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Abstract

In this work we recall attention to problems that
arise in a client-server setting with server-side ren-
dering and propose a practical method for acceler-
ated high-quality render-stream compression on the
server. Server-side rendering is gaining importance
for three main reasons: On the one hand great dif-
ferences in quality and performance of client’s sys-
tems (ranging from PDAs to high-end workstations)
complicate application development, on the other
hand 3D content providers refrain from transmitting
costly 3D data to clients and last but not least no ad-
equate and widely accepted standardized 3D inter-
change format exists. A major challenge is the high
server workload per client. To address one factor of
the server load, we describe an augmented compres-
sion of server-side renderings that produces stan-
dard video streams but exploits the additional infor-
mation available through image warping for motion
estimation.

1 Introduction

Over the course of the last decade, 3D hardware has
become cheap and commonplace; an average new
PC has better graphics capabilities than dedicated
workstations had 10 years ago. As a result, applica-
tions that make extensive use of 3D graphics are be-
coming increasingly widespread and popular.It also
means that standards have risen considerably: even
relatively cheap hardware is able to render scenes
with millions of visible triangles and hundreds of
megabytes of texture data at interactive rates. At the
same time, 3D display of one sort or another has ap-
peared even in relatively weak embedded and mo-
bile devices; an example are car navigation systems,
which by now typically show a (relatively crude)
3D rendition of the area surrounding the car.

But while 3D rendering is starting to become

a commodity, there is a huge variation in the
available levels of performance and quality. On
PCs, high-end graphics cards not only provide a
far larger featureset than integrated graphics chips,
they are also between 1 or 2 orders of magni-
tude faster. For embedded and mobile devices, the
differences are even bigger, ranging from graph-
ics chips that only provide a framebuffer with no
hardware-accelerated rendering at all through hard-
ware support for 2D vector graphics to fully-fledged
3D chipsets roughly on par with high-end PC ren-
dering hardware around 2001.

This creates a big problem for application de-
velopers: the only way to achieve consistent qual-
ity and performance over a wide range of different
target machines is to either have separately tuned
datasets and renderers for different configurations,
which is very expensive to develop, or to aim for
the lowest common denominator, which means that
the added capabilities of newer hardware don’t get
used at all.

Another problem for client-side rendering is the
need to distribute the actual 3D content to clients.
Especially if the acquisition or creation of content
is a costly process or the content contains vital busi-
ness or technical information, owners agree, if at
all, only very reluctantly to its distribution. For in-
stance, with systems such as Google Earth, the po-
tential userbase is everyone with access to the Inter-
net. This is a problem for providers of GIS (geo-
graphical information system) datasets: this data is
quite costly to obtain, and making it available to vir-
tually everyone free of charge is not always in their
best interest.

Finally, just as development of 3D hardware does
not stand still, neither does rendering and geom-
etry/material scanning technology, with the result
that data formats go in and out of fashion every
few years, always being replaced by a representa-
tion that is more suitable for the current state of the
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art. All attempts at interchange formats are at best
limited and at worst obsolete by the time their spec-
ification is finished. This is a big problem when
developing an application that is supposed to have
a lifetime of at least a few years, since it compli-
cates the choice of delivery format considerably or
necessitates proprietary data formats.

In a networked environment, an obvious ap-
proach is to try and offload some of the work to the
server. Martin [13] describes three primary ways of
performing 3D rendering in a client-server environ-
ment:

Client-side methods, where the server only sup-
plies a description of the 3D scene (model/geometry
data, textures etc.) to the clients, which have to per-
form the rendering themselves. This is the approach
taken by the majority of current networked 3D ap-
plications. It is relatively simple on the server side
and a single server can easily process a large num-
ber of clients. However, as explained above, ren-
dering on the client causes significant problems for
implementors and content providers.

Server-side methods let the server perform all
the rendering. The finished image is then transmit-
ted to the client, usually in compressed form. Of
course, the maximum number of concurrent clients
per server is usually several orders of magnitude
lower than for client-side methods but on the plus
side compatibility issues on the client mostly disap-
pear, and the same quality is available to all clients
no matter how powerful their hardware is. Also, it
is easy to switch scene representations or render-
ers: all it takes is installing a new application on the
server(s).

Hybrid-side methods perform rendering on both
the server and client sides and combine the images
on the client. The problem is that such schemes in-
herit weaknesses from both client- and server-based
methods: rendering overhead is incurred on both
sides, but scene data still needs to be transmitted to
clients, and compatibility problems may still arise.

In this work we want to draw attention to server-
side rendering that, while not a panacea, certainly
has serious practical advantages for a wide range of
applications. There are two main issues that need to
be considered for a practical server-side rendering
system:

1. Each server needs to render frames for sev-
eral clients, an expensive operation. If possi-
ble, one would like to reduce the total work-

load by reducing the amount of per-client work
by exploiting temporal coherency between the
frames produced for a single client and sim-
ilarities between the viewpoints of different
clients.

2. After rendering, the server also needs to com-
press the outgoing data for each of the clients.
Again, this is quite expensive; however, since
the images are rendered by the server, there is
quite precise information about what changed
from one frame to the next; current video
coders do not make use of such additional in-
formation, which might incur a cost in both bi-
trate, and thus network bandwidth, as well as
performance.

Here we will only consider the compression as-
pects of server-side rendering and our main con-
tribution is as follows: We describe a practical
method that is able to improve compression ratio
and speed for current video standards: warping is
used to estimate motion vectors for conventional
motion compensation-based video codecs, the ad-
vantage of such codecs being that they are standard-
ized already, and that decoder software and hard-
ware is available virtually everywhere.

2 Previous work

McMillan’s dissertation [14] laid the necessary
groundwork in image warping for various camera
models. Marks PhD thesis [12]describes techniques
more suitable in a real-time environment. The gen-
eral idea is to use warping to speed up a conven-
tional (rasterization or ray tracing-based) renderer
by only generating a few images per second and us-
ing warping to interpolate between them.

2.1 Client-server rendering

We are not the first to suggest using warping-based
methods in a client-server rendering environment.
Warping a reference depth image to a new view-
point typically produces a quite dense image, apart
from holes that appear due to occlusion or expo-
sure errors. This can be exploited on the server side
by only rendering those areas where no informa-
tion is available, and for compression by only trans-
mitting new data pixels where such errors occur.
In [18], Yoon and Neumann describe their IBRAC
system (Image-Based Rendering Acceleration and



Compression) which is based on this basic idea.
Since the algorithm is purely warping-based and

has no means of replacing colors or depth values for
pixels that are deemed correct after warping, sur-
faces that are not perfectly diffuse obviously pose a
problem. Even worse are invisible occluder errors,
since there is by definition no information contained
in the reference image that suggests their presence.

Less ambitious and also less problematic is a
client-server system briefly described in chapter 6
of Marks aforementioned PhD thesis [12]. The
client transfers the current camera position to the
server, which periodically renders a new view and
transmits it back to the client. Warping is used for
two purposes: to compensate for network latency,
and to have the client render at a higher frame rate
than server-side rendering speed and network band-
width allows. However, the system is again purely
warping-based and thus subject to occlusion and ex-
posure errors. No compression is used for the com-
munication between client and server.

Hudson and Mark [8] update this system to use
3 reference image sets with different centers of pro-
jection. Together with an algorithm to select “good”
reference viewpoints, this notably reduces occlu-
sion and exposure errors in typical walkthrough sce-
narios. The lack of compression makes the system
impractical for use over the Internet, though.

Chang and Ger [6] describe a similar system
with significantly lower CPU usage, using PDAs as
clients. They only use single planar reference im-
ages (which makes the system susceptible to invis-
ible occluder errors) but do support layered depth
images [15] to reduce occlusion errors.

Another client-server system is described by
Thomas et al. [16]. Aiming at urban walkthroughs,
they try to optimize the placement of reference cam-
eras so that a complete scene can be described ex-
clusively using a relatively small number of ref-
erence images. The server doesn’t need to con-
stantly render new camera views; rather, new views
are only generated when the user moves in an area
not well covered by the currently active reference
views. This reduces network bandwidth require-
ments significantly; reference views are addition-
ally compressed using zlib. However, to make
use of the multiple reference images, the clients
need to perform several warping operations per
frame (typically 2 to 4). Moreover, while the cam-
era selection algorithm makes it unlikely that any

significant errors are introduced during the warping
process, it does so only after severely constraining
the scene geometry and viewer.

2.2 Compression

Apart from IBRAC, the systems mentioned in the
previous section are all designed to work over a lo-
cal network with relatively high transfer rates and
low latencies; as a result, they do not invest much
effort on compression, since it would have little to
no practical benefit. For usage over the Internet,
available bandwidth from the server to the client is
more constrained (and a cost factor!), which makes
compression inevitable.

Aliaga et al. [2] present a method designed for
architectural walkthroughs of real-world buildings,
where floor plans (and thus a coarse description
of the underlying geometry) are available and pho-
tographs are fairly easy to obtain; warping is then
used mainly as prediction between similar images,
to reduce the amount of data that has to be stored.
However, the algorithm is not applicable to inter-
active applications, where the images to be com-
pressed are not known beforehand.

A coding algorithm for depth images is presented
by Duan and Li [7], who discuss compression of
layered depth images. They reported that compres-
sion of LDIs is as high as 17 : 1 with minimal visual
distortion. However, in practice a bad choice of re-
construction filters in the renderer (or optimizations
that sacrifice visual quality for speed) can amplify
small errors significantly.

2.3 Video coding

Most state of the art video codecs [9][10][3] are
quite similar in their basic structure and support
two basic modes: intra and inter coding. Intra
coded frames are self-contained (like an image file),
while inter frames use data from other (previously
coded) frames to exploit temporal coherency be-
tween frames. The intra part of any video codec
is just a still image coder; inter coding and the ad-
ditional redundancies it can exploit are the reason
why current video formats are able to achieve sig-
nificantly lower bitrate at the same quality, com-
pared to coding each frame individually.

All these codecs perform the inter prediction step
using different variants of motion compensation:
the destination image is partitioned into rectangular



blocks of pixels. For each block, a single 2D vector
(mx, my) is stored, which is an offset relative to the
block’s position that specifies where the source data
for the respective block is located in the reference
frame. Conventional (block) motion compensation
just copies the respective pixels over, and is used by
MPEG-4 variants.

The problem of finding these motion vectors on
the encoder side is called motion estimation. For-
mally, it is an instance of the optical flow problem
in computer vision [11][4][5], but there are no reg-
ularity constraints on the motion vectors, and the
objective function is coding cost instead of a direct
image similarity metric. As a result, codec imple-
mentations typically don’t use direct optical flow al-
gorithms; specialized methods, usually based on ex-
plicit search with early termination heuristics, are
more common. This motion estimation process is
quite costly (even with optimized algorithms), and
typically a significant fraction of the total video en-
coding time is spent on it.

The image obtained from the motion compensa-
tion process is an approximation of the target frame;
this approximation is subtracted from the actual im-
age data, yielding the residual image. The resid-
ual image is decorrelated using a wavelet transform
or similar techniques. The transform yields trans-
form coefficients which are then quantized, the main
lossy step in video coding. Since they are the result
of a decorrelation process, those coefficients can be
quantized individually; this is done using uniform
quantizers with or without dead zone.

3 Augmented compression

Network bandwidth requirements for a server-
side rendering application are necessarily relatively
high: even with modest resolutions (e.g. 320× 240
pixels) and low frame rates (20 frames/second),
video data needs over 200 kbit/second to display
high-motion scenes with acceptable visual quality
(and virtually any camera movement results in a lot
of motion, because moving the camera changes the
whole frame). Furthermore, state of the art codecs
have to be used, because older ones perform signif-
icantly worse (in terms of resulting distortion) for
low-bitrate applications.

Also, rendering several views per frame on the
server side (one for every client) is expensive in
terms of CPU/GPU time; having to additionally en-

code several compressed streams at the same time
adds to the computational load, and video encoding
has high cost all by itself already.

Here we propose an augmented compression al-
gorithm that is designed to reduce the server load.
The key idea is to use the additional information
available from the rendering process to improve the
time-consuming motion estimation stage of com-
pression. The additional information available on
the server is comprised of the external and inter-
nal camera parameters as well as per-pixel depth
values. While it might be promising to use image
warping as a replacement for the conventional mo-
tion compensation in such a setting, this is currently
not supported by video standards or decoding hard-
ware, although we do expect that to change in a
number of years. Thus, for the time being, we re-
strict ourselves to available standards and show that
even in such a constrained environment improve-
ments can be gained from the depth information.
This way our algorithm can make use of established
conventional video codecs, which are well-tuned
and have widespread hardware and software sup-
port; in particular, even some otherwise very weak
devices such as MP3 players can play back these
videos because they have hardware decoders.

3.1 Warping-based motion estimation

Our main idea is to improve video compression
quality and, possibly, speed by using warping to de-
termine motion vectors, instead of performing con-
ventional motion estimation. The video format used
for comparison is H.264 [10], because it is both an
ISO and ITU standard and quite popular in applica-
tions.

H.264 allows having more than one motion vec-
tor per macroblock: the 16 × 16 pixel blocks can
be subdivided further, down to sixteen blocks of
4 × 4 pixels each if necessary. The resulting sub-
blocks are called partitions. The optimal partition-
ing for each macroblock is determined during en-
coding. Instead of performing the default motion
search procedure, the midpoint of each partition is
warped to obtain the corresponding point in the ref-
erence image.1 The difference between the position
of the midpoint in the destination image and the po-

1There might not be such a point, if the 3D position of the
destination point is in front of the reference camera’s near plane;
in that case, the fallback solution is to perform the regular motion
search procedure on that partition.



sition in the reference image is used as the motion
vector; since warping typically results in fractional
coordinates anyway, this motion vector can be de-
termined with subpixel precision.

The per-partition cost of this procedure is quite
low: one evaluation of the warping equation (11
multiplies, 9 additions, 1 division), two floating
point to integer conversions, and two integer sub-
tractions to turn the reference frame coordinates
into motion vectors relative to the destination block
midpoint.

Using the obtained motion vectors directly is
possible, but it still makes sense to give the encoder
a little more freedom: using a motion vector that
is off by some subpixels may reduce blurring, use
less bits with no significant quality difference, or be
otherwise beneficial. Thus it still makes sense to try
a few motion vectors in the direct neighborhood of
the calculated motion vector, and pick the best one.

To do this efficiently, a very simple trick is used:
care is taken to make sure that rounding errors made
when converting the fractional motion vectors to
integers are one-sided. This is done by always
rounding downwards. The obtained motion vector
(mx, my) will thus tend to be slightly too small in
both components. The code then tries all four mem-
bers of the set {(mx + i, my +j) | i, j ∈ {0, 1}} as
candidate motion vectors, and the best one is used.
This requires less than half as many tests as the
more obvious procedure of rounding motion vec-
tors towards the closest integer and then trying can-
didate motion vectors of the form {(mx + i, my +
j) | i, j ∈ {−1, 0, 1}}, but results in very similar
quality.

It is still possible to perform regular subpixel re-
finement (like one would do with motion vectors
obtained from a direct search procedure) on the re-
sulting motion vectors; just as with normal motion
estimation, this increases quality by allowing the
codec to make a better rate/distortion tradeoff, at
the expense of increased runtime. But even with-
out subpixel refinement, the obtained motion vec-
tors have good quality.

3.2 Implementation

We implemented the method as described above by
modifying x264 [1], an open-source H.264 codec
library that also performs quite well in H.264 en-
coder comparisons.

Warping has two main components: calculation
of the warping matrix and evaluation of the warp-
ing equation. The computation of the warping ma-
trix only has to be performed once per frame, or
more precisely, once for every pair of reference and
destination frame.

The warping equation is evaluated to determine
the motion vector for a given partition (which is de-
scribed by the x, y coordinates of its top-left pixel
and its width and height) by warping the midpoint,
as described above.If the warping process yields a
motion vector, its cost and that of other “close” mo-
tion vectors are computed. The cost function is a
weighted sum of the number of bits required to en-
code a motion vector and a vector norm of the dif-
ference between the reference block and the block
to be coded. H.264 predicts the motion vector for
each partition from the motion vectors in adjacent
partitions that have already been coded; this pre-
dicted motion vector and the null motion vector are
cheaper to encode than regular motion vectors, so
their cost is also evaluated. The overall best motion
vector is used.

If the warping process was not successful, normal
motion search is performed as a fallback solution;
this only occurs very rarely in practice however. Fi-
nally, additional subpixel refinement of the obtained
motion vectors can be performed, if desired. This
improves quality but comes at an extra expense in
CPU time.

4 Results

The modified version of x264was tested on several
different sequences (see Fig. 1 and accompanying
videos) and with different encoder parameters (tar-
get bitrate, number of reference frames per target
frame, and accuracy of subpixel motion estimation)
to evaluate the efficiency of the proposed warping-
based motion estimation process.

The test procedure is as follows: First, the input
sequence is read once in full, to make sure it is in
the filesystem cache so that I/O bandwidth does not
affect the results. Then, the encoder application is
run with the specified settings, encoding from the
input file. After completion, several statistics about
the encoded sequence are output, including objec-
tive quality metrics and the speed of encoding as
measured in encoded frames per second. For per-
formance measurements the encoder writes to the



(a) Terrain (b) Fairy (c) Italy

Figure 1: Screenshots taken from the three different test sequences used in the evaluation in sec. 4

null device and, in order to account for random vari-
ations due to background processes, each run is re-
peated three times, and the median speed is used.
The quality of the encoded sequence is measured
both using the PSNR of the luminance channel and
the structural similarity index (SSIM) between the
luminance images. The latter is introduced in [17]
and tries to take perceptual effects of the human
visual system into account to produce an objective
quality metric that has a stronger correlation to per-
ceived similarity than the mean square error (MSE)
and derived metrics such as the PSNR do. SSIM
indices range between 0 and 1, where 0 would in-
dicate that the two images are completely uncorre-
lated, while 1 means that they are identical.

All tests are run on a notebook with an Intel
Core2Duo T7500 processor (clocked at 2.2 GHz)
and 3 GB of RAM. The encoder always makes use
of the dual-core processor and all partition types.
We disabled B-frames, since using them actually
decreased overall quality in these tests.2

“Terrain” sequence The first test sequence, “ter-
rain”, is a flight over a (completely diffuse)
3D dataset of Munich. The geometry for individual
houses is quite simple (mostly extruded 2D paths),
but since there is often a large number of houses
visible at the same time, the overall amount of geo-
metric detail visible in a typical frame is relatively
high. The camera motion is a mixture of user inter-
action and computer-generated smooth flights be-
tween different points of interest.

Results are shown in table 1. “Bitrate” is the tar-
get bitrate passed to the encoder, “Ref” is the num-
ber of reference frames to use (higher numbers im-

2They generally improve quality when two-pass encoding can
be used.

prove quality but cost extra CPU time), “WarpME”
indicates whether warping-based motion estimation
was used or not and “SubME level” selects the qual-
ity of subpixel motion estimation: 1 disables it al-
together, 2 performs a few subpixel refinement it-
erations, and successive levels add a higher number
(and better accuracy) of refinement steps, up to 5
which is the default. Levels 6 and 7 perform full
rate-distortion optimization instead of minimizing
the heuristic cost function; this improves quality but
significantly increases CPU usage and is probably
impractical for real-time encoding. The columns
“SSIM-Y”, “PSNR-Y” and “Frames/s” report the
results obtained with the given parameter set.

A first surprise is that turning on warping-based
motion estimation, all other parameters being equal,
does not improve speed. Further experimentation
revealed that the difference is caused by evaluat-
ing the warping equation: This cost is nearly con-
stant and paid for every partition, whereas the nor-
mal motion estimation search patterns use predicted
motion vectors and early-outs to minimize average-
case runtime. The actual time spent computing
the cost for candidate motion vectors is very sim-
ilar in both cases, but the warping-based method
has higher overhead because the warping equation
needs to be evaluated.

However, warping-based motion estimation does
produce a notable improvement in PSNR in all
tests, and in SSIM for all but the 300 kbit/s tests. In
fact, for all tests, enabling WarpME yields better re-
sults (in terms of PSNR) than those produced with-
out warping and using the next higher listed level
of subpixel refinement. SSIM results are not quite
as spectacular, but enabling warping still produces
significant improvements with bitrates of 500 and
1000 kbit/s: while not surpassing the SSIM indices



Settings Results

Bitrate Ref WarpME SubME SSIM-Y PSNR-Y Frames/s
(kbit/s) level (dB)

300 1 no 1 0.7949808 26.140 133.34
300 1 yes 1 0.7918640 26.480 131.01
300 1 no 2 0.8017598 26.307 112.31
300 1 yes 2 0.7955168 26.589 111.13
300 1 no 5 0.8116736 26.586 78.73
300 1 yes 5 0.8098858 26.877 79.33
300 3 no 1 0.7926901 26.103 125.71
300 3 yes 1 0.7921847 26.485 119.71
300 3 no 2 0.8003088 26.308 103.90
300 3 yes 2 0.7942310 26.597 100.91
300 3 no 5 0.8111303 26.592 69.39
300 3 yes 5 0.8099403 26.898 68.85

500 1 no 1 0.8570027 27.950 126.00
500 1 yes 1 0.8629337 28.630 123.35
500 1 no 2 0.8638736 28.196 104.71
500 1 yes 2 0.8671046 28.783 101.88
500 1 no 5 0.8708137 28.466 70.60
500 1 yes 5 0.8728295 28.982 70.13
500 3 no 1 0.8553014 27.914 119.17
500 3 yes 1 0.8630835 28.655 111.13
500 3 no 2 0.8636627 28.218 95.59
500 3 yes 2 0.8671956 28.816 90.03
500 3 no 5 0.8714704 28.512 62.85
500 3 yes 5 0.8736568 29.044 61.24

1000 1 no 1 0.9221869 30.991 115.77
1000 1 yes 1 0.9269663 31.948 109.73
1000 1 no 2 0.9272521 31.292 92.73
1000 1 yes 2 0.9300071 32.137 88.09
1000 1 no 5 0.9308854 31.571 61.11
1000 1 yes 5 0.9323950 32.299 60.47
1000 3 no 1 0.9213025 30.956 108.83
1000 3 yes 1 0.9277248 32.011 100.33
1000 3 no 2 0.9277198 31.341 86.78
1000 3 yes 2 0.9310868 32.219 80.54
1000 3 no 5 0.9318547 31.658 55.56
1000 3 yes 5 0.9334796 32.395 54.70

Table 1: Encoding results for the “terrain” se-
quence.

obtained using the “next higher level” of subpixel
refinement, they are nevertheless quite close.

These results are very consistent over the quite
large range of different parameters given, indicat-
ing that warping results in either notably improved
quality for very little extra CPU time, or matches
a given target quality with substantially lower CPU
cost.

“Fairy” sequence The second test sequence,
“fairy” is a camera flight through the Utah Fairy
Forest scene (a standard test scene for real-time ray-
tracing, available at http://www.sci.utah.
edu/˜wald/animrep/) and shows a model of
a fairy in front of a forest backdrop (which includes
modeled mushrooms, grass, and trees). There are
large variations in the size of geometric features: for
example, individual grass blades are represented as
geometry. The camera plays back a motion along
a spline that was created in a 3D modeling applica-
tion.

Corresponding results are shown in table 2. Only

Settings Results

Bitrate Ref WarpME SubME SSIM-Y PSNR-Y Frames/s
(kbit/s) level (dB)

300 1 no 1 0.8544471 31.999 146.94
300 1 yes 1 0.8543651 31.967 147.32
300 1 no 2 0.8593798 32.159 126.32
300 1 yes 2 0.8589095 32.119 127.15
300 1 no 5 0.8695813 32.459 89.44
300 1 yes 5 0.8686421 32.387 90.57

500 1 no 1 0.8924078 33.747 136.82
500 1 yes 1 0.8927671 33.723 135.22
500 1 no 2 0.8974561 33.973 114.52
500 1 yes 2 0.8974329 33.935 114.97
500 1 no 5 0.9040100 34.256 79.45
500 1 yes 5 0.9029872 34.184 80.11

1000 1 no 1 0.9377240 36.744 120.76
1000 1 yes 1 0.9378214 36.714 120.50
1000 1 no 2 0.9419348 37.056 98.47
1000 1 yes 2 0.9414331 36.991 97.96
1000 1 no 5 0.9457670 37.369 66.44
1000 1 yes 5 0.9449789 37.291 66.36

Table 2: Encoding results for the “fairy” sequence.

the results when using one reference frame are re-
ported in the following; in all of the sequences, and
both with and without warping, using multiple ref-
erence frames results in better quality at the cost
of slightly higher encoding time, and the behav-
ior of warping-based motion estimation was very
similar between one-reference-frame and multiple-
reference-frame tests.

The numbers themselves are quite different than
those obtained using the “terrain” sequence. Here,
warping is actually slightly faster in a large number
of cases, but produces slightly worse results in gen-
eral, though the difference is small: always lower
than 0.075 dB for the PSNR ratings—contrast with
the consistent improvement of over 0.25 dB for all
tests run on the terrain dataset, with warping pro-
ducing a gain exceeding 0.9dB several times for the
higher bitrates. The SSIM indices are, similarly,
quite close. So while the warping-based motion
estimation yields no improvement for this scene, it
does not make the results significantly worse, either.
In general, the camera motions in this test sequence
are quite smooth and slow, which benefits conven-
tional motion estimation, since a search procedure
is likely to find good motion vectors quickly.

“Interactive fairy” sequence To test whether
this indeed makes a difference, the same scene was
rendered using a different camera motion, this time
recorded from an interactive session. As a result,
motions are jerkier in general, and include short
burst of very high-motion frames whenever the
viewer “looks around”, turning the camera rapidly



Settings Results

Bitrate Ref WarpME SubME SSIM-Y PSNR-Y Frames/s
(kbit/s) level (dB)

300 1 no 1 0.8940561 34.118 144.35
300 1 yes 1 0.8976926 34.656 141.18
300 1 no 2 0.8983479 34.358 127.15
300 1 yes 2 0.9011825 34.860 123.34
300 1 no 5 0.9061646 34.734 90.42
300 1 yes 5 0.9133149 35.303 89.16

500 1 no 1 0.9310123 36.642 133.95
500 1 yes 1 0.9349554 37.420 130.61
500 1 no 2 0.9352065 36.969 115.65
500 1 yes 2 0.9385026 37.715 112.50
500 1 no 5 0.9401657 37.339 80.00
500 1 yes 5 0.9448482 38.109 79.23

1000 1 no 1 0.9685249 40.839 119.25
1000 1 yes 1 0.9703983 41.906 115.21
1000 1 no 2 0.9713022 41.251 101.78
1000 1 yes 2 0.9723293 42.198 96.32
1000 1 no 5 0.9731321 41.572 68.17
1000 1 yes 5 0.9744583 42.550 67.68

Table 3: Encoding results for the “interactive fairy”
sequence.

in the process. Rendering a video with the new cam-
era path resulted in the “interactive fairy” sequence.
Results are shown in table 3.

Here, observations are similar to what was
already described for the “terrain” sequence:
warping-based motion estimation delivers a notable
gain in both PSNR and SSIM for all tests, requir-
ing very modest amounts of extra CPU time to do
so—far less than the cost of better motion estima-
tion methods. This seems to confirm the conjecture
that warping improves on conventional motion es-
timation mainly by determining fast motions accu-
rately; for slow motions (in the single-pixel or sub-
pixel range), a search-based procedure has a good
chance to find local rate-distortion minima, while
warping always results in a motion vector close to
the “correct” one, which may not be optimal in rate-
distortion terms.

“CS Italy” sequence To confirm this theory, an-
other interactive test sequence is tested. This fourth
and last test sequence, “cs italy”, uses the map of
the same name from the game Counter-Strike as its
3D scene. Due to limitations of the raytracer used,
the included diffuse light maps were not used—
resulting in lower visual quality, but not making a
substantial difference for video coding, since light-
ing is still completely diffuse and the lightmaps
only contribute quite low-frequency information.
The scene has some amount of variation in geomet-
ric scale—including houses, a marketplace, with
the merchandize of individual stands represented as

Settings Results

Bitrate Ref WarpME SubME SSIM-Y PSNR-Y Frames/s
(kbit/s) level (dB)

300 1 no 1 0.6353905 25.557 131.20
300 1 yes 1 0.6679018 26.709 129.44
300 1 no 2 0.6397960 25.668 113.39
300 1 yes 2 0.6722945 26.828 112.71
300 1 no 5 0.6493255 25.838 81.71
300 1 yes 5 0.6833704 27.024 81.24

500 1 no 1 0.7036136 26.687 120.24
500 1 yes 1 0.7314405 27.981 119.74
500 1 no 2 0.7087490 26.836 102.31
500 1 yes 2 0.7372080 28.129 100.52
500 1 no 5 0.7161530 26.995 72.09
500 1 yes 5 0.7444381 28.296 72.18

1000 1 no 1 0.7982175 28.812 106.67
1000 1 yes 1 0.8173899 30.186 105.68
1000 1 no 2 0.8038153 28.988 88.75
1000 1 yes 2 0.8229522 30.386 87.41
1000 1 no 5 0.8115458 29.204 60.63
1000 1 yes 5 0.8285797 30.566 60.00

Table 4: Encoding results for the “cs italy” se-
quence.

3D geometry—but less so than the “fairy” scene
does. The camera path was obtained from an inter-
active session by taking a 30-second long segment
from the middle.

Results for this scene are shown in table 4. Here,
warping significantly improves quality in all cases,
both as measured by PSNR (with an increase ex-
ceeding 1 dB in all cases) and the structural simi-
larity index. In particular, the results obtained us-
ing warping without subpixel refinement are signif-
icantly better than those obtained without warping
and level 5 subpixel refinement, even though the
former runs faster by a factor of 1.68 on average.

A similar comparison is done for the interactive
sequences in table 5. It shows the SSIM index and
speed obtained using warping without subpixel re-
finement; this is compared with the level of subpixel
refinement that achieves the closest match in SSIM
when warping-based motion estimation is disabled.
“Speedup” is the ratio between the two encoding
frame rates. As can be clearly seen, warping pro-
vides a notable speedup for the interactive scenes in
all but one case.3 The bitrate used was appended to
the sequence names.

5 Conclusion

The results reported in this work show that the mod-
ified x264 encoder using warping-based motion es-

3The increase in PSNR due to warping is way more pronounced
than the increase in SSIM; a comparison based on PSNR values
yields far higher speedup values, but since SSIM has higher corre-
lation with perceived image quality, it was used instead.



Without warping Warping (SubME=1)

Sequence SubME SSIM-Y Frames/s SSIM-Y Frames/s Speedup

Terrain–300 1 0.7949808 133.34 0.7918640 131.01 0.9825
Terrain–500 2 0.8638736 112.31 0.8629337 123.35 1.0983
Int. Fairy–300 2 0.8983479 127.15 0.8976926 141.18 1.1103
Int. Fairy–500 2 0.9352065 115.65 0.9349554 130.61 1.1294
CS Italy–300 6 0.6541142 67.84 0.6679018 129.44 1.9080
CS Italy–500 6 0.7191762 58.36 0.7314405 119.74 2.0517

Table 5: Time spent to reach a given SSIM index with and without warping.

timation provides significantly increased quality for
sequences interactively rendered from user input,
which is the typical use case in a client-server set-
ting using server-side rendering. The performance
is still comparable to that of conventional motion
estimation for scenes with a relatively low amount
of motion. The increased quality achieved by our
method is attractive to the user, but the main ad-
vantage in practice is probably that the same level
of quality can be delivered to the user at lower bit
rates. This notable increase in quality or, equiva-
lently, compression performance is achieved at very
low cost in terms of CPU time, and can be accom-
plished using comparatively simple modifications
to the video encoder. Our results suggest that sub-
mitting “hint” motion vectors to a video encoder
could be a promising approach in general, if the ap-
plication has such motion information available. In
the future we will further explore the use of warp-
ing for video compression, possibly by designing a
novel video codec that allows transmission of depth
information. This would enable client-side warp-
ing and novel motion compensation means. Server-
side rendering also merits further research in areas
such as load-balancing, where similarities between
different views can be exploited, effects of network
latency and collaborative rendering.
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