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cally working (models containing one million and more
polygons take several minutes to load from hard disk into
main memory).

The 3D scene editor has subsequently been used to insert
four virtual walls into the scene. Figure 8 and Figure 9
show a simplified top view of our test scene. For each tex-
tured virtual wall six texture maps are needed. This corre-
sponds to an angle of error of 10 degrees. Our first
experiments have shown that the angle of error should not
exceed 15 degrees in order to get acceptable results. Fur-
ther experiments have to be carried out to get more exact
values. For two interior virtual walls textures must be gen-
erated for front and back faces since these virtual walls
may be viewed from both sides. Main occluding objects
like “real“ walls, floors etc. are always rendered as geome-
try and not displayed by textured virtual walls. These
regions are set to black during the generation of the texture
map. Subsequently these regions are set to 100% transpar-
ency.

A total of 36 texture maps has been precomputed for the
test scene. During runtime not all of them have to be
stored in texture memory. Since the cell-to-cell visibility
paradigm is used, only those texture maps must be stored
in texture memory which are potentially needed for the
following frames. A simple texture paging algorithm has
been implemented to exchange texture maps between
memory and hard disk.

Figures 11 and 12 show frames from a walkthrough of the
test scene. Figure 11 shows a walkthrough without tex-
tured virtual walls while Figure 12 shows a walkthrough
with textured virtual walls enabled. The virtual wall is out-
lined. The hand icon which can be seen in the center of the
images is needed for navigation and interaction when we
use fully immersive VR display techniques (Head Moun-
ted Displays, Datagloves). Figures 13 and 14 show a bird’s
eye view of the situation shown in Figure 11 resp. 12. Fig-
ure 13 shows geometry rendering while Figure 14 shows
textured virtual walls enabled. The virtual wall is outlined
again. Note that Figure 14 is used for clarification pur-
poses only. It is not possible for the user to experience
such a situation during a normal walkthrough. Using tex-
tured virtual walls significant speedups of the frame rate
have been measured. First experiments with the system
yielded estimated speedup values between 100% and
400%. Speedup values depend very much on how much
geometry is culled for the current frame. Currently further
extensive tests are being carried out to rate the perfor-
mance of the system.

8 Conclusions and future work

We have presented a new method which uses texture-
based simplification for accelerating frame rates during
interactive walkthroughs of complex indoor environments.
We have introduced textured virtual walls which enable us
to take advantage of the combination of two paradigms:
texture-based simplification and cell-to-cell visibility. First
results show significant frame rate speedups with little or
no loss in image quality.

Currently we are working on a method which automati-
cally generates virtual walls. This has been found to be a
difficult task since classical partitioning methods like
BSPs and octrees do not seem to be applicable for the gen-
eration of virtual walls. Moreover we are checking
whether dynamic, run-time based generation of texture
maps has advantages for solving our problem. Run-time
based generation of texture maps does not require much
disk space to store the textures. The large amount of disk
space which is needed to store the textures is the major
drawback of precomputed textures. Another problem
which has to be addressed when using texture-based sim-
plification is the visual artifacts caused by lighting. Since
we use static lighting in our models visual artifacts due to
incorrect lighting are currently not noticeable. But solu-
tions are needed if other types of lighting are used.
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texture map which is valid for zone D1. These objects are
highlighted in Figure 9. Objects which intersect a virtual

wall are not displayed on the corresponding texture. They
are rendered as geometry during the runtime phase
because parts of these objects are in front of the virtual
wall. If they were added to the texture the error metric
would partially be violated. The object selection for tex-
ture generation is done by a scene graph traversal. Since
all objects which are located behind a virtual wall are
“invisible“ during the runtime phase, visibility informa-
tion for particular cells and objects can be obtained by
applying the cell-to-cell visibility paradigm proposed by
Teller [13]. Although this method was originally designed
for densely occluded indoor environments the ideas pre-
sented there can easily be extended to solve our problem.
As in Teller’s method we use a lookup table to store visi-
bility information of cells and objects. For each cell the
lookup table contains information on which cells are
“invisible“. It is referenced for retrieving information
about which objects must be rendered for a texture map
during preprocessing.

6 Runtime Phase

Geometry information of the virtual walls as well as the
textures to be mapped onto them are stored in the scene
graph hierarchy. As the viewer moves through the scene
the scene graph is traversed for each fame. During the tra-
versal the algorithm determines which virtual walls have
to be displayed as well as which textures must be mapped
on it and thus which objects can be culled for the zone the
viewer is currently located in. This is done by referencing
the lookup-table generated during the preprocessing stage.
Near geometry (i. e. objects in front of a textured virtual
wall) is rendered “as it is“. Classical frustum culling and
level-of-detail modeling are used to further reduce the
number of polygons which must be rendered. Furthermore
our approach uses a blending mechanism to achieve
smooth transitions between texture and geometry, as well

as between two different textures. By crossing a border
between two cells the viewer passes a blend zone. Moving
towards a virtual wall within a blend zone will decrease

the transparency value of the texture map and increase the
transparency value of the geometry. Consequently the vir-
tual wall and geometry are displayed simultaneously while
a blend zone is passed (Figure 10). Note that only the
geometry of the next cell is rendered. Further distant
geometry is represented by the next textured virtual wall.
A similar blending mechanism is used if textures must be
exchanged on a virtual wall. Transparency-blending has
been successfully applied to level-of-detail transitions. In
our system the image quality is correspondingly much bet-
ter in comparison to a simple switching. Due to the
absence of “popping effects“ transitions between two rep-
resentations are hardly noticeable

7 Results

We have implemented the algorithm on a SGI Onyx RE2
using OpenGL and IRIS Performer [10]. The indoor scene
used for the first tests is a model of a medium sized labora-
tory for production engineering at our institute. The mod-
els of building parts, machine tools, robots and accessory
have been created using mechanical CAD systems. These
models have been imported into a 3D scene editor which
has been used to apply realistic materials and detail texture
maps. Furthermore this tool has been used to compose the
scene and to modify the scene graph for efficient visibility
culling. The whole scene consists of 14,500 polygons. We
have chosen a relatively small scene for handling reasons
since we first had to check whether our approach is basi-

Figure 9 Objects to be rendered on a texture map
valid for zone D1
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The angle of errorα is:.

Note that the perspective projection is independent from
the viewing direction. In other words, the perspective pro-
jection does not change if the viewer rotates the head [5].
Therefore it is not necessary to distinguish different view-
ing directions for the calculation of the projection error.

A simple error metric can be defined as follows: Consider
the zones introduced before in relation to the angle of error
α (Figure 7). Without proof one can see thatα reaches its
maximum value under the following conditions:

• The current viewpoint B’ in relation to the virtual
wall is located in the closest possible corner of a
zone.

• The point to be projected on the texture is located
as close as possible behind the virtual wall (PT=0).

Given a user defined value for the angel of error the mini-
mum distance allowed between the edge of a zone and the
virtual wall is:

Since point B is the geometric center of the zone,∆b
equals half the width of the zone. Therefore the width of
the indoor scene must be:

where nT equals the number of zones respectively the
number of textures needed for a single virtual wall. Since
the dimensions of the indoor scene (length and width) are
known either the number of textures per wall necessary for
a given amount of virtual walls or the number of virtual

walls necessary for a given amount of textures per wall
can be calculated. These computations depend on the
angle of error the user of the system is prepared to accept.

The discussion of our error metric has been restricted to an
indoor environment with a rectangular ground plan. Fur-
thermore the error discussion has been limited to 2D
assuming a constant height above the floor for the eye
point. This has been done to clarify the basic ideas of tex-
tured virtual walls. Our approach is neither restricted to
rectangular ground plans nor to a limited number of view-
points (i. e. those with a constant height above the floor).
These extensions can easily be made at some additional
cost.

5 Preprocessing Phase

The input to our preprocessor is a 3D model of a complex
indoor environment with no major occluders like “real“
walls. In a first step we manually insert a number of virtual
walls using a 3D editor. Virtual walls divide a large inte-
rior room into a set of smaller rooms. We call the rooms
separated by virtual walls cells. Subsequently the algo-
rithm divides each cell in zones. The number of zones gen-
erated for one cell depends on the distance between the
virtual walls and the maximum angle of error the user
accepts (see section 4). .

Furthermore the texture sampling point for each zone is
computed. The diagram in Figure 8 presents an example.
A top view of an indoor environment with several geomet-
ric complex objects is shown. Cells separated by virtual
walls are named from “A“ to “E“. Zones are numbered, in
this case from 0 to 5. A particular zone is addressed by its
cell identifier and zone number. For clarification zone D1
and cell D are exemplary highlighted in Figure 8. The tex-
ture sample points are marked by an “x“During the next
preprocessing step the specific textures are sampled. For
example the objects #1, #4, #5, and #10 are rendered for a
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Figure 7 Error metric for textured virtual walls
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added all geometry represented by it can be culled. The
diagram in Figure 3 shows the result of the process. Note
that the projection on the textured virtual wall is only cor-
rect for the texture sampling point and approximately cor-
rect for viewpoints which are located in a region near the
texture sampling point.

4 Projection Errors

The central problem caused by texture-based simplifica-
tion is that these texture-maps are only accurate for a sin-
gle viewpoint: the texture sampling point. Accurate means
that the perspective projection is only correct in this single
case. The basic idea behind texture based simplification is
that these errors can be accepted as long as the current
viewpoint is not too far away from the texture sampling
point and the texture-map representing distant geometry is
considerably far away. Under these circumstances the
change in the perspective projection is enough low that it
is hardly noticeable. If a certain threshold is exceeded
some kind of correction is necessary.

Our approach solves the problem by exchanging the tex-
ture mapped onto the virtual wall according to the current
viewpoint. We define zones where a particular texture is
“valid“. Consider the diagram in Figure 4. As long as the

viewer is located in zone 1 texture 1 is displayed on the
virtual wall. If the viewer enters zone 2 texture 1 is
replaced by texture 2. If the viewer leaves the shaded
zones and moves toward the virtual wall the texture is
changed to geometry. All textures necessary are precom-

puted. The geometric centerpoint of a zone is used as the
sampling point for the particular texture which belongs to
this zone. For most of the textures an off-axis-projection is
needed. The top view diagram of the previously used
scene (Figure 5) shows the reason for this necessity. We

use a projection-paradigm similar to that applied by Cruz-
Neira et al. [4] in the CAVE system. Textured virtual walls
can in fact be viewed as something like a “virtual CAVE-
system“

The question to be answered is: What projection error is
tolerable? In order to answer this question it is first of all
necessary to define the projection error. Consider the top
view diagram of an indoor scene shown in Figure 6.
Assume the texture displayed on the virtual wall has been
sampled at point B. Let P be a point of geometry repre-
sented by the texture. PP is the point on the projection
plane (i. e. the virtual wall) which corresponds to P. If the
current viewpoint equals B the perspective projection is
correct. Now assume the viewer moves parallel to the vir-
tual wall to point B’. Now point PP’ corresponds to P. If
the texture sampled at B is used as approximation at B’,
the perspective error is:.
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mapped quadrilaterals, several of them will occlude each
other. This increasing depth complexity of textured poly-
gons is very costly to the pixel-processing of a z-buffer
graphic hardware and may cause pixel fill limitations
which as a result will decrease the frame rate.

Aliaga [1] proposed a texture-based simplification method
which uses precomputed texture maps to represent distant
geometry of complex indoor environments. Similar to our
approach near geometry is rendered normally. As the
viewer approaches texture-based simplifications these are
changed to geometry. The approach eludes the projection
error problem by morphing the geometry surrounding the
static texture map. Depending on the current viewpoint the
geometry is morphed in a matter that ensures it always
matches the projection of the texture. The approach
accepts to render geometry surrounding the texture inac-
curately. Geometry morphing is only applied to objects
located behind the projection plane of the texture. Near
geometry is not morphed. This is acceptable as long as the
current viewpoint is not far away from the texture sam-
pling point. If the viewer gets distant from the sampling
point by moving parallel to the texture (i. e. the distance to
the texture is not changing) the projection error between
near geometry on one side and morphed geometry and tex-
ture on the other side will be noticeable after some time.

Our approach does not need to solve this discontinuity
problem because using virtual walls implies that there is
no surrounding geometry in locations that are more distant
from the viewpoint than the projection plane of the tex-
ture. In our system distant geometry is “invisible“ and
therefore culled. The projection error problem with near
geometry (i. e. geometry in front of the texture map) is
solved by applying a simple error metric which chooses an
appropriate texture map from a set of precomputed tex-
tures. It is not necessary to store all precomputed textures
in the texture mapping hardware. Using the cell-to-cell
visibility concept enables us to select the required subset
of texture maps on time as the viewer moves through the
scene and to page them from hard disk to texture memory
when needed. Furthermore textured virtual walls ensure
that there will be no pixel filling problem due to several
overlapping texture maps.

3 Textured Virtual Walls

Textured virtual walls are simplified representations of
distant geometric objects. Consider the diagram in Figure
1. t is a bird’s-eye view of a very simple indoor scene. A
viewer is looking at two distant objects. From his view-
point the scene looks like as shown in Figure 2. Now a tex-

tured virtual wall is added to the scene. It is a simple
quadrilateral placed in front of the distant objects. his
polygons now used as the “projection screen“. Distant
geometry Iis rendered Tonto it and  the resulting image is

stored as a texture map. The viewing direction during the
texture sampling isialways orthogonal to the textured vir-
tual wall. The height of the texture sampling point above
the floor is fixed to a value of the eye level of an average
walking viewer. After the textured virtual wall has been

x

yz

Figure 1 Simple indoor scene

Figure 2 View of the simple indoor scene seen from
the viewpoint marked in Figure 1

x

yz

Figure 3 Adding a textured virtual wall to the scene
and culling geometry



room into a number of separated smaller rooms. We call
these separated rooms cells. The virtual walls virtually
occlude all objects which are behind them. The sparsely
occluded environment has changed to a virtually densely
occluded environment. Teller [13] has proposed a method
for visibility computations in densely occluded environ-
ments which introduces a concept called cell-to-cell visi-
bility. We use a simplification of this concept to determine
which cells are “virtually“ invisible from a given cell due
to the virtual walls. During the walkthrough all geometry
inside the “invisible“ cells is culled. Since the culled
geometry is not really invisible it has to be represented in a
suitable manner. This is done by textures mapped onto the
virtual walls. These texture maps represent the culled
geometry. Using texture maps this way in an interactive
system is an approximation. The error introduced can be
neglected if the current viewpoint is located nearby the
texture sampling point. Crossing a certain error threshold
will result in visual artifacts because of the incorrect per-
spective projection of the image in relation to the geome-
try which has not been culled. We use a new error metric
to solve this problem. Controlled by the application of the
error metric, the texture currently mapped on the virtual
wall is exchanged, if the viewer moves along a path paral-
lel to a virtual wall. The algorithm chooses an image from
a set of precomputed textures to minimize the projection
error. Transitions between two textures are made smoothly
using transparency blending (alpha channel). If the user
passes the error threshold when moving towards a virtual
wall the texture map is replaced with geometry. Smooth
transitions are enabled by adding blend zones near the
error threshold where virtual walls and geometry are dis-
played simultaneously with changing transparency values.

The main contribution of our method is the extension of
the powerful cell-to-cell visibility paradigm from densely
occluded indoor environments to sparsely occluded indoor
environments with the help of texture-based simplifica-
tion. A further contribution is a new approach to minimize
projection errors which occur if dynamic texture-based
simplification of geometry is used in interactive systems.

In section 2, we discuss previous texture-based simplifica-
tion algorithms. The remainder of the paper presents our
approach in detail. In section 3, we describe the paradigm
of textured virtual walls. The error metric used to control
projection errors caused by textured virtual walls is pre-
sented in section 4. Sections 5 and 6 describe the prepro-
cessing stage and the runtime phase for textured virtual
walls. In section 7 we report on first results of our
approach for a walkthrough of a manufacturing test scene.
Section 8 concludes with a summary and future work.

2 Previous Work

Using texture-maps to replace parts of a visual database to
reduce geometric complexity is a relatively new direction
of research in interactive systems. To our knowledge the
first system which uses this approach has been proposed
by Maciel and Shirley [9]. They describe a system which
is mainly based on the classical level-of-detail concept.
Geometry of single objects is stored in the leaves of the
scene graph hierarchy. Interior nodes of the hierarchy rep-
resent several single objects grouped together into an
entity called a cluster. In general a cluster is a bounding
box of a group of objects with precomputed textures
mapped on each of its sides representing the geometry
inside. Depending on the distance of the viewpoint either
geometry or clustered objects - also called “imposters“ -
are drawn. The problem of view dependency of textured
imposters has been addressed by a benefit heuristic which
seems to be less accurate than discussing the projection
errors. Furthermore the algorithm has been applied to an
outdoor scene which seems to be especially well suited for
the bounding box concept. The method is not well suited
for complex indoor scenes.

Schaufler [11] and Shade et al. [12] proposed methods
which are very similar to each other. Both use texture-
mapped quadrilaterals to represent single objects instead
of groups of objects. The texture maps are not precom-
puted but generated from previously cached images. The
view dependency problem is solved by an error metric
based on the calculation of projection errors. If the current
viewpoint differs too much from the texture sampling
point, a better representation is displayed. The approach of
Shade et. al [12] has been applied to a geometric complex
but simple structured outdoor scene (island with more than
1117 trees each consisting of 36,230 triangles). This kind
of scene is fairly tolerant of projection errors in contrast to
complex indoor scenes of plants with many “prismatic“
objects. Within indoor scenes there are a lot of changing
vanishing lines noticeable, and the viewer will probably
recognize projection errors much earlier than in outdoor
scenes.

After running for some time, image caching systems will
cache images of images (i. e. texture maps) resulting in a
constantly decreasing quality of the image displayed.
Therefore after some time it will be necessary to rerender
the whole geometry. Using precomputed textures elimi-
nates this problem. Another problem of the methods dis-
cussed in [11] and [12] as well as in [9] is that these
systems may suffer from pixel fill limitations. If there are
hundreds of distant objects each represented by texture
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Abstract

We present a new approach for using texture mapped
quadrilaterals as approximative representations for
objects that are far away from the viewpoint. The method
is suited for interactive visualization of complex indoor
environments such as CAD models of large plants. In a
preprocessing stage the 3D model is partitioned by virtual
walls. These virtual walls are simple quadrilaterals which
divide a large room into a set of separated cells. During
the walkthrough phase the system only renders the geome-
try of cells surrounding the current viewpoint. All distant
geometry is culled and replaced by “textured virtual
walls“ representing the same part of the model as the
culled geometry. A description of techniques for minimiz-
ing visual artifacts and for controlling the transitions
between textures and geometry if the viewpoint moves
towards a virtual wall is given. The approach makes exten-
sive use of texture-mapping hardware. It considerably
reduces the number of polygons rendered by the 3D
graphics pipeline and therefore contributes to achieve
interactive frame rates.

1 Introduction

Interactive walkthroughs of models with very high geo-
metric complexity are becoming increasingly important.
Many rendering algorithms have been developed so far
which reduce the number of polygons rendered in each
frame without affecting the image quality. There are two
simple basic ideas on which most of the methods proposed
are based:

• Do not render objects which are invisible in the
current frame.

• Do not render objects with a resolution that is
higher than the capabilities of the display system or
the perceptional capabilities of the viewer.

Approaches based on the first idea are called visibility
culling algorithms. Pioneering work in this area has been
done by Clark [3] about two decades ago. Several other
visibility culling algorithms have been proposed since then
[2] [7] [8] [14]. Methods which take advantage of the sec-
ond idea are called Level-of-detail (LOD) algorithms.
Clark [3] again was the first who proposed this technique.
It has been constantly refined [6] [9] since then. Methods
based on visibility culling or LOD modeling require modi-
fying the scene graph hierarchy in a certain way. Despite
the necessary preprocessing steps both techniques are
widely in use because they have proven to be very effec-
tive in speeding up the frame rate of interactive systems.

Unfortunately there is an increasing number of visual
databases which cannot be displayed with interactive
frame rates even if visibility culling and LOD modeling
are excessively used. This is especially true for very com-
plex indoor environments that originate from plant design
CAD systems. Examples for such environments are the
interiors of power plants, oil rigs and large manufacturing
plants.

With the advent of texture-mapping hardware a new cate-
gory of simplification methods has emerged in recent
years: The dynamic representation of geometric complex
parts of a visual database using texture maps. We present a
new approach to this direction for research in interactive
systems. Our method is especially suited for complex
indoor environments which are commonplace in plant
design. The characteristic feature of these environments is
vast interiors including a large amount of geometric com-
plex objects (e. g. pumps, turbines, pipe-assemblies,
machine tools, robots, etc.) which sparsely occlude each
other.

Our method consists of two stages: A preprocessing stage
and a walkthrough phase. During the preprocessing step
we insert a set of “virtual walls“ in the model. These vir-
tual walls are simple quadrilaterals which divide a large


