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Introduction

Over the course of the last decade, 3D hardware has become cheap and commonplace;
an average new PC has better graphics capabilities than dedicated workstations had 10
years ago. As a result, applications that make extensive use of 3D graphics are becoming
increasingly widespread and popular; 3D games in particular have been one of the main
reasons for the rapid development of 3D graphics hardware during the last few years.
It also means that standards have risen considerably: even relatively cheap hardware
is able to render scenes with millions of visible triangles and hundreds of megabytes of
texture data at interactive rates. At the same time, 3D display of one sort or another
has appeared even in relatively weak embedded and mobile devices; an example is car
navigation systems, which by now typically show a (relatively crude) 3D rendition of
the area surrounding the car.

But while 3D rendering is starting to become a commodity, there is a huge variation
in the available levels of performance and quality. On PCs, high-end graphics cards
not only provide a far larger featureset than integrated graphics chips, they are also
between 1 or 2 orders of magnitude faster—with a similar difference in price and power
consumption, to be sure. For embedded and mobile devices, the differences are even
bigger, ranging from graphics chips that only provide a framebuffer with no hardware-
accelerated rendering at all through hardware support for 2D vector graphics to fully-
fledged 3D chipsets roughly on par with high-end PC rendering hardware around 2001.

This creates a big problem for application developers: the only way to achieve consis-
tent quality and performance over a wide range of different target machines is to either
have separately tuned datasets and renderers for different configurations, which is very
expensive to develop, or to aim for the lowest common denominator, which means that
the added capabilities of newer hardware don’t get used at all.

Another problem is the acquisition or creation of content: owners of high-end graphics
cards expect applications to use them, but acquiring or creating geometry and materials
at a high level of detail is a costly process. Still, the resulting data is needed for
rendering, so it is made available to every user—and with systems such as Google Earth,
the potential userbase is everyone with access to the Internet. This is a problem for
providers of GIS (geographical information system) datasets: this data is quite costly to
obtain, and making it available to virtually everyone free of charge is not in their best
interest.

Finally, just as development of 3D hardware does not stand still, neither does rendering
and geometry/material scanning technology, with the result that data formats go in and
out of fashion every few years, always being replaced by a representation that is more
suitable for the current state of the art. All attempts at interchange formats are at best
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limited (again trying to match some least common denominator, or only focusing on a
quite specific application) and at worst obsolete by the time their specification is finished.
This is a big problem when developing an application that is supposed to have a lifetime
of at least a few years, since it complicates the choice of delivery format considerably:
because high-resolution 3D data is quite big, changing the data format along the way—
possibly having to convert a huge server-side database, and then redistribute several
hundred megabytes worth of data to each and every user—is prohibitively expensive, so
backwards compatibility is necessary, with all the resulting complexities.

In short, writing 3D applications, a quite complex endeavour by itself, is made even
more complicated because the environment is very “hostile” to developers, requiring
them to design for a huge range of hardware capabilities at the same time (and—a
problem often ignored in publications—work around hardware and driver bugs). Any
means of simplifying this task is thus greatly appreciated. In a networked environment,
an obvious approach is to try and offload some of the work to the server. Martin [Mar00]
describes three primary ways of performing 3D rendering in a client-server environment:

• Client-side methods, where the server only supplies a description of the 3D scene
(model/geometry data, textures etc.) to the clients, which have to perform the
rendering themselves. This is the approach taken by the majority of current net-
worked 3D applications; it is relatively simple on the server side (serving static
data is comperatively easy by itself, and there is lots of practical experience), and
a single server can easily process a large number of clients. However, as explained
above, rendering on the client causes significant problems for implementors and
content providers.

• Server-side methods let the server peform all the rendering. The finished image
is then transmitted to the client, usually in compressed form. Due to network
and rendering latency, such methods are usually not suitable for interactive ap-
plications; also, the maximum number of concurrent clients per server is usually
several orders of magnitude lower than for client-side methods, because the server
workload per client is much higher. On the plus side, because all rendering is per-
formed on machines with known configuration, compatibility issues on the client
mostly disappear, and the same quality is available to all clients no matter how
powerful their hardware is. Also, it is easy to use different scene representations,
or different renderers for that matter: all it takes is installing a new application
on the server(s), which is completely transparent to all clients.

• Hybrid-side methods perform rendering on both the server and client sides, in
various ways; one such way is to render “background” geometry on the server and
“foreground” geometry on the client (which is which depends on the application
at hand). Another way is to render a low-resolution version of the scene on the
client and a high-resolution version on the server, only transmitting the difference
between the two, effectively using the low-resolution image as prediction of the
high-resolution one. The problem is that such schemes inherit weaknesses from
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both client- and server-based methods: rendering overhead is incurred on both
sides, but scene data still needs to be transmitted to clients, and all the rendering
problems stay the same, because high-quality, high-detail rendering makes a visible
difference especially for foreground objects and when using high resolutions. Thus,
while a valid option, a hybrid-side renderer is not very interesting in practice, at
least for the applications mentioned.

In this text, I will assume a client-server system with server-side rendering. While not
a panacea, server-side rendering certainly has serious practical advantages (at least for
applications that require cutting-edge rendering quality but only a modest number of
clients) and has received a disproportionately small amount of attention so far. There
are two main issues that need to be considered for a practical server-side rendering
system:

1. Each server needs to render frames for several clients, an expensive operation. If
possible, one would like to reduce the total workload by reducing the amount of
per-client work, by exploiting temporal coherency between the frames produced
for a single client and similarities between the viewpoints of different clients.

2. After rendering, the server also needs to compress the outgoing data for each of the
clients. Again, this is quite expensive; however, since the images are rendered by
the server, there is quite precise information about what changed from one frame
to the next; current video coders do not make use of such information, which might
incur a cost in both bitrate (and thus network bandwidth) and performance.

My main contributions are as follows: Chapter 2 will first look at depth image warping,
an image-based rendering technique particularly useful when there are frame-to-frame
coherencies, and investigate its usefulness when applied to video compression—the hope
being that such a system would provide high quality while requiring less resources on
the server side than “normal” video compression would, with reasonable cost on the
client side.

Chapter 3 describes a method that is more useful to improve compression ratio and
speed in practice: warping is used to estimate motion vectors for conventional motion
compensation-based video codecs, the advantage of such codecs being that they are
standardized already, and that decoder software and hardware is available virtually ev-
erywhere. Finally, it also briefly talks about ways of using warping and related methods
to accelerate rendering.
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1. Previous work

1.1. Image-based Rendering

One way to render complex 3D scenes with relatively low computational cost is using
image-based rendering (IBR) techniques. Instead of transmitting an explicit representa-
tion of a 3D scene (by directly describing the geometry of objects, material properties,
light sources etc.) and rendering 2D viewpoints on the client side, the scene is described
implicitly by one or more images supplemented with additional information. This typi-
cally includes at least a description of the camera type, position, viewing direction, and
field of view, but may also include harder to obtain information such as per-pixel depth
values. The theoretical foundation for image-based rendering is the plenoptic function
as defined in [AB91]:

P = P (θ, φ, λ, t, Vx, Vy, Vz)

measures the incoming radiance from the direction (θ, φ) as observed by an idealized
point-shaped viewer at position (Vx, Vy, Vz), for every wavelength λ and at every time t.
Different image-based rendering methods correspond to different ways of sampling the
plenoptic function (typically involving quite severe dimensionality reduction) and later
reconstructing an image—itself a sampled 2D representation of the plenoptic function
for fixed viewer position, fixed time and a small set of representative wavelengths—from
the sampled values.

There’s a big variety of image-based rendering methods available; a relatively recent
survey is [ZC04]. Probably the most suitable method for the target application is warp-
ing of planar depth images. Planar depth images are very easy to generate with both
rasterization- and ray tracing-based renderers at neglegible to no extra cost compared
to a regular image, there are no arbitrary restrictions to viewer movement, and planar
warping is able to synthesize views quickly from an input dataset that is not much bigger
than the destination image—in contrast to IBR methods that use a high-dimensional
scene representation. This makes it very useful in a client-server setting, where network
bandwidth is a limited resource and rendering should be fast and benefit from dedicated
harware support if available. All in all, it is a very natural fit, so I will focus on warping
and related methods for most of this chapter.

1.2. Warping of planar depth images

Needless to say, a prerequisite for warping-based video compression is that (efficient)
warping algorithms exist. McMillan’s dissertation [McM97] lays the necessary ground-
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work for various camera models (including, but not limited to, normal planar pinhole
cameras). He describes the original (forward) warping algorithm, shows how occlusions
can be resolved by simply processing pixels in the right order, introduces different recon-
struction methods to turn a set of warped points back into an image, and explains the
problems that can occur during warping. He also derives the inverse warping algorithm.
His main results are summarized at the beginning of chapter 2.

The basic warping algorithm has several limitations (cf. section 2.1.2) that manifest
themselves as different kinds of errors in the warped images. While most of these errors
are direct results of incorrect assumptions being made either during the warping or
reconstruction process, exposure errors are not; they occur because a single depth image
can’t describe general 3D scenes, as everything in the shadow of the foreground objects
is necessarily invisible. Shade et al. [SGHS98] introduce layered depth images (LDIs) to
solve this problem. As the name suggests, they allow several (depth) layers to be stored
per pixel, so that a layered depth image can also contain information from the area
behind foreground objects. LDIs can be displayed using a variant of McMillans warping
algorithm, without a z-buffer. However, they are relatively hard to generate; even when
it is possible to efficiently obtain several depth layers per pixel (this is a lot easier with
a ray tracer than it is with a z-buffer based rasterizer), doing so increases rendering
cost notably. Otherwise, a single LDI is generated by combining several “normal” depth
images, also an expensive process. This limits the usefulness of layered depth images
for dynamic rendering, although they are still useful for storage, since storing a single
LDI is smaller than storing several very similar depth images.

Marks PhD thesis [Mar99] on “Post-Rendering 3D Image Warping” describes tech-
niques more suitable in a real-time environment. The general idea is to use warping
to speed up a conventional (rasterization or ray tracing-based) renderer by only gener-
ating a few images per second and using warping to interpolate between them. Such
a system obviously needs to be faster than the original renderer to be worthwhile, so
there is a focus on fast reconstruction and hole-filling algorithms, including some that
have comperatively simple hardware implementations. Another chapter deals with gen-
eral implementation issues for warping hardware, including a derivation of precision
requirements for a warping implementation using fixed-point arithmetic and a detailed
analysis of the memory access patterns of warping. This analysis also results in a more
cache-friendly reference image traversal strategy.

1.3. Warping-based client-server rendering

I am not the first to suggest using warping-based methods in a client-server rendering
environment. Warping a reference depth image to a new viewpoint typically produces
a quite dense image, apart from holes that appear due to occlusion or exposure errors;
this behavior can be exploited on the server side by only rendering those areas where
no information is available, and for compression by only transmitting new data pixels
where such errors occur (this is known to both the server and client sides, so their
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locations don’t need to be transmitted). In [YN00], Yoon and Neumann describe their
IBRAC system (Image-Based Rendering Acceleration and Compression) which is based
on this idea. The first frame is transferred losslessly and including depth information
and camera parameters. Subsequent frames first transmit the new camera position; this
is used to synthesize the new image from a reference frame, usually the previous one,
with inverse warping (cf. Section 2.1.4). The warping process is done both at the server
and the client sides. While warping, destination pixels are classified into one of three
different categories:

1. A definite hit occurs when the current ray transitions from in-front-of to behind
a surface.

2. A definite miss occurs when it “hits” the background (i.e. it doesn’t leave the
view frustum but failed to hit any surfaces).

3. Finally, a possible hit occurs when the ray leaves the view frustum without hit-
ting any surfaces, when it passes behind a surface without ever having been in
front of it, or when it hits a pixel close to a depth discontinuity (heuristically
detected by testing whether adjacent pixel’s depth values differ by more than a
given threshold).

1 and 2 are both deemed high-confidence estimations and predict the color at the pixel
“hit” or the background color, respectively. Only pixels that fall into category 3 get
re-rendered at the server side, then transmitted to the client. Since both server and
client perform the same inverse warping process, positions of possible hits do not have
to be transmitted. Finally, the stream of color and depth values is compressed using
gzip.

The authors compare their algorithm against MPEG-2 and claim “a per frame com-
pression ratio of 2 to more than 10 times better than MPEG2 encoding” with their test
sequences (flights around objects of various complexity in front of a black background),
at quite good objective quality (consistently above 35 dB PSNR). However, the algo-
rithm is purely warping-based and has no means of replacing colors or depth values for
pixels that didn’t fall into the “possible hit” category; for surfaces that are not perfectly
diffuse, this obviously poses a problem. Even worse are invisible occluder errors, since
there is by definition no information contained in the reference image that suggests their
presence. In short, when such situations occur in a scene, the generated view can end up
very different from an actual rendered view, without ever been corrected or even noticed
by the system. That means that even though the reported results may be good, the
algorithm achieves them at the cost of oversimplification; the invisible occluder problem
especially is very serious and likely to be a “show-stopper” in complex scenes.

Less ambitious and also less problematic is a client-server system briefly described in
chapter 6 (“Real-time remote display”) of Marks aforementioned PhD thesis [Mar99].
The client transfers the current camera position to the server, which periodically renders
a new view and transmits it back to the client. Warping is used for two purposes: to
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compensate for network latency, and to have the client render at a higher frame rate
than server-side rendering speed and network bandwidth allows. For each reference
frame, the server renders 4 views corresponding to the sides of a cube centered at the
viewer without the top and bottom faces, for a total 360◦ horizontal and 90◦ vertical
field of view (largely avoiding invisible occluder errors). Other than that, the system
is again purely warping-based and thus subject to occlusion and exposure errors. No
compression is used for the communication between client and server. Hudson and
Mark [HM99] update this system to use 3 reference image sets with different centers
of projection. Together with an algorithm to select “good” reference viewpoints, this
notably reduces occlusion and exposure errors in typical walkthrough scenarios. The
lack of compression makes the system impractical for use over the Internet, though.
Furthermore, it has quite high CPU requirements: the client uses three MIPS R4400
processors clocked at 200MHz to produce images with a resolution of 320 × 240 pixels
at 7 frames/second!

Chang and Ger [CG02] describe a similar system with significantly lower CPU us-
age, using PDAs as clients. They only use single planar reference images (which makes
the system susceptible to invisible occluder errors) but do support layered depth im-
ages [SGHS98] to reduce occlusion errors. The client-side warper as described in the
paper just plots warped pixels at their destination position without a reconstruction or
hole-filling pass; this seems to be mainly due to limited computational resources on the
target platform. The frame rate is reported at about 6 frames/second on a test system
using a 206MHz StrongARM processor, while rendering at a resolution of 240 × 180
pixels—still relatively slow, but proving that simple warping variants can render at
interactive rates even on very low-powered platforms.

Another client-server system using a later genereation of PDAs as clients is described
by Thomas, Point and Bouatouch [TPB05], using a somewhat different approach. Aim-
ing at urban walkthroughs, they try to optimize placement of reference cameras so that a
complete scene can be described exclusively using a relatively small number of reference
images—in contrast to the previously described schemes, which always place cameras
along the path the user takes, irrespective of the underlying scene geometry. The main
contribution of the paper is a camera placement algorithm for urban scenes; it works
on a simplified 2D description of the street network and is not applicable to general
3D scenes. The server doesn’t need to constantly render new camera views; rather,
new views are only rendered when the user moves to enter an area not well covered
by the currently active reference views. This reduces network bandwidth requirements
significantly; reference views are additionally compressed using zlib. To make use of
the multiple reference images, the clients need to perform several warping operations
per frame (typically 2 to 4).

On the target PDA, using an Intel PXA263 processor at 400 MHz and a target reso-
lution of 320× 240 pixels, frame rates are reported as below 4 frames per second when
using 4 reference images—without hole filling and using a fixed point implementation
of the warping algorithm that, judging by the images in the paper, has very poor ren-
dering quality. They also report frame rates on PCs (the paper doesn’t state how fast
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the machines are), presumably using the floating-point variant of the warping algorithm
and with hole filling, though it isn’t explicitly stated; the frame rate there is around
20 fps when only one reference image is used and drops to about 8 fps with four refer-
ence images. These results are quite disappointing; while the camera selection algorithm
makes it unlikely that any significant errors are introduced during the warping process,
it does so only after severely constraining the scene geometry and viewer; with all the
restrictions on scene geometry, a simple 2D raycaster would probably suffice to render
the scenes, and do so smoothly on a PDA. In any case, the algorithm is very specialized
and of little to no use for more general scenes.

1.4. Warping and compression

Apart from IBRAC, the systems mentioned in the previous section are all designed
to work over a local network with relatively high transfer rates and low latencies; as
a result, they do not invest much effort on compression, since it would cost a lot of
CPU time and have little to no practical benefits. For usage over the Internet, available
bandwidth from the server to the client is more constrained (and a cost factor!), which
makes compression a lot more important.

Aliaga et al. [ARPC06] present a method designed for architectural walkthroughs of
real-world buildings, where floor plans (and thus a coarse description of the underlying
geometry) are available and photographs are fairly easy to obtain; warping is then used
mainly as prediction between similar images, to reduce the amount of data that has
to be stored. This differs from the previously mentioned methods in significant ways:
first, the system is not interactive; all images are known beforehand. In fact, photos are
the primary scene description. To capture a scene accurately, a lot of photos must be
taken; the used test datasets use several thousand images, with the centers of projection
between neighbored reference cameras being 2.2 inches (or less) from each other. Second,
because the images are not rendered from a (more or less) exact scene description, but
real photos, several assumptions inherent in warping are not met: materials are not
perfectly diffuse, the camera is not an ideal pinhole camera, and there is noise present
in both image and registration data. To deal with these imperfections, the algorithm
doesn’t assume that warping produces a perfect image, not even where sufficient data is
available; instead, the difference between warped and actual image is coded. As a side
effect, this also allows invisible occluder errors to be handled properly. Third and last,
accurate depth data is not available; instead, the floor plan is used as proxy geometry
to provide approximate per-pixel depth information.

All images are known beforehand, and it is to be expected that the order in which
images are coded has an influence on the compression ratio. The authors propose a
hierarchical structure, where images are organized in a binary tree, with each node
being predicted from its parent. They also present a relatively simple tree construction
algorithm that approximately minimizes overall coding cost for the complete tree. Nodes
on deep levels in the tree require a fairly long sequence of warps to obtain the actual
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image data; to reduce this access time, the authors propose storing I-nodes (nodes that
are not predicted from their parent node, conceptually similar to MPEG I-frames) every
few levels, reducing compression ratio slightly but providing much more uniform access
times. At a compression ratio of roughly 85 : 1, the visual quality of decoded images is
reported as significantly better than an MPEG-2 encoded video of a linearization of the
image database (it is not explicitly stated how images are ordered for MPEG-2 encoding).
No objective measurements are performed, however, so it is difficult to quantify the
quality improvement obtained by using warping. It is not mentioned whether the proxy
geometry is stored along with the compressed data; for the scenes in question, where the
proxy geometry is very simple, the impact on compression ratio is probably negligible,
but for scenes with complex geometry this could be a notable cost factor.

The paper also doesn’t use a regular pinhole camera model; instead, the Depth Dis-
continuity Occlusion Camera model as introduced in [PA06] is used. In short, rays that
pass close to object silhouettes are “bent around the object” to include information
from behind. This reduces exposure errors at the expense of somewhat lower resolution
near silhouetttes (to “make space” for the behind-the-object samples). Also, since this
distortion is geometry-dependent, either the geometry or the resulting distortion map
needs to be stored along with the image (which is not an issue for this particular appli-
cation, since it already uses proxy geometry to estimate per-pixel depth for warping).
The impact of this camera model is measured in a separate section, where it is reported
that at “low to medium compression ratios (35 : 1 to 83 : 1)”, the occlusion camera
yields difference images that are “up to 3.3% smaller and 4.4% more compact” (the
former apparently meaning difference image energy and the latter compression ratio).
However, “the overall average improvement we saw in images containing disocclusions
was only about one percent” (all quotes from [ARPC06], p. 22). Considering that the
new camera model needs information about the geometry and results in a more complex
warping algorithm, these results are rather disappointing.

Overall, the paper contributes several promising ideas and shows good results; how-
ever, the algorithm as described is not applicable to interactive applications, where the
images to be compressed are not known beforehand.

A coding algorithm for depth images—as opposed to coding normal images using
warping—is presented by Duan and Li [DL03], who discuss compression of layered depth
images; since a LDI is a generalized depth image, the same algorithm can be used for
normal (single-layered) depth images with trivial changes. First, an image is generated
that contains the number of layers for each pixel; this is coded losslessly using JPEG-
LS [WSS00]. The per-layer color data is then converted to the YCbCr color space. While
the first layer is normally stored completely, later layers are increasingly sparse. To aid
decorrelation, horizontal “holes” (spans of pixels not coded in that layer) are removed
before encoding, effectively grouping all stored pixels at the left side of the image. This is
then coded (componentwise) using the video object wavelet codec [XLLZ01]. The paper
also describes a simple bitrate allocation method to minimize visible distortion; care
must be taken especially with the depth (disparity) components, since coding artifacts
there can cause objects to tear apart at the boundaries. It is reported that compression of
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LDIs with a ratio of up to 17 : 1 is possible with “minimal visual distortion”, although
the objective (PSNR) quality measurements are relatively bad. However, quality is
measured by distortion in rendered images, not the actual coded LDI; a bad choice of
reconstruction filters in the renderer (or optimizations that sacrifice visual quality for
speed) can amplify small errors significantly, without necessarily being very visible. For
example, if the disparity components have a small bias, large objects may end up at a
slightly different position. While mostly invisible to a human observer, such errors can
cause significant distortion in the PSNR sense.

1.5. Video coding

As an alternative to using warping for compression, existing video codecs can be used as
well, the main advantage being that there is already widespread hardware and software
support for encoding and decoding with these methods. Since section 2.3 compares
a warping-based prediction model with the prediction used in the Dirac codec and
chapter 3 uses warping to accelerate H.264 encoding, this section will be somewhat
more detailed than the preceding ones, to give a detailed overview about how these
codecs work, and also to establish terminology.

Most state of the art video codecs are quite similar in basic structure; in fact, the
general design hasn’t changed much since the introduction of the original MPEG video
standard [ISO93]. I will review three different algorithms: MPEG-4 part 2 [ISO01],
H.264/MPEG-4 AVC [ITU05], and Dirac [BBC08]. The first two are well-established
international standards and already being used for HDTV, media formats such as HD-
DVD and Blu-Ray, and also smaller embedded devices (e.g. MP3 players that support
video playback). Dirac is a somewhat newer and more experimental design; nonetheless,
the intra-coding part is already standardized as SMPTE VC-2, and the BBC intends to
start using Dirac for streaming video within the next few years.

All these video codecs support two basic modes: intra and inter coding. Intra coded
frames are self-contained (like an image file), while inter frames use data from other
(previously coded) frames to exploit temporal coherency between frames. The intra part
of any video codec is just a still image coder; inter coding and the additional redundancies
it can exploit are the reason why current video formats are able to achieve significantly
lower bitrate at the same quality, compared to coding each frame individually—at the
cost of complicating seeking.

In fact, there is a three-class distinction between frame types: I-frames (called L0
frames in Dirac, and often referred to as key frames) are intra-coded frames, and serve
as synchronization points for seeking. P-frames (L1 frames in Dirac) are inter-coded
and predicted from previous I or P frames. Finally, B-frames (L2 frames in Dirac) are
bidrectional inter frames, meaning they can refer to the I and P frames both immediately
before and immediately after them; they are not themselves used as source frames for
prediction—which can be beneficial, as an encoder can heavily compress a B-frame to
save bits without penalizing the following frames.
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B-frames may refer to frames “in the future”, but the encoder still has to know the
referred frames to be able to decode a B-frame properly; hence, when B frames are used,
frames are reordered during encoding, so that the sequence of frames received by the
decoder is “causal”. Both encoders and decoders need to buffer frames to be able to
perform this reordering, which consumes additional memory and introduces extra delay
when videos are being coded in real time. The sequence of frames from one I-frame up
to (but not including) the next is referred to as a group of pictures, or GOP.

All three codecs perform the inter prediction step using different variants of motion
compensation: the destination image is partitioned into rectangular blocks of pixels. For
each block, a single 2D vector (mx,my) is stored, which is an offset relative to the block’s
position that specifies where the source data for the respective block is located in the
reference frame (that is, it points from the destination position to the source position,
opposite the motion direction). Conventional (block) motion compensation just copies
the respective pixels over, and is used by both MPEG-4 variants; Dirac uses overlapped
block motion compensation, which uses larger destination blocks that overlap (as the
name suggests). There, each pixel is predicted as a weighted sum of the predictions from
the different destination blocks that overlap that pixel.

The problem of finding these motion vectors on the encoder side is called motion
estimation. Formally, it is an instance of the optical flow problem in computer vision,
but there are no regularity constraints on the motion vectors, and the objective function
is coding cost (i.e. size of the coded motion vector plus resulting residual data in bits)
instead of a direct image similarity metric. As a result, codec implementations typically
don’t use direct optical flow algorithms such as the Lucas-Kanade algorithm [LK81];
specialized methods, usually based on explicit search with early termination heuristics,
are more common. This motion estimation process is quite costly (even with optimized
algorithms), and typically a significant fraction of the total video encoding time is spent
on it.

Motion estimation (and motion compensation) is performed on blocks of pixels. In
MPEG/H.264 parlance, these blocks are called macroblocks and always have a size of 16×
16 pixels, while Dirac calls them superblocks and supports variable sizes. The original
MPEG standard only had one motion vector per macroblock; all three newer algorithms
allow subdividing a macroblock into smaller partitions with different motion vectors,
which is useful for macroblocks that contain object boundaries. Motion vectors are
typically specified up to fractional (half- or quarter-pixel) precision; the reconstruction
filters used are part of the codec specification.

The image obtained from the motion compensation process is an approximation of
the target frame; this approximation is subtracted from the actual image data, yielding
the residual image. The way this image is coded is where the algorithms differ the most,
but the ideas are closely related. Dirac uses an integer wavelet transform to decorrelate
the luminance and chrominance difference images, H.264 uses a custom-designed integer
transform on 4× 4 pixel blocks,1 and MPEG-4 uses the 2D DCT-II with a block size of

1Streams using the newer “High” profile can also use a 8× 8 pixel transform in smooth areas.
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8× 8 pixels; all three methods use the same transform for luminance and chrominance
components.2 The MPEG standards up to MPEG-4 do not specify the exact inverse
DCT to be used, but instead require that compliant decoders do not exceed certain error
bounds; this was meant to increase implementation flexibility, but causes encoders and
decoders to go out of sync over time when they use different IDCT implementations
(“IDCT mismatch”)—a problem that causes quite visible artifacts. This is usually
worked around by inserting I-frames at regular intervals (once or twice per second),
but the newer codecs (Dirac and H.264) specify inverse transforms exactly to avoid this
problem.

Computing these various transforms yields transform coefficients which are then quan-
tized, the main lossy step in video coding. Since they are the result of a decorrelation
process, those coefficients can be quantized individually; this is done using uniform
quantizers with or without dead zone. The quantization step size used can be adapted
over the course of the frame to meet a bitrate target, and often also depends on the
particular coefficient being coded (for example, low-frequency coefficients typically get
assigned lower step sizes than high-frequency ones do). The resulting quantized coeffi-
cients are then combined with the motion vector data and entropy coded. MPEG-4 uses
a run-length coding scheme and predetermined Huffman tables, while Dirac employs
an adaptive arithmetic coder. H.264 supports specialized variants of both, dubbing
the CAVLC (context-adaptive variable length coding) and CABAC (context-adaptive
binary arithmetic coding), respectively.

Practical applications also usually have limits on how many bits can be transferred
or decoded per second; encoders have to monitor how many bits are spent on individual
frames, and correct quantization settings to meet the target bitrate if necessary. This
process is called rate control . To this end, frames are typically analyzed by encoders
before any actual data is encoded, to determine which areas are visually important and
to get a rough estimate of how many bits are going to be spent on motion vectors; this
is then used to choose quantization step sizes for the frame. For films and other “static
material”, two-pass encoding is used: Each video is encoded twice. During the first
pass, statistics are gathered, while the final output is determined in the second pass.
This allows encoders to look ahead in time, coding “easy” frames with a lower number
of bits to save them for “difficult” frames. The resulting improved bitrate allocation
typically increases perceived quality substantially, but is not possible for live broadcast
and streaming applications for obvious reasons.

2This is the reason for the 16×16 pixel macroblock size, since chrominance information is downsampled
by a factor of 2 in both dimensions.
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2. Warping of Depth Images for Video
Compression

Warping of Depth Images was first described by McMillan in his dissertation [McM97].
It is based on the observation that an image with per-pixel depth information together
with a description of the camera and viewpoint can be viewed as a scene representation;
one can then later change the camera position or orientation and use the original image
to synthesize a new image corresponding to the changed viewpoint. This leads to a
very simple image-based rendering algorithm that doesn’t restrict the movement of the
viewer in any way; as it is able to produce approximations of new images (with a changed
viewpoint) given previous images, it is also useful for compression. Section 2.1 explains
the basic warping algorithm and some important variations.

Most of the existing work on using warping for compression (as reviewed in chapter 1)
assumes that warping does, in principle, produce a “perfect” rendering of the image—
except in areas where no suitable data is present in the source image or images, of
course. Section 2.1.2 explains why this is not, in general, the case. However, even when
the assumptions inherent in the warping process do not hold (for example, when surfaces
are not ideal lambertian reflectors), warping is likely to produce a good approximation
of the correct image as long as no drastic camera movements are involved. This suggests
a less radical approach to warping-based compression: instead of only filling holes that
occur due to exposure errors, the difference between the image produced by warping
and the actual rendered scene is coded—in short, warping is employed as a predictor.

This results in a codec structure very similar to that used by modern video codecs
(their basic components are reviewed in section 1.5). In short, while most current video
codecs employ motion compensation to obtain an approximation of the current frame to
be coded from previously codec reference frames, warping can adequately perform the
same task (for static 3D scenes with known depth data, at least). However, warping as it
is typically used requires a relatively expensive reconstruction step, which is undesirable
for a method intended to be able to play back video at rates of ≥ 20 frames/second,
preferably even on embedded devices; section 2.2 develops a somewhat simpler method
that trades simplicity and speed for a slight decrease in visual quality and coding effi-
ciency.

Finally, section 2.3 concludes this chapter by comparing various warping variants with
motion compensation, judging them by the quality of the predicted images they produce
and the amount of data that needs to be stored to produce these predictions: motion
vectors for motion compensation and per-pixel disparity information for warping.
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2. Warping of Depth Images for Video Compression

2.1. Warping of depth images

2.1.1. The warping equation

This section summarizes chapter 3 of [McM97], mainly to introduce the setting and
establish terminology. Throughout this chapter, the camera will be described by an
idealized planar-pinhole model: The camera occupies a single point in space, the center-
of-projection (COP), and measures incoming radiance along rays from the COP to a
bounded planar region some distance away from the camera, the image plane.

Assuming a fixed 3-dimensional world coordinate system is given, one can map a
position (u, v) on the image plane (given in the image coordinate system) to the direction
of a corresponding ray from the COP that passes through it with a linear system:

d = ua + v b + c =
[
a b c

] u
v
1

 =: Px (2.1)

In this expression, a and b are (world space) basis vectors of the image coordinate
system, c points from the COP to the origin of the image coordinate system (the top-left
corner of the image plane, with a pointing to the right and b towards the bottom) and
P is the projection matrix. We also normalize a and b to represent the “width” and
“height” of one pixel in the sampled image, respectively. Finally, Ċ denotes the position
of the camera’s center-of-projection. The camera can then be completely described using
P and Ċ; this is visualized in figure 2.1.

Ċ

c

a

b

Figure 2.1.: Camera coordinate system.

Now assume there are two different cameras given by P1, Ċ1 and P2, Ċ2 that both
see the point Ẋ. It follows that there are positions x1,x2 on the image planes of the
cameras1 such that the corresponding ray passes through Ẋ, as shown in figure 2.2. By

1The image plane is 2-dimensional, so x1 and x2 should be too; however, in the following, I assume
that the two are in fact 3-vectors with the third component set to one. This is the usual homogenous
notation for points in the projective plane.
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x2

x1

Ċ1

Ċ2

Ẋ

Figure 2.2.: Two cameras that see the point Ẋ.

construction, the two rays intersect, so there are scalars t1, t2 for which

Ẋ = Ċ1 + t1P1x1 = Ċ2 + t2P2x2.

Regrouping terms yields

t2
t1

P2x2 = P1x1 +
1
t1

(Ċ1 − Ċ2)

which can in turn be simplified by defining δ(x1) := 1
t1

(this value is called generalized
disparity because it is proportional to stereo disparity, the quantity that is measured to
estimate depth from aligned stereo image pairs) and using the symbol .= to denote that
the left- and right-hand sides are identical up to a scalar factor:

P2x2
.= P1x1 + δ(x1)(Ċ1 − Ċ2)

Finally, multiplying with P−1
2 from the left yields the planar image-warping equation

(or just warping equation for short, since I only consider planar pinhole cameras here).

x2
.= P−1

2 (P1x1 + δ(x1)(Ċ1 − Ċ2)) (2.2)

This equation describes where a point x1 in a reference image (as seen by camera 1)
ends up on the image plane of camera 2, only depending on the parameters of both
cameras and the generalized disparity at the source point x1. Since no information
dependent on the destination point is involved, equation 2.2 can be used with any
destination camera (provided that it still is a planar pinhole camera, of course). In
practice, it is useful to rewrite equation 2.2 as a matrix equation depending only on u1,
v1 and δ(u1, v1):

u2

v2

1

 .=

a1 ·(b2×c2) b1 ·(b2×c2) c1 ·(b2×c2) (Ċ1 − Ċ2)·(b2×c2)
a1 ·(c2×a2) b1 ·(c2×a2) c1 ·(c2×a2) (Ċ1 − Ċ2)·(c2×a2)
a1 ·(a2×b2) b1 ·(a2×b2) c1 ·(a2×b2) (Ċ1 − Ċ2)·(a2×b2)


︸ ︷︷ ︸

=:W


u1

v1

1
δ(u1, v1)
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2. Warping of Depth Images for Video Compression

For the short derivation, refer to chapter 3 of [McM97]. W = (wij) is the warping
matrix . Solving for u2 and v2 then yields the following rational expressions:

r(u1, v1)
s(u1, v1)
t(u1, v1)

 := W


u1

v1

1
δ(u1, v1)


u2 =

r(u1, v1)
t(u1, v1)

v2 =
s(u1, v1)
t(u1, v1)

(2.3)

This version of the warping equation can be implemented in a straightforward fashion
and leads to a reasonably efficient image warper with very little code. Care must be
taken to ensure that visibility order is preserved, that is, “front” pixels get drawn in front
of “back” pixels —[McM97] shows that this can be achieved by processing source pixels
in the correct order. Also, integer pixel coordinates in the source image may (and usually
will) be mapped to noninteger coordinates in the destination image, and the warping
process distorts the relative area of source pixels; this necessitates a reconstruction step
after the warping has been performed. I will return to this subject in section 2.1.3.

2.1.2. Limitations of warping

It is important to mention that, when used for image synthesis, planar warping has a
few notable shortcomings:

• The derivation for warping is purely geometrical and assumes that a point “looks
the same” from all directions. This is wrong in general; it only holds for perfectly
diffuse (lambertian) materials.

• Similarly, it is assumed that surfaces in the source image are “solid”: translucent
and refractive surfaces are not considered, and there is no proper way to assign
either a single color or disparity to a point that lies on such a surface.

• Warping of depth images is subject to occlusion errors and exposure errors. Expo-
sure errors occur whenever a destination pixel lies in the “shadow” of an object in
the source image — there is no information in the source image to determine the
color of the destination pixel. This can be solved by using layered depth images
[SGHS98] which are able to store several colors and disparity values per source
image pixel, but they are relatively complex to generate (mainly because neither
photos nor rendered images contain the required information) and form a rather
unwieldy data structure, at least compared to the simple 2-dimensional array rep-
resentation of regular depth images. Occlusion errors, on the other hand, occur
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2.1. Warping of depth images

when an object in the synthesized image incorrectly occludes another one; this can
happen with some types of reconstruction kernels.

• Finally, invisible occluder errors can occur when an occluder in the original 3D
scene would be seen by the destination camera, but isn’t inside the frustum of
the source camera and hence won’t be reproduced by warping. While the previ-
ous problems are common to all warping-based schemes, this particular issue is
caused by the limited field of view of planar pinhole cameras and disappears when
panoramic views are used.

2.1.3. Reconstruction

While the mapping from source to destination image coordinates as expressed by the
warping equation is quite straightforward, turning the resulting set of (x, y, color) tuples
into an image is anything but. Warping can distort relative area significantly: points
that get closer to the viewer will occupy more area in the destination image (and hence be
spaced further apart), while points moving away from the viewer tend to form clusters.
Both effects can appear in different regions of the same destination image, and even
worse, depth discontinuities will cause gaps in the destination image that won’t disappear
(or even get smaller) with increased sampling resolution.

One could try to use general algorithms for scattered data interpolation to turn the
set of points back into a regularly sampled image; however, such algorithms are quite
slow and not necessarily well-suited to the problem at hand (for example, some of the
mapped points might end up between other points defining a surface closer to the viewer;
one would like such “hidden” points to be ignored). There are specific reconstruction
algorithms for warping that are both more efficient and of higher visual quality than
this generic approach.

McMillan [McM97] presents two reconstruction methods, which I will call the “gaus-
sian cloud” and “bilinear patch” methods, respectively. The gaussian cloud method
views each pixel in the source image as a small spherical splat. It then uses the Ja-
cobian of the warping equation at the source position to determine how the original
spherical shape should be distorted; the resulting deformed shape is then splatted onto
the frame buffer. This accounts for the area distortion induced by the warping equation,
but holes remain in areas that weren’t visible in the source image. The bilinear patch
method explicitly builds a mesh of quadriliterals from the source points; the points are
then transformed to their respective positions in the destination image, and the resulting
distorted quadriliterals are rasterized, interpolating colors bilinearly. This process also
implicitly closes holes by interpolating over the gaps that appear due to depth discon-
tinuities; while incorrect, this is visually far less distracting than simply leaving holes
with the background color.

Mark [Mar99] presents two improvements of the bilinear patch method; one simply
triangulates the quadriliteral mesh as formed by the “normal” bilinear patch and inter-
polates colors linearly over the resulting triangles, so that existing triangle rasterization
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2. Warping of Depth Images for Video Compression

hardware can be used. It also explicitly detects depth continuities and uses a special-
ized hole-filling algorithm that tries to improve on the simple interpolation method. The
second method is aimed towards hardware implementations that use supersampling and
rasterizes axis-aligned quadriliterals with subpixel resolution.

All these algorithms, however, are quite expensive; they require drawing hundreds of
thousands of triangles or splats even at quite modest resolutions. This is impractical for
real-time processing on embedded devices unless specialized hardware is present.

An alternative is simply not to perform any explicit reconstruction. The frame buffer
is cleared to a background color, and warped pixels are plotted into the frame buffer
as they are produced. This is quite fast, but gaps due to depth discontinuities will be
left open (like with gaussian cloud reconstruction), and due to the limited sampling
resolution holes may appear even in regions without any depth discontinuities where
the area distortion of the warping equation causes pixels to be pushed too far apart.
A simple workaround is to use small squares instead of single pixels, with the diameter
determined by the Jacobian of the warping equation; this is significantly faster than full
gaussian cloud reconstruction and fills most non-depth-discontinuity gaps.

2.1.4. Inverse warping

To avoid the quite laborious reconstruction process, it seems tempting to try to reverse
the mapping direction: instead of projecting source pixels into the destination image,
start from the destination pixel and search a source coordinate that maps to that point.
Since the source image is regularly sampled, obtaining a color for a given source position
is simple, using for example nearest-neighbor or bilinear filtering. The main problem is
that the destination position depends on the depth value at the source position, and the
mapping isn’t generally bijective, as evidenced by occlusion and exposure errors: a single
destination pixel might be “hit” by more than one source pixel, or not hit at all. For
each destination pixel, inverse warping needs to search for a matching depth value along
a line in the source image, quite a time-consuming process. It is possible to speed up
this search in the average case by using a hierarchical representation of the source depth
buffer [Mar98], but in the worst case, it may still be necessary to traverse a full line in
the source image. For source and destination images with n× n pixels, this amounts to
O(n3) steps of work (i.e. O(n) steps per destination pixel). Forward warping only needs
O(n2) steps (which is O(1) per pixel)—way more attractive for real-time processing,
especially when the source image changes frequently, because each such change would
require the hierarchical disparity structure used for inverse warping to be recomputed.

2.2. Fast warping for prediction in video coding

The most important consequence of using warping as a predictor is that errors made
during the prediction process can later be corrected; hence even systematic errors can be
tolerated when doing so reduces encoder/decoder complexity, or increases performance
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or coding efficiency. The original MPEG codec uses a very simple model of 16×16 mac-
roblocks of pixels being translated, which is only a very coarse approximation of motions
happening in “real” videos, but quite compact to transmit (one 2D translation vector
every 256 pixels) and easy to decode. Warping can similarly make some assumptions
(like treating objects as perfectly diffuse) and take “shortcuts” in some places, at the
sole cost of a certain loss in coding efficiency; the benefit of lower decoder complexity
outweighs this cost if embedded devices are the target.

As explained in detail in section 2.1.3, the reconstruction step involved in warping is
typically the most involved and most difficult one. “Normal” warpers need to do well
here, since the reconstructed image is their final output and directly visible to the user.
For the sake of prediction, however, a very simple reconstruction method is sufficient,
as long as errors are either uncommon or typically inexpensive to code.

For videos with a frame rate of ≥ 25 frames/second and continuous camera motion,
even the trivial “plot single pixels” reconstruction filter without any hole-filling produces
quite reasonable results, as shown in figure 2.3. The images were obtained by recording
a depth image sequence for a flight over a 3D city dataset, and generating each new
frame by warping the frame before it. As is clearly visible, mostly individual rows and
columns of pixels are missing; in the right image, some typical disocclusions are also
visible (the “shadows” behind the buildings). But even these holes are, for the most
part, relatively small. This suggests a very simple method: instead of using a more
complicated reconstruction filter, simply keep plotting individual pixels and later fill
both types of holes (those due to a limited number of warped pixels and those due to
disocclusions) with one simple and fast screen-space algorithm. It is to be expected
that errors are larger than they would be with e.g. gaussian cloud or bilinear patch
reconstruction; the exact cost will be determined later, in section 2.3.1.

Figure 2.3.: Holes that appear when omitting the reconstruction step altogether.

The proposed algorithm is straightforward: First, a normal warping operation is per-
formed; source pixel coordinates are warped into the destination image, and the resulting
coordinates are rounded to integers. If these coordinates fall within the destination im-
age, color and disparity of the pixel in the destination image are written at that location.
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The hole-filling itself proceeds in two stages: First, single “missing rows” are filled.
This is accomplished by simple looping over all pixels: if a pixel has not been set but
both its top and bottom neighbors have, its color and disparity are determined as the
average of the values for those two pixels. Second, horizontal spans of unwritten pixels
(corresponding to one or more “missing columns”) are filled. This is accomplished by
looking for two pixels at the left and right corner of a run of unwritten pixels, and inter-
polating their color and depth values linearly to fill the pixels inbetween. Pseudocode
for the whole process is given as algorithm 1 (Note that the two stages are performed
simultaneously, so only one pass over the destination image is necessary). The loop
body is executed exactly once for each pixel, and the number of pixels filled by the
horizontal span interpolation is bounded by the number of unwritten pixels, which is
again bounded by the number n of pixels in the destination image; hence the algorithm
runs in Θ(n) time.

Algorithm 1 Fill holes after warping
for y = 0 to height − 1 do

s ⇐ width // Make sure first written pixel does not produce a valid span.
for x = 0 to width − 1 do

if written(x, y − 1) ∧ written(x, y + 1) ∧ ¬written(x, y) then
color(x, y) ⇐ (color(x, y − 1) + color(x, y + 1))/2
disparity(x, y) ⇐ (disparity(x, y − 1) + disparity(x, y + 1))/2
written(x, y) ⇐ true

end if
if written(x, y) then

if s < x− 1 then
Fill horizontal span between (s, y) and (x, y) (exclusive), linearly interpolat-
ing color and disparity.

end if
s ⇐ x

end if
end for

end for

Figure 2.4 shows the results of applying this algorithm to two sample frames from
the aformentioned test sequence. 2.4a has only small holes and disocclusions, and the
resulting image 2.4b has decent quality. 2.4c has large disocclusion holes, and 2.4d has
very visible artifacts as a result, but the overall output quality is still acceptable given
the algorithms’ simplicity and speed.

However, using warping like this for prediction has one serious drawback: Snapping
warped pixel coordinates to the integer grid effectively introduces jittering into the
sampling process, which manifests as noise in the signal, especially near edges and other
high-frequency components in the image. As a result, the difference between predicted
and actual image typically contains a fair amount of noisy high-frequency content, which
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(a) Small holes only (b) Resulting image

(c) Small and big holes (d) Resulting image

Figure 2.4.: Two warped sample frames before and after hole-filling using algorithm 1.

is quite expensive when using wavelets or block-based transforms. It also causes a
staircasing effect that is especially visible near round objects, e.g. the BMW logo and
the outlines of the buildings on the left side of it in figure 2.4d.

Since these problems are primarily caused by forcing pixel positions to lie on an
integer grid, the obvious solution would be to introduce subpixel precision; however,
this would require either a more expensive reconstruction filter that can make use of
subpixel position information directly (e.g. splatting with precomputed splats for various
subpixel offsets) or a larger framebuffer and additional filtering (effectively rendering in
subpixel resolution, then downsampling afterwards). Both methods are more expensive
and quite unattractive. I propose a simpler solution: As before, let (u1, v1) be the source
pixel coordinates, and (u2, v2) the destination coordinates obtained by warping. After
warping the source pixel, the Jacobian J of the warping equation at (u1, v1) is computed.
Then the source image gets sampled (using a simple bilinear filter) at the position(

u1

v1

)
+ J−1

(
round(u2)− u2

round(v2)− v2

)
(2.4)
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and the resulting color is used to plot the destination pixel. In effect, the difference
between the computed destination position and the one that is actually used is approx-
imately back-projected into the source image, which has a regular representation and is
easy to sample at fractional coordinates.

Assuming that δ(u, v) is constant in a neighborhood around (u1, v1), and writing
r(u1, v1), s(u1, v1) and t(u1, v1) as r, s and t respectively for brevity, J can be determined
directly from equation 2.3 using the quotient rule:

J = t−2

(
w11 t− w31 r w12 t− w32 r
w21 t− w31 s w22 t− w32 s

)
The determinant of J is given by

det(J) = t−4 [(w11 t− w31 r)(w22 t− w32 s)− (w12 t− w32 r)(w21 t− w31 s)]

which simplifies to

det(J) = t−3

∣∣∣∣∣∣
w11 w12 r
w21 w22 s
w31 w32 t

∣∣∣∣∣∣ = t−3

∣∣∣∣∣∣
w11 w12 w11 u1 + w12 v1 + w13 + w14 δ(u1, v1)
w21 w22 w21 u1 + w22 v1 + w23 + w24 δ(u1, v1)
w31 w32 w31 u1 + w32 v1 + w33 + w34 δ(u1, v1)

∣∣∣∣∣∣
and application of determinant identities leads to

det(J) = t−3 (det(H) + δ(u1, v1) det(G))

where

H =

w11 w12 w13

w21 w22 w23

w31 w32 w33

 and G =

w11 w12 w14

w21 w22 w24

w31 w32 w34

 .

The inverse of J can thus be explicitly given as

J−1 =
t

det(H) + δ(u1, v1) det(G)

(
w22 t− w32 s w32 r − w12 t
w31 s− w21 t w11 t− w31 r

)
(2.5)

G and H solely depend on the warping matrix W, so their determinants only need
to be computed once per frame, and r, s, and t are already computed to determine u2

and v2 anyway. Hence the cost of evaluating equation 2.4 per pixel is about as high as
the warping equation itself, but no additional passes or memory accesses are required.
Compared with the cost of warping at subpixel resolution, warping more pixels to get
less holes, or using splatting for reconstruction, this is still quite reasonable.

The modified sampling process (simply referred to as “warping with sample shifting”
in the following) works well for colors and notably reduces high-frequency spikes near
edges without unreasonable blurring of the depth image. For that very reason, however,
it is not suitable to process disparity values, since sharp depth discontinuities are im-
portant features for warping that should be preserved if possible; hence, disparity values
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are best point-sampled. To prevent jittering noise from accumulating, a simple blur
filter can be used. To prevent edges from getting smoothed out, pixels are not blurred
if the partial derivative of δ in the u2 or v2 direction is above a threshold. All this is
only relevant if the image is to be used as a reference image for warping later, since the
depth image is never directly visible to the user.

Results using the different warping methods are shown in figure 2.5 on page 30. (a)
shows the actual target frame to be predicted, and (b) is the previous frame, which is
the source frame for warping; (c) shows the result obtained by normal warping, (d) is the
difference to the actual frame. Subfigures (e) and (f) show the same using warping with
sample shifting. Finally, (g) and (h) were generated using bilinear patch reconstruction
and are included for reference. As is clearly visible, using sample shifting improves
the prediction accuracy notably, as edges in the difference images are less pronounced
and the overall intensity level is lower. By contrast, the additional improvement from
using bilinear patch reconstruction is relatively minor, and comes at the expense of
significantly higher CPU cost. An objective evaluation of the different warping variants
will be given in the following section.

2.3. Evaluating the efficiency of warping as a prediction model

The main question when replacing motion compensation with warping for video coding
is simply, does warping-based prediction provide improved coding efficiency, that is, does
the extra CPU time spent doing warping2 instead of simply performing motion com-
pensation pay off? Since warping is much slower on the decoder side, it has to deliver a
significant gain in quality per bit (i.e. better quality at the same bit rate, or the same
quality at a lower bit rate) to be seriously pursued.

To answer this question, two experiments will be performed: In the first one, the
quality of predicted images given perfect reference data (that is, without any lossy
coding) will be compared. It will also show what kind of quality improvement, if any,
can be expected over normal motion compensation—ignoring how much information
needs to be encoded to get that quality. In the second experiment, the amount of “extra
data” (that is, non-color data) will be compared. That is, it will be calculated how
many bits are needed to store motion vectors, and how many bits can be expected to
be spent on the per-pixel depth (disparity) information required for warping.

2.3.1. Prediction efficiency in ideal circumstances

For both motion compensation and warping, the difference images to be encoded look
very similar, namely like the difference images in figure 2.5: particularly, energy is mostly
concentrated near edges in the target image, with very little low-frequency content. Since
there are no noticable structural differences between the difference images obtained using

2This is obviously true for decoders; but even for encoding, modern CPUs have special instructions to
speed up motion estimation, while there is no such hardware support for warping.
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2. Warping of Depth Images for Video Compression

(a) Actual target frame (b) Previous (source) frame

(c) Warping and hole filling (d) Difference to (a)

(e) Warping+sample shift+hole-fill (f) Difference to (a)

(g) Bilinear patch (h) Difference to (a)

Figure 2.5.: Comparison between warping variants.
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the two algorithms, I use the PSNR (peak signal-to-noise ratio) between the actual and
predicted luminance channels as quality metric. It is defined as:

PSNR = 10 · log10

(
w · h ·M2

I

‖I − P‖2
2

)
[dB] (2.6)

where w and h are the width and height of the images, respectively, MI is the maximum
possible pixel value in the source data (255 when using 8 bit per color channel), and I
and P are vectors containing the per-pixel luminance values of the actual and predicted
images, respectively.

A higher PSNR means that the predicted image approximates the actual image more
faithfully; hence, less residual information need to be coded to achieve the desired target
quality. Only luminance is compared because the video codec used for comparison,
Dirac [BBC08], always subsamples chrominance channels; subsampling is less attractive
for warping, because the relatively expensive warping and reconstruction steps would
have to be done twice, once in full resolution for luminance data, and again in subsampled
resolution for chrominance.3 In any case, both Dirac and the warping-based methods
treat luminance and chrominance the same way (apart from the subsampling), so the
results are still assumed to be representative.

The test setup is as follows: The various warping variants operate on sequences of
umcompressed 400×300 pixel frames with 8 bit per RGB color channel and 16 bit depth
information per pixel. Position, orientation and all necessary parameters for the planar
pinhole camera model (as necessary for warping) are stored alongside each frame. The
results for motion compensation are obtained using Dirac, which actually implements
overlapped block motion compensation (OBMC). As the name suggests, this scheme
uses larger blocks that overlap each other; a weighting function is used such that for
each pixel in the destination image, the weights for all the blocks covering that pixel
sum to 1. OBMC has the advantage that there are no artificial discontinuities at block
boundaries, which would otherwise introduce a bias into the comparison. For encoding,
the Dirac reference encoder [BBC] is used in lossless mode (so that all reference frames
are “perfect”) and with L2 frames (corresponding to MPEG B-frames) disabled, making
sure that each frame is predicted from its immediate predecessor, as with the warping-
based methods. For Dirac encoding, frames were converted to the YCbCr color space
using the tools supplied with the reference encoder; the original RGB input frames and
the warper output frames are converted into the same color space and the Y channels
are compared. The Dirac encoder was modified to output the results of the motion
compensation process. Finally, keyframes and frames without motion compared to the
previous frame are omitted from the evaluation; since all methods have lossless reference
data, there is no difference between actual and “predicted” image data in those cases,
which would result in an infinite PSNR.

3Alternatively, one could do the warping with non-subsampled RGB/YCbCr, upsampling chroma in-
formation before warping then downsampling it again afterwards; apart from the extra overhead,
such a process would also tend to accumulate resampling errors over time.
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The first test sequence is a flight over a (completely diffuse) 3D dataset of Munich
generated from aerial images and land register data provided by RSS GmbH, rendered
with the current version of the SCARPED terrain rendering engine as first described
in [WMD+04]. The sequence is captured from a short interactive session with the system,
823 frames long, and inteded to be played at 30 frames/second. Because of its interactive
nature, there are a few pauses while the user switches control modes or repositions the
mouse and the image stays the same for a few frames. These frames are ignored in this
comparison. In general, the sequence consists of short fully interactive segments where
the user zooms or repositions the camera, and continuous flight segments where the user
has double-clicked on a point of interest and the system performs a flight towards that
point.

Test sequence 2 is a 900 frame long (again, 30 frames/second) camera flight through
the Utah Fairy Forest scene (a standard test scene for real-time raytracing, available
at http://www.sci.utah.edu/~wald/animrep/), or more precisely its first frame; the
camera motion is defined as a spline, and only the diffuse textures were used, with both
specular effects and bump mapping disabled. This was done intentionally, to provide
optimal input for a warping-based method, since the purpose of this evaluation is to
find out how well warping-based prediction can perform given perfect conditions.

The different methods tested are:

OBMC: overlapped block motion compensation as implemented by Dirac.

Warp bilinear patch: warping with bilinear patch reconstruction (actually, not proper
bilinear patch; the warped quadriliterals are split into two triangles, and colors are
linearly interpolated within triangles. This is how e.g. an implementation using
3D hardware would work).

Warp: warping with single-pixel plotting and hole-filling using algorithm 1.

Warp+shift: same as above, but including the Jacobian-based sample shifting described
in section 2.2.

Warp+shift+expand extends the first written pixel in each scanline towards the left and
the last written pixel towards the right; also, the top- and bottommost scanlines
containing written pixels are repeated above and below, respectively. This provides
more reasonable “default” colors near the screen edges than leaving everything
black. This was included because motion compensation based methods never
default to black pixels; the black pixels produced by warping when no data is
available reduce PSNR notably. The simple expansion process greatly improves
PSNR on high-motion frames and is very cheap.

The results of the comparison using test sequence 1 are shown in figure 2.6. Subfig-
ure (a) shows PSNRs for the whole sequence, while (b) shows frames 303–480 (which
are typical for the whole sequence) in more detail. It is immediately obvious that most
methods are at a similar level of quality for most of the time, except for “Warp” (direct
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(b) Zoomed view: frames 303–480.

Figure 2.6.: Results obtained with test sequence 1.
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warping without sample shifting), which loses about 2–2.5 dB compared to the other
methods for nearly all frames. This confirms the observation in section 2.2 that the
sample shifting process improves quality significantly. The mean difference between the
PSNR obtained by bilinear patch reconstruction and the PSNR obtained by the simpler
warping with sample shifting process is 0.27108 dB, with a standard deviation of about
0.67228 dB—mainly caused by a few outliers; removing samples more than 3 standard
deviations from the mean results in a new mean of 0.29947 dB with a standard devia-
tion of 0.32645 dB. This is, again, in line with the expectations: warping with sample
shifting does produce worse quality than full bilinear patch reconstruction; but warping
with sample shifting and hole filling “only” approximately doubles the work per warped
point and does an extra pass over the image. Bilinear patch as typically implemented
not only needs to evaluate the warping equation for all w × h pixels, it also has to ras-
terize 2(w− 1)(h− 1) triangles. The combined hole-filling/sample shifting method thus
delivers reasonable quality at far lower computational cost, as intended.

The results also show, however, that the overlapped block motion compensation-based
prediction wins outright most of the time, and is very close to the best warping-based
methods in the cases where it doesn’t. This is especially obvious in the fully interactive
parts (e.g. the right part of figure 2.6b), where the camera moves quite rapidly. As
is clearly visible, the “Warp+shift+expand” method significantly outperforms all other
warping-based methods here, despite being roughly on par with “Warp+shift” or bilinear
patch reconstruction for smooth motions. As the only difference between “Warp+shift”
and “Warp+shift+expand” is changed behavior for pixels where no information is avail-
able from warping, this highlights a fundamental weakness of warping when compared
with motion compensation: there is no sensible default behavior for areas that simply
weren’t visible in the reference frame. While motion compensation still has the option
of simply using a block in the reference image that looks similar (even though the corre-
sponding motion may not be physically plausible), all warping-based methods are forced
to a default behavior of extrapolating—in some way or another—from the information
available. While it is certainly possible to improve on the very simple “expand” tech-
nique, any improved technique that does not store extra information for this purpose
will still be “flying blind”, while motion compensation-based encoders can actively look
for a good match in existing image data—without needing additional motion vectors.
Thus, motion compensation has a fundamental advantage over warping when the camera
angle changes drastically.

In any case, warping does not produce significantly better reference images than
obtainable with simple motion compensation. While any of the methods given can
certainly be improved, no small change is likely to result in a dramatic increase in
quality; in fact, it seems doubtful that it would even be possible to match the quality of
motion compensation when fast camera motions are involved. Since all of the warping-
based methods also have significantly higher computational demands on the decoder
side, designing a warping-based codec is simply not attractive.

Figure 2.7 deals with test sequence 2 and shows similar results: again, the warping-
based methods fail to provide any significant improvement over motion compensation,
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Figure 2.7.: Results obtained with test sequence 2.

and are in fact noticably worse near the beginning. Since test sequences 1 and 2 are
very different in structure, and test sequence 2 was even modified to better match the
expectations of the warping model (specular highlights and reflections disabled, bump
mapping disabled), this provides additional evidence that apparently, there are no big
gains to be expected from using warping for video coding—not for high bitrates anyway,
where the data is dominated by residual coefficients already, and any increase in their
magnitude costs dearly.

2.3.2. Relative cost of disparity data and motion vectors

However, the question of how much storage is needed for disparity information remains;
if this is low compared to the amount of bits spent on motion vectors in a motion
compensation based codec, warping is still interesting for low bitrate applications, where
an increase in computation time is typically tolerable as long as it produces reduced
distortion at the same bit rate.

To investigate this question, I implemented a very basic warping-based video codec.
Intra coding is a simplified version of Dirac; disparity information is stored as a separate
plane, just as luminance and chrominance information. Colors are transformed into the
YCoCg color space for coding, a relatively recent variant on the YCbCr/YUV color
spaces typically used for image/video coding; YCoCg is used because the transforms
RGB ↔ YCoCg are very simple, requiring only integer additions and shifts, and because
it results in better coding gain than other YUV variants for natural images [MS03].

Inter coding uses the same methods, but subtracts the warped version of the previous
(reference) frame from the frame to be coded first. The biorthogonal LeGall 5/3 wavelet
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is used for all frames; Dirac uses the Cohen-Daubechies-Feauveau 9/7 wavelet for intra
coding, which is advantageous since keyframes are typically smoother (the residuals in
inter-coded frames consist mostly of high-frequency components, and smoother lowpass
filters don’t help much; hence the smaller-support and thus faster to evaluate wavelets
are preferred there). Since only one keyframe (the first frame) per sequence is ever
coded for this test, the warping-based coder uses LeGall 5/3 wavelets everywhere for
simplicity.

Simple uniform scalar quantization is used, and the quantization factors are constant
for the whole frame and fixed beforehand (proper rate control and rate/distortion op-
timization would have involved a significant extra amount of work – probably overkill
for this test). The quantized values are then passed to an arithmetic coder, where the
model used is again based on Dirac. Test sequences 1 and 2 are used again; both were
encoded twice with Dirac, with target bit rates of 1500 and 300 kbit/second, respec-
tively. The sequences were also encoded with the simple warping-based video coder
just described, and the quantization settings adjusted to (very) roughly match the size
of the Dirac-encoded files; disparity quantization is set up to minimize the total size
of coded color and disparity information. What is compared is simply the percentage
of “payload” (i.e. non-header etc.) data devoted to coding motion vectors (for Dirac)
or disparity/camera information (for the warping-based coder). The visual quality of
the videos is very different—the warping-based codec produces results much worse than
Dirac—no doubt in large part due to the missing rate control in the warping-based
codec, which results in poor overall bitrate allocation. However, the absolute amount of
bits spent on motion vectors and disparity information grows quite slowly for increasing
bitrates with both codecs; it is assumed that the reported ratios are unlikely to change
significantly with a better rate control strategy. The results are shown in table 2.1.

Test sequence 1 Test sequence 2

Codec 1500kbit/s 300kbit/s 1500kbit/s 300kbit/s

Dirac 9.726% 32.140% 10.219% 26.204%
Warping-based 5.384% 14.990% 3.050% 12.357%

Table 2.1.: Percentage of payload data spent on motion information for Dirac and the
warping-based codec.

.

So, for the given test sequences and under the simplifying assumptions made earlier,
warping does seem to require notably less storage for motion information than motion
compensation does, even taking the bits used for disparity information into account – a
reduction by a factor of more than 1.8 for all the test scenes. These results are to be taken
with a grain of salt, since there were several big assumptions made; however, a proper
evaluation is virtually impossible without implementing a complete warping-based video
codec (including somewhat more complex coding and rate control) and comparing it
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“on equal terms” with a state-of-the art motion compensation based codec. The data
does, at least, provide some hints that such a codec would be feasible, and might even
outperform conventional video codecs in some cases.

In any case, the main result of this section remains that warping is not inherently
superior to motion compensation as a model, not even when perfectly diffuse source
data is used; hence, paying the higher per-pixel cost of warping is probably overkill.
More importantly, a codec based on warping is inherently limited to static 3D scenes,
while motion compensation easily deals with animation. Any codec with such limited
field of application is unlikely to succeed if it only provides an incremental improvement
over existing (and widely implemented) general-purpose solutions.
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3. Improving video compression and
rendering

The previous chapter talked about warping and one specific way to apply it to the
problem of encoding videos of a single camera moving through a static 3D scene. This
chapter will take a step back and look at the “bigger picture” of server-side rendering: to
be feasible in practice, any server-side rendering system must be able to handle a decent
numnber of clients, and do so with predictable (and preferably low) cost in network
bandwidth and CPU/GPU time.

Network bandwidth requirements for a server-side rendering application are necessar-
ily relatively high: even with modest resolutions (e.g. 320 × 240 pixels) and low frame
rates (20 frames/second), video data needs over 200 kbit/second to display high-motion
scenes with acceptable visual quality (and virtually any camera movement results in
a lot of motion, because moving the camera changes the whole frame). Furthermore,
state of the art codecs have to be used, because older ones perform significantly worse
(in terms of resulting distortion) for low-bitrate applications.

Also, rendering several views per frame on the server side (one for every client) is
expensive in terms of CPU/GPU time; having to additionally encode several compressed
streams at the same time adds to the computational load, and video encoding has high
cost all by itself already.

Barring significant improvements in video coding technology, there is little to be done
about the network bandwith requirements of server-side rendering; as section 2.3 has
shown, existing codec technology is already well-suited to the task, and revolutionary
breakthroughs are unlikely. As such, the bandwith requirements are a cost factor that
simply has to be taken into account when evaluating the suitability of server-side ren-
dering to a certain application.

The computational costs are not quite as fixed, however, and it seems worthwhile to
check whether there might be ways to improve cost of both compression and rendering
using the knowledge that the videos in question were generated from flights through
3D scenes. This chapter will focus on compression and one particular way of speeding
up rendering.

3.1. Warping-based motion estimation

The results in section 2.3 show that a direct warping-based codec is unlikely to produce
a significant improvement over already existing methods, and might indeed turn out
much worse depending on the circumstances. Conventional video codecs are well-tuned
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and have widespread hardware and software support; in particular, even some otherwise
very weak devices such as MP3 players can play back videos because they have hardware
decoders.

This section will explore ways of improving conventional video encoding, assuming
that per-pixel depth information and a description of the camera setup is available to
the encoder. Both are readily available in our setting: the camera parameters are passed
as input to the renderer anyway, and rasterizers and raytracers can both easily output
depth information without performing additional work.

The main idea is to improve video compression quality and, possibly, speed by using
warping to determine motion vectors, instead of performing conventional motion esti-
mation. The video format used for comparision is H.264 [ITU05], because it is both an
ISO and ITU standard and quite popular in applications.

H.264 allows having more than one motion vector per macroblock: the 16× 16 pixel
blocks can be subdivided further, down to sixteen blocks of 4 × 4 pixels each if neces-
sary. The resulting sub-blocks are called partitions. The optimal partitioning for each
macroblock is determined during encoding. Instead of performing the default motion
search procedure, the midpoint of each partition is warped to obtain the corresponding
point in the reference image.1 The difference between the position of the midpoint in the
destination image and the position in the reference image is used as the motion vector;
since warping typically results in fractional coordinates anyway, this motion vector can
be determined with subpixel precision.

The per-partition cost of this procedure is quite low: one evaluation of the warping
equation (11 multiplies, 9 additions, 1 division), two floating point to integer conversions,
and two integer subtractions to turn the reference frame coordinates into motion vectors
relative to the destination block midpoint.

Using the obtained motion vectors directly is possible, but it still makes sense to
give the encoder a little more freedom: using a motion vector that is off by some sub-
pixels may reduce blurring, use less bits with no significant quality difference, or be
otherwise beneficial. Thus it still makes sense to try a few motion vectors in the direct
neighborhood of the calculated motion vector, and pick the best one.

To do this efficiently, a very simple trick is used: care is taken to make sure that
rounding errors made when converting the fractional motion vectors to integers are
one-sided. This is done by always rounding downwards. The obtained motion vector
(mx,my) will thus tend to be slightly too small in both components. The code then
tries all four members of the set {(mx + i, my + j) | i, j ∈ {0, 1}} as candidate motion
vectors, and the best one is used. This requires less than half as many tests as the
more obvious procedure of rounding motion vectors towards the closest integer and then
trying candidate motion vectors of the form {(mx + i,my + j) | i, j ∈ {−1, 0, 1}}, but
results in very similar quality.

1There might not be such a point, if the 3D position of the destination point is in front of the reference
camera’s near plane; in that case, the fallback solution is to perform the regular motion search
procedure on that partition.
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It is still possible to perform regular subpixel refinement (like one would do with
motion vectors obtained from a direct search procedure) on the resulting motion vectors;
just as with normal motion estimation, this increases quality by allowing the codec to
make a better rate/distortion tradeoff, at the expense of increased runtime. But even
without subpixel refinement, the obtained motion vectors have good quality.

3.1.1. Implementation

I implemented the method as described above by modifying x264 [AM+07], an open-
source H.264 codec library that also performs quite well in H.264 encoder comparisions.
I also modified the supplied standalone encoder application to make the warping-based
motion estimation procedure available using a commandline option. The changes fall
into several categories; I will describe each of them in turn.

Support for per-pixel depth data and camera setup information in x264

To use warping-based motion estimation, camera and per-pixel depth information has
to be available to the motion estimation code. x264 does not normally deal with such
data, so support for it had to be added in the relevant places.

The application supplies images to the codec by passing it a x264_picture_t struc-
ture. Its definition was updated to include a description of the camera position and
parameters (described by the x264_camera_t structure), and by adding a pointer to
per-pixel depth information to x264_image_t, which contains a description of the ac-
tual image data.

Once images have been submitted to the encoder, they become frames in the video
sequence and are described using x264_frame_t; support for camera and depth informa-
tion had to be added here as well. Finally, the functions that allocate pictures, convert
pictures to frames or allocate, copy, and free frames had to be updated to handle the
new fields correctly.

Reading depth image sequences

To get depth image sequences into the encoder in the first place, a custom file format
was necessary, because none of the standard video formats support per-pixel depth data
(or any non-color data, for that matter). I used the dvid format, which was developed
earlier to export image sequences from the SCARPED renderer.2 The format consists
of a short header which describes the width and height of individual images as well as
the frame rate, followed by the raw data for every frame: 24 bit RGB color data for
each pixel, followed by 16 bit depth data for each pixel, followed by a description of the
camera setup.

A dvid reader was added to the command-line encoder to work with these depth image
sequences. The codec expects data to be submitted as subsampled YCbCr color data;
the conversion from RGB is performed on the fly, and the resulting pictures (including
camera description and per-pixel depth data) are submitted to the encoder.

2Specifically, the test sequences in section 2.3 were recorded this way.
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Adding warping-based motion estimation
Warping has two main components: calculation of the warping matrix and evaluation of
the warping equation. The computation of the warping matrix only has to be performed
once per frame, or more precisely, once for every pair of reference and destination frame.
I added the module me_warping.[ch] to x264, which encapsulates the warping details.
The function x264_pointwarp_init computes the warping matrix for a given pair of
frames; it is called from x264_reference_build_list, where the list of reference frames
for a given target frame is determined.

The warping equation is evaluated by the function x264_pointwarp_block: it deter-
mines the motion vector for a given partition (which is described by the x, y coordinates
of its top-left pixel and its width and height) by warping the midpoint, as described in
section 3.1. It is called from x264_me_search_ref, the main motion estimation func-
tion in x264, when warping-based motion estimation is enabled. If the warping process
yields a motion vector,3 its cost and that of other “close” motion vectors are computed,
again as described in section 3.1—the cost function is a weighted sum of the number
of bits required to encode a motion vector and a vector norm of the difference between
the reference block and the block to be coded. H.264 predicts the motion vector for
each partition from the motion vectors in adjacent partitions that have already been
coded; this predicted motion vector and the null motion vector are cheaper to encode
than regular motion vectors, so their cost is also evaluated. The overall best motion
vector is used.

If the warping process was not successful, normal motion search is performed as a
fallback solution; this only occurs very rarely in practice, however. Finally, additional
subpixel refinement of the obtained motion vectors can be performed, if desired. This
improves quality but comes at an extra expense in CPU time.

Rate control issues
Prior to actually encoding each block, x264 makes a first pass over a subsampled version
of the input frame to estimate the amount of motion and the magnitude of residual data.
This is used to decide which frame type to use (for example, after a scene change, an
I-frame is typically cheaper than a P-frame) and to determine the quantization factors
for different blocks in the image so that the target bitrate is met.

Since the rate control pass works with a subsampled version of the image, it is neces-
sary for the warping-based motion estimation code to know when it is being called from
the rate control code: Input coordinates have to be scaled to access the corresponding
pixel in the disparity image, and the resulting motion vectors have to be divided by the
subsampling factor. If this is not done properly, the actual cost of each frame will be
quite far from the estimated one; this causes, among other things, large frame-by-frame
variations in bitrate (when a frame does not use its allocated budget, the next few frames
will be given correspondingly more or less bits), and a notable decrease in visual quality,
because the assignment of quantization factors uses incorrect motion information.

3As mentioned beforehand, warping may result in a point that is in front of the reference camera near
plane; such points do not result in meaningful motion vectors.
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Codec interface
Since the warping-based motion estimation code still may fall back to a conventional
motion estimation procedure,4 the use of the warping-based code is controlled by a
binary flag, instead of adding it as an alternative motion estimation method. Thus, even
when the user chooses to enable warping-based motion estimation, it is still possible to
select the fallback motion estimation method separately. The modified command-line
encoder enables the warping-based code when the command line option --warpme is
given; all other motion estimation options (like the choice of ME method, or the quality
of subpixel refinement if desired) can be controlled independently.

3.1.2. Results

The modified version of x264 was tested on several different sequences and with differ-
ent encoder parameters (target bitrate, number of reference frames per target frame,
and accuracy of subpixel motion estimation) to evaluate the efficiency of the proposed
warping-based motion estimation process.

The test procedure is as follows: First, the input sequence is read once in full, to
make sure it is in the filesystem cache so that I/O bandwidth does not affect the results.
Then, the encoder application is run with the specified settings, encoding from the input
file to the null device. After completion, several statistics about the encoded sequence
are output, including objective quality metrics and the speed of encoding as measured
in encoded frames per second. To account for random variations due to background
processes, each run is repeated three times, and the median speed is used. The quality
of the encoded sequence is measured both using the PSNR of the luminance channel,
defined on page 31, and the structural similarity index (SSIM) between the luminance
images. The latter is introduced in [WBSS04] and tries to take perceptual effects of
the human visual system into account to produce an objective quality metric that has
a stronger correlation to perceived similarity than the mean square error (MSE) and
derived metrics such as the PSNR do. SSIM indices range between 0 and 1, where 0
would indicate that the two images are completely uncorrelated, while 1 means that
they are identical.

All tests are run on a notebook with an Intel Core2Duo T7500 processor (clocked
at 2.2 GHz) and 3 GB of RAM. In addition to the variable parameters, the encoder is
always run using the --threads 2, --partitions all and -b 0 commandline options:
the first one to make use of the dual-core processor, the second to enable all partition
types (by default, lesser-used partition types are not considered) and the last one disables
B-frames, since using them actually decreased overall quality in these tests.5

“Terrain” sequence
The first test sequence, “terrain”, is the same as test sequence 1 in section 2.3 (cf.
page 31). The test scene is a 3D model of Munich; the geometry for individual houses

4This is very rare in practice, and doesn’t occur at all with most of the sequences tested below.
5They generally improve quality when two-pass encoding can be used.
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is quite simple (mostly extruded 2D paths), but since there is often a large number
of houses visible at the same time, the overall amount of geometric detail visible in a
typical frame is relatively high. The camera motion is a mixture of user interaction and
computer-generated smooth flights between different points of interest.

Results are shown in table 3.1. “Bitrate” is the target bitrate passes to the encoder,
“Ref” is the number of reference frames to use (higher numbers improve quality but
cost extra CPU time), “WarpME” indicates whether warping-based motion estimation
was used or not and “SubME level” selects the quality of subpixel motion estimation:
1 disables it altogether, 2 performs a few subpixel refinement iterations, and successive
levels add a higher number (and better accuracy) of refinement steps, up to 5 which is the
default. Levels 6 and 7 perform full rate-distortion optimization instead of minimizing
the heuristic cost function; this improves quality but significantly increases CPU usage
and is probably impractical for real-time encoding. The columns “SSIM-Y”, “PSNR-Y”
and “Frames/s” report the results obtained with the given parameter set.

A first surprise is that turning on warping-based motion estimation, all other param-
eters being equal, does not improve speed. Further experimentation revealed that the
difference is caused by evaluating the warping equation: This cost is nearly constant
and paid for every partition, whereas the normal motion estimation search patterns use
predicted motion vectors and early-outs to minimize average-case runtime. The actual
time spent computing the cost for candidate motion vectors is very similar in both cases,
but the warping-based method has higher overhead because the warping equation needs
to be evaluated.

However, warping-based motion estimation does produce a notable improvement in
PSNR in all tests, and in SSIM for all but the 300 kbit/s tests. In fact, for all tests,
enabling WarpME yields better results (in terms of PSNR) than those produced without
warping and using the next higher listed level of subpixel refinement. SSIM results are
not quite as spectacular, but enabling warping still produces significant improvements
with bitrates of 500 and 1000 kbit/s: while not surpassing the SSIM indices obtained
using the “next higher level” of subpixel refinement, they are nevertheless quite close.

These results are very consistent over the quite large range of different parameters
given, indicating that warping results in either notably improved quality for very little
extra CPU time, or matches a given target quality with substantially lower CPU cost—
for this test sequence, at least.

“Fairy” sequence

The second test sequence, “fairy”, corresponds to test sequence 2 in section 2.3. It shows
a model of a fairy in front of a forest backdrop (which includes modelled mushrooms,
grass, and trees). There are large variations in the size of geometric features: for ex-
ample, individual grass blades are represented as geometry. The camera plays back a
motion along a spline that was created in a 3D modelling application.

Corresponding results are shown in table 3.2. Only the results when using one ref-
erence frame are reported in the following; in all of the sequences, and both with and
without warping, using multiple reference frames results in better quality at the cost
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3.1. Warping-based motion estimation

Settings Results

Bitrate Ref WarpME SubME SSIM-Y PSNR-Y Frames/s
(kbit/s) level (dB)

300 1 no 1 0.7949808 26.140 133.34
300 1 yes 1 0.7918640 26.480 131.01
300 1 no 2 0.8017598 26.307 112.31
300 1 yes 2 0.7955168 26.589 111.13
300 1 no 5 0.8116736 26.586 78.73
300 1 yes 5 0.8098858 26.877 79.33
300 3 no 1 0.7926901 26.103 125.71
300 3 yes 1 0.7921847 26.485 119.71
300 3 no 2 0.8003088 26.308 103.90
300 3 yes 2 0.7942310 26.597 100.91
300 3 no 5 0.8111303 26.592 69.39
300 3 yes 5 0.8099403 26.898 68.85

500 1 no 1 0.8570027 27.950 126.00
500 1 yes 1 0.8629337 28.630 123.35
500 1 no 2 0.8638736 28.196 104.71
500 1 yes 2 0.8671046 28.783 101.88
500 1 no 5 0.8708137 28.466 70.60
500 1 yes 5 0.8728295 28.982 70.13
500 3 no 1 0.8553014 27.914 119.17
500 3 yes 1 0.8630835 28.655 111.13
500 3 no 2 0.8636627 28.218 95.59
500 3 yes 2 0.8671956 28.816 90.03
500 3 no 5 0.8714704 28.512 62.85
500 3 yes 5 0.8736568 29.044 61.24

1000 1 no 1 0.9221869 30.991 115.77
1000 1 yes 1 0.9269663 31.948 109.73
1000 1 no 2 0.9272521 31.292 92.73
1000 1 yes 2 0.9300071 32.137 88.09
1000 1 no 5 0.9308854 31.571 61.11
1000 1 yes 5 0.9323950 32.299 60.47
1000 3 no 1 0.9213025 30.956 108.83
1000 3 yes 1 0.9277248 32.011 100.33
1000 3 no 2 0.9277198 31.341 86.78
1000 3 yes 2 0.9310868 32.219 80.54
1000 3 no 5 0.9318547 31.658 55.56
1000 3 yes 5 0.9334796 32.395 54.70

Table 3.1.: Encoding results for the “terrain” sequence.
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Settings Results

Bitrate Ref WarpME SubME SSIM-Y PSNR-Y Frames/s
(kbit/s) level (dB)

300 1 no 1 0.8544471 31.999 146.94
300 1 yes 1 0.8543651 31.967 147.32
300 1 no 2 0.8593798 32.159 126.32
300 1 yes 2 0.8589095 32.119 127.15
300 1 no 5 0.8695813 32.459 89.44
300 1 yes 5 0.8686421 32.387 90.57

500 1 no 1 0.8924078 33.747 136.82
500 1 yes 1 0.8927671 33.723 135.22
500 1 no 2 0.8974561 33.973 114.52
500 1 yes 2 0.8974329 33.935 114.97
500 1 no 5 0.9040100 34.256 79.45
500 1 yes 5 0.9029872 34.184 80.11

1000 1 no 1 0.9377240 36.744 120.76
1000 1 yes 1 0.9378214 36.714 120.50
1000 1 no 2 0.9419348 37.056 98.47
1000 1 yes 2 0.9414331 36.991 97.96
1000 1 no 5 0.9457670 37.369 66.44
1000 1 yes 5 0.9449789 37.291 66.36

Table 3.2.: Encoding results for the “fairy” sequence.

of slightly higher encoding time, and the behavior of warping-based motion estimation
was very similar between one-reference-frame and multiple-reference-frame tests. For
the curious, the full results are available in appendix B.

The numbers themselves are quite different than those obtained using the “terrain”
sequence. Here, warping is actually slightly faster in a large number of cases, but
produces slightly worse results in general, though the difference is small: always lower
than 0.075 dB for the PSNR ratings—contrast with the consistent improvement of over
0.25 dB for all tests run on the terrain dataset, with warping producing a gain exceeding
0.9dB several times for the higher bitrates. The SSIM indices are, similarly, quite close.
So while the warping-based motion estimation yields no improvement for this scene, it
does not make the results significantly worse, either. In general, the camera motions
in this test sequence are quite smooth and slow, which benefits conventional motion
estimation, since a search procedure is likely to find good motion vectors quickly.

“Interactive fairy” sequence
To test whether this indeed makes a difference, the same scene was rendered using a
different camera motion, this time recorded from an interactive session. As a result, mo-
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3.1. Warping-based motion estimation

Settings Results

Bitrate Ref WarpME SubME SSIM-Y PSNR-Y Frames/s
(kbit/s) level (dB)

300 1 no 1 0.8940561 34.118 144.35
300 1 yes 1 0.8976926 34.656 141.18
300 1 no 2 0.8983479 34.358 127.15
300 1 yes 2 0.9011825 34.860 123.34
300 1 no 5 0.9061646 34.734 90.42
300 1 yes 5 0.9133149 35.303 89.16

500 1 no 1 0.9310123 36.642 133.95
500 1 yes 1 0.9349554 37.420 130.61
500 1 no 2 0.9352065 36.969 115.65
500 1 yes 2 0.9385026 37.715 112.50
500 1 no 5 0.9401657 37.339 80.00
500 1 yes 5 0.9448482 38.109 79.23

1000 1 no 1 0.9685249 40.839 119.25
1000 1 yes 1 0.9703983 41.906 115.21
1000 1 no 2 0.9713022 41.251 101.78
1000 1 yes 2 0.9723293 42.198 96.32
1000 1 no 5 0.9731321 41.572 68.17
1000 1 yes 5 0.9744583 42.550 67.68

Table 3.3.: Encoding results for the “interactive fairy” sequence.

tions are jerkier in general, and include short burts of very high-motion frames whenever
the viewer “looks around”, turning the camera rapidly in the process. Rendering a video
with the new camera path resulted in the “interactive fairy” sequence. Results are shown
in table 3.3.

Here, observations are similar to what was already described for the “terrain” se-
quence: warping-based motion estimation delivers a notable gain in both PSNR and
SSIM for all tests, requiring very modest amounts of extra CPU time to do so—far less
than the cost of better motion estimation methods. This seems to confirm the conjecture
that warping improves on conventional motion estimation mainly by determining fast
motions accurately; for slow motions (in the single-pixel or subpixel range), a search-
based procedure has a good chance to find local rate-distortion minima, while warping
always results in a motion vector close to the “correct” one, which may not be optimal
in rate-distortion terms.

“CS Italy” sequence
To confirm this theory, another interactive test sequence is tested. This fourth and
last test sequence, “cs italy”, uses the map of the same name from the game Coun-
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Settings Results

Bitrate Ref WarpME SubME SSIM-Y PSNR-Y Frames/s
(kbit/s) level (dB)

300 1 no 1 0.6353905 25.557 131.20
300 1 yes 1 0.6679018 26.709 129.44
300 1 no 2 0.6397960 25.668 113.39
300 1 yes 2 0.6722945 26.828 112.71
300 1 no 5 0.6493255 25.838 81.71
300 1 yes 5 0.6833704 27.024 81.24

500 1 no 1 0.7036136 26.687 120.24
500 1 yes 1 0.7314405 27.981 119.74
500 1 no 2 0.7087490 26.836 102.31
500 1 yes 2 0.7372080 28.129 100.52
500 1 no 5 0.7161530 26.995 72.09
500 1 yes 5 0.7444381 28.296 72.18

1000 1 no 1 0.7982175 28.812 106.67
1000 1 yes 1 0.8173899 30.186 105.68
1000 1 no 2 0.8038153 28.988 88.75
1000 1 yes 2 0.8229522 30.386 87.41
1000 1 no 5 0.8115458 29.204 60.63
1000 1 yes 5 0.8285797 30.566 60.00

Table 3.4.: Encoding results for the “cs italy” sequence.

ter-Strike as its 3D scene (it was kindly converted to the Wavefront .obj format by
Christopher Schwartz). Due to limitations of the raytracer used, the included diffuse
light maps were not used—resulting in lower visual quality, but not making a substantial
difference for video coding, since lighting is still completely diffuse and the lightmaps only
contribute quite low-frequency information. The scene has some amount of variation in
geometric scale—including houses, a marketplace, with the merchandise of individual
stands represented as 3D geometry—but less so than the “fairy” scene does. The camera
path was obtained from an interactive session by taking a 30-second long segment from
the middle.

Results for this scene are shown in table 3.4. Here, warping significantly improves
quality in all cases, both as measured by PSNR (with an increase exceeding 1 dB in
all cases) and the structural similarity index. In particular, the results obtained using
warping without subpixel refinement are significantly better than those obtained without
warping and level 5 subpixel refinement, even though the former runs faster by a factor
of 1.68 on average (geometric mean over all the tests, including some only shown in
appendix B).
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A similar comparison is done for the interactive sequences in table 3.5. It shows
the SSIM index and speed obtained using warping without subpixel refinement; this is
compared with the level of subpixel refinement that achieves the closest match in SSIM
when warping-based motion estimation is disabled. “Speedup” is the ratio between the
two encoding frame rates. As can be clearly seen, warping provides a notable speedup
for the interactive scenes in all but one case.6 The bitrate used was appended to the
sequence names.

Without warping Warping (SubME=1)

Sequence SubME SSIM-Y Frames/s SSIM-Y Frames/s Speedup

Terrain–300 1 0.7949808 133.34 0.7918640 131.01 0.9825
Terrain–500 2 0.8638736 112.31 0.8629337 123.35 1.0983
Int. Fairy–300 2 0.8983479 127.15 0.8976926 141.18 1.1103
Int. Fairy–500 2 0.9352065 115.65 0.9349554 130.61 1.1294
CS Italy–300 6 0.6541142 67.84 0.6679018 129.44 1.9080
CS Italy–500 6 0.7191762 58.36 0.7314405 119.74 2.0517

Table 3.5.: Time spent to reach a given SSIM index with and without warping.

3.1.3. Conclusions

The results reported in this section show that the modified x264 encoder using warping-
based motion estimation is slightly worse than conventional motion estimation for scenes
with a relatively low amount of motion, but provides significantly increased quality for
sequences interactively rendered from user input, which is the the typical use case in a
client-server setting using server-side rendering. This increased quality is attractive to
the user, but the main advantage in practice is probably that the same level of quality can
be delivered to the user at lower bit rates (and thus, saving on network bandwidth costs).
This notable increase in quality or, equivalently, compression performance is achieved
at very low cost in terms of CPU time, and can be accomplished using comperatively
simple modifications to the video encoder.

3.2. Accelerated rendering using warping and related methods

However, the problem of rendering video streams for several clients on a server remains:
one would like for one server to be able to process as many clients as possible at the
same time, to minimize the number of servers necessary—an important cost factor for
a server-side rendering system.

6The increase in PSNR due to warping is way more pronounced than the increase in SSIM; a comparison
based on PSNR values yields far higher speedup values, but since SSIM has higher correlation with
perceived image quality, it was used instead.
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3. Improving video compression and rendering

An obvious approach is to use warping on the server side, and only call the renderer
to fill the “missing pixels”. The idea is not new, and several such approaches were
reviewed in section 1.3. Such a system can only help if three conditions are met: first,
the renderer must be able to efficiently return results for individual pixels. This is
the case for raytracers, but not for rasterizers. Second, the scenes have to be suitable
for warping—in particular, this means they have to be static and only contain diffuse
objects. Third, the combined cost of warping and rendering the missing pixels must be
lower than the cost of rendering a complete image (in the average case at least), or such
a system will end up costing time instead of saving it. For the following, it is assumed
that these criteria are met.

Warping also introduces some new problems of its own: as mentioned earlier, in an
interactive system, it is quite common for the user to rotate the camera rapidly to orient
himself. Imagine a user “looking to the left”: the camera will first turn leftwards, so
that little of the original frame will be visible after a few frames: most of the image
has to be generated by the renderer. When the camera returns to its original heading,
the same thing happens in reverse, even though the final camera position is the exact
same as just a few frames earlier, before the user “turned his head”. This situation can
be improved by using multiple reference frames or by rendering reference images with a
higher field of view than the actual viewer camera uses [Mar99]. Both of those methods
result in increased costs, however: the first one performs several warps for each frame,
multiplying costs in the process, while the second one results in more time spent doing
both rendering and warping, since the reference images are bigger. Even worse is that,
when using warping to generate each new frame from the previous one, large parts of
the image end up being repeatedly warped and reconstructed, accumulating resampling
errors on the way, which causes very blurry results over time. Finally, high-performance
hardware rasterizers are readily available, and hardware raytracers are at least an active
research area; warping, on the other hand, has to be implemented as software. While it
is possible to accelerate warping using a GPU (for example by evaluating the warping
equation in a vertex shader and performing bilinear patch reconstruction by rendering
quadriliterals), doing so does not use the hardware very efficiently and can end up being
more expensive than rendering the original scene.

A more robust approach, the Render Cache, is described by Walter, Drettakis, and
Parker in [WDP99]. The main idea is to record the ray hit points, including color, as a
point cloud. This point cloud is then rendered using z-Buffering and a relatively simple
2D reconstruction filter. This involves somewhat more work than warping does, because
each point has to be reprojected independently whereas the warping equation can be
computed incrementally, but has the big advantage that there is no gradual quality
degradation when samples get reused over the course of multiple frames. Also, the size
of the point cloud is independent of the image resolution—using a bigger cloud results in
a larger amount of work per frame, but also allows more than one full-resolution depth
image’s worth of data to be kept for several frames. This helps in the “looking to the
left” case and similar scenarios where the user performs rapid camera movements for a
short while.
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In addition to position and color data, an “age” value is kept for all points, and
incremented with each frame. During rendering, the age values are written to a separate
image. New samples are requested for areas for which there are only relatively old points,
or no points at all; the newly rendered points replace the oldest ones in the point cloud.
If a new point has a very different color from all older points in the neighborhood, the
older points are aged even further; this ensures that areas showing reflections, refractions
and specular highlights get updated regularly.

In [WDG02], Walter, Drettakis and Greenberg suggest several modifications to the
basic Render Cache algorithm, including predictive sampling (predicting future camera
motions by extrapolation and requesting samples ahead of time), a tiled z-buffer to
improve cache efficiency, an implementation using SIMD opcodes, and a new prefilter
with a large kernel in the reconstruction stage that is used to close bigger gaps. They
also provide the source code of their render cache implementation under a GPL license.

This code was integrated with the raytracer used to render the “fairy” and “cs italy”
test sequences in the previous section. Using the render cache, the raytracer, which
originally took about 1.7 seconds to render a single frame on the test machine, becomes
suitable for interactive use, and the quality (given the resulting frame rate) is fully
acceptable. However, especially after fast motions, there are gaps in the rendered image
for a while as long as there are not enough samples available for the newly visible regions.
Since the resulting image in these regions is unrelated to what is actually there, there is
no point in spending many bits on such regions when transmitting a video stream; they
are likely to be replaced soon anyway. This idea will be explored in the next section.

3.2.1. Per-block confidence information

During rendering, the render cache keeps track of where samples fall—it is required
for the reconstruction filter. This also makes it possible to determine, for any given
2D region on the screen, how many points fell inside it, which is a measure of the
“reliability” of the color values in that region. Areas with a high density of sample
points are more likely to give an accurate image of the scene.

To make use of this information, for every 4× 4 pixel block in the destination image
the number of pixels having at least one source point projecting onto them is recorded.
This information can then be passed to the video encoder to influence rate control: fewer
bits should be allocated to areas with low sample density and hence lower confidence.

For the implementation, the dvid format was modified to support this additional
per-block confidence information, and the x264 encoder was further modified to make
sure this information is available to the actual encoding functions—in particular, the
x264_image_t and x264_frame_t structures and related functions were updated accord-
ingly. The only other function changed was x264_slicetype_mb_cost, which estimates
the magnitude of residuals in a given macroblock and is used by the rate control code
to set quantization factors: the encoder always spends bits on areas with high error
first, since that’s where improved quality is most visible. By lowering the reported cost,
areas can be “masked out” from consideration for a while. The modified code works
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as follows: first, the number n of samples covering the (16 × 16 pixel) macroblock is
computed from the counts for the 4× 4 pixel blocks. The cost of the macroblock is then
multiplied by 1

2(1+n/256), so that the reported distortion for a block with no recorded
samples in it is half of what it would be if the block was fully populated; the weighting
formula was found by experimentation. This simple linear approach yielded the overall
best results, although they were still not good. Quality was measured using a weighted
PSNR, where the squared differences are multiplied by the importance rating for the
block they fall into; this was done so that (potentially) bigger errors in the regions with
low confidence rating did not influence the overall results too much.

Sequence PBConf wPSNR (dB) Frames/s

Int. Fairy–300 no 35.719 151.35
Int. Fairy–300 yes 35.676 151.35
Int. Fairy–500 no 38.019 141.69
Int. Fairy–500 yes 38.029 141.69

CS Italy–300 no 29.347 138.84
CS Italy–300 yes 29.309 139.16
CS Italy–500 no 31.004 128.77
CS Italy–500 yes 30.996 128.90

Table 3.6.: Results when using per-block confidence information on the “interactive
fairy” and “cs italy” sequences.

Results using variants of the “interactive fairy” and “cs italy” sequences that were
written in realtime using the render cache are shown in table 3.6 (the terrain sequence
was not rendered using a raytracer, and hence cannot use the render cache). “PBConf”
indicates whether the per-block confidence rating was used to influence rate control,
and “wPSNR” is the weighted PSNR. As can be seen, using the confidence information
does not result in an appreciable change in runtime and results in worse quality, even
as measured by the weighted PSNR metric.

Another attempt used the confidence information to force x264 to skip encoding blocks
where overall confidence was low; this, while increasing encoding speed slightly, resulted
in a precipitous in objective quality, with a loss of on average 0.7 dB PSNR when very
low-confidence blocks were skipped (with less than 16 out of 256 pixels being obtained
from actual samples); hence, this strategy was abandoned.

Overall, it seems like there is not much to be gained by using the confidence rating
during the encoding process; the reported results were the best I was able to achieve
during about a week of experimentation. Very low-confidence blocks are relatively rare
in any case; the render cache does a quite good job of filling holes within a few frames.
Since the framebuffer for holes is not cleared, but just left as it was in the previous
frame, the codec is able to efficiently encode such blocks without further assistance.
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3.2.2. Relevance to server-side rendering

While the render cache works well as a “drop in” library to make relatively slow ray-
tracers suitable for interactive use, it cannot easily make use of rendering work done for
other clients—while it can easily fill holes using information from another point cloud
corresponding to a different viewer, doing so increases the amount of work the render
cache has to do considerably, analogous to multiple reference images for warping. As
a result, such a system quickly reaches a point of diminishing returns: processing the
additional points costs more time than would be spent on rendering them. Warping, the
render cache or similar methods may be useful when an individual renderer is otherwise
too slow to deliver frames at interactive rates, but there are no substantial gains to be
expected from sharing the rendered pixels between several clients; the overhead is just
too large.

This is, mainly, because such techniques work at the very low level of pixels and rays,
which seems to be the wrong scale to look for coherencies and correspondencies between
multiple viewers; a better strategy to exploit such coherencies is probably by working
on a higher level while leaving the actual rendering infrastructure untouched.
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Conclusions and future work

Chapter 2 considered warping for video coding, but section 2.3.1 showed quite conclu-
sively that warping is not inherently superior from a prediction standpoint, not even
with perfect reference data; quite the opposite, the motion compensation-based method
had overall better prediction performance. Hence warping is probably not attractive for
medium to high bitrate applications; however, the results in section 2.3.2 seem to indi-
cate that warping might prove to be advantageous when low bitrates are targeted, since
the relative cost of encoding disparity data is significantly lower than the cost of motion
vectors. Because of the relatively high computational cost of warping (compared with
conventional video coders) and the quite low expected gains, this line of inquiry was
not continued in this thesis; however, for applications where the inherent assumptions
of warping hold and the cost of data transmission is very high, development of a full
warping-based video codec could pay off.

The warping-based motion estimation described in section 3.1 is quite simple to imple-
ment and showed significant quality gains on video sequences recorded from interactive
usage, at a very small cost in performance—or, equivalently, reached a given target
quality much faster than when using normal motion estimation. There is little reason
not to try it when producing data for a video stream from a 3D renderer; the results
suggest that submitting “hint” motion vectors to a video encoder could be a promising
approach in general, if the application has such motion information available.

In contrast, the techniques described in 3.2 do not fare so well; using warping to accel-
erate rendering has too many problems and limitations to be a real option in practice,
and while the render cache is overall more robust, it still works exclusively with raytrac-
ers and has no obvious way to benefit from coherence between multiple viewers without
sacrificing additional performance per viewer. Overall, it just seems more practical to
use existing optimized rendering hardware for a server-side rendering system.

Doing so efficiently is probably the most fundamental problem to be solved for server-
side rendering. As in any client-server system, the server side is trivial to parallelize and
can hide latencies when rendering the view for one client by processing other clients in
the meantime; however, having to render a video stream for each client at a consistent
framerate means that the renderers have to meet soft realtime requirements. Also,
rendering even a single view can require a relatively large amount of geometry and
texture data; clients should be assigned to servers in a way that maximizes reuse of such
data between the several clients that are processed on a single server, or otherwise the
amount of available (video) memory could limit the maximum number of clients more
seriously than the amount of available CPU time does. All this makes the problems of
work dispatch and load balancing a lot more difficult than they would be for e.g. normal
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web servers; an efficient solution would be a large step towards practical server-side
rendering.

Finally, a big problem that wasn’t considered in this thesis is network latency: even
with broadband connections, round-trip times between a client and the render server
can be expected to be above 30 ms when communicating over the internet. Considering
rendering and encoding time, it is likely that there will be a delay of over a tenth of a
second between user input that causes the camera to move and the corresponding visual
feedback. The reason for avoiding the topic is that little can be done about latency on
the software level, except trying to avoid introducing unnecessary additional sources of
delay. Still, the high latency has a notable impact on the user experience, and poses a
significant problem in terms of user interface design.
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A. Source code

The provided source code is not for one single program; rather, there are different tools
and libraries, each of which implements at least one of the techniques mentioned. The
different directories on the included DVD contain (in alphabetical order):

altona is an application framework by Dierk Ohlerich and others that was used to
develop most of the supplied programs.

depthvid/compress is a library that implements a very basic wavelet- and warping-
based video codec that is briefly described in section 2.3.

depthvid/depthvid is the basic warping library; it implements the image classes, the
warping algorithm described in section 2.2 in warping.cpp, warping with bilinear
patch reconstruction (for comparision) in altwarping.cpp.

depthvid/dvid2avi converts .dvid files to .avi files that can be played with nearly all
media players (for previewing and as input to normal video codecs).

depthvid/encode eval is a Python script used to obtain the video encoding results
reported in section 3.1.2 and appendix B.

depthvid/ext contains the IJG JPEG library.

depthvid/model eval is a small tool used to perform the quality evaluation of various
prediction models; details are in section 2.3. It uses hardcoded filenames, since it
was only ever used for one purpose.

depthvid/raytrace contains GRTLib (a raytracer), the RenderCache libraries, and the
implementation of an interactive viewer using the raytracer to render and the
warping/render cache techniques to display at interactive rates even though the
original renderer cannot. It is described in section 3.2.

depthvid/warpapp provides a frontend to test the warping algorithms described in chap-
ter 2. It has a graphical user interface and should be self-explanatory.

depthvid/x264 mod is the modified x264 encoder that supports warping-based motion
estimation as described in chapter 3 and per-block confidence rating information
as described in section 3.2.1.

depthvid/yuvview is a viewer for raw .yuv files as used by the Dirac and x264 encoders.
It has a user interface similar to “warpapp”.
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pdf contains this document in .pdf format.

srcdata contains the various test sequences as .dvid files.

A.1. Build process

All code (except the encode eval script) was written in C++ using the Microsoft Visual
C++ 2005 compiler. The directory raytrace includes project and solution files that can
be used directly from the IDE; the other (Altona-based) projects use a special system
that generates them from a textual description (the files with .mp.txt extension). The
altona and depthvid directories should be copied to a folder on a writeable disk, e.g.
“c:\code”; then, the makeproject utility (included in the altona/bin directory) should
be run with the command line makeproject -w -r c:\code; this generates project and
solution files for everything.

Various libraries are used, but nothing exotic: the Altona programs require the Di-
rectX 9 SDK, raytrace uses Qt 4.2, and x264 mod requires pthreads win32 for multi-
threading support.
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B. Complete results for warping-based
motion estimation

The results given in section 3.1.2 for the “fairy”, “interactive fairy” and “cs italy” se-
quences are summarized to reduce clutter; in particular, the results obtained with multi-
ple reference frames have been deleted, since they do not add any significant information
to the discussion. Nevertheless, the full results of the experiments are reported on the
following pages for the sake of completeness.
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B. Complete results for warping-based motion estimation

Settings Results

Bitrate Ref WarpME SubME SSIM-Y PSNR-Y Frames/s
(kbit/s) level (dB)

300 1 no 1 0.8544471 31.999 146.94
300 1 yes 1 0.8543651 31.967 147.32
300 1 no 2 0.8593798 32.159 126.32
300 1 yes 2 0.8589095 32.119 127.15
300 1 no 5 0.8695813 32.459 89.44
300 1 yes 5 0.8686421 32.387 90.57
300 3 no 1 0.8611278 32.396 138.46
300 3 yes 1 0.8615861 32.377 133.02
300 3 no 2 0.8670841 32.616 116.84
300 3 yes 2 0.8671025 32.596 114.97
300 3 no 5 0.8750907 32.871 77.94
300 3 yes 5 0.8743009 32.826 78.36

500 1 no 1 0.8924078 33.747 136.82
500 1 yes 1 0.8927671 33.723 135.22
500 1 no 2 0.8974561 33.973 114.52
500 1 yes 2 0.8974329 33.935 114.97
500 1 no 5 0.9040100 34.256 79.45
500 1 yes 5 0.9029872 34.184 80.11
500 3 no 1 0.8992227 34.236 127.15
500 3 yes 1 0.9003598 34.255 123.34
500 3 no 2 0.9054001 34.541 105.50
500 3 yes 2 0.9055953 34.532 102.86
500 3 no 5 0.9104389 34.798 69.56
500 3 yes 5 0.9101451 34.765 69.32

1000 1 no 1 0.9377240 36.744 120.76
1000 1 yes 1 0.9378214 36.714 120.50
1000 1 no 2 0.9419348 37.056 98.47
1000 1 yes 2 0.9414331 36.991 97.96
1000 1 no 5 0.9457670 37.369 66.44
1000 1 yes 5 0.9449789 37.291 66.36
1000 3 no 1 0.9438986 37.383 114.52
1000 3 yes 1 0.9448177 37.429 110.13
1000 3 no 2 0.9481957 37.752 92.75
1000 3 yes 2 0.9482873 37.751 89.71
1000 3 no 5 0.9515541 38.071 59.69
1000 3 yes 5 0.9511365 38.032 59.14

Table B.1.: Full encoding results for the “fairy” sequence.
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Settings Results

Bitrate Ref WarpME SubME SSIM-Y PSNR-Y Frames/s
(kbit/s) level (dB)

300 1 no 1 0.8940561 34.118 144.35
300 1 yes 1 0.8976926 34.656 141.18
300 1 no 2 0.8983479 34.358 127.15
300 1 yes 2 0.9011825 34.860 123.34
300 1 no 5 0.9061646 34.734 90.42
300 1 yes 5 0.9133149 35.303 89.16
300 3 no 1 0.8959362 34.219 138.46
300 3 yes 1 0.8997786 34.763 130.32
300 3 no 2 0.9000404 34.476 118.76
300 3 yes 2 0.9036171 34.993 113.15
300 3 no 5 0.9072016 34.821 80.22
300 3 yes 5 0.9146864 35.443 78.04

500 1 no 1 0.9310123 36.642 133.95
500 1 yes 1 0.9349554 37.420 130.61
500 1 no 2 0.9352065 36.969 115.65
500 1 yes 2 0.9385026 37.715 112.50
500 1 no 5 0.9401657 37.339 80.00
500 1 yes 5 0.9448482 38.109 79.23
500 3 no 1 0.9324642 36.768 128.85
500 3 yes 1 0.9371525 37.607 121.26
500 3 no 2 0.9365830 37.095 108.26
500 3 yes 2 0.9407811 37.923 102.86
500 3 no 5 0.9413833 37.486 70.85
500 3 yes 5 0.9458558 38.242 70.07

1000 1 no 1 0.9685249 40.839 119.25
1000 1 yes 1 0.9703983 41.906 115.21
1000 1 no 2 0.9713022 41.251 101.78
1000 1 yes 2 0.9723293 42.198 96.32
1000 1 no 5 0.9731321 41.572 68.17
1000 1 yes 5 0.9744583 42.550 67.68
1000 3 no 1 0.9694822 41.006 114.29
1000 3 yes 1 0.9714564 42.091 106.08
1000 3 no 2 0.9719193 41.372 95.06
1000 3 yes 2 0.9735883 42.437 89.02
1000 3 no 5 0.9739072 41.732 61.54
1000 3 yes 5 0.9754957 42.766 60.50

Table B.2.: Full encoding results for the “interactive fairy” sequence.
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B. Complete results for warping-based motion estimation

Settings Results

Bitrate Ref WarpME SubME SSIM-Y PSNR-Y Frames/s
(kbit/s) level (dB)

300 1 no 1 0.6353905 25.557 131.20
300 1 yes 1 0.6679018 26.709 129.44
300 1 no 2 0.6397960 25.668 113.39
300 1 yes 2 0.6722945 26.828 112.71
300 1 no 5 0.6493255 25.838 81.71
300 1 yes 5 0.6833704 27.024 81.24
300 3 no 1 0.6396398 25.635 122.03
300 3 yes 1 0.6724197 26.802 117.54
300 3 no 2 0.6435966 25.756 104.35
300 3 yes 2 0.6773597 26.952 102.67
300 3 no 5 0.6535233 25.931 71.29
300 3 yes 5 0.6868387 27.122 69.57

500 1 no 1 0.7036136 26.687 120.24
500 1 yes 1 0.7314405 27.981 119.74
500 1 no 2 0.7087490 26.836 102.31
500 1 yes 2 0.7372080 28.129 100.52
500 1 no 5 0.7161530 26.995 72.09
500 1 yes 5 0.7444381 28.296 72.18
500 3 no 1 0.7068231 26.767 113.39
500 3 yes 1 0.7359362 28.088 108.26
500 3 no 2 0.7124135 26.936 93.82
500 3 yes 2 0.7418941 28.257 91.72
500 3 no 5 0.7209729 27.109 63.78
500 3 yes 5 0.7487422 28.426 62.74

1000 1 no 1 0.7982175 28.812 106.67
1000 1 yes 1 0.8173899 30.186 105.68
1000 1 no 2 0.8038153 28.988 88.75
1000 1 yes 2 0.8229522 30.386 87.41
1000 1 no 5 0.8115458 29.204 60.63
1000 1 yes 5 0.8285797 30.566 60.00
1000 3 no 1 0.8016265 28.911 102.31
1000 3 yes 1 0.8217056 30.326 96.48
1000 3 no 2 0.8087717 29.133 83.36
1000 3 yes 2 0.8272907 30.541 79.89
1000 3 no 5 0.8145216 29.304 54.60
1000 3 yes 5 0.8327855 30.710 53.63

Table B.3.: Full encoding results for the “cs italy” sequence.
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image, 20
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depth discontinuity, 23, 28
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cost of storage, 35–37
definition, 21
filtering of, 26, 28

dvid format, 41, 51, 57, 58

entropy coding, 17, 36
exposure error, 10, 12, 22

GPU, 50
group of pictures (GOP), 16

H.264, 15–17, 40–43
hole-filling, 26

I-frame, 15
IDCT, see discrete cosine transform
image plane, 20
image-based rendering, 9
inter coding, 15, 35
intra coding, 15, 35
inverse warping, 11, 24
invisible occluder error, 11–13, 23

JPEG-LS, 14

layered depth image, 10, 12, 14, 22
low bitrate applications, 35

macroblock, 16, 25, 40, 51
motion compensation, 16, 19, 35–37, 55

overlapped block, 16, 31
motion estimation, 16, 40–41

subpixel refinement, 42–44
warping based, 55, 59
warping-based, 40–49

efficiency, 43–49
motion vector, 16, 17
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network bandwidth, 9, 12, 13, 39, 49

occlusion error, 10, 12, 22
optical flow, 16

P-frame, 15
partition, 16, 40
plenoptic function, 9
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quantization, 17, 36, 42, 51

rate control, 17, 42, 51
reconstruction, 23–29

bilinear patch, 23, 29, 32, 34
gaussian cloud, 23
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render cache, 50, 55
residual image, 16
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two-pass encoding, 17, 43
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video object wavelet codec, 14
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warping equation, 50
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