
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/261853423

XML3DRepo: a REST API for version controlled 3D assets on the web

Conference Paper · June 2013

DOI: 10.1145/2466533.2466537

CITATIONS

15
READS

110

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Illumination modeling from real scene content View project

ARVIDA View project

Kristian Sons

Deutsches Forschungszentrum für Künstliche Intelligenz

22 PUBLICATIONS 269 CITATIONS

SEE PROFILE

Dmitri Rubinstein

Deutsches Forschungszentrum für Künstliche Intelligenz

22 PUBLICATIONS 200 CITATIONS

SEE PROFILE

Philipp Slusallek

Universität des Saarlandes

286 PUBLICATIONS 4,116 CITATIONS

SEE PROFILE

Anthony Steed

University College London

210 PUBLICATIONS 4,426 CITATIONS

SEE PROFILE

All content following this page was uploaded by Kristian Sons on 05 November 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/261853423_XML3DRepo_a_REST_API_for_version_controlled_3D_assets_on_the_web?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/261853423_XML3DRepo_a_REST_API_for_version_controlled_3D_assets_on_the_web?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Illumination-modeling-from-real-scene-content?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/ARVIDA-2?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kristian_Sons?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kristian_Sons?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Deutsches_Forschungszentrum_fuer_Kuenstliche_Intelligenz?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kristian_Sons?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dmitri_Rubinstein?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dmitri_Rubinstein?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Deutsches_Forschungszentrum_fuer_Kuenstliche_Intelligenz?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dmitri_Rubinstein?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Philipp_Slusallek?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Philipp_Slusallek?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitaet_des_Saarlandes?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Philipp_Slusallek?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anthony_Steed2?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anthony_Steed2?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_College_London?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anthony_Steed2?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kristian_Sons?enrichId=rgreq-f6878ba5bbed3b57ff1f3233823799bc-XXX&enrichSource=Y292ZXJQYWdlOzI2MTg1MzQyMztBUzoxNjAxMjEyNTg3ODI3MjBAMTQxNTE4NzI5MTQ2Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

XML3DRepo: A REST API for Version Controlled 3D Assets on the Web

Jozef Doboš
University College

London

Kristian Sons
DFKI Saarbrücken

Dmitri Rubinstein
DFKI Saarbrücken
Saarland University

Philipp Slusallek
DFKI Saarbrücken
Saarland University

Anthony Steed
University College

London

Figure 1: Urban Terror 4 game level Intermodal Beta with 170k vertices and 418 textures is version controlled in 3D Repo and accessed as
XML3D using our REST API in a Firefox web browser on Windows 8 (left) and Android (right). XML3DRepo architecture delivers requested
data in the format most suitable for the current device and network, for instance, using Sequential Image Geometry for devices that support
texture fetching in the vertex shader or OpenCTM for networks with low bandwidth. Model courtesy of Snipers Gaulois CTF Clan.

Abstract

Current Web 3D technologies are not yet fully exploiting the mod-
ern design patterns for accessing online resources such as REST.
XML3DRepo is a novel fusion of XML3D and 3D Repo. XML3D
is an open source extension to HTML that supports interactive 3D
graphics in WebGL-enabled browsers. 3D Repo is a recent version-
ing framework for 3D assets that provides raw access to its NoSQL
database. XML3DRepo, in turn, is a server-side combination of the
two technologies that stores a unified file format independent repre-
sentation of 3D scenes in its repository but exposes a RESTful API
for a deeper integration with other services using a variety of encod-
ings selected between by the client application. First, we outline the
overall architecture of the system and provide a simple yet power-
ful API definition that we believe has the potential to accommodate
crowdsourcing of 3D models in the future. Next, we describe dif-
ferent 3D data encoding strategies for the Web and evaluate several
of these for their speed and efficiency in our open source prototype
implementation of the proposed API. We conclude that none of the
formats strike the right balance between the number of requests,
decoding overhead and the compression achieved making the pro-
posed flexible architecture even more compelling.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics I.3.6 [Computer Graphics]: Method-
ology and Techniques—Graphics data structures and data types;

Keywords: XML3D, 3D Repo, revision control, REST, CRUD

1 Introduction

Originally designed for sharing of text documents, the Web has be-
come a graphical environment ever since the famous proposal for
the tag by Marc Andreessen in 1993 [Pilgrim 2010]. Since
then, the software surrounding the Hypertext Markup Language
(HTML) and the Hypertext Transfer Protocol (HTTP) has evolved
to support mainly publishing, although an often overlooked prop-
erty of HTTP is the definition of several verbs suitable for creating,
updating and deleting online resources, not just requesting them.
Wikis [Klobas 2006] originating in the mid ’90 are one of just a few
examples successfully exploiting the web as an editing platform.

The recent boom in 3D adoption thanks to the introduction of Web-
GL [Marrin 2011] and its wide-spread support in modern Web
browser has produced further pressure on 3D content creation with
the desire for even more detailed and more complex scenes being
developed and accessed over the Internet. With the ever increasing
interest in mobile devices, the limiting factors of bandwidth and
latency are reintroduced as serious risks. What is more, the preva-
lent paradigm in the 3D domain is to use the Web as a publishing
platform but not a development one. Formats such as X3D and
VRML97 are designed to be updated in place at runtime but do not
provide means of persistent modification preservation on their own.

Our intention is to build a scalable open platform for 3D con-
tent creation on the Web with the support for desktop and mobile
WebGL-enabled browsers. The main aim is to provide seamless en-
coding where assets are independent of their fixed file formats, yet
tracked over time. Such a platform would enable ubiquitous access
to 3D assets in a form most preferred by the receiving client and the
opportunity to perform modifications with a confidence that the old
versions will not be lost or overridden. This is especially interesting
as it would create the right basis for crowdsourcing of 3D models.

Recent advancements in NoSQL technology have enabled the de-
velopment of 3D Repo, an open source non-linear versioning sys-
tem for 3D assets by Doboš and Steed [2012b]. This framework is

built atop of a centralised NoSQL database MongoDB [Membrey
et al. 2010] and provides functionality similar to source code ver-
sioning systems including branching and merging, although only
through a raw database access using Binary JSON (BSON) [10gen,
Inc. 2013] queries and a small number of client applications. Un-
fortunately, such a framework on it its own is too complex and too
specific to provide the desired widespread access to 3D data.

XML3D by Sons et al. [2010], on the other hand, is an extension
to HTML5 that describes interactive 3D graphics as part of a web
page. Similarly to HTML, all XML3D elements belong to the Doc-
ument Object Model (DOM) representation, and thus can easily be
accessed and modified via JavaScript. Events can be attached to
scene objects, e.g. using event attributes such as onmouseover.
The similarity to HTML enables web developers to create dynamic
3D applications with little extra knowledge and due to its tight in-
tegration, powerful frameworks such as jQuery can also be applied.

REST Representational State Transfer (REST) [Fielding 2000] is
a style of software architecture for the Web governing the behaviour
of clients and servers in terms of requests for resources and the cor-
responding responses. In this style, a resource is any uniquely ad-
dressable piece of data (using the uniform resource identifier (URI)
string) while its representation is a document which the data is re-
turned in. A closely related concept of a persistent storage manage-
ment, as is the case of a 3D repository, is formed by the functions
create, read, update and delete (CRUD). When deploying a web-
based architecture, a RESTful application programming interface
(API) maps all of these methods to the individual HTTP 1.1 pro-
tocol verbs [Fielding et al. 1999] in order of POST, GET, PUT and
DELETE respectively. In addition, it has to specify the base URI
for the web service and the media types of supported representa-
tions. Therefore, the only required information for a client to in-
teract with a server is the location of the resource and the intended
action. Requesting a document representation makes this style of
programming independent from the underlying storage format, a
crucial component of our vision for ubiquitous access to 3D assets.

To achieve our goals, we propose a simple yet powerful API that
combines the persistent versioning of 3D Repo with the ease of
use of XML3D. This API enables client applications to request the
desired encoding format of any resource making this a file format-
independent means of access to 3D assets, see Fig. 1. In order to
demonstrate the feasibility and advantages of such an approach, we
have implemented several encoding strategies, namely Extensible
Markup Language (XML), JavaScript Object Notation (JSON), Bi-
nary JSON (BSON), Sequential Image Geometry (SIG), Open Com-
pressed Triangle Mesh (OpenCTM) and ArrayBuffers and evaluated
them for their speed of delivery and encoding efficiency.

Contributions We begin by critically evaluating the deficiencies
of the existing technologies and outline the benefits of the unifica-
tion of XML3D and 3D Repo. Hence, our main contributions are:

1. A definition of a novel API that unifies XML3D and 3D Repo
into a coherent RESTful platform that we call XML3DRepo.

2. A taxonomy of 3D data delivery strategies with a detailed de-
scription of example formats.

3. An open source implementation of various external types of 3D
data delivery methods in XML3D loaded from 3D Repo. Demo
server is available at http://xml3drepo.org.

4. Evaluation of these prototype implementations in terms of speed
and efficiency and a discussion of the benefits and implications
of such an approach especially in terms of the future work.

2 Related Work

Previous attempts at providing access to 3D assets have been suc-
cessful to some degree. An ongoing rest3d initiative [Parisi and
Arnaud 2011] proposes to define a REST interface shared by all
online 3D resources. The suggested delivery formats are XML and
JSON, although, currently considered outside of version control.
Scheifer et al. [2010] demonstrated the benefits of a REST web
service integration on a C++ scene graph system OpenSG. More
recently, Olbrich [2012] applied XMLHttpRequests (XHR) to X3D
server communication, most notably to preserve user annotations
in a NoSQL database, while Schubotz and Harth [2012] devised a
prototype server supporting POST and GET methods with XML3D
rendering, however, without external referencing of resources. We
follow in their footsteps and define a fully specified API with sev-
eral example data encoding implementations where significant con-
siderations were taken for the speed of data delivery on various plat-
forms including mobile devices as well as versioning.

Sunglass [DeBiswas and Rao 2012], a recent MIT spin-off, pro-
vides a proprietary WebGL-based collaborative 3D modeling solu-
tion. Their paid servers can be accessed via a REST API in order to
manage JSON mesh representations alongside of the original binary
file formats. Version control in this system stores a linear history of
binary snapshots without delta changes and with only a side-by-
side visualization of revisions lacking support for differencing or
merging. Autodesk’s computer aided design (CAD) package Au-
toCAD also supports editing and sharing of CAD drawings via its
online viewer and mobile apps [Autodesk 2012]. In contrast, an
open source visualization system VisTrails [Bavoil et al. 2005] pro-
vides a broad support for versioning of scientific workflows. De-
spite the provenance history being represented as XML or stored
in a relational database, the actual 3D files have to be managed lo-
cally. The spreadsheet-like workflows can be visualized using the
Visualization Toolkit (VTK) and HTML renderings.

On the other hand, repositories such as Trimble 3D Warehouse (for-
mer Google Warehouse), TurboSquid or 3D Repository (3DR) by
the Advanced Distributed Learning are large online libraries of 3D
assets. Despite providing searchable Web interfaces to locate pre-
defined file formats, only 3DR has a basic REST API accessible
using XML and JSON [Advanced Distributed Learning 2011].

Many forms of distributed virtual worlds and games also provide
some sort of networked 3D formats [Steed and Oliveira 2009]. Sec-
ond Life, for example, relies on a standardized open protocol for
sending and receiving 3D models as serialized XML via a REST
API [Lentczner 2008]. In principle, this protocol could be re-
purposed for sharing of assets over the Internet, but in practice it is
customised for a real-time application and not for a general-purpose
data retrieval. Additionally, it is highly constrained to the types of
data encodings by the platform it was designed on, hence it is not
as flexible as other representations such as XML3D. In summary,
most Web accessible 3D APIs support XML or JSON formats and
many lack version control support altogether. Details regarding the
alternative delivery encodings are described in §5.

3 Architecture Overview

The goal of our REST specification is to provide a transparent API
that supports unified access to version controlled 3D resources over
the Internet, but is independent from the underlying technologies
and data storage. Relying on a RESTful architecture style has the
effect of flattening the scene and revision graphs as the resources
can now be queried individually using their unique URI or together
as a collection of resources based on their common type, also refer-
enced by a URI. For the purposes of our prototype implementation,

http://xml3drepo.org

Web Browser

XML3D

Client API
Server

REST API

Database

3D Repo

Figure 2: High-level overview. Client connects to a server using
our REST API. 3D content is dynamically fetched from the reposi-
tory and delivered to the web browser as XML3D.

Extern.xml

<data id="B">

<data id="A">

XML3D Document

<mesh>

<data id="A">

#A

Extern.json
{"data":{
 "index":{
 "type":"int",
...}

E
xtern.xm

l#A

E
xtern.json

Figure 3: Three ways of referencing resources in XML3D: Re-
sources within external documents (Extern.xml#A), intra-document
resources (#A) and entire documents as one resource (Extern.json).
The mechanism—shown here for meshes—equally applies to other
resources such as shaders, animations, etc.

as shown in Fig. 2, XML3D, a declarative extension to HTML5,
was selected on the client-side. Even though the rendering could be
accomplished using other suitable means, XML3D provides many
benefits over alternatives especially in terms of external references
to resources. On the server-side, 3D Repo was used as it is specific
to 3D assets and is based on a database rather than a file system.

3.1 XML3D

XML3D (http://xml3d.org) [Sons et al. 2010] is a lean,
modern and generic scene graph that is based on and extends
HTML5. One of its core components is the <data> element essen-
tially grouping named and typed arrays, much like the buffer data
structures of modern graphics APIs, e.g. vertex arrays. Addition-
ally, it is possible to recursively reference other <data> elements
from within the element itself. Fig. 3 shows how XML3D refer-
ences can either point to resources in the same document, to ex-
ternal resources or to resources residing inside external documents
using URI semantics. The data concept in combination with URI
references provides a very fine-grained control over the composi-
tion of a scene in terms of reuse as well as organization across
multiple resources. Such a data concept applies to <mesh> ele-
ments defining geometry in the scene, <shader> elements describ-
ing material properties and <lightshader> elements describing
lights which are all just specialized <data> elements. Xflow [Klein
et al. 2012] extends the XML3D data composition by a declarative
dataflow component. Each <data> element can reference an opera-
tor that takes the entries of the data block as its input parameters and
computes an output from them. Hence, Xflow transforms <mesh>,
<shader> and <lightshader> into sinks of dataflow providing
functionality for dynamic meshes, morphing, animations, etc.

A similar approach is X3DOM [Behr et al. 2009], a format based
on X3D [Web3D Consortium 2011] which derives from VRML97.
Thus many of the VRML97 concepts can be found in X3DOM
which together with XML3D forms the evaluation platform of W3C
Community Group “Declarative 3D for the Web Architecture”.

We have chosen XML3D, because it enables consistent handling of
external resources, a feature that was important for the evaluation
of our REST API. XML3D supports external references to arbitrary
data containers, hence it is possible to realize all of the proposed
delivery approaches without extending XML3D. The only required
action is to implement a loader plug-in for each format that decodes

the resources and maps them onto a collection of data entries. It is
even possible to mix and match several different delivery formats
to compose a single resource. Conversely, the Inline node (a VRM-
L/X3D mechanism for external documents) allows only inclusion
of complete subscenes. Since there is no way to access parts of a
subscene, the Inline node cannot be used for a fine-grained refer-
encing [Behr et al. 2012].

3.2 3D Repo

3D Repo (http://3drepo.org) [Doboš and Steed 2012b] is
a version control framework specifically designed for 3D assets.
The repository is based on a NoSQL database MongoDB [Membrey
et al. 2010] which stores individual components of 3D scenes with
their associated revision histories. Due to a database being the per-
sistent storage provider, 3D Repo avoids constraints of a file-based
system, offers extensive querying functionality as well as implicit
access control. Its 3D Diff tool [Doboš and Steed 2012a] enables
two and three-way differencing and merging of concurrent edits
including detection of implicit and explicit conflicts based on the
intersections of component bounding boxes. Models in 3D Repo
are loaded using the Open Asset Import Library (Assimp) [Schulze
et al. 2012] which converts the most common 3D file formats into
a unified in-memory representation. Their deltas are stored as two
collections (tables), one for all the scene graph components and one
for all the components of a revision history, each represented as a
directed acyclic graph (DAG) with a single root node. Every graph
node, regardless of it belonging to a scene or a revision, is expected
to specify its unique identifier (UID), a functional requirement of
the database, as well as a shared ID (SID) which is shared amongst
multiple documents. In the context of a scene graph, the SID is
shared by all the revisions of the same scene graph node, while
in the context of a revision history, the SID is shared by a single
branch, where the SID of all zeros is reserved for the trunk/master.

4 REST API

The API defined in this section provides access to 3D resources
stored in a version controlled environment. Its architecture can be
summarized as a two-way URI encoding where in its core lies a
combination of id and type variables, the order of which deter-
mines the behaviour of the interface. In general, to address a col-
lection of resources the /:id/:type ordering is used, while the
/:type/:id combination addresses a single resource. Depend-
ing on the context, the ID is either the UID or the SID of a resource
(see §3.2) and the type is a family of resources such as ‘meshes’,
‘textures’, etc. and even ‘revisions’. Each resource or a collection of
resources can be requested in various encodings. This successfully
decouples the storage implementation from the querying interface.

POST Posting data to a server is used for creating new reposito-
ries as well as committing revisions and performing merges.

/xml3drepo Creates a new empty repository with a unique
name if not present. Hence, a name string input is expected.

/xml3drepo/:name Commits a new head revision to the trunk-
/master of the repository identified by its unique name. Expected
input is the data to be committed and the new revision.

/xml3drepo/:name/:id Commits a new revision, but to a
branch identified by its shared ID. If a branch does not exist, it is
created. When merging, the posted revision document specifies
the revisions to be merged as its parents in the DAG hierarchy
of a revision history. Its SID is the one of the branch which lives
on after a successful merge operation.

http://xml3d.org
http://3drepo.org

GET Retrieving data is the most commonly used feature of any
such an API. Therefore, it has to be flexible enough to provide
means of addressing collections of resources, single resources and
even individual attributes (sub-parts) of those resources.

/xml3drepo Returns a collection of all available 3D reposito-
ries, i.e. a list of databases containing 3D scenes and revisions.

/xml3drepo/:name Returns the head revision of a trunk/mas-
ter, i.e. all components of a scene identified by its unique name.

/xml3drepo/:name/:id Returns a scene similarly to the
trunk/master’s head, but from a revision identified by its unique
ID. If a shared ID is requested, returns the head of a branch.

/xml3drepo/:name/:id/:type Returns a collection of re-
sources matching the requested type that belong to a revision
identified by its UID or SID. If the type is ‘revisions’, returns a
revision resource describing the author, commit message, etc.

/xml3drepo/:name/:type Returns a collection of resources
matching the requested type from the trunk/master’s head. If the
type is ‘revisions’, returns the entire revision graph.

/xml3drepo/:name/:type/:id Returns a resource match-
ing the requested type which can belong to multiple revisions
identified by UID or a collection of revisions of the same scene
graph or revision history component identified by SID.

/xml3drepo/:name/:type/:id/:attribute Rather
than the entire resource, returns a single attributed from it. This
is useful for non-standard encoding formats such as Sequential
Image Geometry which is composited from 8-bit sections.

HEAD Same as GET, however, without the body of the data. This
is used for accessing the DAG structure of a scene graph or a revi-
sion history without the actual contents such as vertices or textures.

PUT Idempotence of PUT guarantees that sending a request mul-
tiple times has the same effect as sending it only once. However,
once in a versioned repository, the resource can never change, only
become superseded by a newer revision of itself. Therefore, up-
dating a resource via PUT commits a new revision to the database,
although, posting all the new resources in a single commit is pre-
ferred. Furthermore, PUT can be utilised for requesting changes in
the state of the repository and resources, e.g. locking. Nevertheless,
most existing APIs listed in §2 do not support PUT requests.

/xml3drepo/:name/:id/:type Commits a new revision of
resources identified by the type to a branch identified by its
shared ID. If the type is ‘locks’, acquires a lock on the branch.

/xml3drepo/:name/:type/:id Commits a new revision of
a resource identified by its UID or SID to the trunk/master. If the
UID is not at its head revision, the request fails with a conflict.
If the type is ‘locks’, acquires a lock on the resource.

DELETE By the nature of versioning, deleting data does not ac-
tually remove it from the database, merely commits a new revision
where it is marked as deleted. Thus, the data can still be accessed
via older revisions if needed. Similarly to PUT, it is preferred to
commit all the deletes in a single revision rather than one by one.

/xml3drepo/:name/ Force remove a repository identified by
its unique name from the database. This operation cannot be
reverted as the corresponding collections (tables) are dropped.

/xml3drepo/:name/:id/:type Commits a new revision to
a branch identified by its shared ID where all the resources iden-
tified by the type are marked as deleted. If the type is ‘locks’,
releases the lock from a branch.

/xml3drepo/:name/:type/:id Commits a new revision
where the resource identified by its UID or SID is marked as
deleted. If the type is ‘locks’, releases the lock from a resource.

3D

Text

Binary

XML

Unstructured

SIG

glTF

Webgl-loader

Image Geometry

Multi-purpose

File Formats

BSON

XMI

FastInfoset

JSON

X3D

XML3D
Document

Data

OpenCTM
3D Specific

Dimensionality Encoding Type Examples

Figure 4: Taxonomy of 3D data representations for the web.

To overcome the missing DELETE functionality of some web
browsers, it is customary to generate a hidden field value ‘delete’
and use POST or PUT instead [Richardson and Ruby 2007]. When
receiving a form with this parameter, the server overrides the actual
HTTP request and fulfils the desired action.

Status Codes Various HTTP/1.1 status codes can be received
when using the API. The most important ones are the 201 Cre-
ated when successfully committed, 400 Bad Request when
invalid syntax is used, 406 Not Acceptable when a requested
encoding cannot be achieved and 409 Conflict when commit-
ting changes that are in conflict with the head revision for which a
list of conflicting entities is returned ([Fielding et al. 1999] p. 66).

5 Data Encoding

In the HTTP protocol, it is the client who requests the most appro-
priate representation of a resource depending on its intended ap-
plication. For example, there exist several encoding formats for
web pages, e.g. HTML, XHTML, etc., each providing its own set
of advantages. For 3D, the distinction of encodings is even more
important as very different component types and file sizes make up
the structure of a 3D scene. As recently demonstrated by Jung et
al. [2013], by relying on a quantization it is even possible to render
a 91M polygon model in a web browser. This section, therefore,
discusses various representations that are evaluated for 3D data de-
livery, their benefits and drawbacks and how the support within
XML3D is realized. Fig. 4 shows a taxonomy of possibilities.

5.1 Text Formats

Text-based formats have the advantage of being human-readable,
although, string representations are usually larger than binary and
need to be parsed in order to be utilised. In general, we distinguish
document-based and pure data-based formats of text encoding.

Documents Document-based formats typically represent the
whole scene, maybe even with some run-time information. An ob-
vious approach is to encode geometry, shader and animation re-
sources directly in the document. This has the advantage of re-
sources being available to the DOM API at parse-time. However,

the data is in a string format resulting in longer processing and inter-
action being only possible once the parsing has finished. Including
resources as an attribute or a character component of XML can be
found in COLLADA [Khronos Group 2008] and X3D. In the con-
text of XML3D, a document is the HTML page containing one or
more XML3D scenes. There, the resources can be encoded either
internally or referenced externally providing a URI. Another ap-
proach is to include only those resources needed in the DOM for
modification at runtime and reference all static ones externally.

Data Various formats can be used to encode external resources
that are referenced from within a document. Text-based encodings
can either contain a single resource or a collection of resources, e.g.
all shaders of a scene. The browser then provides means to load
external resources during runtime; XMLHttpRequest (XHR), the
main component of the Asynchronous JavaScript and XML (AJAX)
architecture, defines an API to transfer data between the client and a
server. However, XHR is not restricted to XML which together with
JSON is the most commonly used external format mainly because
Web browsers expose native parsing capabilities for both. JSON
gained popularity especially due to its missing end tags that make
it smaller for documents with lots of structure but a few data en-
tries. For 3D, the difference is negligible as demonstrated in Tab. 1.
However, JSON does not offer any natural way of addressing its
elements. In contrast, browsers provide multiple means of access-
ing elements in DOM—the in-memory representation of an XML
document. These include CSS Selectors and XPath. A common
approach to address the elements of HTML is to use the URL frag-
ment which refers to the element as its id attribute. This is why
XML, unlike JSON, can represent not just individual resources but
also their collections. JSON and XML compress well with deflate
and gzip compressions that are available in all major Web browsers
trading-off the decoding time in favor of bandwidth. Nevertheless,
both formats suffer from issues that come with any generic string
representation. For the WebGL API to access such data, the strings
have to be deserialized into Typed Arrays [Khronos Group 2012].

5.2 Binary Formats

Unstructured Buffers Binary data can be transmitted via XHR
as ArrayBuffer [Khronos Group 2012], a buffer introduced with
Typed Arrays that is essentially a byte array. It is possible to gener-
ate a specific view on it, e.g. interpret every four bytes as one float
entry and thus derive a Float32Array from it, similarly to the 3D
Repo storage. Obviously, such a buffer has no structure, thus one
approach is to request a buffer per vertex attribute as proposed in
[Behr et al. 2012] as Binary Geometry and in glTF [Robinet et al.
2012]. The drawback is that these come with a large amount of
XHR requests which may lead to a reduced performance in high-
latency networks. This can be moderated to some degree by inter-
leaving multiple vertex attributes into a single ArrayBuffer.

Multi-purpose Binary Formats A second approach for struc-
tured data is to use a generic binary format. There are several com-
peting standards for binary encoded XML, for instance XML Meta-
data Interchange (XMI) [Object Management Group 2011] and
FastInfoset (FI) [Telecom. Standardization Sector 2005]. Most bi-
nary XML formats use dictionary compression for element and at-
tribute names and a binary representation for XML data types. XMI
adds a deflate compression to the data. Binary encoding of X3D is
based on FI and exploits its capabilities of referencing predefined
dictionaries and custom compression methods that make FI a hy-
brid between a generic XML encoding and a domain-specific com-
pressed format. By exploiting these capabilities, very high com-
pression rates within a generic format [Stocker and Schickel 2011]

can be achieved. Unfortunately, no readily available JavaScript im-
plementation of FI exists, hence it is not used in our evaluation.

A binary representation of JSON is BSON [10gen, Inc. 2013]. It
has no dictionary compression but provides means of encoding the
structure and data types in a binary way. This enables efficient pars-
ing and traversal of such documents. Additionally, BSON contains
extensions that support data types that are not part of the JSON
specification. One of these is a binary blob for which it is the appli-
cation’s responsibility to deserialize it. BSON has a special place
in XML3DRepo as it is the internal format of MongoDB.

Binary 3D Formats A third class of formats comes with its own
domain-specific schema to represent structured 3D data in a binary
form. Many open and proprietary file formats are available, some
of which also apply compression exploiting the knowledge of the
data properties. Two formats that are of particular interest to 3D
web delivery, mainly because a JavaScript decoder is available, are
OpenCTM [Geelnard 2009] and Webgl-loader [Chun 2013]. Both
use classical compression schemas such as Delta and ZigZag en-
codings. Webgl-loader additionally exploits the variable-length en-
coding of UTF-8 to capture values with 1 to 3 bytes.

In general, structured binary formats suffer from the need to de-
code binary data into JavaScript. Decoding is required, because the
internal representation is not compatible with Typed Arrays. The
time required for decoding is significant in mobile devices and other
clients with slower JavaScript engines. One strategy to overcome
the blocking of the UI is to shift the decoding into a Worker thread.

Geometry in Images Encoding geometry in images is a special
kind of binary format. This approach is especially useful here as
there is no need to modify the data in JavaScript; The image gets de-
coded in the browser core and can be directly uploaded to the GPU
where it serves as a data buffer. Sequential Image Geometry (SIG)
[Behr et al. 2012] extends this approach as vertex arrays get split
into chunks of 8-bits of different relevance and are distributed into
a sequence of images. Such an approach also supports quantization
by omitting images with less relevant bits. Progressive loading can
be achieved if the images arrive in the correct order. However, the
main drawback of SIG is that it requires data fetching from images
in a vertex shader, a functionality not yet supported on many mo-
bile devices. Even support for four texture units would already be
occupied by position coordinates with 16-bits (two images), nor-
mals with 8-bits (one image) and texture coordinates with 8-bits
(one image). If none or too few texture units are available, it is still
possible to read the image in JavaScript and create Typed Arrays
from it. Obviously, images are not designed to represent 3D data
and thus a Portable Network Graphics (PNG) format, for example,
does not achieve high compression rates for 3D [Behr et al. 2012].

6 Implementation

As shown in Fig. 5, a prototype implementation of the proposed
REST API was developed using the node.js [Dahl 2009] server
framework which is gaining in popularity especially due to its
non-blocking event-driven JavaScript execution. Middleware Ex-
press and templating engine Jade, both available via node’s inter-
nal package manager npm, were used to provide routing mecha-
nism and HTML rendering respectively. In addition, our JavaScript
port of the 3D Repo interface closely follows its C++ counter-
part so that both UID and SID (see §3.2) are realised using the
universally unique identifier (uuid) as defined by ITU-T [2008].
Therefore, any resource can be directly addressed via its UID,
e.g. /xml3drepo/UT4 Baeza/meshes/4e992f02-3777-
41ad-b777-91ad377791ad.xml, although strictly speaking,

MongoDB Java Driver

REST API

Node.js

MongoDB

B
inary JS

O
N

3D Repo Core

Express Jade

OpenCTM

XML3D

Web Browser

OpenCTM

XML3D

S
elected F

orm
at

Figure 5: System components. Remote client connects to a node.js
server using our REST API. Dynamic web pages are coded using
the Jade templating engine and delivered via Express middleware.
While MongoDB (hence 3D Repo) supports only BSON responses,
our REST API returns 3D data in a variety of encodings.

the format extension ‘.xml’ can be omitted as the HTTP Accept
header would specify the desired format in the request [Fielding
et al. 1999]. Nevertheless, it can be present for convenience or spec-
ified as a query parameter, e.g. ?meshformat=xml. If a conflict-
ing header and a format are requested, the header gets preference.

However, revisions in the original 3D Repo were assigned an in-
cremental unsigned integer. In XML3DRepo, these integers were
replaced with uuids to make the system ready for distributed access.
In the future, users could run a local instance of the server applica-
tion to record offline modifications and synchronise to a centralised
repository where, just like in Git, the integration happens remotely.

XML3D Support for Delivery Formats There are currently two
implementations of XML3D: A native implementation based on
Google’s Chrome web browser and a Polyfill implementation based
on WebGL and JavaScript [Sons et al. 2013]. The latter was used
for 3D Repo integration as it runs in most WebGL-enabled browsers
including some mobile variants and offers a plug-in registration for
external file format loaders. These can register themselves for a
specific Internet media type (MIME), e.g. application/json
for JSON. When multiple loaders are registered for the same type,
each is queried for support of the downloaded data block using its
hasSupportFor method and the first one in order of registration
is used. Externalizing the resources in XML3D offers progressive
loading which frees the rendering and moves the control of the vi-
sualization process to the user level. If progressive loading is not
desired, the content can be hidden until fully loaded.

Such a flexible approach allows us to implement XML, JSON,
BSON, SIG, OpenCTM and ArrayBuffers for delivery formats. In
our system, XML and JSON rely on the native parsing capabili-
ties of the web browsers, while BSON requires a custom loader
for its deserialization. OpenCTM comes with a JavaScript decoder
[Geelnard 2009] that was wrapped into xml3d.js loader. SIG,
however, requires generation of an implicit vertex array buffer that
acts as a set of texture coordinates for the input textures. These
coordinates depend on the number of vertices in a mesh as well as
the resolution of the image. Xflow can be used to create the texture
coordinates from these parameters, hence we deliver a mesh node
that references an Xflow graph that in turn references the images.
All Xflow graphs were clustered into a single external document
so that only one additional HTTP request is generated. With the
ability to query individual attributes from our REST API (see GET
definition in §4), it is possible to retrieve individual images per 8-bit
sections of the vertex and normal arrays as required. ArrayBuffers
were implemented similarly to Binary Geometry [Behr et al. 2012].

Caching Caching is a vital part of any server-side system. In or-
der to prevent too many open connections from the node.js applica-

tion to MongoDB, the connection to each database is cached once
opened and via a callback deleted from the cache when dropped.
This is especially important as hundreds of requests are expected
for any scene. Furthermore, given that the 3D data is version con-
trolled, the resources can never change. Even if updated or deleted,
they are still accessible using their unique ID. Therefore, this UID
together with the encoding format can act as a caching key.

7 Evaluation and Discussion

Performance of various 3D delivery formats was measured in order
to provide indicative values for both the cumulative CPU decoding
time and the overall download time in a variety of model sizes and
web browsers. The 3D models used in our experiments, see Fig. 6,
are readily available game levels. These are real-world examples
of 3D data that is commonly downloaded over the Internet. Tex-
tures were excluded as the overhead for each model would be the
same regardless of the mesh delivery format. Data for these mod-
els were collected using the built-in Developer Tools in Chrome
25.0.1364.172, Firebug add-on [Hewitt 2006] in Firefox 19.02 and
the built-in Dragonfly tool in Opera 12.14, all with caching dis-
abled. Safari 5 and Internet Explorer 10 were not tested as they
do not support WebGL on Windows yet. An XPC Shuttle SX58H7
with Intel Core i7-920 at 2.67GHz with 4GB RAM running Win-
dows 7 was used as a client while Intel Xeon at 2.67GHz with 2GB
RAM running CentOS 6.2 and node.js v0.8.19 acted as a remote
server over a local network. To mitigate the effects of data han-
dling in between node.js and DB, all experiments were done with
the MongoDB’s C++ BSON parser/serializer instead of JavaScript.

Despite using only 8-bits per normal array in our implementation,
SIG 32-bit still requires 4 textures for the vertex array definition
alone. Although being rendered without normals, we include the
measurements for completeness. Tab. 1 shows the different com-
pression rates achieved by individual encoding formats as well as
the number of requests made by the browsers. As expected, the dif-
ference in the sizes of XML and JSON is very small due to the data
being mostly made up of large arrays, so the contribution of end
tags in XML is diminished. However, BSON is noticeably larger
due to its explicit array indices. This is why 3D Repo relies on un-
structured binary entries for its internal representation of meshes.

To suppress fluctuations in the network and CPU performance,
Fig. 7 shows median values for uncompressed encodings measured
across 5 trials. The overall download times, depicted as bars, are
composed of the time required to load the DOM definition and the
external resources. Yellow dots show the cumulative CPU decod-
ing overhead per format. Compressed timings are very similar and
available as supplemental materials. SIG decodes in native code,
hence achieves zero CPU overhead, however, the number of HTTP
requests increases with the precision, significantly hampering the
download time despite the smaller overall amount of data being
transmitted. The lower-bit quantizations cause visual degradation
especially in the areas of high frequency details. Furthermore,
the SIG format did not work in Opera. When compiling a vertex
shader with texture fetches it fails due to a DirectX-specific error
despite reporting available texture units. In contrast, the advantage
of OpenCTM compression becomes distinctive with larger sizes,
although, Firefox would consume more CPU to decode this format.

Clearly, the best format can only be selected by the properties of the
network connection and client performance. Since the client perfor-
mance is not a bottleneck nowadays, the network is the key factor
for selecting the most suitable delivery format. High latency re-
quires less requests and low bandwidth requires more compression.
With XML3DRepo the desired delivery format can be dynamically
chosen by the client making this a very flexible setup.

Figure 6: Game levels used in our experiments. From left to right: UT4 Baeza with over 93k vertices, 31k faces and 196 meshes, UT4
Paris v2 with over 129k vertices, 43k faces and 291 meshes and UT4 Intermodal Beta (see Fig. 1) with over 170k vertices, 56k faces and 482
meshes. Textures were excluded. Models downloaded from http://www.snipersgaulois.com/downloads.More.php.

Format UT4 Baeza UT4 Paris v2 UT4 Intermodal Beta
Raw [MB] Gzip [MB] Requests Raw [MB] Gzip [MB] Requests Raw [MB] Gzip [MB] Requests

XML 8.9 1.4 408 7.7 1.4 598 11.9 2.4 980
JSON 8.8 1.3 408 7.6 1.4 598 11.9 2.3 980
BSON 10.4 2.8 408 10.9 3.0 598 15.7 4.6 980
SIG 8-bit 1.7 1.0 800 2.2 1.2 1180 2.5 1.7 1944
SIG 16-bit 2.3 1.6 1192 2.5 1.6 1762 3.2 2.4 2908
SIG 24-bit 2.7 1.9 1584 2.9 2.1 2322 3.9 3.3 3872
SIG 32-bit 3.3 2.5 1976 3.6 2.9 2926 4.8 4.0 4836
OpenCTM 1.6 0.8 408 1.7 0.9 598 2.1 1.3 980
ArrayBuffers 3.7 1.2 1192 4.1 2.7 1762 5.9 4.0 2908

Table 1: Overall download size of uncompressed (Raw) vs. compressed (Gzip) encodings in MB and the total number of requests required.

8 Conclusions

We have presented a novel REST API for a consistent online ad-
dressing of version controlled 3D assets. Despite the XML3DRepo
name, the repository itself stores only a unified scene graph repre-
sentation of common 3D formats encoded as Binary JSON that is
independent of XML3D formatting. However, our client/server im-
plementation demonstrates that the resource-based approach sup-
ports delivery of requested assets in a variety of encodings several
of which were measured on geometry data and materials.

We have shown that XML3D, due to its consistent approach to ex-
ternal resources, works very well with the proposed API and offers
transparent use of various representations. Thus, all delivery as-
pects can be delegated to the XML3DRepo framework and the ap-
plication logic can start at a high level of abstraction. In this paper,
it was demonstrated that the approach proposed here “holds” for six
considerably different delivery formats. The advantages over a sim-
ple file server are in the ability to transparently query entire scenes,
individual components and even their attributes in a representation
that is independent of the data storage.

Our results also show that there is currently no single delivery for-
mat that fits all devices, networks and applications. None of the
measured formats provides a good trade-off in between the num-
ber of requests, the required decoding time and its compression
ratio. For instance, OpenCTM offers considerable size reduction
but comes with a slow decoding and a compression schema that is
not applicable to all sorts of 3D resources (e.g. animations). On the
other hand, generic formats such as JSON and XML are likely to be
the most suitable for many 3D resources, but require parsing and of-
fer only generic compression in HTTP. Direct use of ArrayBuffers
and Image Geometry suffers from a large amount of necessary re-
quests. Additionally, SIG is limited by the number of applicable
textures on the rendering device. With these restrictions in place, a
delivery framework such as XML3DRepo becomes even more im-
portant as it provides means of adapting resources to the network
and device capabilities as well as the application needs.

Future Work Our intention is to continue developing this new
architecture into a truly scalable open source platform at http:
//xml3drepo.org. We believe that it is possible to convert the
existing 3D Repo into a fully distributed system where clients will
connect to a gateway proxy providing seamless access to version
controlled 3D data from different locations. We plan to implement a
dynamic system based on the capabilities of the receiving client and
the properties of the network connection. Such a system would au-
tomatically establish the best format for data delivery based on pre-
determined heuristics. Furthermore, we plan to add more function-
ality to the API including spatial and semantic queries, proximity-
based data retrieval with camera position queries as well as user
authentication and general search capabilities. In addition, a thin
layer above this structure could enable collaborative editing of 3D
assets directly in web browsers.

In the future, a new format will be required that would be generic
enough to represent all kinds of 3D resources, yet efficient in its
representation and with a reasonable amount of HTTP requests.
One option is to base this format on Typed Arrays and provide a
domain-specific compression using Xflow, although attempts try-
ing to solve the interoperability issues already exist, e.g. [Berthelot
et al. 2011] or even COLLADA and CAD STEP (ISO 10303) for-
mats. Similarly to the encoding and compression of geometry data
when downloading the resources, it would also be possible to com-
press the data before committing revisions back to the repository.
On one hand, it might be possible to compress the data in a web
browser. On the other, given the assumption that there are always
going to be significantly many more read than write requests, it
might be more suitable to upload raw 3D models for a more pow-
erful server to process. Both, however appealing, require further
investigation and we leave this open for future work.

Acknowledgements This research was partly sponsored by the
UK EPSRC-funded EngD. Centre in Virtual Environments, Imag-
ing and Visualisation (EP/G037159/1), the EU projects VERVE and
FI-CONTENT, the Intel Visual Computing Institute, and Arup.

http://www.snipersgaulois.com/downloads.More.php
http://xml3drepo.org
http://xml3drepo.org

External CPUDOM

External CPUDOM

External CPUDOM

Figure 7: Median values from 5 trials of 3 game levels. Overall download time (left Y-axis) consists of a DOM definition and the external
references processing while the CPU time (ten folds less, right Y-axis) defines the amount of cumulative CPU milliseconds required to decode
the encoding format. Measured on XPC Shuttle SX58H7 with Intel Core i7-920 CPU at 2.67GHz with 4GB RAM running Windows 7.

References

10GEN, INC., 2013. BSON–Binary JSON specification. URL:
http://bsonspec.org/.

ADVANCED DISTRIBUTED LEARNING, 2011. 3d repository api
documentation, September. URL: https://github.com/adlnet/3D-
Repository/wiki/API-Documentation.

AUTODESK, 2012. AutoCAD WS. https://www.autocadws.com.

BAVOIL, L., CALLAHAN, S. P., CROSSNO, P. J., FREIRE, J., AND
VO, H. T. 2005. Vistrails: Enabling interactive multiple-view
visualizations. In IEEE Visualization 2005, 135–142.

BEHR, J., ESCHLER, P., JUNG, Y., AND ZÖLLNER, M. 2009.
X3DOM: a DOM-based HTML5/X3D integration model. In
Proceedings of the 14th International Conference on 3D Web
Technology, ACM, NYC, NY, USA, Web3D ’09, 127–135.

BEHR, J., JUNG, Y., FRANKE, T., AND STURM, T. 2012. Us-
ing Images and Explicit Binary Container for Efficient and In-
cremental Delivery of Declarative 3D Scenes on the Web. In
Proceedings of the 17th International Conference on 3D Web
Technology, ACM, NYC, NY, USA, Web3D ’12, 17–25.

BERTHELOT, R. B., ROYAN, J., DUVAL, T., AND ARNALDI, B.
2011. Scene graph adapter: an efficient architecture to improve
interoperability between 3d formats and 3d applications engines.
In Proceedings of the 16th International Conference on 3D Web
Technology, ACM, NYC, NY, USA, Web3D ’11, 21–29.

CHUN, W., 2013. http://code.google.com/p/webgl-loader.

DAHL, R., 2009. node.js. URL: http://nodejs.org.

DEBISWAS, K., AND RAO, N., 2012. Sunglass. http://sunglass.io.

DOBOŠ, J., AND STEED, A. 2012. 3D Diff: an interactive ap-
proach to mesh differencing and conflict resolution. In SIG-
GRAPH Asia 2012 Technical Briefs, ACM, SA ’12, 20:1–20:4.

DOBOŠ, J., AND STEED, A. 2012. 3D revision control framework.
In Proceedings of the 17th International Conference on 3D Web
Technology, ACM, NYC, NY, USA, Web3D ’12, 121–129.

FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MASIN-
TER, L., LEACH, P., AND BERNERS-LEE, T., 1999. Hypertext
Transfer Protocol – HTTP/1.1.

FIELDING, R. T. 2000. Architectural styles and the design of
network-based software architectures. PhD thesis, University
of California, Irvine. AAI9980887.

GEELNARD, M., 2009. Open compressed triangle mesh format.
URL: http://openctm.sourceforge.net/, December.

HEWITT, J., 2006. Firebug. URL: http://getfirebug.com.

JUNG, Y., LIMPER, M., HERZIG, P., SCHWENK, K., AND BEHR,
J. 2013. Fast and efficient vertex data representations for the
web. In Proceedings of the International Conference on Com-
puter Graphics Theory, GRAPP ’13, 601–606.

KHRONOS GROUP, 2008. COLLADA - 3D Asset Exchange
Schema. URL: http://www.khronos.org/collada/, March.

KHRONOS GROUP, 2012. Typed Array Specification.
URL: https://www.khronos.org/registry/typedarray/specs/latest/.

KLEIN, F., SONS, K., RUBINSTEIN, D., BYELOZYOROV, S.,
JOHN, S., AND SLUSALLEK, P. 2012. Xflow - Declarative Data
Processing for the Web. In Proceedings of the 17th International
Conference on Web 3D Technology, ACM, Web3D ’12, 37–45.

KLOBAS, J. E. 2006. Wikis: Tools for Information Work and Col-
laboration (Information Professional). Chandos Publishing (Ox-
ford) Ltd, June. ISBN-10: 1843341786.

LENTCZNER, M., 2008. Second life grid open grid protocol.
URL: http://wiki.secondlife.com/wiki/SLGOGP Draft 1.

MARRIN, C., 2011. Webgl specification v 1.0, February. URL:
https://www.khronos.org/registry/webgl/specs/1.0.

MEMBREY, P., PLUGGE, E., AND HAWKINS, T. 2010. The Defini-
tive Guide to MongoDB: The NoSQL Database for Cloud &
Desktop Computing, first ed. APRESS ACADEMIC.

OBJECT MANAGEMENT GROUP, 2011. Mof 2 xmi mapping (xmi)
v2.4.1, Aug. URL: http://www.omg.org/spec/XMI/.

OLBRICH, M. 2012. Accessing http interfaces within x3d script
nodes. In Proceedings of the 17th International Conference on
3D Web Technology, ACM, NY, USA, Web3D ’12, 139–142.

PARISI, T., AND ARNAUD, R., 2011. 3D REST 3D specification
v0.2, April. URL: http://rest3d.org.

PILGRIM, M. 2010. HTML5: Up and Running. O’Reilly Media.

RICHARDSON, L., AND RUBY, S. 2007. Restful web services,
first ed. O’Reilly Media.

ROBINET, F., PARISI, T., AND OZZI, P., 2012. glTF. URL:
https://github.com/KhronosGroup/collada2json/wiki/glTF.

SCHIEFER, A., BERNDT, R., ULLRICH, T., SETTGAST, V., AND
FELLNER, D. W. 2010. Service-oriented scene graph manipu-
lation. In Proceedings of the 15th International Conference on
Web 3D Technology, ACM, NYC, NY, USA, Web3D ’10, 55–62.

SCHUBOTZ, R., AND HARTH, A. 2012. Towards networked linked
data-driven web3d applications. In Dec3D, CEUR-WS.org,
J. Behr, D. P. Brutzman, I. Herman, J. Jankowski, and K. Sons,
Eds., vol. 869 of CEUR Workshop Proceedings.

SCHULZE, T., GESSLER, A., KULLING, K., NADLINGER, D.,
KLEIN, J., SIBLY, M., AND GUBISCH, M., 2012. Open asset
import library v3.0. http://assimp.sourceforge.net.

SONS, K., KLEIN, F., RUBINSTEIN, D., BYELOZYOROV, S., AND
SLUSALLEK, P. 2010. XML3D: Interactive 3D Graphics for the
Web. In Proceedings of the 15th International Conference on
Web 3D Technology, ACM, Web3D ’10, 175–184.

SONS, K., SCHLINKMANN, C., KLEIN, F., RUBINSTEIN, D.,
AND SLUSALLEK, P. 2013. xml3d.js: Architecture of a Poly-
fill Implementation of XML3D. In 6th Workshop on Software
Engineering and Architectures for Realtime Interactive Systems.

STEED, A., AND OLIVEIRA, M. 2009. Networked Graphics:
Building Networked Games and Virtual Environments. Elsevier.

STOCKER, H., AND SCHICKEL, P. 2011. X3D binary encoding re-
sults for free viewpoint networked distribution and synchroniza-
tion. In Proceedings of the 16th International Conference on 3D
Web Technology, ACM, NYC, NY, USA, Web3D ’11, 67–70.

TELECOM. STANDARDIZATION SECTOR. 2005. Information tech-
nology - Generic applications of ASN.1: Fast infoset. Rec, ITU,
May. X.891, ISO/IEC 24824-1:2007.

TELECOM. STANDARDIZATION SECTOR. 2008. Generation and
registration of Universally Unique Identifiers (UUIDs). Rec,
ITU, Aug. X.667, ISO/IEC 9834-8.

WEB3D CONSORTIUM, 2011. Extensible 3D (X3D). ISO/IEC
19775/19776/19777, URL: http://web3d.org/x3d/specifications.

View publication statsView publication stats

https://www.researchgate.net/publication/261853423

