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Abstract—A layered depth image (LDI) is a new popular repre-
sentation and rendering method for objects with complex geome-
tries. Similar to a two-dimensional (2-D) image, the LDI consists
of an array of pixels. However, unlike the 2-D image, an LDI pixel
has depth information, and there are multiple layers at a pixel loca-
tion. In this paper, we develop a novel LDI compression algorithm
that handles the multiple layers and the depth coding. The algo-
rithm records the number of LDI layers at each pixel location, and
compresses LDI color and depth components separately. For LDI
layer with sparse pixels, the data is aggregated and then encoded.
An empirical rate-distortion model is used to optimally allocate
bits among different components. Compared with the benchmark
compression tools such as JPEG-2000 and MPEG-4, our scheme
improves the compression performance significantly.

Index Terms—Data compression, layered depth image (LDI),
virtual reality, wavelet.

I. INTRODUCTION

A layered depth image (LDI) [1], [2] is a new representation
and rendering method for objects with complex geome-

tries. Instead of representing objects with triangular meshes
like most models in the computer graphics, LDI represents the
object with an array of pixels viewed from a single camera
location. Each LDI pixel is represented by its color, depth that
is the distance of the pixel to the camera, and a few other prop-
erties assisting LDI rendering. There may be multiple pixels
along each line of sight, therefore, the LDI usually consists
of multiple layers. LDI enables the rendering of virtual views
of the object/scene at new camera position, and the rendering
operation can be performed quickly with the warp-order al-
gorithm [3]–[5] proposed by McMillian. The complexity of
rendering an LDI view is only related to the number of pixels
in the LDI, i.e., to the resolution of the view, and is not
directly related to the scene complexity. Therefore, realistic
object/scene with huge polygon counts can be rendered very
quickly with the LDI. The LDI can also be relatively easily
constructed. By using computer vision techniques to recover
depth information from multiple photo shots, a still image is
turned into an LDI, which can be used to render virtual views
at novel camera positions.

A high resolution LDI can contain large amount of data. As an
example, a feature rich LDI scene Cathedral [Fig. 7(c)] occupies
a total of 14.1 megabytes (MB). It is of resolution 10241024,
and consists of 1 588 812 depth pixels. A realistic scene calls
for even higher sampling density, and therefore, results in even
more data.
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Generic lossless compression tools, such as WinZip, reduce
the data amount of the LDI without sacrificing the quality. How-
ever, the lossless compression ratio is usually too small (around
2–3:1). Although there are a variety of lossy two-dimensional
(2-D) image compression algorithms and schemes to compress
the depth map, such as the one proposed by Krishnamurthyet
al. [7] with JPEG 2000 method, they cannot be directly applied
to compress the LDI image. This is due to the fact that the LDI
not only contains luminance and chrominance components, but
also contains elements for 3-D rendering, such as the depth in-
formation. Moreover, there are multiple layers at each pixel lo-
cation, and data in most back layers are not of rectangular re-
gion of support. The first few layers may be dense, but the data
in the back layer is usually sparse. Although algorithms, such
as MPEG-4 [8], have been developed to encode object of non-
rectangular shape, they are not able to handle the sparse data of
the LDI well.

In this work, we investigate the compression of the sparse
and nonrectangular supported data of the LDI. We first record
the number of layers (NOL) at each pixel location. The LDI
data is then reorganized into a more suitable layout by dividing
the LDI into layers, each of which contains a mask indicating
the existence of pixel in the layer. Each LDI layer is then sepa-
rated into individual components, such as Y, Cr, Cb, alpha, and
depth. The component images of each layer are compressed sep-
arately. We aggregate the data on the same layer so that the data
is more compactly distributed. An arbitrary shape wavelet trans-
form and coding algorithm is used to compress the aggregated
data. Finally, the compressed bitstreams of the different layers
and components are concatenated to form the compressed LDI
bitstream. An empirical rate-distortion model is used to opti-
mally allocate bits among all the components.

The paper is organized as follows. The data structure of the
LDI is briefly reviewed in Section II. We explain the details of
our compression method in Section III. Experimental results are
shown in Section IV and a conclusion is given in Section V.

II. L AYERED DEPTH IMAGE

The layered depth image (LDI) [1] consists of an array of
pixels viewed from a single camera position, with possible mul-
tiple pixels along each line of sight. Shown in Fig. 1, an array
of light rays is shot from the camera position. The rays in-
tersect the object at multiple points, which are ordered from
front to back. The first intersection points of all light rays con-
stitute the first layer, the second intersection points constitute
the second layer, and so on. We denote the number of intersec-
tion points along each light ray as the number of layers (NOL).
As an example, there are two layers for the light raysPA and
PC, and four layers for the light rayPB in Fig. 1. At the original
camera position , only the pixels in the first layer are visible.
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However, pixels in the back layers can be exposed as the view
moves away from the original camera position. Unlike an ordi-
nary image which consists just the luminance and chrominance
components, each LDI pixel contains 63 bit information, which
are distributed as follows: 8 bits each for the R, G and B com-
ponents, 8 bits for the alpha channel, 20 bits for the depth of
the object (the distance of the pixel to the camera), and 11 bits
for the index into a splat table, which in turn is divided into 5
bits for the depth of the object, 3 bits for thenorm, and 3 bits
for the norm. The splat table is used to calculate the rendered
pixel size in LDI rendering.

LDI rendering is rather straightforward. Shown in Fig. 2, the
LDI is divided into four quadrants above, below, to the left and
right of the epipolar point. Each quadrant is traversed separately
in reverse scan line order. For each LDI pixel, its projection in
the new view is incrementally calculated using the depth infor-
mation, and the pixel with its luminance and chrominance com-
ponent is rendered (splat) on to the output image with a size
determined by the splat table. The operation can be performed
very fast.

III. COMPRESSION OF THELAYERED DEPTH IMAGE

Because of the special data structure of the LDI, existing still
image compression methods, such as JPEG, cannot be applied
directly or are not very efficient. There are three key character-
istics of the LDI data. It consists of multiple layers; the content
in the back layer is sparse; and each pixel consists of multiple
property values, including the color, depth and splat table index.
The key to develop an efficient LDI compression algorithm is
thus to deal with these three issues.

A. Coding of the LDI Structure

We observe that the structure of the LDI is described by the
number of layers (NOL) at each spatial location, which must
be encoded before the component coding can be performed. Let

be the NOL at each location point . All in
the image space form a NOL image , which must
be encoded losslessly to preserve the LDI structure. We use the
JPEG-LS [6], a lossless image coding standard, to encode the
NOL image. Compared with a generic compression algorithm
such as WinZip, JPEG-LS is faster and offers better compres-
sion performance.

With the NOL image, image mask for each layer can be easily
recovered. The mask for layer LDI can be derived as

(1)

There is an LDI pixel at position at layer if and only
if . Through the mask, the location of pixel can be
identified.

B. Separation of the Component Image

In the LDI, each existing pixel has multiple properties. An
individual component image is formed for each property, and
encoded separately. Experience in color image compression
shows that multiple color components, such as the Y, Cr,
Cb component can be separately compressed without loss of

Fig. 1. Layered depth image.

Fig. 2. McMillan’s ordering algorithm.

the compression efficiency. We expect that the same holds
true for the LDI. Eight component images are formed: the
R, G, B, alpha, depth, distance,and norm. Note that the
distance, and norm components combined in the splat are
separated into individual component images. The R, G and B
components are further converted to the Y, Cr, Cb components.
An example of eight separated component images (layer 1 of
the scene Sunflowers) is shown in Fig. 3. The compressed
LDI bitstream is formed by concatenating the NOL bitstream
and the individual bitstream of each component image of each
layer.

C. Preprocessing by Data Aggregation

The LDI component image is sparse and not of rectangular
support. The more back the layer is, the fewer number of pixels
there is. The component image in the LDI is much sparser than
an image/video object in MPEG-4 [8], which is usually solid
with a continuous boundary. We denote the percentage of the
available pixels with regard to the rectangle image area for layer

as the covering ratio of layer. Shown in Fig. 4, the covering
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Fig. 3. Layered depth image: components separation.

ratios of the LDI scenes are compared with those of the MPEG-4
video object Akiyo and Bream. We show the covering ratios
of different layers for the LDI, and show the covering ratios of
different frames for the video object. It can be observed that the
covering ratios of the video objects are nearly invariable through
the frames, and are usually around 30–40%. On the contrary, the
covering ratios decrease significantly as the layer increases in
the LDI scenes, and can reach less than 3% for the LDI scene
beyond layer five.

Another measure of the sparseness is the percentage of long
pixel segments (POLS). In this work, the long segment is de-
fined as a segment with more than four pixels. We compare
POLS between the LDI scenes and the video objects, again for
multiple layers and frames. The result is shown in Fig. 5. It is
observed that for the video object, the POLS is close to 100%,
which means the video object is pretty solid. The first layer of
LDI is solid too, as close to 100% of object segments are longer
than four pixels. However, starting from the second layer, the
layer mask quickly disintegrates as the POLS decreases rapidly.
Most LDI pixels in the back layer are usually isolated with no
neighbors. Direct transform coding on such data set is not very
efficient.

A preprocessing step is thus proposed to aggregate the data
in each layer. The aggregation used here is simple horizontal
aggregation: all the pixels in the same line are pushed to the
left of the line. An example aggregation operation is shown
in Fig. 6. We then transform and encode the aggregated data.
Since the layer mask derived from the NOL is available at
the decoder, the aggregation can be easily inversed. The ag-
gregation algorithm lengthens the horizontal object segments,
and improves the transform efficiency. Though it affects the
alignment along vertical line, it is shown from the experi-
ment that the advantage of the data aggregation outweighs
its disadvantage. The aggregation operation is similar to the
data push operation used in MPEG-4 Shape Adaptive DCT
(SA-DCT) [8]. However, in MPEG-4, data is only aggregated
within each block, while in the proposed algorithm, the data
are aggregated over the entire image space. We have also tried
to further aggregate the data along the vertical direction, i.e.,
to push the data again along the vertical axis. However, ex-

Fig. 4. Covering ratio of layers.

Fig. 5. Percentage of long segments (note: Akiyo and Bream curves happen
to be the same).

periments show that such further aggregation does not provide
additional performance improvement.

D. Compression of the Component Image

We may use existing coding tools to compress the compo-
nent images. One possible approach is the MPEG-4 SA-DCT
mode [8], where all component images are treated as a video
sequence and compressed by MPEG-4. An alternative approach
is first to pad the component image to a rectangular image,
and then to compress it with a rectangular still image coder
such as the JPEG-2000 [12]. A third approach is to use the
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Fig. 6. Data aggregation.

video object wavelet (VOW) codec [9], which is an enhance-
ment of the arbitrary shape wavelet codec in MPEG-4 [8]. In
VOW, a shape adaptive wavelet transform [10], which is also
called arbitrary shape wavelet transform with phase alignment
(ASWP) [11], is used to decompose the aggregated component
image into an exact number of wavelet coefficients as that of
the original object. The wavelet coefficients are then quantized
and entropy encoded with a partial bitplane coder. VOW out-
performs the PEZW and ZTE used in MPEG-4 still wavelet ob-
ject coding mode, because the partial bitplane coder does not
use the wavelet domain zerotree assumption which is frequently
broken, especially in object boundaries and for the prediction
residue. VOW encoded bitstream has the embedding property,
i.e., it may be truncated at any point and still decode a fair quality
image. For details of the VOW coder, we refer to [9]. We have
modified VOW so that it can handle a large range of bit depth
(3 bits–20 bits).

E. Bit Allocation

For an LDI compressed bitstream, the available bit budget
needs to be allocated among different components, i.e., among
the luminance (Y), chrominance (C), depth, and splat table
components. To calculate the actual amount of bits allocated
to each component, an empirical rate-distortion optimization is
performed. Let index the component. Let be the number
of pixels at layer , be the average coding rate and
distortion for component. The bits required to encode the
entire LDI can be formulated as

(2)

Note that for a certain component, the total number of bits
allocated to a certain layer is proportional to

the number of pixels in that layer. Thus, layers with more
pixels are proportionally allocated with more bits. We measure
the quality of the compressed LDI data set based on the ren-
dered LDI images. A total of 16 LDI images are rendered, where
one LDI image is rendered at the central location, and five LDI
images per direction are rendered as we move away from the
central location along the, and axes. We use the average
rendered PSNR of the 16 LDI images as a quality measure of the
compressed LDI. Rather than deriving an analytical relationship
between the LDI quality and the coding distortion of the indi-
vidual component, which is very complicated and may not be

useful to guide bit allocation, we model the overall quality of
the compressed LDI as a linear weighted average of distortions
of different component

(3)

where is a weighting constant reflecting the importance of
the component in the rendered LDI. Equation (3) may be con-
sidered as the first order approximation of the relationship be-
tween the distortion of the individual component and the overall
LDI distortion. The optimal bit allocation is thus to minimize the
overall LDI distortion given a fixed bit budget .

To solve the optimal bit allocation, we need the relationship
between the coding distortion and rate for each component. Ex-
tensive empirical rate-distortion experiments conducted during
the development of H.263 TMN8 rate-control [13] show that
the distortion and rate have the following relationship with the
quantization step size:

high bitrate

low/medium bitrate,
and

(4)

where is the source variance. The LDI component image
compression usually operates at the low bitrate. We thus derive
the empirical rate-distortion relationship for each component
coding as

(5)

where is a constant determining the
rate-distortion relationship for the component. Using La-
grange multiplier, and minimizing the distortion (3) under the
constraint of a fixed bit budget (2), we can easily derive the
optimal bitrate allocated to a specific componentas

(6)

where is a component bit allocation factor determining how
much bits should be assigned to each component coding. Note
that it is the bit allocation factor that should be estimated,
there is no need to separately estimate parameterand . In
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Section IV, we will show how is determined by evaluating
the relationship between the overall LDI quality and each com-
ponent coding. The depth component is found to be the most
important, because noise in the pixel depth shifts the position
of the pixel, and leads to annoying holes and oddly appearing
pixels. It receives the largest portion of the bit budget. The next
largest portion is allocated to the luminance (Y) component. The
chrominance components Cr and Cb receive the third largest
portion of bits. The components distance,norm and norm
receive very few bits, as they only affect the size of the rendered
pixels, and the distortion of which is much smaller.

IV. EXPERIMENTAL RESULTS

The effectiveness of the LDI compression algorithm is
demonstrated with extensive experiments. The test scenes are
the LDI scenes Sunflowers [Fig. 7(a)], Stream [Fig. 7(b)], and
Cathedral [Fig. 7(c)]. We list the resolution, the number of
layers, the number of pixels and the original size of the test
data in column 2–5 of Table I, respectively.

We show the peak signal-to-noise ratio (PSNR) of each com-
ponent between the original LDI and the decompressed one. The
PSNR of an individual component is calculated by

(7)

where is the number of pixels, and
are the original and decoded LDI pixel at layercomponent

and position . The bitdepth is the number of bits in
the original component data, which is 8 for component Y,
Cr, Cb, alpha, 20 for the depth, 5 for the distance and 3 for
the and norm. Though the individual component PSNR
does not reflect the visual quality of the rendered LDI, it is a
good tool to evaluate the effectiveness of component coding
and data aggregation.

We first investigate the compression efficiency of the number
of layer (NOL) image. We benchmark JPEG-LS against the
Winzip version 7.0. Both algorithms encode the NOL image
losslessly. Table II shows the compression ratios of the layer
number image by Winzip and JPEG-LS, respectively. We ob-
serve that the JPEG-LS improves the compression ratio by a
factor of 1.3 times over the more generic WinZip algorithm.

In the second experiment, we demonstrate the effectiveness of
data aggregation presented in Section III-C. We encode the LDI
component with the same coding tools, at the same bitrate. The
component PSNRs for the three LDI scenes, with and without
data aggregation, are shown in Table III. We show the coding re-
sults of video object wavelet coding (VOW) for components Y,
C (combination of Cr and Cb components), depth, distance, and
norm (combination of and norms). We also list the coding
results of MPEG-4 for component Y, with and without data ag-
gregation. It is observed that the data aggregation process signif-
icantly improves the coding performance. For the VOW coding
algorithm, the performance gain obtained by aggregating the Y
data component ranges from 0.58–0.86 dB, with an average of
0.71 dB. Data aggregation yields an especially large gain for
the depth and distance components, which average to 14.18 dB

(a)

(b)

(c)

Fig. 7. Original LDI dataset: (a) Sunflowers, (b) Stream, and (c) Cathedral.

TABLE I
ORIGINAL LDI SCENE

TABLE II
COMPRESSIONRATIOS OF THENUMBER OF LAYER (NOL) IMAGE

and 8.18 dB, respectively. The data aggregation is effective for
MPEG-4 SA-DCT coding as well, with an average performance
boost of 1.56 dB for the Y component. Among the 18 compar-
ison experiments, there is only one experiment (Y component
MPEG-4 coding of Cathedral) in which data aggregation causes
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TABLE III
LDI CODING WITH AND WITHOUT DATA AGGREGATION(DB)

TABLE IV
COMPARISON OFMPEG-4, JPEG 2000AND VOW CODING (DB)

a negative effect.1 In general, the data aggregation proves itself
as an effective tool to significantly improve the transform and
coding performance in the LDI compression.

In the third experiment, we evaluate the three different
component coding tools—the MPEG-4, JPEG 2000 and VOW
coder. We again encode the three LDI scenes at the same bitrate.
The PSNR results for the components Y, C, depth, distance,
and norm are shown in Table IV, for different schemes and
different LDI scenes. With the existing MPEG-4 software, we
have difficulties to encode the component depth due to its large
bit-depth, and to encode the distance and norm components
as the allocated bit rate is less than 0.05 bpp. Therefore, no
test results are reported for the aforementioned components in
MPEG-4. The best coding results among the three algorithms
are highlighted with boldface. It is observed that the video
object wavelet coder (VOW) achieves the best result among
the three schemes, for all component coding and for all LDI
scenes. It outperforms the MPEG-4 for an average of 0.76 and
0.36 dB for the Y and C components, respectively. Moreover,
it outperforms the JPEG 2000 for an average of 2.38, 0.77,
8.60, 8.90, and 0.38 dB for the Y, C, depth, distance and norm
components. VOW demonstrates itself as a superior coding
tool for the LDI component coding.

1As mentioned in Section III-C, we note that MPEG-4 SA-DCT coding mode
aggregates the data within each block before the following arbitrary shape DCT
transform and coding operation. Therefore, with an additional frame data ag-
gregation operation, the data are aggregated twice in MPEG-4 SA-DCT, which
may be the reason of PSNR degradation in scene Cathedral. Nevertheless, even
for MPEG-4 SA-DCT, data aggregation improves the compression performance
in two of the three scenes.

In the fourth experiment, we investigate bit allocation among
different components. We vary the bit rate of one component
while fixing the rate of all others. The LDI quality is then mea-
sured as the average MSE of the 16 rendered LDI images at
each bit rate point. We show the curve of the component bit rate
versus the LDI quality for the Y and depth component in Figs. 8
and 9, respectively, where the horizontal axis is the bit rate of the
investigating component, and the vertical axis is the MSE of the
LDI images. The solid curve is the actual coding result and the
dashed curve is the theoretical value predicted by (3) and (5). It
is observed that the two curves match nicely. Our two key as-
sumptions in the bit allocation thus hold pretty well: the average
rendered distortion can be approximated by the linear combi-
nation of the component distortion (3); and the distortion is in-
versely proportional to the coding rate (5). We may calculate the
component bit allocation factors of the Y and depth component
from Figs. 8 and 9 as: and . The op-
timal bitrate allocation at a certain compression ratio can thus be
calculated. For example, at 10:1 compression of the Sunflowers
scene, we roughly have bpp and bpp. The
bit allocation factors of other components can be calculated in
a similar fashion.

The average rendered PSNRs for the compressed LDI scenes
at ratio 10:1 and 17:1 are shown in Table V. Since the three
LDI scenes are all synthetic sceneries with high details, it is
difficult to raise the compression ratio further. Nevertheless,
the subjective quality of the rendered LDI view is good even
though the PSNR number is not high. The original and the
decompressed LDI scene Sunflowers under compression ratio
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Fig. 8. R-D for Y Component.

Fig. 9. R-D for Depth Component.

10:1 and 17:1 rendered at the same virtual position are shown
in Fig. 10(a)–(c), respectively. Little distortion is observable
from the compressed LDI at ratio 10:1. The quality of the
LDI view compressed at 17:1 is still good, though distortion
starts to be observable. Apart from the normal image coding
distortions such as the blur and ringing artifacts, the object
in a highly compressed LDI starts to disintegrate, especially
around the boundaries (pointed by the arrows). This is a unique
distortion in LDI coding caused by the coding distortion of
the depth component, which makes the rendered pixel to shift
to a wrong location. It explains the reason that we assign the
largest portion of bit budget to the depth component.

V. CONCLUSIONS

In this paper, an efficient algorithm is developed to compress
the layered depth image (LDI). We first record the number of
layers (NOL) at each pixel location. The LDI is then divided
into layers, each of which contains a mask indicating the exis-
tence of pixel in this layer. After that, the LDI data in each layer
is divided into individual components, which are compressed
separately. We aggregate the data in the same layer so that the
data is more compactly distributed. An arbitrary shape wavelet
transform and coding algorithm is then used to compress the ag-
gregated data. The compressed bitstream of different layers and
components are then concatenated to form the compressed bit-
stream of LDI. An empirical rate-distortion model is developed
to optimally allocate bits among the components. The proposal
scheme can compress an LDI up to 17:1 with minimal visual
distortion.

(a)

(b)

(c)

Fig. 10. Rendered Sunflowers scene (bottom portion) for the (a) original LDI,
(b) decompressed LDI at 10:1, and (c) decompressed LDI at 17:1.

TABLE V
LDI QUALITY : IN TERM OF THEAVERAGE PSNROF RENDERED LDI

IMAGES (DB)
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