vehicle for demonstrating the usefulness
of parametric procedural design; and as a non-trivial example domain that anybody, especially from “Old Europe”, can
relate to by personal experience. Probably everybody has visited at some point a Gothic cathedral somewhere, and few
individuals can deny that they have been impressed – whether they liked the style or not.

Artistic Impetus. Over time though, and through the confrontation with contemporal architects, a deeper subject arose.
The often heard objection was that modern architecture can not be categorized using any rigid system of construction
principles. Instead, modern architecture attempts to actually break rules, it intends to surprise, to be fresh and novel – at
almost any price. Bluntly speaking, today’s architects consider themselves as artists, and architecture as an art discipline,
rather than a skillful craft – which also explains the neglection of ‘architectural theory’ as a science. Buildings become
pieces of art at the danger that their justification lies in the satisfaction of the architect’s subjective artistic impetus. The
downside of this situation is that there is no longer a notion of ‘good’ or ‘bad’ architecture; buildings become incommen-
surable, each building is to be judged as an individual, much like paintings in a gallery. But the difference between art
galleries and architecture is that people do have to live in their cities every day!

Discovering and expressing rules in architecture. Pursuing the project’s initial pragmatic pathway, a rather fascinating
perspective for future work in the field of procedural modeling arises: To prove that also modern architecture does follow
a set of rules, and that these rules are simple, maybe even very simple. How could this be done? To some degree there
is a contradiction in that most modern architecture is planned using procedural CAD modeling software – but that the
result claims to break all possible sets of rules! So this claim could in fact be proven wrong if a limited set of modeling
operations could be identified, a tool-box that covers most of the patterns used in a variety of modern buildings. This
would probably work best in a bottom-up fashion: By classifying stairways, windows, doors, typical room proportions,
structural components, and so forth, and to do this for both ancient and modern styles. A comparison between the different
resulting ‘tool boxes’, or stylistic vocabularies, might very well conclude that the classic, or ‘ancient’, styles are simply
too complex for modern CAD systems. A very convincing example from many styles and era are the ubiquitous, abundant
floral ornaments, carved into stone, which are repetitive but also slightly and skillfully varied with every repetition.

The potential of style libraries. A fascinating perspective of such endeavour is a partial exchange of rules and tools,
such as to use the proportions of an ancient temple or a cathedral, but to apply today’s columns, portals, and steel arches.
Vice versa, Gothic skyscrapers such as the Chrysler building in Manhattan come to mind, or even more distinct, the
Chicago tribune tower in Chicago, which exhibits pointed arches in the top stories.

The second often heard argument is most prosaic: Stone masonry is simply too expensive, both in planning and in
execution. But what if modern CAD tools knew about the construction principles, if they efficiently supported tools and
typical operations for the manipulation of individual stones? The planning could be largely automatized, and execution
could eventually be done by a CNC machine, or a robot with a chisel. And cost would no longer be much of an issue then.
Would not popular demand require to have a look on which are the places and buildings in every city that are recognized
and appreciated most by the visitors? Which places and squares people feel comfortable to be in, and where most people
would agree: Here, in such an environment, I would like to live? An imaginary comparison of Venice or Florence to, e.g.,
any modern American or European suburb leads to the architecture quality conjecture: The quality of architecture can
indeed be measured. What is maybe just lacking in this area is a systematic customer satisfaction evaluation. It would
probably reveal some surprises to artistic architecture.

A new form of Architecture that respects the old proportions. So what remains to assemble is a sufficiently com-
plete toolbox for, e.g., the Gothic style, one that permits to create typical buildings in all their complexity with the smallest
possible amount of manual intervention. Yet despite its obvious procedural grounds and roots, there appears to be surpris-
ingly few literature on the actual underlying geometric calculations! The most concrete and comprising exposition could
only be found in a book a hundred years old: Georg Ungewitter’s Lehrbuch der gotischen Konstruktionen from 1858,
especially in its delightful fourth edition from 1904. After 670 pages and more than 1500 figures, he comes to a very
pointed conclusion that greatly summarizes what has been attempted to say in this final section.

It appears that today, after 150 years, his remarks still apply, and for the sake of its charming original style and
historical authenticity, its German version shall conclude this thesis.
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"Die schärfste Auffassung der zu erfüllenden Bedingungen, der gegebenen Verhältnisse
und der Eigentümlichkeiten der Materialien, das Bestreben, immer die grössten Ziele
mit den kleinsten Mitteln zu erreichen, vor allem aber die gewissenhafteste Scheu vor
jeder Unwahrheit in der Formentwickelung und die dadurch bedingte gänzliche Vermei-
dung aller Surrogate sind die für die gotischen Konstruktionen charakteristischen Eigen-
schaften. Selbst die einer häufig vorkommenden Auffassung nach verderbtesten Werke
der Spätgotik teilen dieselben, und sündigen nur durch eine gewisse Übertreibung, eine
jedem Prinzip gefährliche Haarspalterei.

In nicht minderem Masse sind jene Eigenschaften auch die der griechischen Architek-
tur, so dass die völlige Verschiedenheit der Resultate eben in der Verschiedenheit der
Bedingungen und Materialien begründet ist, sowie ferner in der Zeitstellung und dem
Entwickelungsgang der gotischen Kunst, wonach dieselbe in den Stand gesetzt war, auf
den Resultaten aller vorangegangenen Kunstepochen, also auch jeder auf die griechische
folgenden zu fussen und von denselben aus ihre Systeme zu entwickeln.

Hierin, in dem traditionellen Charakter der gotischen Kunst, in ihrer durchweg erhaltenen
Geschichtlichkeit, liegt ein zweites nicht minder wichtiges Moment derselben, wodurch
sie nicht so sehr von der Renaissance und dem Rokoko als von einer gewissen Richtung
der modernen Kunstbestrebungen sich scheidet, welche dahin geht, die Erfindung eines
neuen zeitgemässen Baustiles mittelst einer völlig willkürlichen Vermengung aller vor-
angegangenen auf dem Vehikel der Surrogate zu erjagen. Anstatt die Prinzipien der vor-
angegangenen Stile sich anzueignen, benascht man so ihre Resultate, anstatt die etwa der
Neuzeit angehörigen Materialien, wie das Gusseisen, welche wirklich wertvolle Eigen-
schaften besitzen, den letzteren gemäss zu verwenden und eine entsprechende Formenen-
twickelung zu suchen, benutzt man sie vorherrschend als Täuschungsmittel zur Darlegung
eines der ganzen Konstruktion fremden Reichtums, giesst sie in Formen, welchen ihren
Eigenschaften völlig widersprechen, kurz man sucht eine freie künstlerische Thätigkeit
dadurch zu erreichen, dass man alle Verstandesthätigkeit und selbst jedes tiefer gehende
Studium völlig ausschliesst.

Um diese freie künstlerische Thätigkeit ist es nun überhaupt ein gar bedenkliches Ding.
Mag es immerhin titanenhaftte Individuen geben oder gegeben haben, vermögend von
vornherein und mit einem Male die Elemente des früheren zu einem völlig neuen Ganzen
zu verbinden, und so eine der Schöpfung fast adäquate künstlerische That zu thun, so
ist doch der Glaube, in diese Kategorie zu gehören, für jeden Einzelnen sicher als ein
Unglück anzusehen. Für alle nach minder grossartigem Massstab angelegte Naturen aber
ist der einzige Weg zur künstlerischen Freiheit nur durch ein sorgfältiges Studium der
vorangegangenen Kunstperoiden zu finden, durch eine gewissenafte Erforschung ihrer
konstruktiven Prinzipien, mithin, da die gotische Architektur sich gewissermassen als
der Abschluss und das Produkt aller primären Kunstperioden darstellt, zunächst in dem
Studium dieser letzteren. Möchte es uns im Verlauf dieser Blätter gelungen sein, derartige
Bestrebungen zu erleichtern."

Georg Ungewitter, “Lehrbuch der gotischen Konstruktionen”, 1858, Nachwort
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