
Beyond the pixel: towards 
infinite resolution textures

(or “Hardware rendering of implicit functions for 
curvilinear contours on surfaces in arbitrary resolu-
tion”, if you prefer a formal but boring title)

Stefan Gustavson, Linköping University, ITN 
(stegu@itn.liu.se) Internal report, February 16, 2006

Abstract
We propose a simple yet flexible method to encode 
and render curved contours in an arbitrary resolu-
tion on a 3D surface by using data from a low resolu-
tion texture map. Conic sections in implicit form, 
evaluated by second degree polynomials over the tex-
ture coordinates, are used  to describe a straight or 
curved contour through each texel. Rendering of 
such contour texels can be performed at interactive 
rates with current mainstream graphics hardware.

Introduction and previous work
Textures are used everywhere in computer graphics, 
for realism and detail. Storing texture data as sam-
pled pixel-based images limits their resolution and 
requires large amounts of data if the surfaces are to 
be viewed close up. Layered multitexturing with 
repeating detail textures for close-up views can 
sometimes mask the problem, but not fix it. Proce-
dural texturing with shader programs can help, but 
traditional procedural patterns have focused on fairly 
simple and regular patterns and on random, noise-
like functions.

In 2D graphics, artwork designs like symbols, text 
and other patterns with complex, irregular and sharp 
contours are now almost exclusively created and rep-
resented as scalable object contours (“vector graph-
ics”), which may be rendered to an on-screen pixel 
representation in an arbitrary resolution, even on the 
fly for 2D animations. In 3D graphics, however, such 

patterns are still stored as sampled pixel images, even 
in off-line rendering. It would be helpful to have a 
procedural, resolution independent description of 
arbitrary curved contours that could be applied as a 
texture map to 3D objects, preferably applicable to 
real time rendering. A method based on pre-render-
ing and smart region caching of a vector graphics 
image in Adobe Illustrator format was presented at 
Siggraph 2001 [Haddon01] and has been developed 
further into a very useful DSO shadeop for Render-
Man [Segal05]. However, that method has a high 
latency for cache misses, and it requires the CPU to 
render all the detail, and therefore it is unsuitable for 
interactive real time rendering.

Recent work by several authors [Tumblin04] 
[Ramanarayanan04] [Sen04] showed the advantages 
of storing information on discontinuities in textures 
by making a silhouette map. [Tumblin04] and 
[Ramanarayanan04] effectively encode edges as a 
train of straight line segments between points posi-
tioned anywhere inside the area of each texel. 
[Sen04] encodes curved contours, although in a man-
ner unsuitable for hardware rendering. [Loop05] 
recently demonstrated that the implicit form of a qua-
dratic Béziér spline contour can be evaluated effi-
ciently in a graphics hardware fragment shader, and 
[Ray05] presented true vector texture maps, although 
implemented in a fairly complex way that has perfor-
mance problems on current mainstream graphics 
hardware.

We propose a similar but less complicated method to 
encode and render curved contours on a surface by 
using data from a low resolution texture map. Our 
method constitutes a framework where patterns with 
curved contours of arbitrary shape and high com-
plexity can be represented compactly and accurately, 
stored as texture data and rendered at an arbitrary 
resolution with very good real time performance in 
programmable graphics hardware.

There are significant similarities between the work 
presented here and [Ray05]. The main part of this 
work was performed independently, before that paper 
was published, but this paper does not present any 
significant and fundamental additional scientific con-
tribution. We still think our approach is different 
enough to motivate this write-up, though. We also 
present a runnable demo with full source code, which 
is unfortunately lacking from [Ray05].

Parametric and implicit curves
Parametric curves are a familiar tool for both 2D and 
3D graphics professionals. The most common flavor 
of parametric curves is the polynomial curve:
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where  are control points  (for the 2D case), 
each of the basis functions  are polynomials of 
degree  or lower, and the parameter  is in the 
range .

A useful variant is the rational polynomial curve:

Higher degrees  for the polynomials allow for 
more complicated shapes of the curve, but such 
curves are more easily approximated by a sequence 
of shorter curve segments of lower degree. For com-
puter graphics applications, the degree of the polyno-
mials are seldom higher than 3. Cubic curves 
(polynomials of degree 3) are most common, but 
quadratic curves (polynomials of degree 2) are suffi-
cient if more segments are used. The PostScript page 
description language uses cubic curves, but TrueType 
font glyph descriptions use quadratic curves. Modern 
2D graphics frameworks like Java2D and SVG pro-
vide both variants for flexibility.

An implicit curve, on the other hand, is described in 
terms of the location of the zeroes of a function:

 for points on the curve.

A theorem from classic algebraic geometry states 
that for every rational parametric curve description 
with basis polynomials  of degree no higher than 

, there is a corresponding implicit form with a 
polynomial function  of degree no higher than 

. For lower degree curves, finding the implicit 
form from the parametric form is quite simple, and 
for higher degree curves, there are formal methods to 
always find a closed form expression for . 
(The converse is not always true, though: for an arbi-
trary implicit curve with a polynomial function of 
degree , there is no guarantee that there is a ratio-
nal parameterisation using polynomials, or that those 
polynomials are of degree  or lower.)

Conic sections
Conic sections, the various possible curves of inter-
section between a cone and a plane, is a classic sub-
ject in algebraic geometry. Three classes of curves 
can be generated, depending on the angle between 
the plane and the cone: ellipses (including circles), 
parabolas and hyperbolas.

The general implicit equation for a conic section is:

This is actually a fully general second degree polyno-
mial in x and y, and any rational quadratic spline can 
be implicitized to that form. Quadratic Béziér curves 
like the ones used for TrueType are non-rational qua-
dratic splines, a subset of conic sections which are 
particularly easy to map to their corresponding 
implicit functions [Loop05]. All quadratic non-ratio-
nal Béziér splines are inherently parabolas. General 
conic sections also encompass circles, ellipses and 
hyperbolas, and useful degenerate cases of the gen-
eral form of the polynomial include straight lines, 
parallel lines and crossing lines of arbitrary position 
and angle. Thus, implicit curves described by second 
degree polynomials are a larger class of shapes than 
quadratic Béziér splines, and make a good candidate 
for a drawing primitive.

An extension to third degree polynomials and cubic 
contours is perfectly possible, but it requires more 
data and more processing without offering signifi-
cant extra functionality. Furthermore, cubic paramet-
ric curves present some additional problems for 
implicitization which are a bit hard to overcome in 
the general case: cubic splines can have unwanted 
nearby strands and self-intersections outside the 
parameter range , and as the implicit form 
has no notion of a parameter or any sequential trace 
along the path, those unwanted portions of the curve 
will be hard to get rid of in the implicit form. Similar 
problems arise for second degree curves as well, but 
they are more easily overcome. Most notably, second 
degree curves can not self-intersect, which makes 
them a lot more suitable for implicitization.

We use conic sections in their implicit form, evalu-
ated by general second degree polynomials over the 
2D texture coordinates, to describe a straight or 
curved contour through each texel. By encoding the 
polynomial coefficients directly as texture data, we 
can use piecewise quadratic segments with a differ-
ent implicit curve for each texel to make up a closed 
contour of arbitrary shape and high complexity from 
only a small amount of texture data.

Rendering
The rendering of implicit contour texels is not com-
plicated, and it can be performed at interactive rates 
with modern graphics hardware. The polynomial 
coefficients are stored in one or two textures as RGB 
data, the texture data is sampled without any interpo-
lation, and the polynomials are evaluated over the 
relative texture coordinates within each texel using a 
fragment shader program. In simplified pseudo-code, 
the shader looks simply like this:
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[A,B,C,D,E,F] = texture(s,t);
[x,y] = frac([s*texw, t*texh]);
Fxy = A*x*x+B*x*y+C*y*y+D*x+E*y+F;
color = step(0.0, Fxy);

An actual working fragment shader program in 
GLSL is found in the appendix, and a link to a runna-
ble demo is found at the end of this presentation.

Anti-aliasing
For points close to the implicit curve, the value of the 
function  is a reasonable approximation to the 
orthogonal distance to the curve, so a smooth, anti-
aliased edge can be rendered by applying a smooth 
step function to the implicit equation, i.e. by replac-
ing step() with smoothstep().

However, the polynomials need to be scaled to show 
a reasonably consistent gradient magnitude over a 
texel, and particularly across the edge between two 
texels. One method, proposed also by [Ray05], is to 
normalise the function value with the magnitude of 
the gradient at the point in question, approximating 
the distance to the curve as . 
This is a first order approximation which is valid 
near the contour, and reasonably well-behaved also 
for points further away from the contour, with the 
obvious exception of points where .

The gradient of a polynomial of degree  is a poly-
nomial of degree , related in a trivial manner to 
the original polynomial and not difficult to evaluate. 
By calculating the magnitude of the gradient 

 in addition to the value of the implicit 
function , we can perform anti-aliasing of 
edges under an arbitrary magnification.

Expressed in pseudo-code, the antialiased contour 
would be rendered according to the following:

dstdx = length([dFdx(s),dFdx(t)]);
dstdx = length([dFdy(s),dFdy(t)]);
stepw = 0.5*length([dstdx,dstdy]);
[A,B,C,D,E,F] = texture(s,t);
[x,y] = frac([s*texw, t*texh]);
Fxy = A*x*x+B*x*y+C*y*y+D*x+E*y+F;
gradFxy = [2*A*x+B*y+D, B*x+2*C*y+E];
d = Fxy/length(gradFxy);
color = smoothstep(-stepw, stepw, d);

The appendix contains a full, working GLSL shader 
program to do this.

Minification
As was pointed out also in [Ray05], anti-aliasing on 
minification is difficult using the implicit form, but it 
can be handled by using a regular mipmapped texture 
instead of the implicit contour map when the area of 
a rendered pixel approaches the same scale as one 
texel. When the texels are so small that they are only 
about the size of a few rendered pixels, a regular pre-
rendered texture map of reasonable size will do 

nicely, and it will behave well even under further 
extreme minification.

Performance
The fragment shader program for this method is sim-
ple enough to be handled well by modern graphics 
hardware, and its performance is good. Frame rates 
of thousands of frames per second can be acheived 
with current high-end consumer level hardware, and 
even low-cost mainstream graphics chipsets yield 
fully interactive frame rates.

Pattern generation
The generation of the polynomial coefficients 
required for the contour texture involves a process 
known as implicitization. It is not a trivial procedure, 
but it is performed off-line, so interactive rates are 
not required.

If the contour is given as a sequence of lines or qua-
dratic splines, the problem is fairly simple. Because 
our framework requires the same implicit equation to 
be used in an entire texel, there will be a need to 
move control points around and approximate the 
contour around the joints between segments with 
slightly different curve shapes, but for the most part, 
the conversion can be exact. If the contours are spec-
ified using cubic splines, the conversion will be 
approximate, but if the texels are chosen reasonably 
small, each cubic curve segment will be approxi-
mated with several quadratic curves, and the match 
will be very close.

Examples
We have not yet designed a general interactive draw-
ing or conversion program for the pattern generation. 
As examples for demonstration, we first calculated 
by hand two simple patterns, a ring and a cross:
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To make a more interesting and less symmetric pat-
tern, we also worked out polynomials for the shapes 
occuring in a more complicated but still fairly modu-
lar pattern: a Celtic knot on a square grid. The full 
pattern is in the title image, and a detail of a few tex-
els is shown below. Rotations reflections of 10 differ-
ent patterns make up a total of 46 texel polynomials, 
which were reasonably convenient to calculate by a 
simple Matlab script and re-use appropriately over a 
larger texture image for the entire pattern.

The Celtic knot design in the example was drawn 
using a Java program written for this purpose, and 
exported directly as a polynomial texture map.

Floating point texture data was not required for these 
two examples. Because we designed the patterns 
from scratch, the coefficient values could be deliber-
ately chosen to be representable either exactly or 
with only minor loss of precision using 8-bit signed 
integer representation.

As you zoom in on these patterns, the curved edges 
will stay sharp until you hit the limit of the machine 
precision for the texture coordinates on your graphics 
card. Modern graphics cards have many bits of preci-
sion for the texture coordinate interpolation, so the 
pattern can be magnified a lot before any artefacts 
start showing. Situations where a single texel covers 
the entire display present no problems.

Restrictions and extensions
We would like to stress the point that, although the 
patterns we demonstrate are fairly regular and highly 
modular, there is no such inherent restriction on the 
types of patterns that are possible to represent within 
this framework. If a pattern is too complex to be 
represented accurately with a certain number of tex-
els, it can either be redesigned to better fit the restric-
tions, it can be approximated, or a more dense grid of 
texels could be used to encode it better. However, 
there are some limitations that can be addressed to be 
able to encode a general pattern more accurately 
using fewer texels.

The restriction to 8 bits signed integer representation 
for the polynomial coefficients is troublesome. For a 
more general implementation, 16 bits integer or, bet-
ter, floating point texture data should be used.

Our simpe demo implementation uses one single 
contour per texel, which places quite severe con-
straints on the possible positions of corners in the 
pattern. The method employed by [Ray05] could be 
used to remove that constraint: each texel can be 
defined not by a single polynomial, but by the mini-
mum of two polynomials, and an extra sign to be 
able to render both outer corners and inner corners:

This would require twice the amount of texture data 
for each texel, and the shader would take twice as 
long to execute, but the restrictions on the pattern 
design would be much alleviated.

The more general but also more complex nature of 
the solution presented in [Ray05] makes it unsuitable 
for most current graphics architectures. It requires 
conditional execution and nested dependent texture 
lookups, and the strongly non-coherent accesses to 
the texture has a tendency to trash the texture cache. 
All of these can be real performance killers, and all 
are avoided by our proposed solution. The perfor-
mance of our demo on a GeForce 6800 is around 
1000 fps. This method is fast enough for use today.

Demo and source code
A runnable demo of our implemenation, with full 
source code, is here:

http://staffwww.itn.liu.se/~stegu/GLSL-conics/
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Appendices

The implicit form of a rational quadratic Béziér con-
tour:

If  and 

, then the points 

 satisfy, for any value of :

, where

A GLSL fragment shader to render the implicit con-
tours from polynomial coefficients

uniform sampler2D coeffsABC;
uniform sampler2D coeffsDEF;

void main( void ) {
 // Get the texture coordinates
 vec2 st = gl_TexCoord[0].st;
 // Read the polynomial coefficients 
 // Fixed point 8 bit, 128/255->0.0
 vec3 ABC = vec3(
  texture2D(coeffsABC, st))-0.50196;
 vec3 DEF = vec3(
  texture2D(coeffsDEF, st))-0.50196;
 // width and height of the textures
 float texwidth = 32.0;
 // Construct powers of u and v
 vec3 uv1 = vec3(
  fract(st*texwidth), 1.0);
 vec3 u2uvv2 = uv1.xxy * uv1.xyy;
 // Evaluate the implicit polynomial
 float f=dot(ABC,u2uvv2)+dot(DEF,uv1);
 // Set the color to be black
 // when P<=0.0, white otherwise
 float a = step(0.0, f);
 gl_FragColor = vec4(a, a, a, 1.0);
}

A GLSL fragment shader to compute the same con-
tours, with proper antialiasing. Blue color marks the 
differences to the version without antialiasing.

uniform sampler2D coeffsABC;
uniform sampler2D coeffsDEF;

void main( void ) {
 // Get the texture coordinates
 vec2 st = gl_TexCoord[0].st;
 // Read the polynomial coefficients
 // Fixed point 8 bit, 128/255->0.0
 vec3 ABC = vec3(
  texture2D(coeffsABC, st)-0.50196);
 vec3 DEF = vec3(
  texture2D(coeffsDEF, st)-0.50196);
 // Calculate the pixel size in (u,v)
 // space for antialiasing
 vec4 duvdxy = 32.0*vec4(
  dFdx(st), dFdy(st));
 float stepwidth = 0.5*length(duvdxy);
 // Construct powers of u and v
 vec3 uv1 = vec3(fract(st*32.0), 1.0);
 vec3 u2uvv2 = uv1.xxy * uv1.xyy;
 // Evaluate the implicit polynomial
 float f = dot(ABC,u2uvv2)
  + dot(DEF,uv1);
 // Compute the magnitude of the
 // gradient of the polynomial
 vec2 gradf = vec2(
 dot(uv1,vec3(2.0*ABC.x,ABC.y,DEF.x)),
 dot(uv1,vec3(2.0*ABC.z,ABC.y,DEF.y)));
 float g = rsqrt(dot(gradf, gradf));
 // Set the color to be black
 // when P<=0.0, white otherwise
 float a = smoothstep(
  -stepwidth, stepwidth, f*g);
 gl_FragColor = vec4(a, a, a, 1.0);

}
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