
The UC Berkeley System for InteractiveVisualization of Large Architectural ModelsThomas Funkhouser, Seth Teller,Carlo S�equin, and Delnaz KhorramabadiJune 3, 1996AbstractRealistic-looking architectural models with furniture may consist of millions of poly-gons and require gigabytes of data { far more than today's workstations can render atinteractive frame rates or store in physical memory.We have developed data structures and algorithms for identifying a small portionof a large model to load into memory and render during each frame of an interactivewalkthrough. Our algorithms rely upon an e�cient display database that represents abuilding model as a set of objects, each of which can be described at multiple levels ofdetail, and contains an index of spatial cells with precomputed cell-to-cell and cell-to-object visibility information. As the observer moves through the model interactively, areal-time visibility algorithm traces sightline beams through transparent cell boundariesto determine a small set of objects potentially visible to the observer. An optimizationalgorithm dynamically selects a level of detail and rendering algorithm with which todisplay each potentially visible object in order to meet a user-speci�ed target frametime. Throughout, memory management algorithms predict observer motion and pre-fetch objects from disk that may become visible during imminent frames.This paper describes an interactive building walkthrough system that uses thesedata structures and algorithms to maintain interactive frame rates during visualiza-tion of very large models. So far, the implementation supports models whose major1



occluding surfaces are axis-aligned rectangles (e.g., typical buildings). This system isable to maintain over twenty frames per second with little noticeable detail elision dur-ing interactive walkthroughs of a building model containing over one million polygons.1 IntroductionTraditionally, two-dimensional oor plans of buildings and elevations or perspective pro-jections have been the basic communication media between architects and their clients.Particularly with respect to the interior of buildings, architects rely on the client's imagina-tion to visualize a proposed building from its architectural plan views, assuming that clientsare familiar with architectural symbols, and have the training and experience to constructthree-dimensional images from two-dimensional plan views.Today, graphics workstations o�er a great potential for real-time simulation of movementthrough complex environments, particularly large buildings. A computer-based, interactivebuilding walkthrough system can simulate the visual experience of moving through a threedimensional model of a building on the screen of a computer workstation by displaying ren-dered images of the model as seen from a hypothetical observer viewpoint under interactivecontrol by the user. If images are rendered smoothly and quickly enough, the illusion ofreal-time exploration of the proposed building can be achieved.A building walkthrough system might be useful for architects, interior designers, andclients to visualize and evaluate architectural designs before a building has been constructed.For example, an architect may be able to detect errors, such as material interferences; testlighting conditions, evaluating them at di�erent times of day or during di�erent seasons; andcheck the view out the windows of particular o�ces. An interior designer might experimentwith several furniture arrangements, color schemes, and lighting arrangements in a computersimulation before purchases are made. Most importantly, a building walkthrough systemprovides a means by which architects, interior designers and clients can communicate theirideas to one another. In particular, it is extremely di�cult for a typical client, who has2



commissioned a building, but has not been trained in visualization of three dimensionalspaces, to understand what the inside of a building might actually look like by viewingblueprints or cardboard models. An interactive, three dimensional building walkthroughsystem allows an architect to show a client a proposed architectural design, and elicit real-time feedback as the client \walks" through the interior of the building interactively. Asa result, faults in the architectural plan may be found earlier in the design cycle, therebysaving time and money.We have completed the �rst version of a system that supports interactive visualizationof large architectural models with axis-aligned walls, ceilings, and oors using as a test casethe design of Soda Hall, the new computer science building at the University of Californiaat Berkeley. The system includes tools for conversion of architectural plans into three di-mensional models, and database and display algorithms for interactive visualization of largearchitectural models. This paper describes the goals of the system, the challenges encoun-tered during implementation of the system, and algorithmic approaches we have taken togenerate interactive frame rates during walkthroughs of very complex architectural models.1.1 Previous Work1.1.1 Vehicle SimulatorsMost work in interactive visualization has been done on vehicle simulators. Several sophis-ticated commercial vehicle simulators have been built over the last thirty years, includingmany which contain algorithms for �eld-of-view culling, detail elision, and real-time manage-ment of very large databases [11, 31, 32, 43]. However, since most are commercial systems,very little has been published on this work.Although there are many similarities between vehicle simulators and building walk-through systems, there are several important di�erences. First, the types of environmentsencountered in vehicle simulators are quite di�erent from building interiors. Typical vehiclesimulator models contain terrain data augmented with plants, buildings, roads, etc. In these3



models, space tends to be \sparsely occluded" { i.e., there are few observer viewpoints forwhich a signi�cant portion of the model is occluded by other parts of the model. In con-trast, building models typically contain walls, ceilings, and oors which partition space intorooms. These models tend to be \densely occluded" { i.e., a large portion of the model isoccluded by some polygon for observer viewpoints in the interior of the building. Therefore,visibility determination algorithms that cull not only polygons outside the observer's view,but also ones occluded by other polygons (e.g., walls) may be better suited for visualizationof building models than for vehicle simulator models.Second, the types of navigation supported by vehicle simulators are very di�erent thanthose used in building walkthrough systems. In a vehicle simulator, the observer viewpointcorresponds with the view from the driver's seat of the vehicle, and observer viewpointnavigation is limited to movements possible by the vehicle. During normal execution, theobserver does not generally move sideways, or change direction suddenly. As a result, thereis a large amount of coherence in the observer position (and hence the visible portion of themodel) from frame to frame, and it is relatively easy to predict future observer viewpointsfrom the current observer viewpoint and direction of travel. In addition, since the observerrarely travels close to detailed model features (e.g., aircraft are typically several thousandfeet up in the air, and cars are typically on roads), realistic-looking detail can be achievedusing texture maps applied to relatively few, distant polygons. In contrast, in a buildingwalkthrough system, the observer viewpoint corresponds to the view from the eyes of ahuman being walking through the building. The observer may step in any direction, spinaround quickly, or look very closely at any feature of the model. Therefore, many of theoptimizations used by vehicle simulators based on assumptions of observer navigation arenot possible in a building walkthrough system.Finally, the performance and hardware constraints for vehicle simulators are very di�erentthan for building walkthrough systems. Since inaccurate vehicle simulation during trainingmay cause serious accidents during operation later, vehicle simulation systems must maintain4



strict frame rates in order to approximate vehicle operation as realistically as possible (e.g.,exactly thirty frames per second). To do this, they typically enforce restrictions on modelcomplexity, and use special-purpose display hardware costing millions of dollars. In contrast,the frame rate requirements of building walkthrough systems are not as strict { nobodywill be killed if the simulation is inaccurate. Although uniform frame rates are desirablein a building walkthrough system, they are not essential. Frame rates must be only fastenough and uniform enough for a user to intergrate impressions derived from sequentialimages to derive a feeling of the building interior space. We aim to support near-uniform,bounded frame rates, while using standard, o�-the-shelf hardware, and allowing visualizationof arbitrarily complex models.1.1.2 Mechanical CAD SystemsThere also has been a considerable amount of work in interactive visualization of threedimensional models in mechanical computer-aided design (CAD) systems. Mechanical CADmodels can be quite complex, containing tens of millions of polygons (e.g., a car engine,spacecraft assembly, or an airplane), and thus may require sophisticated real-time displayalgorithms for interactive visualization.There are di�erences between CAD applications and building walkthrough systems. First,visual realism is generally less important in mechanical CAD applications than in buildingwalkthrough systems. In most CAD applications, objects are represented symbolically. Forinstance, parts in a complex assemblymay be displayed with attributes (e.g., color) represent-ing semantic characteristics (e.g., function, interference, connectivity, etc.), and meta-datamay be included in the display (e.g., the path through which a part moves). Visual veri-�cation of a CAD model is based mainly on positional and semantic characteristics ratherthan appearance. In contrast, surface color and illumination characteristics are usually veryimportant in architectural design. Thus, realistic-looking images generated using physically-based lighting simulations are required for lighting design veri�cation.5



Second, mechanical CAD systems generally simulate an observer looking at the model\through a window" from the outside. The user typically uses a Scene in Hand metaphor [41]to manipulate the object by means of translation, scaling and rotation. In contrast, buildingwalkthrough systems simulate an observer moving through the interior of the model, theFlying Vehicle Control metaphor [41]. These di�erent metaphors for observer navigationmay imply di�erent approaches to observer viewpoint prediction, visibility determination,and detail elision.1.1.3 Architectural CAD SystemsCommercial products for visualization of architectural models have recently become avail-able. However, many of these systems do not allow a user to control the simulated observerviewpoint interactively. Instead, travel along a predetermined, �xed path is simulated by dis-playing a sequence of precomputed images. These systems can generate very realistic-lookingwalkthroughs (since images are rendered o�-line), and are well-suited for presentation of acompleted design. However, they do not support interactive visualization or design.Currently available commercial products that do allow interactive, real-time navigationgenerally support only small buildings models (e.g., less than one hundred thousand poly-gons), displayed with simple rendering algorithms (e.g., wire-frame or at shading) [5, 39].These commercial systems generally make little use of sophisticated precomputation, visibil-ity determination, or detail elision, and require that the entire model be resident in memory.Research on increasing frame rates during interactive visualization of architectural modelshas been under way for over twenty years [24]. Pioneering work in spatial subdivision andvisibility precomputation has been done at the University of North Carolina at ChapelHill [1, 2, 8]. Airey developed algorithms for partitioning architectural models into cells,and precomputing a potentially visible set of polygons (PVS) for each cell. Cell visibilitywas determined by tracing ray samples through transparent portions of cell boundaries to�nd polygons visible from particular viewpoints within the cell. The disadvantage of this6



approach is that computation is stochastic, and thus can under-estimate true cell visibilityand requires a large amount of computation.Recently, other algorithms have been described for culling occluded polygons duringinteractive visualization. The hierarchical z-bu�er algorithm [20] uses a pyramid of z-bu�ersto determine the cells of an octree (and the enclosed polygons) that are potentially visiblefor a particular viewpoint. This algorithm may be e�ective with appropriate hardwareacceleration, but cannot be applied to determine visibility from a volume of space (which isuseful for visibility precomputation and for predictive memory management) and considersevery octree-cell inside the observer view frustum for each frame (which may be infeasiblefor very large models { e.g., a city).1.2 Goals1.2.1 Model SizeA primary goal of our work is to support computer-aided visualization of very large, detailedthree dimensional models. For accurate evaluation of a building design using visual simu-lation, it is important that the building model contain a large amount of detail, includingrepresentative light �xtures and furniture modeled with accurate materials and textures.Our test case is a model of Soda Hall, a seven oor academic building containing morethan one hundred faculty and student o�ces, twelve computer laboratories, and six classrooms (Figure 1). Almost every room in the model contains a functionally complete set offurniture (Figure 2). For instance, each o�ce has at least one desk, a few chairs, a bookshelf,a plant, etc. On each desk, there is at least one book, a desk lamp, and a few pencils (Figures3 and 4). Furthermore, most pieces of furniture are modeled with a large amount of detail.For example, each pencil has an explicitly modeled graphite point, each door has a shinybrass handle, and each book has a separate binder.The model is described completely by planar polygons. Curved surfaces, such as thosefound in desk lamp shades and the seat cushions of chairs, are approximated by many at7



polygons. Hundreds, and sometimes thousands, of polygons are required to describe themost detailed representations of plants and complex pieces of furniture. In all, the modelof Soda Hall contains 1,418,807 polygons, of which only 31,625 represent the walls, ceilings,and oors of the building, while the remainder represent its \contents."1.2.2 Image QualityA second goal of our work is to use radiosity illumination simulation methods [19, 26] togenerate realistic-looking images with indirect di�use reections and shadows (Figures 5 and6). Radiosity methods, based on models of radiative transfer methods in thermaengineering,consider every polygon a potential emitter or reector of radiance (or luminance). Concep-tually, for every pair of polygons, A and B, a form factor is computed which measures thefraction of the energy leaving polygon A that arrives at polygon B. This approach yieldsa set of simultaneous linear equations which can be solved to obtain the radiance for eachpolygon.The advantage of radiosity methods for interactive visualization is that a global radiositysolution can be precomputed. The solution includes only the di�use component of reectionand does not depend on a particular observer viewpoint (Figure 7). Therefore, a radios-ity computation can be performed for an entire building model during a precomputationphase in which results are stored in a database for use later during interactive visualization.This approach o�-loads the expensive illumination computations required to capture realis-tic lighting e�ects, such as shadows, so that rendering during interactive visualization canproduce high-quality images quickly.One di�culty associated with radiosity methods is that a tremendous amount of datamay be required to describe the radiosity solution. A separate color is stored for each vertexof each polygon in the model; and large polygons are split into many smaller ones (wherethe gradient of radiosity is high) in order to capture complex illumination e�ects, such ashighlights and shadow boundaries (Figure 8). Furthermore, although many of the polygons8



Figure 1: Exterior view of Soda Hall. Figure 2: Exterior view of Soda Hall \cutopen" by a horizontal plane at the sixthoor.
Figure 3: Typical o�ce with furniture. Figure 4: Board room with furniture.

9



in the original model can be shared via hierarchical instancing, each polygon is meshed andilluminated independently during the radiosity computation, and must be stored separatelyin the resulting model. As a result, a model that originally contains millions of possiblyshared polygons can generate a radiosity solution with tens of millions of separate polygonsrequiring gigabytes of data.We aim to support visualization of large radiosity solutions in our building walkthroughsystem. However, techniques for computing such solutions have just recently been developed[38] and are not addressed in this paper.1.2.3 PerformanceAnother critical goal of our system is to provide performance that is adequate to maintainthe real-time feel of interactive visualization. If frame rates (i.e. the number of imagesdisplayed per second) are too slow or too variable, the illusion of being present in a virtualenvironment is likely to be diminished signi�cantly.It is not only important that the rate at which images appear on the screen be as fastas possible, but also as uniform as possible. For instance, a walkthrough sequence in whichnine out of ten images are on the screen for 1/100th of a second and the tenth is on thescreen for 9/10ths of a second most likely would not be as satisfying as one in which eachimage is on the screen for exactly 1/10th of a second, even though the average frame ratesare nearly identical. After initial experimentation with interactive walkthroughs, we havechosen a target frame rate of at least ten frames per second.Short response times (i.e. the time required for the system to react to user input) is alsoimportant during interactive visualization. If there are delays in system response, a usermay become disoriented or have di�culty navigating in a virtual environment. Even worse,users often complain of feeling sick after using virtual reality systems with especially poorresponse times. We would like to keep the response time of our visualization system under1/2 of a second. 10



Figure 5: Radiosity rendering of hallway. Figure 6: Radiosity rendering of o�ce.
Figure 7: Radiosity computation and resultsare independent of observer viewpoint. Figure 8: Polygonal mesh generated for theo�ce during radiosity computation.

11



1.2.4 HardwareFinally, we aim to support interactive visualization of large, detailed building models usingcommercially available, o�-the-shelf computer systems { rather than building special-purposehardware. For our display algorithms, we assume a graphics subsystem (either hardware orsoftware) that is able to perform the basic steps required for rendering three dimensionalpolygons { i.e., modeling transformations, viewing transformations, clipping, projection, ras-terization, and hidden surface removal. For our most recent tests, we have used a SiliconGraphics Power series 320 workstation with reality engine graphics. It can draw approxi-mately 50-100K Gouraud shaded, texture-mapped polygons per second.1.3 Problem StatementLarge, furnished building models are far too complex to be rendered with realistic-lookingimages at interactive frame rates on currently available hardware. After radiosity analysis,a building model may contain 107 independent polygons and require 109 bytes of data.However, currently available graphics workstations can render only 104 polygons in a tenthof a second, and store only 108 bytes of data. Therefore, realistic building models are 103times too large to be rendered at interactive frame rates, and 101 times too large to �t intomemory.In order to achieve interactive walkthroughs of such large building models, a systemmuststore in memory and render only a small portion of the model in each frame; that is, theportion seen by the observer. As the observer \walks" through the model, some parts of themodel become visible while others become invisible; some objects appear larger and othersappear smaller. The challenge is to identify the relevant portion of the model, pre-fetchit into memory, and render images at interactive frame rates as the observer viewpoint ismoved under user control.Our basic approach is to use an e�cient display database that describes a building modelas a set of objects, each of which is represented at multiple levels of detail, and contains an12



index of spatial cells with precomputed visibility information. This display database isused by adaptive display algorithms to compute the set of objects potentially visible fromeach observer viewpoint. In each frame, an appropriate level of detail is selected for eachobject during rendering in order to maintain an interactive frame rate. Real-time memorymanagement algorithms are used to predict observer motion and pre-fetch objects from diskthat may become visible during upcoming future frames. Using these techniques, we areable to determine a small portion of the model to store in memory and render during eachframe of a building walkthrough.1.4 System OrganizationOur building walkthrough system is divided into three distinct computational phases asshown in Figure 9. First, during the modeling phase, we construct the building model fromAutoCAD oor plans and elevations and populate the model with furniture. Next, during theprecomputation phase, we perform a spatial subdivision and indexing, and compute observer-independent lighting and visibility information. Finally, during the walkthrough phase, wesimulate an observer moving through the building model and render the model as seen fromthe observer viewpoint in each frame. The display database is the link between these threephases. It stores the complete building model, along with the results of the precomputationphase, for use during the walkthrough phase.
  Display
Database

Precomputation 
        Phase

Walkthrough
      Phase

Modeling 
  PhaseFigure 9: System overview.Since details of many aspects of this system have been published in previous papers [15,16, 17, 25, 35, 36, 37], this paper focuses on the overall system design. The paper is organized13



as follows. Sections 2 through 4 describe the three phases of the system, respectively. Specialattention is paid to how the data structures and algorithms used in each phase are integratedinto the entire system. Section 5 presents results of interactive tests using the walkthroughsystem. Finally, Section 6 contains a summary and conclusions.2 Modeling2.1 Model LoadingA primary concern of any interactive visualization system is to obtain a complete and geo-metrically consistent electronic model. In the case of Soda Hall, a set of �les describing themajor structural elements of the building (i.e., walls, ceilings, and oors) were prepared byarchitects using AutoCAD [4]. We implemented a converter that extracts the geometricaland surface attribute information embedded in AutoCAD DXF �les [4] and translates theminto the Berkeley UNIGRAFIX format [33] a format suitable for 3D object modeling, andthen loads them into a display database, as shown in Figure 10.
Display

DatabaseUNIGRAFIX
Loader

AutoCad
Converter

AutoCad
Models

UNIGRAFIX
ModelsFigure 10: Loading operations of the modeling phase.Unfortunately, the raw architectural models were not true three-dimensional models.They were originally created for the generation of architectural blueprints such as plan viewsand crude three dimensional views of buildings. Drafting packages used to prepare them werenot written with anticipation that their products might be used in interactive walkthroughsystems. Consequently, the initial version of the model that we received from the architectshad many problems. Stairs and many other objects were missing; building components14



were not modeled as closed objects; windows were only line drawings on the walls; polygonswere drawn with no consistent orientation; many co-planar polygons coincided, and manypolygons were non-planar or intersected without sharing edges. Therefore, an element-by-element conversion of the architectural database to the UNIGRAFIX format would not haveproduced a viable model. We used automated programs to detect and correct most of theseanomalies [25] and then manually corrected the remaining modeling errors with interactivetools.Furniture, stairs, and other objects that a user would expect to �nd in a typical buildinghave been modeled in a variety of ways. Stairs, window frames, and doors were created byKhorramabadi using AutoCAD [4]. Models for many types of furniture (e.g., chairs, desks,and co�ee cups) were created with interactive modeling programs by Ward [40]. Other typesof furniture (e.g., bookshelves, plants, door handles, and lights) were created by proceduralobject generators developed by students at UC Berkeley.Instances of these objects were placed into the building model using both automatic andinteractive placement programs. Students in a graduate course on geometric modeling wroteprograms that place objects into speci�c types of rooms automatically based on sets of pa-rameters. For instance, the \conference room generator" places a rectangular or ellipticaltable in the middle of a room, chairs around the table, a blackboard on one wall, a trans-parency projector on the table, and so on. The \o�ce generator" places a desk against onewall, a chair in front of the desk, some bookshelves against the walls, and so on. Numer-ous parameters are available to the user for control of object size, number, and placement.Alternatively, we use interactive placement programs, such as AutoCAD, ugitools [25] (aninteractive UNIGRAFIX tool), or wkedit [9] (an interactive walkthrough editor) to generateobject instances. These programs allow a user to add, delete, copy, or move object instancesinteractively with real-time visual feedback. 15



2.2 Model RepresentationThe walkthrough display database represents the model as a set of objects, each of which canbe described at more than one level of detail (LOD). For example, a chair may be describedby three di�erent representations, as shown in Figure 11: 1) a highly detailed chair containinghundreds of polygons to approximate the curved surfaces of the cushions and rounded edgesof the arms and legs, 2) a slightly less-detailed chair with simpler polygonal approximationsfor the cushions, arms, and legs, and 3) a coarsely detailed chair with just a simple boxfor each cushion, arm, and leg. Simpler representations for objects are used during theinteractive walkthrough phase to improve refresh rates and memory utilization.
889 Polygons 241 Polygons 44 PolygonsFigure 11: Three LODs for a chair.In general, if there is more than one instance of the same object type (e.g., if the sametype of chair appears in many positions throughout the building), all instances share thesame object de�nition, which stores the geometries (i.e., vertices, polygons, materials, andtextures) describing the object at each LOD. Each instance of the object may specify a 4x4transformation matrix which is to be applied to the object de�nition, and a material which isto be applied to polygons that do not already have material attributes. An example hierarchyof object instances and de�nitions is shown in Figure 12. The model shown contains fourinstances of a chair whose de�nition has three LODs, and two instances of a table whosede�nition has only one LOD. 16



Although models are most often stored as a hierarchy with shared object de�nitions, thedisplay database also allows an object instance to store a speci�c, separate geometry for anyLOD. Geometries stored speci�cally with an object instance override the geometries for thecorresponding LODs stored with the object de�nition. Other LODs (i.e., ones not explicitlystored with an object instance) are inherited from the object de�nition. This feature isimportant for the storage of radiosity information, since di�erent instances of the same objectde�nition are likely to be meshed and illuminated di�erently after a radiosity computation.An example object hierarchy containing an object instance with its own geometries is shownin Figure 13. Chair instance #1 inherits its lowest LOD from the object de�nition, whereasits medium and high LODs are speci�ed explicitly.
Chair

Instance
#1

Chair
Instance

#2

Chair
Instance

#3

Table
Instance

#1

Table
Instance

#2

Chair
Definition

Table
Definition

Low Detail
Geometry

Med Detail
Geometry

High Detail
Geometry

Low Detail
Geometry

Chair
Instance

#4

Figure 12: Object instances can share ge-ometries stored in an object de�nition.
Chair

Instance
#1

Chair
Instance

#2

Chair
Instance

#3

Table
Instance

#1

Table
Instance

#2

Chair
Definition

Table
Definition

Low Detail
Geometry

Med Detail
Geometry

High Detail
Geometry

Low Detail
Geometry

Chair
Instance

#4

Med Detail
Geometry

High Detail
GeometryFigure 13: An object instance can store itsown geometries.Objects that move over time are represented by a simple extension to this hierarchy usinga technique derived from ugbump [27]. The 4x4 transformation of any object instance canbe represented by a sequence of strings representing translate, rotate and scale transforma-tions as functions of a variable, t. For instance, the string \-rz $10 � t$" means rotate theobject around the `z' axis by 10 degrees every second. Objects are animated as the stringsrepresenting their transformation matrices are re-evaluated with a new value of t, which isincremented by the elapsed frame time during the walkthrough.17



2.3 Object AbstractionAlthough we are currently developing automatic tools for object abstraction, so far we haveused a variety of ad hoc techniques to create multiple LODs for each object de�nition.For objects created by procedural generation programs, it is usually possible to extendthe programs to produce not only a very detailed model of the object, but also simplerrepresentations as appropriate. For instance, the program used to generate the door handleshown in Figure 14 is parameterized to output segments with a user-speci�ed number ofsides. 6-sided prisms. 4-sided prisms.Figure 14: Di�erent door handle representations constructed using a parameterized genera-tor.For objects described as a CSG hierarchy of high-level shapes (e.g., boxes, spheres, cones,cylinders, etc.), it is possible to create simpler representations by a combination of: 1)choosing simpler representations for some shapes and 2) removing some shapes. Using thesetechniques, more than one polygonal representation must be constructed for only a fewstandard shapes, rather than many complex objects. Example results of this abstractiontechnique is shown in Figure 15.For other types of objects, many of which are described originally in a at, polygonalformat containing no information about how they were generated or whether there is ahierarchy of parts, we have constructed less detailed representations from highly detailedoriginals using an interactive UNIGRAFIX editor, called animator [14, 34]. This 3D poly-hedron editor has features aimed speci�cally at reducing the complexity of 3D polyhedralmodels, including merging vertices, collapsing edges, collapsing faces, etc, while maintainingthe topological consistency of the polyhedral object.18



336 Polygons 134 Polygons 70 PolygonsFigure 15: Three LODs for a canary.We have attempted to maintain guidelines regarding construction of LODs in our modelof Soda Hall. For example, we �ll LODs from lowest to highest for each object. We alsoaim to generate geometries with no more than 100 polygons in the lowest LOD, and at leastdouble the number of polygons in each successively higher LOD. For each object, appropriateLODs are evaluated and adjusted so that transitions between LODs are barely noticeable asone zooms closer to an object and detail is re�ned.2.4 ResultsUsing the techniques described in this section, we built a three dimensional polygonal modelof Soda Hall, complete with furniture, textured materials, and multiple LODs for all fur-nishings. In all, the model contains 2,217,792 polygons, of which 1,418,807 represent objectsat their highest LOD. Including the walls, ceilings, and oors of the building, the modelcontains 14,478 object instances of 8,037 unique object descriptions. It contains 129 uniquepieces of furniture, 406 unique materials, and 58 unique textures. The display database forthis model requires 21.5MB of storage if object instances reference shared object de�nitions,and 349.5MB of storage if all object instances are attened (i.e., a separate copy of the ob-ject de�nition is stored for each instance). Overall statistics regarding the number of objectsdescribed at each LOD, and the cumulative number of polygons used to represent them areshown in Table 1. 19



PolygonsLevel Number Number Minimum Mean Maximumof Detail of Objects of Polygons Per Object Per Object Per ObjectLow 14,478 240,149 1 16.59 2,598MedLow 3,954 256,895 16 64.97 810Medium 2,497 476,957 29 191.01 2,707MedHigh 949 728,978 97 768.15 4,211High 437 514,813 157 1,178.06 1,977All 14,478 1,418,807 1 98.00 4,211Table 1: Multi-resolution modeling statistics for Soda Hall.3 PrecomputationDuring the precomputation phase, we perform a set of calculations on the building modelthat do not depend on a speci�c observer viewpoint, and thus can be done o�-line, beforea user begins an interactive building walkthrough. The idea is to precompute complexspatial, visibility, and lighting relationships, and store the results in the display database.Then, during the walkthrough phase, the precomputed relationships can be fetched from thedatabase rather than computed in real-time. By taking this approach, we trade increasedspace for reduced real-time computation, accelerating frame rates during the walkthroughphase.The steps of the precomputation phase are shown in Figure 16. We �rst perform a spatialsubdivision in which the building model is partitioned into roughly room-sized cells, and acell adjacency graph and an index of objects spatially incident upon each cell is constructed.We then perform a visibility precomputation in which sets of cells and objects visible fromeach cell are computed. Finally, a radiosity computation can be performed. The results ofthe precomputation phase are stored in the display database for use during the walkthroughphase. 20



 Display
Database

    Spatial
Subdivision

     Visibility
Precomputation

Radiosity
AnalysisFigure 16: Functional steps of the precomputation phase.3.1 Spatial SubdivisionWe partition the model into a spatial subdivision of cells using a variant of the k-D tree datastructure [6]. Splitting planes are introduced along the major, axis-aligned, opaque surfacesof the model (i.e., the walls, oors, and ceilings of the building). See [37] for details.After subdivision, cell portals (i.e., the transparent portions of shared boundaries) areidenti�ed and stored with each leaf cell, along with an identi�er for the neighboring cell towhich the portal leads. Enumerating the portals in this way amounts to constructing anadjacency graph over the leaf cells of the spatial subdivision { two cells (nodes) are adjacent(share an edge) if and only if there is a portal connecting them.Sets of objects partially and completely inside cell boundaries are also constructed andstored with each cell. The space occupied by each object in the model is classi�ed withrespect to each cell in the spatial subdivision by a traversal of the k-D tree. At each nodeof the tree traversal, the bounding box of the object is compared to the bounding box ofthe node's children. If the intersection has zero volume, the traversal of that branch isterminated. Otherwise, if the node is an interior node, the traversal is applied recursively tothe node's children. If the node is a leaf node, the object is classi�ed as either completelyor partially inside the cell, and added to the cell's list of incident objects.The current implementation of the building walkthrough system supports spatial subdivi-sions containing only axis-aligned, rectangular cell boundaries and portals (i.e., cells are axialthree dimensional boxes, and portals are axial two dimensional rectangles). Such a spatial21



subdivision for the sixth oor of Soda Hall is shown in three dimensions in Figure 17a { cellboundaries are shown as gray outlines. Figure 17b shows a two dimensional schematic repre-sentation of the subdivision, in which opaque cell boundaries are represented by thick, blacklines and portals are represented by dashed lines. During spatial subdivision, we precomputeand store in the display database for each cell: 1) the portals on its boundaries, 2) the cellssharing its boundaries, and 3) the objects completely or partially inside its boundaries. See[35, 37] for more details.
a) Actual three dimensional subdivision. !!!

!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!!!
!!!!!
!!!!!

!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!b) Two dimensional schematic representation.Figure 17: Spatial subdivision of the sixth oor of Soda Hall. The image on the left shows theactual three dimensional subdivision, while the image on the right shows a two dimensionalschematic representation.3.2 Visibility PrecomputationOnce the spatial subdivision has been constructed, we perform a visibility precomputationin which the portion of the model visible from each cell is determined. We de�ne a cell'svisibility to be the region of space visible to a generalized observer (i.e., one that is ableto look in any direction and move to any position within the cell). The precomputed cellvisibility is stored in the display database and used to aid real-time visibility determinationand database management algorithms during the walkthrough phase.We observe that a cell's visibility is the region of space to which an unobstructed sightlinecan lead from some point inside the cell. Such a sightline must be disjoint from any opaquecell boundaries, so it must intersect, or stab, a portal in order to pass from one cell to the next22



(Figure 18). Sightlines connecting cells that are not immediate neighbors must traverse aportal sequence, each member of which lies on the boundary of an intervening cell. Therefore,a cell's visibility is the union of all points in space that can possibly be reached by a sightlinethat originates inside the cell, and intersects only portals at cell boundaries along the way.
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

++++++++
++++++++
++++++++
++++++++
++++++++
++++++++

**********
**********
**********
**********

!!!!!!
!!!!!!
!!!!!!

+++++++++
+++++++++
+++++++++
+++++++++
+++++++++
+++++++++

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

+++++++++
+++++++++
+++++++++
+++++++++
+++++++++
+++++++++

***********
***********
***********
***********
***********

***********
***********
***********
***********

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

!!!!
!!!!
!!!!
!!!!
!!!!!!!
!!!!!!!
!!!!!!! !!!!!!

!!!!!!
!!!!!!
!!!!!!
!!!!!!

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!

!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

!!!!!!
!!!!!!
!!!!!!
!!!!!!
!!!!!!
!!!!!!
!!!!!!

Figure 18: A sight-line stabbing a portal sequence.These observations suggest that the visibility for a source cell, C, can be computed usinga depth-�rst search of the cell adjacency graph. Cells that are immediate neighbors of C arealways entirely visible to it, since cells are convex and all points in the cell can be reachedby some sightline stabbing the adjoining portal. Each step into a cell, R, farther away fromC, adds another portal to the sequence of portals through which a sightline must pass inorder for the cell to be visible to C. If we determine that the portal sequence does not admita sightline, then R is determined to be unreachable along the path. Otherwise, we call R areached cell, and recurse, stepping into cells neighboring R.The visible region of cells farther away from C typically narrows as the length of theportal sequence increases. After stepping through n portals, the visible region is a bowtie-shaped bundle of lines that stab every portal of the sequence, and which \fans out" beyondthe �nal portal into an in�nite wedge (Figure 19). During each iteration of the depth-�rstsearch, the visible region of the reached cell is determined by clipping the in�nite wedge tothe reached cell's boundary. The visibility of the source cell is the union of the visible regionsof cells reached during the search (Figure 20).23



CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Portals in
Sequence

Visible
Region

Extremal
Stab LinesFigure 19: Bowtie-shaped region containingsightlines stabbing a portal sequence (stip-ple gray). Opaque boundaries are shown insolid black. Extremal sightlines are shownas dashed lines. !!!

!!!
!!!
!!!

!!!
!!!

!!!
!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!

!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!

!!!!
!!!!

!!!!
!!!!

!!!
!!!
!!!

!!!
!!!
!!!!!!

!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!!!
!!!!!

!!!
!!!
!!!
!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCC
CCCC
CCCC

?????
?????
?????
?????
?????

Source
Cell

Visible
RegionFigure 20: Cell visibility (stipple gray) forsource cell (dark gray).In axial three dimensional models, all portals are axial rectangles, so any portal sequencecan generate at most three pairs of bowtie constraints (one from each of two portal edgesparallel to the x, y, and z axes). Hohmeyer and Teller have implemented a procedure to�nd sightlines through axial portal sequences, or determine that no such sightline exists, inO(n log n) time, where n is the number of portals in the sequence [21]. Amenta has proposedan O(n) solution for this problem [3], although it has not yet been implemented.During the depth-�rst search for the source cell C, we construct its cell-to-cell and cell-to-object visibilities { i.e., the sets of cells and objects, respectively, that are potentially visiblefrom C. The cell-to-cell visibility for C is the set of cells reached during the depth-�rstsearch originating from C. The cell-to-object visibility is the set of objects whose boundingboxes are incident upon some region visible from C. In Figure 21, schematic diagrams showthe cell-to-cell visibility (stipple gray) and cell-to-object visibility (solid black squares) for aparticular source cell (dark gray) in two dimensions. Figure 22 shows the cell visibility fora source cell in three dimensions. The visible region is the volume of space enclosed in thepolyhedral beams emanating from the source cell; the cell-to-cell visibility is the set of cellsoutlined; and the cell-to-object visibility (not shown) includes all objects incident upon thebrown polyhedral beams. 24



CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC

CCCC
CCCC
CCCC
CCCC

CCCC
CCCC
CCCC
CCCC

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCCCCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCC
CCCC
CCCC
CCCC

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCC
CCCC
CCCC

CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC

CCCC
CCCC
CCCC

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!!!
!!!!!
!!!!!

!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

????
????
????
????

CCCCCC
CCCCCC
CCCCCC
CCCCCCCCCC
CCCC

Source
Cell

a) Cell-to-cell visibility. !!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!

!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!

!!!!
!!!!

!!!!
!!!!

!!!
!!!
!!!

!!!
!!!
!!!!!!

!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!!!
!!!!!

!!!
!!!
!!!
!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC

CCCCC
CCCCC
CCCCC

?????
?????
?????
?????
?????

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

Source
Cell

b) Cell-to-object visibility.Figure 21: Two dimensional schematic diagram of a) cell-to-cell visibility (stipple gray), andb) cell-to-object visibility (shown as solid black squares) for a particular source cell (darkgray).

Figure 22: Cell visibility in three dimensions. Visible region (beams) and cell-to-cell visibility(outlined) are shown for one source cell. 25



The cell-to-cell and cell-to-object visibility sets are stored in the display database for eachsource cell, C, in the form of a stab list. A stab list contains an entry for each reachedcell, R, consisting of: 1) a reference to R, 2) a set of halfspaces bounding the portion ofR visible from C, and 3) a set of objects in R visible from C, i.e., that are completely orpartially inside the assembled halfspaces. One special case exists: if R is a neighbor of C,all objects are tagged as visible from C without any halfspace or object set computations.During the interactive walkthrough phase, the stab list for the observer's cell is retrievedfrom the display database and culled dynamically based on the observer's position and viewdirection to help determine the set of objects to load into memory and to render during eachframe (Section 4.2.1).3.3 ResultsMean and maximum precomputation statistics for cells in the spatial subdivision of SodaHall are shown in Table 2. In all, the spatial subdivision contains 5,060 leaf cells, of which1,889 are possibly inhabitable by an observer { the other 3,171 cells occupy dead spaceinside the walls and ceilings. Except for a few large cells that have many portals and objectsincident upon them (e.g., the cells that span the entire length of the building just outside thewindows), the spatial subdivision classi�es the object distribution and visibility propertiesof the building model fairly well.Computing the spatial subdivision took 4 minutes and 36 seconds on a SGI 320 usingone 33MHz MIPS R3000. 6.9MB are required to store the cells, portals, and lists of objectsincident upon each cell. The visibility precomputation took 3 hours and 31 minutes on thesame machine and requires 9.4MB of storage for the stab lists.4 Interactive WalkthroughDuring the walkthrough phase, we simulate an observer moving through the architecturalmodel under user control. The goal is to render the model as seen from the observer viewpoint26



Statistic Mean Maximum# Portals 3.10 63# Objects Completely Inside 4.16 86# Objects Partially Inside 6.04 195# Cells Visible 65.28 652# Objects Visible 263.10 3830Table 2: Mean and maximum statistics for cells in the spatial subdivision of Soda Hall.in a window on the workstation display at interactive frame rates as the user moves theobserver viewpoint through the model.We use the object hierarchy, spatial subdivision, and results of the visibility precomputa-tion stored in the display database (summarized in Figure 23), along with real-time displayand database management algorithms to achieve interactive frame rates.
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Levels of
Detail

Cell Object Geometry

Visible
Cells

Adjacent
Cells Incident

Objects

Visible
Objects

Portal

Spatial Relationships

Hierarchical
Relationships

Visibility RelationshipsFigure 23: Organization of data in the display database.Execution during the walkthrough phase proceeds as diagrammed in Figure 24. In everyframe, the system performs seven operations, each of which can run asynchronously in aseparate concurrent process in a two-forked pipeline:27



� User Interface: Interact with the user to generate a sequence of observer viewpoints.� Visibility Determination: Compute the set of objects potentially visible from thecurrent observer viewpoint.� Detail Elision: Choose a level of detail and rendering algorithm for each potentiallyvisible object.� Rendering Operations: Render potentially visible objects with the chosen level ofdetail and rendering algorithm.� Lookahead Determination: Compute the set of objects to store in physical memory,i.e., the ones that might be rendered in upcoming frames.� Cache Management: Determine which objects must be added to or removed fromthe memory resident cache.� Input/Output Operations: Load and update objects in the display database.
Display

Database

Detail
Elision

User
Interface

Mouse

MonitorVisibility
Determination

Rendering
Operations

Display Management

Database Management

Cache
Management

Lookahead
Determination

Input/Output
Operations

Figure 24: Functional operations of the walkthrough phase.The operations in the lower fork of the walkthrough pipeline address the display man-agement problem. For each observer viewpoint generated by the user interface, the systemperforms a visibility determination to compute a set of potentially visible objects. Next,detail elision algorithms are used to choose an appropriate level of detail and rendering28



algorithm for each potentially visible object. Finally, rendering commands are sent to thegraphics workstation to display the potentially visible objects with the chosen levels of detailand rendering algorithms.The operations in the upper fork of the walkthrough pipeline address the memory man-agement problem. The system uses visibility and detail elision algorithms to determine theset of objects, and a level of detail for each one, to store in a memory resident cache. Then,cache management techniques are used to determine the sets of objects to load from the dis-play database and release from memory during each frame. Finally, database Input/Outputoperations (e.g., read, write and release) are used to transfer data between the memoryresident cache and display database.4.1 User InterfaceDuring every frame of an interactive walkthrough, the system �rst determines the simulatedobserver viewpoint. We represent an observer viewpoint by a view frustum, which is speci�edby an \eye" position, a view direction, azimuthal and altitudinal half angles, and an up vector(Figure 25). This representation is mapped to a perspective viewing transformation [13] fordisplay purposes by setting the center of projection to the observer eye position, the viewreference point to the center of the window, and the view plane normal and up vectors to thecorresponding frustum parameters (Figure 26). The ratio of the tangents of the azimuthaland altitudinal half angles is kept equal to the aspect ratio of the viewport on the graphicsworkstation display in order to avoid distortion due to anisotropic scaling.The walkthrough system used for demonstrations has a simple user interface to controlthe simulated observer viewpoint based on mouse and keyboard input devices. When the userholds down a mouse button, the simulated observer moves along the current view directionand turns toward the direction indicated by the mouse cursor. For instance, to move straightforward, the user must hold down the left mouse button, while keeping the mouse cursornear the middle of the screen. To turn left, the user holds down a mouse button and moves29



Eye PositionView Direction

Up Vector
Altitudinal
Half Angle

Azimuthal
Half AngleFigure 25: View frustum variables. Center of

Projection

Up Vector

CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC

View Plane

Normal
Vector

View
Reference

PointFigure 26: Mapping view frustum to per-spective projection.the mouse cursor to the left part of the screen. By pressing di�erent mouse buttons the usermay move forward, backwards, or spin in place.The walkthrough program also supports a variety of panels with toggles, buttons, andsliders to control various program options and display modes for visualization of our algo-rithms (Figure 28). For instance, the program allows a user to view the building modelfrom either an \interior view" in which the model is rendered from the simulated observerviewpoint (the default), or from a \bird's eye view" in which the model is rendered as ifthe user were looking down from the sky (Figure 27). In either case, the user can choose tosee outlines of cells and objects in various visibility sets, shade objects based on the LODchosen for display, and/or draw outlines of cells and objects cached in memory. We havefound these visualization controls to be essential for debugging and verifying the behaviorof complex three dimensional geometric algorithms.4.2 Display ManagementThree dimensional models of large, furnished buildings contain too many polygons to berendered at interactive frame rates (e.g., ten frames per second) on currently available hard-ware. We use two techniques to compute a small, but most relevant, portion of the model torender in each frame: 1) we determine the set of objects visible to the observer, and 2) wechoose a level of detail and rendering algorithm with which to render each visible object in30



a) Interior View b) Bird's Eye ViewFigure 27: Visualization program supports two views.order to generate the \best" image possible within a user-speci�ed target frame time. Usingthese techniques, we are able to cull away large portions of the model that are irrelevantfrom the observer viewpoint, and achieve faster, more uniform frame times than would bepossible otherwise.4.2.1 Visibility DeterminationThe procedure to compute the portion of the model visible to an observer during the walk-through phase is similar to the one used to compute cell visibility during the precomputationphase (see Section 3.2). The di�erence is that we can compute the visibility for the actualobserver viewpoint during the walkthrough phase, whereas we computed visibility for eachcell (i.e., a generalized observer free to look in any direction and move to any position withinthe cell) during the precomputation phase.Given an observer view frustum, F , we �rst identify the cell, C, containing the observerposition and initialize the visible region to be the wedge which is the intersection of thevolumes enclosed by F and C. Next, we perform a constrained depth-�rst traversal of thecell adjacency graph, starting at C and propagating outward through portals to neighboringcells. The region of space visible to a view frustum through a sequence of axial rectangularportals can be well-approximated by a polyhedral wedge with at most ten sides (one foreach of four planes bounding the view frustum, plus one for each of six planes derived from31



Figure 28: Panels used for controlling parameters for a) observer navigation, b) visibilitydetermination, and c) memory management.32



portal edges parallel to the x, y, and z axes). For each step through a portal, P , into areached cell, R, we update the wedge visible through the current portal sequence, W , byintersection with a wedge bounded by planes through the observer eyepoint and edges of theportal (Figure 29). If the resulting intersection is empty (i.e., W is disjoint from P , so thenew portal sequence does not admit any sightline passing through the observer eye position),that branch of the depth-�rst search is terminated. Otherwise, the region of R visible to theobserver (i.e., the intersection of R and W ) is included in the visible region, and the searchrecurses into neighboring cells. See [35, 37] for more details.A schematic diagram of the visible region computation is shown in two dimensions inFigure 30. The observer view frustum is represented in two dimensions by a wedge outlinedby thick black lines, and the visible region is shown in stipple gray.
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC

View
Frustum

Visible
RegionFigure 29: Visible region is a wedge that typically narrows as it traverses through moreportals.During the depth-�rst search, we construct the eye-to-cell and eye-to-object visibilities forthe observer view frustum { i.e., the sets of cells and objects, respectively, that are reachedby some sightline that contains the observer view position, lies within the observer viewfrustum, and does not pierce any opaque cell boundaries. Construction of these sets canbe accelerated by taking advantage of the precomputed visibility information stored in thedisplay database since only cells and objects in the precomputed visibility sets of the cellcontaining the observer must be checked for a feasible sightline in real-time. Note, however,that the real-time visibility computation does not depend on the availability of precomputed33



visibility information. All objects incident upon cells reached during the real-time visibilitysearch can be checked for a feasible sightline with only slightly extra computation (less than20%) if a visibility precomputation has not been performed.Figure 31 shows a schematic representation of the eye-to-cell visibility and eye-to-objectvisibility for a particular observer frustum in two dimensions. Cells in the eye-to-cell visibilityare shown in gray stipple. Objects in the eye-to-object visibility are represented by �lledsquares; whereas those that are in the observer cell's cell-to-object visibility, but not in theobserver view frustum's eye-to-object visibility, are shown as hollow squares. Example ofeye-to-cell visibility and eye-to-object visibility in three dimensions are shown in Figures 32and 33, respectively.
!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!!!
!!!!!
!!!!!

!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

CCC
CCC
CCC

@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@

Figure 30: Visible region for view frustum intwo dimensions.
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC

@@@@
@@@@
@@@@
@@@@

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!!!
!!!!!
!!!!!

!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

CCC
CCC
CCC

@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
CCC
CCC
CCC

Figure 31: Objects in the eye-to-object visi-bility are shown as by solid squares.
Figure 32: All objects incident upon cells inthe eye-to-cell visibility. Figure 33: Objects in the eye-to-object visi-bility.34



The eye-to-object visibility for most observer viewpoints is a small subset of all objectsin the model, but still a superset of the objects actually visible to the observer. Therefore,we can greatly reduce rendering times if we render only objects in the eye-to-object visibilityduring each frame of an interactive walkthrough.4.2.2 Detail ElisionVisibility determination is very e�ective at culling away a large portion of the model that isinvisible to the observer, thereby accelerating frame rates considerably. However, the com-plexity of the model visible to the observer can still be quite large and highly variable. Tensof thousands of polygons might be simultaneously visible from some observer viewpoints,whereas just a few can be seen from others. For example, in our model of Soda Hall, thereare some viewpoints from which an observer can see more than eighty thousand polygons si-multaneously, and there are other viewpoints from which only one polygon is visible. Clearly,visibility processing alone is not su�cient to guarantee a uniform, interactive frame rate.To reduce the number of polygons rendered in each frame, an interactive visualizationsystem can use detail elision. If a model can be described by a hierarchical structure ofobjects, each of which is represented at multiple levels of detail (LODs) (see Section 2.2),simpler representations of an object can be used to improve frame rates and memory utiliza-tion during interactive visualization. This technique was �rst described by Clark [10], andhas been used by numerous commercial visualization systems [32]. If di�erent representationsfor the same object have similar appearances and are blended smoothly, using transparencyblending or three dimensional interpolation, transitions between levels of detail are barelynoticeable during visualization.Previously described detail elision techniques [7, 15, 28, 29, 32, 42], use size or distanceheuristics (often with feedback control) to choose a LOD for each object rendered. Simplerrepresentations are used for objects that are small or far away from the observer and thusmap to very few pixels on the workstation screen. Although size and distance heuristics for35



LOD selection improve frame rates in many cases, they do not generally produce a uniformor bounded frame rate, even if the threshold is adjusted dynamically with feedback control.During visualization of very large and discontinuous virtual environments, scene complexitycan vary radically between successive frames. For instance, in a building walkthrough, theobserver may turn around a corner into a large atrium, or step from an open corridor into asmall, enclosed o�ce. In these situations, the number and complexity of the objects visibleto the observer may change suddenly. Thus, the size threshold chosen based on the timerequired to render previous frames is inappropriate, and can result in very poor performanceuntil the system reacts. Overshoot and oscillation can occur as the feedback control systemattempts to adjust the size threshold to achieve the target frame rate. These e�ects can bequite disturbing to a user of an immersive visualization system.Our approach is to use a predictive algorithm to bound the rendering time during eachframe. We have developed bene�t and cost heuristics and a constrained optimization algo-rithm to choose an appropriate LOD and rendering algorithm for each potentially visibleobject in order to generate the \best" image possible within a user-speci�ed target frametime. This approach bounds the frame rate, independent of the complexity of the scenevisible to the observer, and thus can generate smoother, more uniform, frame rates duringnavigation through complex scenes.The algorithm works as follows. We de�ne an object tuple, (O;L;R), to be an instance ofobject O, rendered at level of detail L, with rendering algorithm R. We de�ne two heuristicsfor object tuples: Cost(O;L;R) and Bene�t (O;L;R). The Cost heuristic estimates the timerequired to render an object tuple, and the Bene�t heuristic estimates the \contributionto model perception" of a rendered object tuple. We then choose a set of object tuples torender each frame, S, by solving the following constrained optimization problem:Maximize : PS Bene�t (O;L;R)Subject to : (1)36



PS Cost(O;L;R) � TargetFrameTimeThis constrained optimization approach captures the essence of image generation withreal-time constraints: \do as well as possible in a given amount of time." As such, it can beapplied to a wide variety of problems that require images to be displayed in a �xed amountof time, including adaptive ray tracing (i.e., given a �xed number of rays, cast those thatcontribute most to the image), and adaptive radiosity (i.e., given a �xed number of form-factor computations, compute those that contribute most to the solution). If levels of detailrepresenting \no polygons at all" are allowed, this approach handles cases where the targetframe time is not long enough to render all potentially visible objects even at the lowestlevel of detail. In such cases, only the most \important" objects are rendered so that theframe time constraint is not violated. Using this approach, it is possible to generate imagesin a short, �xed amount of time, rather than waiting much longer for images of the highestquality attainable.Of course, Cost and Bene�t heuristics for a speci�c object tuple cannot be predicted withperfect accuracy, and may depend on other object tuples rendered in the same image. Aperfect Cost heuristic may depend on the model and features of the graphics workstation,the state of the graphics system, the state of the operating system, and the state of otherprograms running on the machine. A perfect Bene�t heuristic would consider occlusionand color of other object tuples, human perception, and human understanding. We cannothope to quantify all of these complex factors in heuristics that can be computed e�ciently.However, using several simplifying assumptions, we have developed approximate Cost andBene�t heuristics that are both e�cient to compute and accurate enough to be useful.Our Cost heuristic estimates rendering time as a linear combination of the number ofprimitives drawn and the number of pixels �lled. We have found that this simple heuristicis able to predict rendering times within 10% at the 95% con�dence level on an SGI VGX320 workstation.Our Bene�t (O;L;R) heuristic estimates the \contribution to model perception" of an37



object tuple by a linear combination of quantitative and qualitative factors, including theobject size, rendering accuracy, object semantics, position in the image, motion blur, andhysteresis. Greater Bene�t is assigned to object tuples that are larger (i.e., cover morepixels in the image), more realistic-looking (i.e., rendered with higher levels of detail, orbetter rendering algorithms), more important (i.e., semantically, or closer to the center ofthe screen), and more apt to blend with other images in a sequence (i.e., hysteresis).We use the Cost and Bene�t heuristics to choose a set of object tuples to render eachframe by solving the constrained optimization in Equation 1. Unfortunately, this constrainedoptimization problem is NP-complete. It is the Continuous Multiple Choice Knapsack Prob-lem [18, 22], a version of the well-known Knapsack Problem in which elements are partitionedinto candidate sets, and at most one element from each candidate set may be placed in theknapsack at once. We have implemented a simple, greedy approximation algorithm for thisproblem that selects object tuples with the highest Bene�t=Cost [23, 30]. Our implemen-tation �nds an approximate solution that is at least half as good as the optimal solutionin O(n log n) for n potentially visible objects. However, since the initial guess for the LODand rendering algorithm for each object is generated from the previous frame, and there isoften a large amount of coherence from frame to frame, the algorithm completes in just a fewiterations on average. Moreover, computations are done in parallel with the display of theprevious frame on a separate processor in a pipelined architecture and thus do not increasethe e�ective frame rate as long as the time required for computation is not greater than thetime required for display. See [16, 17] for more details.4.3 Memory ManagementRealistic-looking three dimensional models may be much larger than can �t into main mem-ory. Thus, an interactive walkthrough system must swap portions of the model in and outof memory in real-time as the observer navigates through the model. This is especially dif-�cult since it takes a large amount of time to load data from disk into memory. We must38



not only store in memory the portion of the model that is visible from the current observerviewpoint, but also we must pre-fetch portions of the model that might become visible infuture frames. Consequently, we have implemented a predictive memory management al-gorithm that forecasts a range of possible observer viewpoints during the next N framesand uses precomputed cell-to-cell and cell-to-object visibility information fetched from thedisplay database to determine a lookahead set of objects (i.e., a set of objects that are likelyto be visible to the observer during the next N frames). We choose a level of detail at whichto store each lookahead object in a memory resident cache. Simple cache management algo-rithms determine which objects to load into memory from disk, and which to replace whenthe cache is full, as the observer moves through the model.4.3.1 Pre-Fetch AlgorithmAn ideal memory management algorithm predicts the observer viewpoint for each futureframe perfectly. It can then use the visibility determination and detail elision algorithmsdescribed in Sections 4.2.1 and 4.2.2 to determine exactly which objects and LODs will berendered during future frames and pre-fetch them into memory, replacing ones that will notbe rendered for the longest time in the future. Unfortunately, since the observer viewpointis under interactive control by the user and cannot be predicted perfectly, we must considera range of possible future observer viewpoints in our memory management algorithm.In order to pre-fetch objects into memory before they are rendered, we must determinein advance which objects are likely to become visible to the observer. In each frame of aninteractive walkthrough, we compute a set of range cells, R, that are likely to contain theobserver eye position during the next N frames by performing a shortest path search of thecell adjacency graph. The search, implemented using Dijkstra's method [12], adds cells tothe range set ordered by the minimum number of frames before the observer can enter thecell. Maximumpositional and rotational velocities and constraints preventing observers fromwalking directly through solid walls are used to determine the number of frames required39



for the observer to enter a cell. Figure 34 shows an example shortest path search result.Each cell is labeled by the minimum number of frames before it can contain the observer,assuming the observer is constrained to the maximum positional and rotational velocities,and cannot walk through walls. For N = 4, range cells are highlighted in cross-hatch.
!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!!!
!!!!!
!!!!!

!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

13

6 10 14 17 194

2

1

2246

4

2

15

20 20!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

17

5

1

5

10

15 15

18

9 15

25

23

24

5

15 21

4

!!!
!!!
!!!

21 23 25 30 31 31 33

11

16

17
18

10
21

17 23

21

25

24

2727

25

29

2921

25 2626

12 25

23

312022 34

277

@@@
@@@
@@@ &&&&&&&&&

&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&

&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&

&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&

&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&

&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&

Figure 34: The observer range cells (cross-hatch) contain all observer view positions possibleduring the upcoming N = 4 frames. Each cell is labeled by the number of frames before theobserver can be resident in it.We use precomputed cell-to-cell and cell-to-object visibility information for the rangecells fetched from the display database to compute a set of lookahead objects that are likelyto be visible to the observer during the next N frames. When a new range cell is discoveredduring the shortest path search, we add all potentially visible objects incident upon thecell to the lookahead set. Figure 35 shows an example computation of the lookahead set ofobjects. Each cell is labeled by the minimum number of frames before it can become visibleto a cell in the observer range set. For N = 4, cells in the range set are highlighted again incross-hatch, and cells containing objects in the lookahead set are highlighted in stipple gray.As each object is added to the lookahead set, we mark and claim memory for all LODs forthe object that can possibly be rendered during the next N frames. We use a size thresholdfor static detail elision, along with precomputed information regarding which objects can bedrawn at a given LOD for an observer inside a particular cell, to choose a maximum LODat which to store each potentially visible object. The e�ect is that objects near the observerrange are stored in memory up to higher LODs than ones further away, as shown in Figure40



!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!!!
!!!!!
!!!!!

!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

5

0 0 1 9 90

0

0

1512

4

2

5

4 4!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

5

4

1

4

4

4 4

4

0 1

15

2

9

4

2 2

2

!!!
!!!
!!!

15 10 10 24 24 15 27

5

5

5
11

5
5

5 5

5

5

5

1515

11

18

1510

18 1821

5 21

1

151015 24

154

@@@
@@@
@@@ &&&&&&&&&

&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&

&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&

&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&

CCCC
CCCC
CCCC
CCCC

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC

CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC

CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCCFigure 35: The lookahead cells (stipple gray) contain all objects that can be visible to theobserver during the upcoming N frames. Each cell is labeled by the number of frames beforeit can become visible to the observer.36.
!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!!!
!!!!!
!!!!!

!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

4 4 35

5

5

54

5

5

1 1!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

5

4

3

2 2

2

4 2

1

4

2 1

5

!!!
!!!
!!!

3

15

@@@
@@@
@@@

@@@@@@@@@
@@@@@@@@@
@@@@@@@@@
@@@@@@@@@
@@@@@@@@@
@@@@@@@@@
@@@@@@@@@

@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@

@@@@@@@@@
@@@@@@@@@
@@@@@@@@@
@@@@@@@@@
@@@@@@@@@
@@@@@@@@@

BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB

BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB

BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB

BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB

BBBBB
BBBBB
BBBBB
BBBBB
BBBBB
BBBBB

BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB

CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC

CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC

111111111
111111111
111111111
111111111
111111111
111111111
111111111

11111
11111
11111
11111
11111
11111

1111111
1111111
1111111
1111111
1111111
1111111
1111111

**********
**********
**********
**********
**********
**********
**********

******
******
******
******
******
******
******

*********
*********
*********
*********
*********
*********
*********

*********
*********
*********
*********
*********

BBBBB
BBBBB
BBBBB
BBBBB
BBBBB
BBBBBFigure 36: Lookahead objects are stored in memory only up to the LOD at which they canpossibly be rendered during the next N frames. Each cell is labeled and shaded by themaximum level of detail any object incident upon it is stored in memory { darker shades ofgray represent higher levels of detail.The shortest path search for range cells and lookahead objects terminates when either:1) there are no cells remaining that can contain the observer during the next N frames, or2) all available memory has been claimed (as long as all objects visible from the currentobserver viewpoint are in the lookahead set). In either case, the set of lookahead objects iscertainly a superset of the objects visible from the current observer viewpoint, as well as agood estimate of the objects that are most likely to be rendered in upcoming frames. See[17] for more details. 41



4.3.2 Cache ManagementAfter computing the set of lookahead objects, we must determine which objects to loadinto memory (i.e., the read set) and which to remove from memory (i.e., the release set)during each frame of an interactive walkthrough. Conceptually, memory resident objects arestored in a fully associative, write-back cache which is the size of available memory (i.e., thesize of the physical memory of the workstation minus the amount reserved for the spatialsubdivision and precomputed visibility information).To determine which objects to load into memory during each frame, we �rst check everyobject in the lookahead set to determine whether or not it is already represented at theappropriate LODs in the memory resident cache. In principle, we should issue read requestsfor every lookahead object that is not already in the memory resident cache. However, sincea new lookahead set is constructed during every frame, and lookahead sets computed duringlater frames have more accurate predictive power, it is pointless (and even counterproductive)to start loading all such lookahead objects into memory during the current frame, since theymay take several frame times to transfer from disk. Instead, during each frame, we load intomemory only as many objects as can be read from disk in a single frame time. We constructa read set of objects to load from disk by adding lookahead objects in order of LOD (i.e.,lowest to highest) and when they can possibly become visible to a range cell (i.e., the orderthey are added to the lookahead set). Construction of the read set terminates when thecumulative size (in bytes) of the set exceeds the estimated capacity of disk reads during asingle frame time (maximum bytes read per frame), and all objects visible to the observer inthe current frame are in either the memory resident cache or the read set. Read requests areissued for each object in the read set from an asynchronous database input/output process.As objects from the lookahead set are added to the memory resident cache, other objectsoriginally in the cache might need to be removed to free memory for the new ones. Ourobject replacement algorithm closely resembles a least recently used (LRU) policy. Objectsin the memory resident cache are kept ordered by when they can possibly become visible42



to a range cell. As objects are added to the lookahead set, they are marked and movedto the head of the memory resident cache queue. Objects that are not in the lookaheadset maintain their relative ordering in the queue across successive frames. We construct arelease set of objects to remove each frame by choosing objects from the tail of the memoryresident cache queue (i.e., the ones that have least recently been a member of the lookaheadset) until enough memory is available for all objects in the read set. Objects in the releaseset are removed from memory before objects in the read set are loaded so that memory isnever overburdened.Figure 37 shows results of the cache management algorithm for a particular observerpath. Each cell is labeled by the number of frames since objects incident upon it wereincluded in the lookahead set. The shade of each cell indicates whether or not it containsobjects in the memory resident cache (stipple gray), read set (SE/NW-hatch), or release set(SW/NE-hatch).
!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!!!
!!!!!
!!!!!

!!!
!!!
!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

1

0 0 00

0

00

0

0

1

0 0!!!!
!!!!
!!!!

!!!!
!!!!
!!!!

!!!
!!!
!!!

1

0

0

0 0

0

0 0

0

0

0 0

0

!!!
!!!
!!!

6 6

1

1

1
7

1
1

1 1

1

1

1
7

6

1

0

6

0

Start

End
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

4444444
4444444
4444444
4444444
4444444
4444444

4444444
4444444
4444444
4444444
4444444
4444444
4444444

444444444444
444444444444
444444444444
444444444444
444444444444
444444444444
444444444444

44444444444
44444444444
44444444444
44444444444
44444444444

CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

CCCCC
CCCCC
CCCCC
CCCCC

44444
44444
44444
44444

99999999999
99999999999
99999999999
99999999999
99999999999
99999999999

9999999
9999999
9999999
9999999
9999999
9999999

CCCCC
CCCCC
CCCCC
CCCCC

Figure 37: Cache management algorithm results. Each cell is labeled by the number offrames since objects incident upon it were included in the lookahead set. Shading for eachcell indicates whether or not it contains objects in the memory resident cache (stipple gray),read set (left-hatch), and resident set (right-hatch).4.3.3 Asynchronous Pre-FetchDuring each frame of an interactive walkthrough, an asynchronous database input/outputprocess loads objects in the read set into memory from disk. Meanwhile, the walkthrough sys-43



tem concurrently renders objects potentially visible from the current observer viewpoint usingLODs chosen by the detail elision algorithm. What happens if the database input/outputprocess is not fast enough to load an object into memory before it is selected for rendering?This situation must be considered since there is no bound on the rate at which new data canbecome visible to the observer. For instance, the observer can \run" through the building,or turn several corners quickly to view portions of the model not previously visited. In thesecases, the rate at which new data becomes visible to the observer may be greater than therate at which data can be loaded from disk.In our �rst implementation, the walkthrough system stalled when it found that an objectto be rendered had not yet been loaded into memory at the appropriate LOD. It simplywaiteduntil the appropriate LOD for an object was loaded into memory, and then it continuedrendering. Needless to say, this behavior was extremely bothersome. At times, the systemwould stall for several seconds waiting for a particular object geometry that was renderedfor only a few frames.In our current implementation, the system never waits for an object to be loaded intomemory. Instead, if a potentially visible object has not been loaded into memory at thedesired LOD, the rendering process simply skips that LOD and renders the object at thehighest LOD that is resident in memory. If the object is not resident in memory at any LOD,the object is skipped completely. Like detail elision during display, we trade image qualityfor interactivity using this approach. When the asynchronous database input/output processcannot keep up with the rest of the system, some objects may be rendered at lower LODs.Or, if the database input/output process falls behind the rest of the system by several frames,some potentially visible objects may not be rendered at all. Fortunately, since the lookaheadalgorithm orders objects based on when they are likely to be visible to the observer, and thecache manager loads object geometries in order from lowest LOD to highest LOD, generallyonly the higher LODs for newly visible objects are skipped.44



5 ResultsTo evaluate the e�ectiveness of the display and memory management algorithms describedin the previous section, we ran a series of tests using a complete building walkthroughapplication, logging statistics as a user \walked" through the model of Soda Hall.We ran two experiments: one that tested only display management algorithms (i.e.,visibility determination and detail elision), and another that also tested memorymanagementalgorithms (i.e., pre-fetching objects into memory in real-time). Both experiments wereperformed on a Silicon Graphics Power series 320 workstation with reality engine graphics,two 33MHz MIPS R3000 processors, 128MB of memory, and a 16�s timer. In the displaymanagement experiment, the application was con�gured as a two-process pipeline with oneprocessor used for user interface, visibility determination and detail elision computations,and a second processor used for rendering. In the memory management experiment, theapplication was con�gured as a four-process pipeline using the same processes as the displaymanagement experiment, but also with memory management computations in a separatethird process, and database input/output operations in a separate fourth process.In both experiments, we used the observer path shown in Figure 38. It contains over9,000 observer viewpoints, and visits the top four oors of Soda Hall.
1000

1500
2000 1000

1500
2000

1000

1500

X
Y

ZFigure 38: Test observer path through the top four oors of Soda Hall.45



5.1 Display ManagementIn the �rst experiment, we tested the combined e�ectiveness of the display managementalgorithms described in this section, independent of memory management. We used a hier-archical representation of the Soda Hall model with shared object de�nitions requiring only21.5MB of storage so that the entire model could be resident in memory for the duration ofthe experiment. We ran three tests using the following combinations of real-time visibilitydetermination and detail elision algorithms:� Entire Model: Renders every object in the model at its highest level of detail { i.e.,without any visibility determination or detail elision.� Visibility: Renders each object in the eye-to-object visibility of observer viewpointat its highest level of detail.� Detail Elision: Render each object in the eye-to-object visibility of observer viewpointwith the level of detail chosen by the optimization detail elision algorithm to boundthe frame rate at a minimum of �fteen frames per second.During each test, we measured the compute time (i.e., the real-time visibility determi-nation and detail elision compute times), the rendering time, and the frame time (i.e., totaltime between successive frames), as well as the numbers of cells, objects, and polygons ren-dered in each frame. Mean and maximum statistics for all observer viewpoints along thetest walkthrough path are shown for each combination of visibility determination and detailelision algorithms in Tables 3{4. Figure 39 contains a plot of the frame time for each observerviewpoint along the test path during the test using both visibility and detail elision.During the Entire Model test, in which we rendered every object at the highest levelof detail, the graphics engine processed all 1,418,807 polygons during every frame and theframe time was 15.413 seconds (0.06 frames per second!) on average.During the Visibility test, in which we used the eye-to-object real-time visibility determi-nation algorithm without detail elision, we rendered 5,002 polygons (0.35% of the model) on46



Cull Compute Time (s) Render Time (s) Frame Time (s)Method Mean Max Mean Max Mean MaxEntire Model { { 15.413 17.426 15.413 17.426Visibility 0.018 0.107 0.061 0.557 0.067 0.562Detail Elision 0.033 0.199 0.032 0.083 0.047 0.199Table 3: Mean and maximum compute time, rendering time, and frame time statisticscollected during display management tests.Cull # Cells # Objects # Polygons % of ModelMethod Mean Max Mean Max Mean Max Mean MaxEntire Model 5,060 14,478 1,418,807 100%Visibility 19 70 105 469 5,002 45,828 0.35% 3.23%Detail Elision 19 70 104 445 2,534 6,912 0.18% 0.49%Table 4: Mean and maximumnumbers of cells, objects, and polygons rendered during displaymanagement tests.
0

0.1

0.2

0 2000 4000 6000 8000

F
r
a
m
e
 
T
i
m
e
 
(
s
)

FramesFigure 39: Frame time for each observer viewpoint along the entire test observer path duringthe test using both visibility determination and detail elision.47



average, and the mean frame time was 0.067 seconds (14.9 frames per second). However, themaximum frame time was still quite large using only visibility determination because thereare some viewpoints along the test path at which the scene visible to the observer is verycomplex (469 objects containing 45,828 polygons at the highest level of detail). At theseviewpoints, the rendering time increased to 0.557 seconds (1.8 frames per second).During the Detail Elision test, in which we used both the eye-to-object visibility algo-rithm and the optimization detail elision algorithm to choose an appropriate LOD for eachpotentially visible object dynamically, we rendered only 2,534 polygons (0.18% of the model)and generated an image every 0.047 seconds (21.3 frames per second) on average. The max-imum rendering time was 0.083 seconds, and the the maximum response time was 0.274seconds { short enough for the system to maintain a highly interactive feel. A plot of ren-dering times measured during the test with detail elision are shown in Figure 41. Renderingtime is bounded by the detail elision algorithm and the observer step size is adjusted by theprevious frame time resulting in a smooth, interactive walkthrough with constant velocity.Although these bounded rendering times were achieved by rendering simpler representationsfor some objects during some frames, the visual e�ects of detail elision were barely noticeable(see Figure 40 for an example).
Figure 40: Images of library generated using (left) no detail elision (19,821 polygons), and(right) using the Optimization detail elision algorithm with a target frame time of 0.05seconds (3,568 polygons). 48



There is one peak in the frame time during the detail elision test (near frame 4700 inFigure 39). This peak occurred because the computation time was larger than the renderingtime during this portion of the walkthrough test. Figure 42 shows the measured computetime, and rendering time for each frame along the portion of the walkthrough path forwhich computation was most expensive. Since the walkthrough system was con�gured as atwo process concurrent pipeline in this test, with visibility determination and detail elisioncomputations performed in one process and rendering in another, the e�ective frame timewas closely correlated with the maximum of the compute time and the rendering time. Theprocess performing visibility and detail elision computations slowed to 0.199 seconds perframe in the worst case, and caused the e�ective frame rate to slow to 5 frames per secondfor a short period, even though the rendering time was still less than 0.8 seconds. However,note that the frame times would have been far greater if either the visibility determination ordetail elision computation were not performed. There is currently no adaptive control overthe time required for computation in our system. In a future version, perhaps computationscan be optimized, executed with more parallelism, or be made adaptive so that they neverexceed the target frame time.5.2 Memory ManagementIn the second experiment, we tested the cumulative e�ectiveness of the display and mem-ory management algorithms described in the previous sections. We used the same displaymanagement algorithms as were used in the test labeled Detail Elision in the previous test.However, in this experiment, we used the attened model of Soda Hall (349.5MB of storage)and the predictive memory management algorithm described in Section 4.3 to swap objectsin and out of memory in real-time as the observer moved along the test walkthrough path.To test the algorithms to their fullest, we arti�cially limited the size of the memory residentcache to 16MB.In addition to the statistics measured during the display management experiment, we49



0

0.1

0.2

0 2000 4000 6000 8000

R
e
n
d
e
r
 
T
i
m
e
 
(
s
)

FramesFigure 41: Rendering times during De-tail Elision test for each observer viewpointalong the test observer path. 0

0.1

0.2

4500 5500

T
i
m
e
 
(
s
)

Frames

Compute Time
Render Time

Figure 42: Compute time and renderingtime during Detail Elision test for each ob-server viewpoint along the portion of testobserver path where computation was mostexpensive.gathered statistics regarding the the swap time (i.e., the time required to load objects intomemory from disk), and the sizes of resident, lookahead, rendered, and read sets. Mean andmaximum statistics for all observer viewpoints along the test walkthrough path are shownfor tests with and without memory management in Table 5. Table 6 contains mean andmaximum statistics regarding the lookahead sets collected during the memory managementtest. Figure 43 contains a plot of the frame time for each observer viewpoint along the testpath during the test using memory management.The entire attened model of Soda Hall requires 349.5MB of storage. However, using thepredictive memory management algorithm during an interactive walkthrough with 16MB ofmemory resident cache, we were able to maintain a frame rate of 21.3 frames per second onaverage, the same average frame rate achieved during the test on an entirely memory residentmodel described in the previous section. The addition of memory management processingadded to the frame time variance only slightly.Of the 349.5MB of data in the entire model, only 382KB of data was required to describethe polygons rendered during each frame on average. The lookahead algorithm was able50



Mem Compute Time (s) Render Time (s) Swap Time (s) Frame Time (s)Mgmt Mean Max Mean Max Mean Max Mean MaxNo 0.033 0.199 0.032 0.083 { { 0.047 0.199Yes 0.040 0.244 0.034 0.124 0.020 0.898 0.047 0.244Table 5: Mean and maximum compute time, rendering time, swap time, and frame timestatistics collected during tests with and without memory management.Object # Objects # Polygons # MBytes % of ModelSet Mean Max Mean Max Mean Max Mean MaxEntire Model 14,478 1,418,807 349.5 100%Resident 986 1,698 97,081 128,102 14.517 18.102 4.15% 5.18%Lookahead 628 3,209 66,297 362,831 9.916 54.409 2.84% 15.6%Rendered 104 445 2,534 6,912 0.382 0.993 0.11% 0.28%Read 2 432 266 6,501 0.024 0.795 0.01% 0.23%Table 6: Mean and maximum set statistics collected during memory management tests.
0

0.1

0.2

0 2000 4000 6000 8000

F
r
a
m
e
 
T
i
m
e
 
(
s
)

FramesFigure 43: Frame time for each observer viewpoint along the entire test observer path duringthe test with memory management. 51



to determine a relatively small set of object descriptions to store in memory (9.916MB onaverage) by predicting which object descriptions were most likely to be rendered duringupcoming frames. The lookahead computation required very little extra time (0.002 secondsper frame on average), and executed in a separate asynchronous process, and thus had verylittle impact on the e�ective frame time.During each frame on average, 24KB of data describing objects new to the lookaheadset was read from disk into memory, requiring 0.020 seconds per frame. Although the readtime was highly variable (the maximum read time was 0.898 seconds), read operations wereperformed in an asynchronous database input/output process; so large read times did nota�ect the frame time directly.In order to maintain an interactive frame rate, the rendering process did not wait forobject descriptions to be loaded into memory during the memory management test. Instead,it simply skipped object LODs that were not yet memory resident, and rendered the objectat the next highest LOD that was resident in memory. During this test, 1.43 LODs wereskipped on average, and as many as 35 LODs were skipped during some frames (e.g., whenthe observer entered a region of the model with many complex objects). Although this e�ectwas noticeable during one short portion of the walkthrough path, we found it to be lessdisturbing than the alternative { i.e., requiring the rendering process to stall while waitingfor the appropriate LOD for an object to be read into memory before it was rendered.6 ConclusionThis paper describes a system for interactive walkthroughs of very large architectural models.Our test case is a description of Soda Hall, the CS building at the University of Californiaat Berkeley. The original model, which was generated by architects using AutoCAD, wasconverted to a three dimensional format (UNIGRAFIX) using algorithms that detect andcorrect the many modeling errors automatically. A considerable amount of direct user inter-action with manual tools was needed to convert the model into a format suitable for three52



dimensional computation and rendering.Data structures and algorithms described in this paper helped maintain interactive framerates during walkthroughs of such large architectural models. We built a hierarchical displaydatabase containing objects represented at multiple levels of detail during a modeling phase,performed a spatial subdivision and visibility analysis during a precomputation phase, andused real-time culling, display and memory management algorithms during a walkthroughphase to select a relevant subset of the model for rendering and storing in memory.We have found visibility determination to be extremely useful for generating fast framerates during visualization of complex models. By partitioning the model into a spatial sub-division of cells whose boundaries coincide with the major axis-aligned, occluding polygons,and by performing visibility precomputations to determine a superset of objects visible fromeach cell, we characterize the portion of the model visible from di�erent regions of spaceduring an o�-line computation. We use this precomputed spatial and visibility informationin the real-time visibility determination algorithms to determine the relevant subset of themodel for each observer viewpoint during an interactive walkthrough.However, visibility determination alone is not su�cient to generate fast, uniform framerates during visualization of complex models. There may be observer viewpoints at which fartoo many polygons are simultaneously visible to render at interactive frame rates. Therefore,during each frame of an interactive walkthrough, we execute an Optimization detail elisionalgorithm that may choose a reduced level of detail or a simpler rendering algorithm withwhich to display each potentially visible object in order to achieve a user-speci�ed targetframe time.We have found it possible to swap objects in and out of memory as a simulated observerwalks through a model much larger than physical memory. We use an asynchronous pre-fetch algorithm to load objects that are likely to become visible to the observer up to themaximum level of detail at which they can possibly be rendered during upcoming frames.An approximate least-recently used algorithm determines which objects to replace in the53



memory resident cache as new objects are added.We have implemented a �rst version of a complete architectural visualization system andtested it in real walkthroughs of a furnished model of Soda Hall containing over 1.4 millionpolygons. Our initial results show that the display and memory management techniques aree�ective at culling away a substantial portion of the model, and make interactive frame ratesof twenty frames per second possible even for very large models.7 AcknowledgementsWe are grateful to Thurman Brown, Rick Bukowski, Laura Downs, Priscilla Shih MaryannSimmons, and Ajay Sreekanth for their e�orts constructing the building model. We alsothank Silicon Graphics, Inc. for allowing us to use equipment, and donating a VGX 320workstation to this project as part of a grant from the Microelectronics Innovation andComputer Research Opportunities (MICRO 1991) program of the State of California.References[1] Airey, John M. Increasing Update Rates in the Building Walkthrough System with Au-tomatic Model-Space Subdivision and Potentially Visible Set Calculations. Ph.D. thesis,UNC Chapel Hill, 1990.[2] Airey, John M., John H. Rohlf, and Frederick P. Brooks, Jr. Towards image realism withinteractive update rates in complex virtual building environments. ACM SIGGRAPHSpecial Issue on 1990 Symposium on Interactive 3D Graphics, 24, 2 (1990), 41-50.[3] Amenta, Nina. Finding a Line Traversal of Axial Objects in Three Dimensions. Proc.3rd Annual ACM-SIAM Symposium on Discrete Algorithms, 1992, 66-71.[4] AutoCAD Reference Manual, Release 10, Autodesk Inc., 1990.[5] Bechtel, Inc. WALKTHRU: 3D Animation and Visualization System. Promotional lit-erature, 1991. 54



[6] Bentley, J.L. Multidimensional Binary Search Trees Used for Associative Searching.Communications of the ACM, 18 (1975), 509-517.[7] Blake, Edwin H. A Metric for Computing Adaptive Detail in Animated Scenes usingObject-Oriented Programming. Eurographics `87. G. Marechal (Ed.), Elsivier SciencePublishers, B.V. (North-Holland), 1987.[8] Brooks, Jr., Frederick P. Walkthrough - A Dynamic Graphics System for SimulatingVirtual Buildings. Proceedings of the 1986 Workshop on Interactive 3D Graphics.[9] Brown, Thurman A. Interactive Object Displacement in Building Walkthrough Models.Master's Thesis, Computer Science Division (EECS), University of California, Berkeley,1992.[10] Clark, James H. Hierarchical Geometric Models for Visible Surface Algorithms. Com-munications of the ACM, 19, 10 (October 1976), 547-554.[11] Deyo, R. J., J. A. Briggs, and P. Doenges. Getting Graphics in Gear: Graphics andDynamics in Driving Simulation. Computer Graphics (Proc. SIGGRAPH '88), 24, 4(July 1988), 317-326.[12] Dijksta, E.W. A Note on Two Problems in Connexion with Graphs. Numerische Math-ematik 1, 1959, 269-271.[13] Foley, J.D., A. van Dam, S. Feiner, and J. Hughes. Computer Graphics: Principles andPractice. 2nd ed., Addison-Wesley, Reading, MA, 1990.[14] Funkhouser, Thomas A. An Interactive UNIGRAFIX Editor. Unpublished. May, 1991.[15] Funkhouser, Thomas A., Carlo H. S�equin, and Seth J. Teller. Management of LargeAmounts of Data in Interactive Building Walkthroughs. ACM SIGGRAPH Special Issueon 1992 Symposium on Interactive 3D Graphics, March, 1992, 11-20.55



[16] Funkhouser, Thomas A., and Carlo H. S�equin. Adaptive Display Algorithm for Inter-active Frame Rates During Visualization of Complex Virtual Environments. ComputerGraphics (Proc. SIGGRAPH '93), (August 1993), 247-254..[17] Funkhouser, Thomas A. Database and Display Algorithms for Interactive Visualizationof Architectural Models. Ph.D. thesis, Computer Science Division (EECS), Universityof California, Berkeley, 1993. Also available as UC Berkeley technical report UCB/CSD-93-771.[18] Garey, Michael R. and David S. Johnson. Computers and Intractability: A Guide to theTheory of NP-Completeness. W.H. Freeman and Company, New York, 1979.[19] Goral, Cindy M., Kenneth E. Torrance, Donald P. Greenberg, and Bennett Bat-taile. Modeling the Interaction of Light Between Di�use Surfaces. Computer Graphics(Proc. SIGGRAPH '84), 18, 3 (July 1984), 213-222.[20] Greene, Ned, Michael Kass, and Gavin Miller. Hierarchical Z-Bu�er Visibility.ComputerGraphics (Proc. SIGGRAPH '93), (August 1993), 231-238.[21] Hohmeyer, Michael E., and Seth J. Teller. Stabbing Isothetic Rectangles and Boxes inO(n lg n) Time. Technical Report UCB/CSD 91/634, Computer Science Department,U.C. Berkeley, 1991.[22] Ibaraki, T., T. Hasegawa, K. Teranaka, J. Iwase. The Multiple Choice Knapsack Prob-lem. J. Oper. Res. Soc. Japan 21, 1978, 59-94.[23] Ibarra, O. H. and C. E. Kim. Fast Approximate Algorithms for the Knapsack and Sumof Subset Problems. J. Assoc. Comput. Mach. 22, 1975, 463-468.[24] Jones, C.B. A New Approach to the `Hidden Line' Problem. The Computer Journal,14, 3 (August 1971), 232-237. 56



[25] Khorramabadi, Delnaz. A Walk through the Planned CS Building. Master's Thesis,Computer Science Division (EECS), University of California, Berkeley, 1991. Also avail-able as UC Berkeley technical report UCB/CSD 91/652.[26] Nishita, T., and E. Nakamae. Half-Tone Representation of 3D Objects Illuminated byArea Sources or Polyhedron Sources. Computer Graphics (Proc. SIGGRAPH '85), 19,3 (July 1985), 23-30.[27] Oakland, Steven Anders. BUMP, A Motion Description and Animation Package. Tech-nical Report UCB/CSD 87/370, Computer Science Department, U.C. Berkeley, 1987.[28] Rossignac, J. and P. Borrel. Multi-resolution 3D approximations for rendering complexscenes. IFIP TC 5.WG 5.10 II Conference on Geometric Modeling in Computer Graph-ics, Genova, Italy, 1993. Also available as IBM Research Report RC 17697, YorktownHeights, NY 10598.[29] Rubin, S. M. The representation and display of scenes with a wide range of detail.Computer Graphics and Image Processing. 19 (1982), 291-298.[30] Sahni, S. Approximate Algorithms for the 0/1 Knapsack Problem. J. Assoc. Comput.Mach. 22, 1975, 115-124.[31] Schachter, Bruce J. Computer Image Generation for Flight Simulation. IEEE ComputerGraphics and Applications. 1, 5 (1981), 29-68.[32] Schachter, Bruce J. (Ed.). Computer Image Generation. John Wiley and Sons, NewYork, NY, 1983.[33] S�equin, Carlo H. Introduction to the Berkeley UNIGRAFIX Tools (Version 3.0). Tech-nical Report UCB/CSD 91/606, Computer Science Department, U.C. Berkeley, 1991.[34] Smith, Kevin, P. Interactive Modeling Tool. Unpublished. September, 1990.57



[35] Teller, Seth J., and Carlo H. S�equin. Visibility Preprocessing for Interactive Walk-throughs. Computer Graphics (Proc. SIGGRAPH '91), 25, 4 (August 1991), 61-69.[36] Teller, Seth J. Computing the Antiumbra Cast by an Area Light Source. ComputerGraphics (Proc. SIGGRAPH '92), 26, 2 (August 1992), 139-148.[37] Teller, Seth J. Visibility Computations in Densely Occluded Polyhedral Environments.Ph.D. thesis, Computer Science Division (EECS), University of California, Berkeley,1992. Also available as UC Berkeley technical report UCB/CSD-92-708.[38] Teller, Seth J., Celeste Fowler, Thomas Funkhouser, and Pat Hanrahan Partitioning andOrdering Large Radiosity Computations. To appear in Computer Graphics (Proc. SIG-GRAPH '94), July, 1994.[39] Virtus Walkthrough. Promotional literature, 1991.[40] Ward, Greg. Lawrence Berkeley Laboratories. Personal Communication, 1993.[41] Ware, Colin, and Steven Osborne. Exploration and Virtual Camera Control in VirtualThree Dimensional Environments. ACM SIGGRAPH Special Issue on 1990 Symposiumon Interactive 3D Graphics, 24, 2 (1990), 171-176.[42] Zyda, Michael J. Course Notes, Book Number 10, Graphics and Video Laboratory,Department of Computer Science, Naval Postgraduate School, Monterey, California,November, 1991.[43] Zyda, Michael J., David R. Pratt, James G. Monahan, and Kalin P. Wilson. NPSNET:Constructing a 3D virtual world. ACM SIGGRAPH Special Issue on 1992 Symposiumon Interactive 3D Graphics, March, 1992.58


