COPSS: An Efficient Content Oriented Publish/Subscribe
System

Jiachen Chen', Mayutan Arumaithuraif, Lei Jiaof, Xiaoming Fuf, K.K.Ramakrishnan:
t Institute of Computer Science, University of Goettingen, Germany.
+ AT&T Labs Research, Florham Park, NJ, U.S.A.
email: jchen3,arumaithurai,jiao,fu@cs.uni-goettingen.de,
kkrama@research.att.com

ABSTRACT

Content-Centric Networks (CCN) provide substantial flexi-
bility for users to obtain information without regard to the
source of the information or its current location. Publish/
subscribe (pub/sub) systems have gained popularity in so-
ciety to provide the convenience of removing the temporal
dependency of the user having to indicate an interest each
time he or she wants to receive a particular piece of related
information. Currently, on the Internet, such pub/sub sys-
tems have been built on top of an IP-based network with
the additional responsibility placed on the end-systems and
servers to do the work of getting a piece of information to in-
terested recipients. We propose Content-Oriented Pub/Sub
System (COPSS) to achieve an efficient pub/sub capability
for CCN. COPSS enhances the heretofore inherently pull-
based CCN architectures proposed by integrating a push
based multicast capability at the content-centric layer.

We emulate an application that is particularly emblematic
of a pub/sub environment—Twitter—but one where sub-
scribers are interested in content (e.g., identified by key-
words), rather than tweets from a particular individual. Us-
ing trace-driven simulation, we demonstrate that our archi-
tecture can achieve a scalable and efficient content centric
pub/sub network. The simulator is parameterized using
the results of careful microbenchmarking of the open source
CCN implementation and of standard IP based forwarding.
Our evaluations show that COPSS provides considerable
performance improvements in terms of aggregate network
load, publisher load and subscriber experience compared to
that of a traditional IP infrastructure.

1. INTRODUCTION

Users increasingly desire access to information, ranging from
news, financial markets, healthcare, to disaster relief and
beyond, independent of who published it, where it is lo-
cated, and often, when it was published. Content centric
networks (CCN) are intended to achieve this functionality
with greater ease for users, greater scalability in terms of
the amount of information disseminated as well as number
of producers and consumers of information, and greater ef-
ficiency in terms of network and server resource utilization.
Publish/subscribe (pub/sub) systems are particularly suit-
ed for large scale information dissemination, and provide the
flexibility for users to subscribe to information of interest,
without being intimately tied to when that information is
made available by publishers. With the use of an appro-
priate interface, users can select and filter the information

desired so that they receive only what they are interested
in, often irrespective of the publisher.

A consumer may not wish (or it may even be infeasible) to
subscribe to all of the ‘channels’ belonging to a myriad of in-
formation providers that disseminate items of interest, either
on demand (such as web, twitter, blogs and social networks),
or tune to a broadcast channel (e.g., television, radio, news-
paper). In these cases, the consumer would rather prefer
obtaining the data based on Content Descriptors (CD)
such as a keyword, a tag, or a property of the content, such
as the publisher identity, published date etc.

Intelligent end-systems and information aggregators (e.g.,
Google News and Yahoo! News, cable and satellite provider-
s) have increasingly adapted their interfaces to provide a
content-oriented pub/sub-based delivery method. However,
these mechanisms are built on top of a centralized server-
based framework and can also result in a waste of network
resources as shown in [1, 2], since the Internet protocol suit-
e is focused on end-to-end delivery of data. Furthermore,
issues of “coverage” and “timeliness” still exist in such form-
s of dissemination, where the aggregator may be selective
in what information is made available. Having a network
that is capable of delivering the information from any of the
producers to all subscribers may overcome such limitations.
However, unlike using multicast at the IP layer which can
result in a substantial amount of duplicate information be-
ing delivered to the receiving end-system (which will have
to be filtered out), it is desirable for the network to assist in
delivering unique information to the subscriber.

There have been several recent proposals for CCN [3, 4,
5, 6]. One such effort is that of Named Data Networking
(NDN) [3, 7]. NDN provides a substantial degree of flexi-
bility for users and end-systems to obtain information with-
out regard to their location or source. Exploiting caching,
NDN improves the efficiency of content delivery. Subscriber-
s can obtain the data from the closest node/cache serving
it. Moreover, multiple requests for the same data arriv-
ing at an NDN router can be served simultaneously by the
router, oblivious to the data source. However, this makes
the content centric routers somewhat more heavy-weight as
we will observe in our micro-benchmarking of such function-
ality. Moreover, due to its intrinsic design, we observe that
enhancements are needed to efficiently support pub/sub ap-
plications using the NDN design. In the rest of the paper
we use the term CCN to refer to the general content centric

based networking paradigm and use the term NDN to refer
to the specific proposal named NDN ([7].

A couple of key requirements for a pub/sub system are effi-
ciency and scalability. We observe that the ability to exploit
multicast delivery is key to achieving efficiency, and to avoid
wasting server and network resources. Scalability require-
ments come in multiple forms: the ability to accommodate
a large number of publishers; the ability to accommodate
a large number of subscribers; enable a nearly unlimited
amount of information being generated by publishers; allow
for delivery of information related to subscriptions indepen-
dent of the frequency at which that information is generated
by publishers; allow for subscribers to not have to be con-
nected to the network at all times, so that information pro-
duction and reception by consumers can be asynchronous.

In this paper, we develop COPSS, an efficient content-centric
pub/sub system leveraging the advantages provided by CCN.
We evaluate the performance of COPSS by using a decen-
tralized Twitter-like application and show performance gain-
s in terms of aggregate network load, publisher load and
subscriber experience.

The key novelties of COPSS to provide a full fledged and
efficient content delivery platform for pub-sub applications
include:

e COPSS supports the notion of Content Descriptor (CD)
[8, 9] based publishing and subscription. A CD goes
beyond name-based [3] and topic-based [10] content i-
dentification and allows for contextual identification of
information and supports ontologies and hierarchies in
specifying interests.

e COPSS provides support for a CD based subscription
maintenance in a decentralized fashion, relieving the
publishers and subscribers from having a detailed list
of one another. This facilitates a highly dynamic and
large scale pub-sub environment (in which the focus is
on the content published) and facilitates the creation
of new publishers and subscribers. This is analogous to
recent events in Twitter wherein people belonging to
the affected region were able to behave as publishers.

e COPSS provides a push based multicast capability to
be able to deliver the content in a timely manner in
addition to leveraging the NDN’s inherent pull-based
information delivery model. COPSS does that in a
scalable and reliable manner.

e COPSS is designed to provide additional features for
subscribers that are offline and a 2-step delivery mod-
el that allow information publishers to exercise policy
control, access control (i.e., which subscribers are al-
lowed to access which information) and a snippet based
dissemination of large pieces of content in a scalable
manner.

e COPSS also addresses the need to evolve from our cur-
rent IP-centered network infrastructure to a content-
centric network.

We review related work in §2. In §3, we identify the re-
quirements of an efficient pub/sub system, provide a short

background of NDN, results of a microbenchmark test per-
formed and discuss its shortcomings as an efficient pub/sub
system. We present the COPSS design in §4 and evaluation
results are given in §5. We conclude our work and outline
further work in §6.

2. RELATED WORK

Existing work on pub/sub systems can be broadly classi-
fied into two approaches depending on how subscribers ob-
tain data: pull-based and push-based. In a pull-based mod-
el, subscribers poll the publisher (or a proxy) for any con-
tent /information update. This tends to create unnecessary
overheads in server computation and network bandwidth
when the update frequency is low compared to the polling
frequency. Furthermore, pull-based mechanisms require the
knowledge of the identity (DNS/IP address) of publishers
(or servers acting as the proxy).

In contrast, traditional push-based approaches maintain long-
lived TCP connections (Elvin [11]) or notify subscribers via
other means such as instant messaging (Corona [2]) or Ren-
dezvous nodes (PSIRP [12]). Both approaches have scala-
bility issues since it requires the maintenance of too many
connections and states; and sometimes require that every
publisher and subscriber are known to each other. The wide
existence of Network Address Translators (NATs) makes
it impractical for every subscriber to have global visibili-
ty, thereby complicating push based mechanisms. Overlay
based pub/sub approaches like Astrolabe [13] and Spider-
Cast [10] are agnostic of the underlying topology and there-
fore cause a lot of extra overhead.

To overcome the limitation of these approaches where a sub-
scription requires the knowledge of every content source, ap-
proaches such as ONYX [14], TERA [15], SpiderCast [10],
and Sub-2-Sub [16] have been proposed as topic/content-
based systems. In such systems, users express their inter-
est in content rather than sources (e.g., to a publisher in
Twitter'). COPSS adopts a Content Descriptor (CD)
based approach wherein a CD could refer to a keyword, tag,
property of the content and etc.; similar to that adopted by
XTreeNet [8] and SEMANDEX [9]. RSS feeds and XMPP
pub/sub [17] are used to publish frequently updated content
such as news headlines, blog entries and etc. and allows
users to subscribe to topics/publishers. Though both are
intended as push based applications, in reality they are es-
sentially pull based mechanisms that frequently poll various
RSS sources or XMPP servers.

To our knowledge, there is no prior work which aims to build
the content delivery network for efficient pub/sub. NDN [7]
and native IP multicast [18, 19, 20] also provides an efficient
delivery mechanism, but are not able to serve as an efficient
full-fledge content-based pub/sub system as shown in §3.
This paper proposes COPSS to fill this gap.

3. PROBLEM STATEMENT

We first describe the requirements that an efficient pub/sub
content delivery system has to address. Then, we examine
why existing IP multicast, overlay multicast and the current
NDN solutions may be inadequate.

Yhttp:/ /twitter.com/

3.1 Requirements
An efficient pub/sub information delivery system (“the tar-
get system”) needs to support:

e Push enabled dissemination: To ensure that sub-
scribers receive information in a timely manner, the
target system must provide the ability for publisher-
s to push information to online subscribers interested
in it. Such timely dissemination is useful in many sce-
narios such as disaster (e.g., Tsunami) warnings, stock
market information, news and gaming.

e Decouple publishers and subscribers: Asthe num-
ber of publishers and subscribers increases, it is impor-
tant for the network to be content-centric (using con-
tent names rather than addresses for routing), while
still providing the appropriate association between them
(publishers need not know who the subscribers are,
and vice versa). Furthermore, each subscriber may be
a publisher as well (e.g., Twitter allows users to be
both subscribers and publishers of data).

e Scalability: The target system must handle a large
number of publishers and subscribers. Minimizing the
amount of state maintained in the network, ensuring
the load on the publisher grows slowly (sub-linearly)
with the number subscribers, the load on subscribers
also grows slowly with the number of publishers (e.g.,
dealing with the burden of duplicate elimination). Im-
portantly, the load on the network should not grow
significantly with the growth in the number of pub-
lishers and subscribers. We also recognize the need to
accommodate a very large range in the amount of in-
formation that may be disseminated, and the need for
all elements of the target system in a content centric
environment to scale in a manageable way.

e Efficiency: The system must utilize network and serv-
er resources efficiently. It is desirable that content is
not transmitted multiple times by a server or on a link.
Furthermore, the overhead on publisher and subscriber
end-points to query unnecessarily for information must
be minimized.

e Incremental deployment: It is desirable that the
system be incrementally deployable as we transition
from an IP (packet-based) to a content-centric envi-
ronment. The target system must ensure that its fea-
tures are beneficial for early adopters, and provide a
seamless transfer from an IP dominated environment
to a content-centric environment.

Additionally, to support a full-fledge pub-sub environ-
ment, it is desirable that the target system support the
following additional features:

e Support hierarchies and context in naming con-
tent: We believe it is desirable to be able to exploit
both context and hierarchies in identifying content.
Hierarchical naming has been recognized by NDN as
well. Exploiting context enables a richer identification
of content (in both subscriptions and published infor-
mation), as noted in the database community (and
adopted in [8]).

e Supporting two-step dissemination for policy
control and efficiency: We recognize the need for
pub/sub environments to support a two-step dissem-
ination process both for reasons of policy and access
control at the publisher as well as managing delivery
of large volume content. In such a scenario, the target
system would be designed to publish only a snippet of
the data (containing a description of the content and
the method how to obtain it) to subscribers.

e Subscriber offline support: Another typical char-
acteristic of pub-sub environments is that subscriber-
s could be offline at the time the data is published.
There is clearly a need for asynchronous delivery of
information in a pub/sub environment in an efficient,
seamless and scalable manner. The system needs to
allow users who were offline to retrieve the data that
they have missed. It should also allow new subscribers
to retrieve previously published content that they are
interested in. We envisage a server that stores all the
content published. While important, the storage ca-
pacity and policy for replacement is beyond the scope
of what we are able to address here in this paper.

3.2 Why Does IP/Overlay Multicast Fall Short
as an Efficient Pub/Sub Platform?

IP multicast [18] is another candidate solution for efficient-
ly delivering content to multiple receivers. A sender sends
data to a multicast group address that subscribers could
join. Multicast routing protocols such as PIM-SM [19] con-
struct and maintain a tree from each sender to all receivers
of a multicast group. However, IP multicast isn’t an effi-
cient pub/sub delivery mechanism for several reasons: 1)
IP multicast is designed for delivery of packets to connect-
ed end-points. Dealing with disconnected operation (when
subscribers are offline) would have to be an application lay-
er issue. Overlay multicast solutions such as [21, 22, 23] are
agnostic of the underlying network topology, usually relying
on multiple unicasts in the underlay path and are therefore
also inefficient as a pub/sub delivery mechanism. 2) The
somewhat limited multicast group address space makes it
difficult to support a direct mapping of CDs to IP multicast
addresses. 3) Current IP multicast is not able to exploit rela-
tionships between information elements, such as CDs. CDs
may be hierarchical or may have a contextual relationship,
which enables multiple CDs to be mapped to a group. For
example, consider a publisher that sends a message to all the
subscribers interested in football, and subscribers who are
interested in receiving messages about all sports. The mes-
sage from the publisher will have to be sent to two distinct
IP multicast groups. If there happens to be a subscriber
of messages on sports and football, (s)he will receive the
same message twice and will have to perform redundancy
elimination in the application layer. The result is a waste in
network traffic and processing at both ends.

3.3 State of the Art: Named Data Networks

NDN: Technical background

NDN [7] has been proposed as a content centric network
architecture. Content sources register their availability of
content by prefix (akin to a URL), and these prefixes are
announced for global reachability (in a manner similar to
BGP in inter-domain IP routing). There are two kinds of

packets: Interest and Data (i.e., content). An Interest pack-
et is sent by a consumer to query for data. Any data provider
who receives the Interest and has matching data responds
with a Data packet. Both the Interest packet and a Data
packet have a content name. For an Interest packet, this
name is the name of the requested data; for a Data pack-
et, the name identifies the data contained in this packet.
The current design of NDN adopts a URL-like scheme for
the content name, e.g., a multimedia item may be named
as /uni-goettingen/introduction.mp3. An NDN router has
three data structures (see Fig. 2): the Forwarding Infor-
mation Base (FIB) that associates content names to the
next hops (termed face); the Pending Interest Table (PIT)
that maps full content names with incoming face(s); and the
Content Store (CS) that caches content from a provider up-
stream. The router forwards an Interest by doing a longest-
match lookup in the FIB on the content name in the Inter-
est. When forwarding an Interest, the router also records
the name of this Interest and the (inter)face from which this
Interest comes into PIT. NDN only routes Interest packet-
s. Data packets follow the reverse path established by the
corresponding Interest. When an Interest packet arrives at
a router, first the CS is checked to see whether the request-
ed data is present in the local cache. If so, then this Data
packet is sent out on the face that the Interest was received
and that Interest is discarded. Otherwise, an exact-match
lookup is done in PIT on the content name of the Interest.
If the same Interest is already pending, then the incom-
ing face of this new Interest is added to the face list of the
matched entry and this new Interest is discarded. Other-
wise, a longest-match is done on the content name in FIB
and the Interest is stored in the PIT and a copy of it is for-
warded based on the FIB entry. If there is no matched entry,
then the Interest is sent out on all the corresponding out-
going faces. When a Data packet arrives, the CS is checked
first. A match implies that this data is a duplicate of what
is cached and the packet is discarded. Otherwise, the PIT is
checked and a match means the Data has been solicited by
Interest(s) forwarded by this node. In such a case, the Data
can be validated, added to the CS and sent out on each face
from which the Interest arrived.

Difficulties with NDN for pub/sub systems: Multi-

cast

NDN has limited intrinsic support for pub/sub systems, a
critical need in a content centric environment. The aggre-
gation of pending Interests at routers achieves efficient dis-
semination of information from NDN nodes. But this ag-
gregation is similar to a cache hit in a content distribution
network (CDN) cache, which occurs only if subscribers send
their Interests with some temporal locality. Thus it avoid-
s multiple Interest queries having to be processed directly
by the content provider. Note however that this is still a
pull-based information delivery method and depends both
on temporal locality of interests and a large enough cache
to achieve effective caching in the (content centric) network.
On the other hand, native multicast support allows for a
much more scalable push-based pub/sub environment, s-
ince it is not sensitive to issues such as the cycling of the
cache when a large amount of information is disseminated.
In COPSS we strive to achieve a full fledged push-based
multicast capability in addition to the efficient query based
information dissemination available in NDN.

Table 1: Forwarding performance (us)[std. dev]

CCNx UDP-K UDP-U
200B/Interest | 2295.6[1106.42] | 6.4[0.52] | 37.4[8.21]
4096B/Data | 2135.4[876.04] | 4.0[0.82] | 75.2[16.31]

Difficulties with NDN: Obtaining information from

unknown publishers

NDN is essentially built as a query-response platform where
subscribers are required to know the publishers or the pre-
cise identity of the content (URL) to send an interest. S-
ince we believe it is important for subscribers to not know
who are the publishers of a particular information item (i.e.,
a certain CD), NDN poses difficulties in achieving a true
pub/sub environment. Consider a 2-publisher, 1-subscriber
scenario. Sub sends a query “/query/sports/football” be-
cause (s)he is interested in football. On receiving the query,
if Pub; and Pubz happen to have different new items of in-
formation, they will return their items to R. But only the
response that arrives first will be returned by R since it will
consume the PIT entry in R. If Sub wants the second up-
date, he/she would either have to know the exact content
name of Pubs’s response, or find a means to exclude Pub;’s
response. Obviously, the first option is infeasible, since it is
undesirable to negotiate a global name space across all the
(possibly unknown) publishers. For the second option, the
subscriber will have to specify a large number of names in
the exclude field, especially if there are a large number of
publishers (one can imagine thousands of such publishers).
Moreover, since Sub does not know of the number of avail-
able publishers, it needs to send the Interest repeatedly till
it stops receiving data from the various publishers and will
have to repeat this process periodically. This model thus
becomes similar to polling, with its associated overhead (as
we will show in §5).

3.4 NDN Performance: Micro Benchmarking
We performed measurements to study the processing over-
head of CCN compared to a pure IP-based forwarding (albeit
recognizing that the functionality offered by a CCN node is
significantly different). We ran simple benchmarks on the
open source CCNx implementation? and standard IP based
forwarding. The measurements were performed on Linux
2.6.31.9 machine (3.0 GHz Intel® E8400, 4GB Memory).
Note CCNx is currently implemented as a user-space over-
lay, using UDP or TCP encapsulation for exchanging CCNx
protocol packets between different nodes. To have a rea-
sonably fair comparison, we use two kinds of packets in our
measurements: 200-byte UDP packet compared to an NDN
Interest packet, and a 4096-byte UDP packet to compare
with an NDN Data packet (both with the same UDP payload
size). The time between the incoming and outgoing instants
of each packet is measured using Wireshark®. Three for-
warding behaviors are measured: NDN, kernel-space UDP
(UDP-K), and user-space UDP (UDP-U).

From Table 1, we observe that to achieve the functionality
of name-based routing, NDN routers are about 500 times
slower than UDP-K and about 50 times slower than UDP-

*http://www.ccnx.org/
3http:/ /www.wireshark.org

U. Though a hardware-level implementation would be able
to achieve better performance, the requirements placed on
an NDN router is higher than that placed on IP router.
Since COPSS supports NDN functionality, we understand
the need to minimize overhead unless required. Further, we
also explore the possibility of a hybrid COPSS + IP ap-
proach where the COPSS aware nodes at the edge support
the content-centric pub/sub functionality while the interme-
diate nodes are just IP routers seeking to preserve forward-
ing efficiency.

4. COPSS ARCHITECTURE

COPSS is designed to be a content centric pub/sub plat-
form that meets the requirements listed earlier - efficient,
scalable, exploiting a push-based delivery using multicast
for timely but efficient delivery, allow publishers and sub-
scribers to be unaware of each other’s identity, and support
hierarchies in categorizing information. COPSS leverages
the benefits provided by NDN for efficient content delivery
and enhances it to provide a full fledged pub-sub platform.
Publishers focus on their core task of publishing while not
having to maintain membership status, and subscribers re-
ceive content from a multitude of sources without having to
worry about maintaining a list of publishers and frequent-
ly polling them for the availability of fresh data. COPSS
naturally deals with substantial churn in subscription state,
allowing a large number of users to join and leave and fre-
quently change their subscriptions. The topics may change
frequently as well (e.g., in a Twitter-like publishing environ-
ment, where the popular topics change frequently).

4.1 COPSS Overview

COPSS introduces a push-based delivery mechanism using
multicast in a content centric framework. At the content
centric forwarding layer, COPSS uses a multiple-sender,
multiple-receiver multicast capability, in much the same man-
ner as PIM-SM, with the use of Rendezvous Points (RP).
Users subscribe to content based on CDs. Subscriptions
result in ‘joins’ to the different CDs that are part of the
subscription. Each CD is associated with an RP, and the
CCN may have a set of RPs to avoid traffic concentration.
Although not necessary, the number of RPs may potentially
be as large as the number of CCN nodes. Publishers pack-
age the CDs related to the information being published by
them. As with PIM-SM, the published information is for-
warded along the COPSS multicast tree towards the RPs,
taking advantage of short-cuts towards subscribers where
appropriate. COPSS makes use of hierarchical and contex-
t based CDs to aggregate content. COPSS aware routers
are equipped with a Subscription Table (ST) that maintains
CD-based subscription information downstream of them in
a distributed, aggregated manner, as in IP multicast. An
incoming publication is forwarded on an (inter)face if there
are subscribers downstream for any one of the CDs in that
publication. However, only one copy is forwarded on a giv-
en link (to gain the same advantage as multicast). This also
ensures that subscribers subscribed to various groups do not
receive duplicate content, to the extent possible. We note
that our use of Bloom filters (described below) may result
in false positives that would have to be filtered out at the
first hop router next to the subscriber.

Additional capabilities in COPSS include the means to per-

form a two-step data dissemination capability to provide
control of policy and access at publishers and to manage de-
livery of large volume data. Publishers send snippets of the
content (which includes the CDs) and subscribers interested
in the content query for it. Additionally, the COPSS ar-
chitecture supports an efficient delivery mechanism for sub-
scribers who were offline when the data was published. A-
gents/servers are responsible for also storing published con-
tent. Thus, subscribers who were offline could seamlessly
query the network with the ID of the last received data and
the COPSS aware network delivers content from such an
agent /server. It also allows new subscribers to receive pre-
viously published information of interest.

In order to support pub/sub operation, COPSS introduces
two additional types of packets, namely Subscribe and Pub-
lish, and are used in much the same manner as NDN’s
existing CCN packets Interest and Data being used for
query/response interactions. By issuing a Subscribe for
a CD, a COPSS subscriber will then receive updates when
publishers Publish new content. We have attempted to
make COPSS backward compatible with NDN as much as
possible (e.g., taking advantage of caching in the CCN aware
routers etc.). We now address each of the main aspects of
COPSS in detail.

4.2 CDs: Hierarchical and Context Based

Names

A CD can be any legal Content Name. For efficiency though,
we exploit hierarchies in the structure of CDs. For example,
a name /CD/CD1/CD2 includes CD, CD1 and CD2 as
part of a hierarchy and could have multiple levels. It facili-
tates COPSS aware routers to aggregate subscription infor-
mation and avoiding the forwarding of duplicate content. An
example name may be /sports/football/Germany, where
the CDs are /sports, /sports/ football and /sports/ football /
Germany. A subscription therefore can be at different gran-
ularities, taking advantage of this hierarchy.

4.3 Basic One-Step Communication

The basic one-step communication in COPSS is used for
information dissemination via a push-based delivery using
multicast. This is suitable for a ‘pure’ pub/sub environment,
i.e., sending information where there is no need for policy
control or for small volume content (e.g., Twitter-like short
messages). The key operations of COPSS in this one-step
communication model are Publish and Subscribe.

4.3.1 Publish using Rendezvous Nodes

COPSS supports sparse mode multicast at the content layer.
This is done by introducing a rendezvous node (RN) as the
root of a CD’s subscription tree. As with an RP in PIM-
SM, the RN receives content associated with a CD from a
multitude of publishers and forwards it to all subscribers of
the CD. The RN is a logical entity and handles information
for more than one CD (possibly load-balanced across RNs
using a policy for allocation of CDs to RNs) and resides
on a physical COPSS aware router. a) An RN needs to be
reachable from all publishers sending Publish packets with
header prefix /rendezvous/ b) RNs receive packets from the
publishers, strip the prefix /rendezvous/ and forward it to
the interest subscribers.

== FIB for /R7
—> ST for /multicast/sports ST for /multicast/sports/football

Figure 1: Multicast in COPSS aware network

Note that a publisher does not expect a reply to a Publish
packet and sets the timeout value to 0. Therefore COPSS
aware routers only forward it, rather than putting it into
the Pending Interest Table (PIT). See §4.3.3 for a detailed
example. The job of a RN is to receive and forward and can
therefore be easily replaced whenever necessary.

4.3.2 Subscribe

A subscription received in a Subscribe packet (which may
include one or more CDs) is treated just like a join in IP
multicast. Subscription state is retained in a COPSS aware
router, and the Subscribe is forwarded (if needed) towards
the RN.

Forwarding (via Subscription table)

COPSS uses NDN’s forwarding engine with an additional
Subscription Table (ST) (see Fig. 2). The subscription ta-
ble is used to maintain a list of downstream subscribers and
the outgoing faces towards the subscribers. The Subscribe
packet is forwarded towards the RN based on the forward-
ing table entry at a COPSS aware router. Along the path,
the COPSS aware routers add this entry in their ST If the
COPSS aware router has an entry in the ST (the equivalen-
t of being an on-tree node in IP multicast), the Subscribe
information is aggregated and the incoming interfaces are
included in the list of subscribers downstream. If not, the
Subscribe is also forwarded towards the RN. Data messages
with CDs matching the entries in the ST are forwarded on
the list of interfaces that have subscribers downstream. The
ST can be implemented as a <face:bloomfilter> [24] set.
Every incoming data packet is tested against the bloomfil-
ters and will be sent to the faces whose bloomfilter con-
tains CD(s) the packet satisfies. This prevents multiple
copies of the same data being sent out on the same inter-
face. A COPSS user needs to subscribe to (i.e., declare an
interest in) a CD. The subscription of a user to a certain
CD is performed by creating an ST entry {Prefix=“/CD”;
Face=user} in COPSS. This allows a publisher’s Publish
packets with the corresponding CD to reach subscribers.

4.3.3 Overall Example

Rendezvous node set up: Assume that R7 in Fig. 1
is the rendezvous node assigned to handle the CD group-
s /sports/ and /sports/football. RT7 is assigned the name
/rendezvous and the COPSS aware network propagates this

Content Store N

Name Data

/parc.com/videos/WidgetA mpg/v3/s0

H

i
@ Lo

Pending Interest Table (PIT)

Requesting
Erefix Facels)

/parc.com/videos/WidgetAmpg/v3/s1 0

FIB

Prefix | Face list

Application
N

Jparccom | 0,1

Subscription Table (ST)

0 |/sports/football, ...
1 |/sports, /videos/parec, ...
2 |/sports/basketball, ...)

Figure 2: NDN’s Forwarding engine adapted with subscrip-
tion table

information and updates the forwarding tables (FIB) in the
COPSS aware routers.

Subscription set up: Lets assume that S1 and S2, in
Fig. 1, are subscribers interested in sports/football and
sports respectively. Therefore S1 and S2 will forward a sub-
scribe packet towards R7. COPSS aware router R9 along the
path would store both the subscriptions in its ST (see Fig. 2)
and forward the Subscribe packets towards the rendezvous
node R7. Subscribe messages are similar to Interest pack-
ets in NDN, and can be considered ’standing queries’ and
uses the FIB for fowarding towards the RN and also updates
the ST.

Content Delivery: A publisher just sends the content us-
ing Publish packets (the Publish packet is semantically sim-
ilar to a Data packet, carrying data). However, it will be for-
warded by looking up the forwarding table (FIB) unlike the
PIT in NDN) with the header rendezvous/sports and/or
rendezvous/sports/ football. The COPSS aware network
will first deliver it to R7, the RN. R7 on receiving this da-
ta will strip the header rendezvous and disseminate the
Publish packet to subscribers downstream. Based on the
ST, RT7 realizes that there are subscribers for sports as well
as sports/football and forwards this packet downstream.
Intermediate router R9, then duplicates the packet and for-
wards it to S1 and S2. Hence, the reduction in bandwidth
consumption and router processing overhead is achieved at
R7.

4.4 Two step communication

With the basic push based communication model using mul-
ticast, COPSS uses Publish packets to carry the published
content. However, to provide the flexibility for publishers
to exercise policy and access control, as well as to efficiently
distribute large volume content, we propose a two-step data
dissemination method. Publishers first distribute snippet-
s or a portion of the content (e.g., preview) as part of the
payload. Subscribers then explicitly query for the content
(an NDN Interest). This two-step model avoids subscribers
from being overwhelmed with large content that may not be
of interest (and saves network bandwidth).

A snippet is a payload carried in the Announcement in-
stead of the actual content. It contains the meta informa-
tion (the CDs), message abstract(s), pricing information and
anything else that helps a subscriber decide if he would like
to have the whole content. Additionally the snippet con-
sists of the contentName that would help the subscriber
obtain the data from the publishers or other sources that
are serving the same Data. The contentName can be real-
ized in a similar manner as in NDN and must be a unique
way of identifying the served content. Published Data can
belong to multiple CDs, e.g., a news article about “An in-
jury to an American football player” could belong to a CD
for /news/america and a CD for sports/ football. In such a
case, the snippets sent by the publisher to the different CDs
could either be the same or even be different, pertaining to
the taste of the subscribers. But the content Name carried
in the snippet would be the same allowing for the possibility
of PIT hits (if requests arrive at nearly the same time) and
content store hits (if content is available in cache), when re-
quests arrive from the subscribers of the two groups. Below,
we detail our two-step(see Fig. 3) communication design.

Publisher: Announce

When a publisher has new content to publish, he multicas-
ts an Announcement with the payload carrying a snippet
of the data. The Announcement is implemented by send-
ing a Publish packet, with the format for the name being
“/rendezvous/CD/”. Rendezvous nodes (RNs) do not d-
ifferentiate between a normal Publish packet and an An-
nouncement in their processing (i.e., eliminating the prefix
“/rendezvous” and then forwarding the packet). When a
subscriber receives multiple Announcements pointing to a
same piece of data (identified by the same contentName
portion), he would only need to query for that data once.

Publisher: Register

With two-step communication, a subscriber generates a query
in response to a snippet, if he is interested in the data. For
the query to reach the publisher(s) that send(s) the An-
nouncement, publisher(s) must first propagate to the net-
work the name prefixes (e.g., content Name) of all the con-
tent to be published (similar to the propagation of the con-
tent sources in NDN). This is called Register with the net-
work. For example, a publisher who issues an Announce-
ment of “/rendezvous/CD/” is expected to propagate the
name prefix of “/contentName” (in essence the name of the
content) in order to make the network aware of the avail-
ability of that content. Other subscribers that have already
received the data could also serve the content by propagating
the appropriate FIB entry to minimize the load on the pub-
lishers, especially in the case of large volume content (access
control will have to be negotiated with the publisher).

Subscriber: Retrieve Data

On receiving an Announcement, the subscriber sends a query
using an NDN Interest packet whose content name is the
content N ame portion in the snippet received in the payload.
The publisher responds with the Data associated with the
query. This mechanism benefits from NDN’s communication
paradigm and has the advantages of a potential cache hit on
the way (which reduces the access latency of this content)
and potential PIT hit (which reduces the query traffic) if

Publisher RN Subscriber
= | Announcement ! !
= 1' Name: /RN/sports/football »: 3
|| [Snippet: /BBC/WorldCup/027 | ;
O | | |
5 | | Multicast i
8 ! ' | Name: /sports/football -~
Sk ' | snippet: /BBC/WorldCup/027 | !

i i i
= | i
= ‘K—' Name: /BBC/WorldCup/027 I—Query"
o f i
>
' Response Name: /BBC/WorldCup/027</segld>
8 i Content: “Detail of the match...” '

Figure 3: Platform overview of the one-step and two-
step communication.

the same data has been requested by some other subscriber
through the same router.

4.5 Supporting Asynchronous Data Dissemi-

nation: Subscribers Going Offline

A true pub/sub environment needs to be able to support
‘asynchronous’ data dissemination. By this we mean that
when a subscriber goes offline (turns off the end-system or
moves to a different location), the pub/sub environment will
still enable the user to receive messages that were missed
while being offline. Furthermore, the user should not have
to know who the publishers were, or even whether they are
still connected to the network. For instance, the original
publisher may no longer be online (e.g., transmitted a warn-
ing before being disabled). COPSS supports this by having
a dedicated broker/server that acts as a store for all COPSS
multicast messages. It is likely that a very large amount of
information would have to be stored at the broker, which
poses scalability challenges. Our solution to this is the nat-
ural one: allow the logical broker to be a set of collaborating,
distributed servers (i.e., a broker cloud). Load is shared a-
mong them and they provide some level of redundancy. But
most importantly, such a design offers the desired scalability.
During COPSS’s bootstrapping, the FIB information with
a pointer to the broker cloud is propagated to the whole
network — just like the FIB pointing to rendezvous nodes
is propagated — so that the broker cloud is reachable from
everywhere in the network.

The broker subscribes to any newly created CD based on
Announcement and Publish messages received from pub-
lishers. Thus, it obtains a copy whenever a publisher pub-
lishes new messages. While storage space is a concern, and
issues such as the content replacement policy on the broker
are relevant, their solutions are likely to be similar to what
has been adopted in a non-content centric, server oriented
information infrastructure.

Querying for missed messages

In order to query for missed messages, COPSS requires a
subscriber to remember the content name of the final mes-
sage he received when he was last online. We also require
that the broker cloud order all received messages based on
their arrival using its local time. When a subscriber goes of-
fline and later rejoins the system, he queries the broker cloud

with two pieces of information: the group he subscribed to
and the message he received last (by sending a Subscribe
packet with the header /broker/CD). The COPSS aware
routers forward the Subscribe based on the header /broker/
to the broker cloud. The broker cloud has to look up in the
log to find the match to the message from the subscriber.
For each multicast message received after this, the broker
cloud checks whether it belongs to any of the CDs provided
by the Subscribe. The broker then sends all the matched
messages to the subscriber. Below, we address scalability
and reliability issues:

Scalability: Retrieving missed content

A subscriber may have subscribed to a very large number
of CDs. Some of the CDs subscribed to could be related to
infrequent events such as a “disaster warning”, or popular,
frequently updated information such as sports. When deal-
ing with asynchrony, a subscriber coming back online would
have to send a query for every CD that he has subscribed,
since it is impossible to predict which groups have had new
content. With the magnitude of subscribers and CDs en-
visioned, such a pull-based approach for information every
time a subscriber comes back online (or moves to a different
point in the network) could result in a lot of traffic. To re-
duce the query load that a subscriber generates and the cor-
responding processing overhead at the broker, COPSS seeks
to aggregate processing by grouping content across multiple
CDs. Instead of querying for content related to individu-
al CDs, the subscriber queries for the group. The tradeoff
is that the subscriber might receive false positives, which
have to be eliminated at the receiving end-point. Aggre-
gation functions include traditional hashing schemes (e.g.,
based on the CD string), but have the disadvantage that
their decision does not take the semantics related to CDs
into consideration. COPSS’s use of the hierarchical struc-
ture of CDs allows subscribers and/or brokers to exploit it
for aggregation. We believe that this will help to minimize
the retrieval overhead and in reducing false positives. For
example, a subscriber who is subscribed to a large number
of disaster warning related CDs could aggregate them to a
higher level CD such as /disaster/ and issue one query to
the broker. It is particularly attractive when these updates
are infrequent and the number of false positives are small.

Scalability: Message delivery

The scale of the subscribers envisioned is likely to lead to
many offline users becoming online in a burst at peak periods
(e.g., in the morning), resulting in a large burst of query traf-
fic. But this also provides opportunities to optimize network
traffic. We propose using markers in the message sequence
to allow for batching responses. E.g., assume a subscriber
of a CD requests for content that he missed since 9 pm and
another subscriber of the same CD requests content that he
missed since 11 pm. Using a marker to delineate the mes-
sage sequence into batches allows the broker to multicast
the overlapping message sequence between the subscribers.
This reduces both network and broker load.

Reliability: Possible loss of sequence

COPSS multicast messages may arrive at the subscribers
and the broker cloud in different order. This can be caused
e.g., by varying latencies from different publishers. Thus,

if the broker simply provides the subscribers with the mes-
sages received after the matched message in the log, some
published information may be missed. We solve this prob-
lem by requiring the broker cloud to group all the messages
in its log into different windows. Let the size of this window
be n, indicating a set of consecutively received messages at
the broker. Upon recept of a query, the broker finds the
target window that contains the matched message. Then
messages related to the queried CD belonging to the same
window are sent to the subscriber. By sending these extra
messages within the target window, messages that may have
been received out-of-order can be included and delivered to
the subscriber. The subscriber would be responsible for du-
plicate elimination. The subscriber would also maintain a
local window that stores the messages that the subscriber re-
ceived as soon as he came online. This ensures that once the
broker starts sending messages that the subscriber has al-
ready received, the subscriber could stop sending the query.
Note the parameter n has to be tuned to make a good trade-
off of delivering unnecessary information to subscribers and
network load versus the success probability of recovering all
the messages when the subscriber is offline, depending on
the message frequency and user online/offline pattern.

4.6 A Hybrid Model for Incremental Deploy-
ment of CCN Capability

We have so far considered an ideal case where all routers
are COPSS aware. However, our micro benchmarking of the
forwarding performance of CCN routers (see §3.4) indicated
that the processing a CCN packet in a CCN router can be
substantially more expensive than forwarding a packet at
a normal IP router. Given that forwarding a Data packet
involves examination of the CCN headers (to parse the CDs,
examine if it is in the cache etc.), it is desirable that these
functions be performed on when essential.

Therefore, we develop a practical yet effective solution for a
hybrid environment (COPSS + IP): COPSS aware routers
are present only at the edge of the network and connected
to the native IP network. We provide the necessary COPSS
functionality at the edge while still achieving efficiency of
forwarding packets in the core. Parsing of content centric
names and forwarding decisions are made by the COPSS
aware (edge) routers, while leveraging the high performance
of IP forwarding in the core IP network. Such an architec-
ture naturally allows subscribers to subscribe to CDs and al-
lows publishers to publish data based on CDs. Furthermore,
the deployment cost may be reduced by only replacing edge
routers with COPSS aware routers.

To facilitate the push-based multicast in COPSS, we make
use of native IP multicast capabilities in the core of the net-
work and perform the mapping from CDs to IP multicast
group addresses. This allows the network to maintain the
advantages provided by the COPSS for both publishers and
subscribers such as maintenance of the subscription list, CD-
based subscription and publishing, one-step and two-step
dissemination and support of users going offline but still al-
lowing asynchronous communication between publishers and
subscribers. The downside is given that the limited avail-
ability of IP multicast addresses compared to the envisioned
scale of the number of CDs in a COPSS aware edge router,
multiple CDs may be mapped to a IP multicast address.

CP1:{CD="/1/0"}
CP2:{CD="/1/4"}
CP3:{CD="/2/5"}

I3 Multicast%up?\

MP3:{addr="224.0.0.2", payload=CP3}

IP Multicast Group 1
MP1:{addr="224.0.0.1", payload=CP1}

MP2:{addr=224.0.0.1", payload=CP2}

CP1:{CD="/1/0"}

CD-Addr Mapping Table
CD | Multicast-Addr

“w1/¢ | 224001
“2/* | 224002 5

CP3:{CD="/2/5"} |\ CP2:{CD="/1/4"}

Figure 4: Multicast in COPSS + IP.

Such a mapping may resulting in messages being unneces-
sarily delivered to subscriber end-nodes that then have to
discard irrelevant messages.

An example: In Fig. 4, we give a brief example about
how hybrid-COPSS works. S1 (subscribed to “/1/0”) and S
(subscribed to “/1/4” & “/2/5”) are connected to Rz, which
is a COPSS-aware edge router. On receiving the subscrip-
tion request, R translates these CDs to IP multicast groups
according to the mapping table. As a result, it joins groups
224.0.0.1 and 224.0.0.2 in the IP network. When a pub-
lisher P (connected to R1) multicasts a COPSS packet, Ry
will encapsulate the packet according to the CDs it contains.
In this example, C'P1 is encapsulated as a UDP/IP packet
using the IP multicast address 224.0.0.1 based on the map-
ping table. When R» receives the packets, it disseminates
the packets to the end hosts according to the subscription
table, ST as described above. This way, S1 then receives
CP1 and S; receives CP2 and CP3. However, according
to the mapping table, Rz can also receive packets with CD
“/2/3”. Since there is no subscriber downstream, Ry will
discard this packet. This results in some wasted network
traffic being transmitted on some links. This is the tradeoff
because of the aggregation of CDs.

5. EXPERIMENTAL EVALUATION

We use simulations to evaluate the benefit of COPSS. We
show how pub/sub capability of COPSS achieves improved
performance compared to a pull-based NDN implementa-
tion as well as pure IP multicast. We use the results of
our micro-benchmarking measurements to parameterize the
simulations. We built an event-driven simulator in C#. To
drive our simulator, we use a set of traces collected from
Twitter. We evaluate the performance of COPSS in multi-
ple dimensions: forwarding performance with both one-step
and two-step (delivering a snippet and allowing subscriber-
s to query for content) communications, subscribers going
offline and then retrieving messages missed, as well as the
benefits of a hybrid model.

5.1 Experimental Setup
Dataset: We use a Twitter data trace of tweets on technical
topics obtained from the public Internet during a one-week

= =
o (6]

Tweet Count (k)
wv

0 |||IIIIIIIIII---..._
1 5 9 13 17

21 25
cD

(a) # of tweets per CD

I

Tweet Count (k)
N

“H“l"""llln.
0
1 8 15

22 29 36 43 50
Publisher

(b) # of tweets per pub

Figure 5: Dataset information

period in 2010, which totaled 68,695 tweets sent by 38,481
users. We identified and selected 25 hot keywords such as
iphone, ipad, blackberry, smartphone as CDs. We filter this
data trace and retrieve a subset in which every tweet con-
tains at least one of the 25 keywords. This subset amounts
to 41,613 tweets from 22,987 users (4.13 tweets/minute, up
to 48 tweets posted at the same time) and is used as our
simulation input. We then filtered additional hot keywords
from these 41,613 messages in order to obtain sub-CDs for
the selected 25 CDs. The sub-CDs range from 1 to 25 for
the selected 25 keywords. By this method, we have a total
of 407 distinct CDs that can be hierarchically grouped into
25 CDs. Fig. 5a shows the number of tweets associated with
each CD respectively. To make the publishers of our sys-
tem tweet more frequently, we assign the 22,987 users to 50
publishers by hashing them based on a power-law function.
Fig. 5b shows the number of tweets per publisher. With-
out the means to inferring CD-Subscriber relationship from
the data trace, we assume the more popular the CD is, the
more subscribers there will be (based on [25]). Thus, we
distributed the number of subscribers per-CD based on the
CD-Tweet relationship. Subscribers can subscribe to multi-
ple CDs, but a subscriber who is subscribed to a top level
CD will not be subscribed to a lower level CD belonging to
it. To simplify the simulation, subscribers will query the
data as soon as they get announcements.

Network topology: We use the Rocketfuel [26] backbone
topology (id=3967) for the core routers. Besides, we put 200
edge routers on the 79 core routers, with each core router
having 1-3 edge router(s). We randomly distributed 50 pub-
lishers, and uniformly distributed the subscribers (varying
from 200 to 600) on the edge routers. The link weights be-
tween the core routers were obtained from the topology and
interpreted as delays (ms). The delay between each edge
router and its associated core router is set to 5 ms; the de-
lay between each the host and its associated edge router is

X NDN Poll (No Cache) % NDN Poll (Cache=100)

o 70 1= COPSS £ |P Multicast
5 60 - Q

@50 : \

2% § \/v
o © \// v v
3 0\ = \ B \
g NE N N

200 400 600
of Subscribers
Figure 6: Aggregate Network load (NDN (cache=0,

cache=100) vs. COPSS one-step and IP Multicast)

set to 10 ms.

Aggregate network load: We study the impact of COPSS
on the network by measuring the aggregate network load cal-
culated by:

packetCount

Z packetSize; x hopCount;, (1)

i=1
i.e. when a packet with size 1kB is sent from host A through
router R to host B, 2kB is added to the aggregate network
load. For a fair comparison, COPSS packets are encapsulat-
ed into UDP packets when transmitted over an IP underlay.
The encapsulation overhead is therefore the same as in a
CCNx implementation.

5.2 Performance of COPSS’s Basic Commu-

nication Model, NDN and IP Multicast

Fig. 6 illustrates the aggregate network load driven by our
emulated Twitter-like application over the standard pull-
based NDN (both without a cache as well as a cache of 100
packets), using COPSS’s one-step communication model as
well as native IP multicast. We observe that the COPSS
has a lot less load in this case, because of its design of a con-
tent centric push mechanism that improves upon the NDN
proposal by adding a multicast capability. In addition: 1)
Polling is not used by COPSS unlike NDN. With NDN, sub-
scribers need to poll periodically (every 30 minutes in the
default setting) introducing additonal overhead. 2) Network
traffic is further reduced because of multicast with COPSS
even compared to the use of caches in NDNs. Moreover,
COPSS performs no worse than native IP multicast, be-
cause of the use of the hierarchy based grouping of CDs.
This results in fewer messages being transmitted to reach
the subscribers of different CDs. Note that the aggregate
network load due to NDN and IP multicast increases lin-
early with the number of subscribers. With COPSS, the
increase in subscribers results in only a marginal increase in
the aggregate network load since the data is only duplicat-
ed very close to the subscriber (in the optimal case at the
subscriber’s first hop router).

5.3 Performance of COPSS (Two-Step)

Here, we evaluate the performance of the COPSS to trans-
fer large volume content using its two-step communication
model. Large files that are 128 times larger than the o-
riginal Twitter messages are created from the dataset. We

| -»-Cache=0 -#Cache=10 Cache=100 |
g 800
z /o/
S
@ 600
S
3 //
€ 400
[}
g
[=
S 200 S ~ ,
L
o
® 9 : : : ; ‘
0% 20% 40% 60% 80% 100%
Probability for querying content
(a) Publisher Load
| <-Cache=0 -=Cache=10 Cache=100 —1-step |
400 /
4 =
X —
g 300 =
=
g) /
[T 200
- =
[
o © v
5 E 100 /
(7]
[
< 0 : : : | |
0% 20% 40% 60% 80% 100%

Probability for querying content
(b) Aggregate Network Traffic

Figure 7: COPSS in two-step mode

Table 2: COPSS 4+ IP performance vs COPSS-
everywhere and IP-multicast

IP- COPSS- COPSS +
Multicast | everywhere | IP-Multicast

Content Di inati
ontent Dissemination 78.76 82.73 77.62
Latency (ms)

Aggregate Network

19.50 12.32 13.15
Traffic (GB)

study the load on the publisher (see Fig.7a) by calculating
the number of queries for data that reach the publisher for
varying cache sizes (0, 10, 100). COPSS is able to lever-
age the benefits of NDN, by first pushing snippets to sub-
scribers who then immediately query the publisher if they
are interested in the content.We observe that a cache size of
10 packets is sufficient to reduce the load on the publisher
significantly.

Fig. 7b illustrates the aggregate network traffic when a vary-
ing number of subscribers request for the full content on re-
ceiving the snippet. For reference, we have also shown the
case of COPSS in one-step mode delivering the full content
instead of sending a snippet. When a small percentage of
users request for the content, substantial network resources
are saved by adopting the two-step mode. However, when
the number of subscribers requesting for the content reach-
es more than 85%, the two-step mode is more expensive
because the sending of snippets in the first step is just ad-
ditional overhead compared to the one-step delivery mode.

Table 3: Broker load vs. router cache size

Cache Size 0 10 100
Broker load (# of query) | 895.953 | 892.714 | 778.270

5.4 Performance of Hybrid-COPSS (COPSS
at Edge + IP at Core)

In §3.4, we observed that content oriented processing is more
expensive than IP. The aim of hybrid-COPSS (COPSS at
edge + IP in the core) is to achieve the best of both world-
s by obtaining the functionality of content centricity while
retaining the forwarding efficiency of IP. To validate this,
we evaluate the performance of hybrid-COPSS in one-step
mode (COPSS aware routers at edges and IP routers at core)
to that of COPSS-everywhere in one-step mode (all routers
are COPSS enabled) as well as native IP-multicast. Ta-
ble 2 shows the content dissemination latency which is dom-
inated by the processing overhead incurred at every router
(the processing overhead was obtained through measure-
ments 1). The latency incurred is high in the case of COPSS-
everywhere since every COPSS aware router will have to
process the Publish and Subscribe packet. Comparative-
ly, routers enabled with IP multicast perform much better
in terms of latency. Hybrid COPSS is able to achieve low-
er latency than both COPSS-everywhere and IP-multicast.
This is due to the fact that even though the edge COPSS
aware routers incur high processing overhead, they are able
to send a single copy to multiple groups and are thus able
to send much lower traffic into the network. IP-multicast
on the other hand needs to send the same message multiple
times to be able to reach subscribers belonging to different
CDs. This can be clearly seen in the row titled “Aggregate
Network Traffic” where we observe that IP-multicast gen-
erates higher network traffic. The aggregate network traffic
of hybrid-COPSS is slightly higher than COPSS-everywhere
due to the fact that CDs are mapped to IP multicast groups
and therefore results in a small amount of false positive con-
tent being delivered at the last hop COPSS enabled router
close to the subscriber.

5.5 Performance of COPSS for Offline Users

Based on our preliminary analysis on the twitter data trace
available, we synthesize the users’ offline/online pattern as
follows: everyday about 75% of all subscribers randomly go
offline between 2am and 3am, and then go back online ran-
domly between 10am and 1lam. For each of the remaining
users, we randomly choose two time points as the start and
end points of their offline period with an average offline du-
ration of 20 minutes. Though this does not match a real
world scenario, we created such a behavior to study the im-
pact of a large portion of the subscribers coming online at
nearly the same time. In Table 3, we observe that as the
cache size increases, the number of queries reaching the bro-
ker reduces. The cache hit rate is boosted by the division of
content based on the markup message and the grouping of
subscribers into higher level CDs when appropriate.

5.6 Additional Observations

Table 4 shows that in the case of NDN-pull and COPSS (2-
step), the publishers need to be visible and therefore have
to propagate their entry throughout the network. In the
case of COPSS (1-step), since it is an RN based multicast,

Table 4: The FIB entry created due to Server/RN
and publishers of the specific content

NDN-Pull COPSS (1-step) | COPSS (2-step)
Node type Pub Server | Pub RN Pub RN
FIB entries | 13,950 279 0 278 13,950 278

the publishers need not propagate their entry and only the
RN propagates the entry to all the (278) COPSS enabled
routers. This shows that COPSS (2-step) behaves in a man-
ner similar to NDN-pull with regards to FIB propagation
whereas in the case of COPSS (1-step), the size of the FIB
in the network is considerably lower.

6. SUMMARY

In this paper we presented and evaluated COPSS, an effi-
cient pub/sub-based content delivery system exploiting the
fundamental capability of CCN for efficient information dis-

semination. COPSS builds on existing proposals for CCN/NDN

to provide pub/sub functionality. COPSS is designed to be
scalable to a large number of publishers, subscribers and CD-
s. We recognize that a pub/sub platform needs to be able to
accommodate users going offline, and allow them to retrieve
content that has been published during the time the sub-
scriber was offline. We also explicitly address the need for
incremental deployment of CCN capability in traditional IP
networks. We use trace-driven simulations to evaluate the
COPSS architecture. COPSS reduces the aggregate network
load and the publisher load significantly. The additional
CCN layer processing with COPSS compared to IP multi-
cast is relatively small, achieved by considerable efficiency
in avoiding duplicate and unnecessary delivery of content to
subscribers. COPSS is substantially more efficient than ex-
isting pull-based CCN proposals (such as NDN) because of
its inherent pub/sub capability.

7. REFERENCES

[1] K.V. Katsaros, G. Xylomenos, and G.C. Polyzos.
Multicache: an overlay architecture for
information-centric networking. Elsevier, Computer
Networks, 55(4):936-947, March 2011.

[2] Venugopalan Ramasubramanian, Ryan Peterson, and
Emin Giin Sirer. Corona: a high performance
publish-subscribe system for the world wide web. In
NSDI, 2006.

[3] L. Zhang, D. Estrin, J. Burke, V. Jacobson, and J.D.
Thornton. Named data networking (ndn) project.
Tech. report ndn-0001, PARC, 2010.

[4] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy,
K. H. Kim, S. Shenker, and I. Stoica. A data-oriented
(and beyond) network architecture. In SIGCOMM,
2007.

[5] S. Arianfar, P. Nikander, and J. Ott. On
content-centric router design and implications. In
ReArch, 2010.

[6] B. Ahlgren, M. D’Ambrosio, C. Dannewitz,
M. Marchisio, I. Marsh, B. Ohlman, K. Pentikousis,
R. Rembarz, O. Strandberg, and V. Vercellone. Design
considerations for a network of information. In
ReArch, 2008.

[7] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F.

11

12

13

21

22

23

]

]

]
]

]

Plass, N. H. Briggs, and R. L. Braynard. Networking
named content. In CoNEXT, 2009.

W. Fenner, D. Srivastava, K. K. Ramakrishnan,

D. Srivastava, and Y. Zhang. Xtreenet: Scalable
overlay networks for xml content dissemination and
querying. In WCW, 2005.

M. Ott, L. French, R. Mago, and D. Makwana.
Xml-based semantic multicast routing: an overlay
network architecture for future information services.
In GLOBECOM, 2004.

Gregory Chockler, Roie Melamed, Yoav Tock, and
Roman Vitenberg. Spidercast: a scalable
interest-aware overlay for topic-based pub/sub
communication. In DEBS, 2007.

B. Segall, D. Arnold, J. Boot, M. Henderson, and
T. Phelps. Content based routing with elvin. In
AUUG2K, 2000.

C. Esteve, F. Verdi, and M. Magalhaes. Towards a
new generation of information-oriented
internetworking architectures. In ReArch, 2008.

R. V. Renesse, K. P. Birman, and W. Vogels.
Astrolabe: A robust and scalable technology for
distributed system monitoring, management, and data
mining. ACM TOCS, 21:66-85, 2001.

Yanlei Diao, Shariq Rizvi, and Michael J. Franklin.
Towards an internet-scale xml dissemination service.
In VLDB, 2004.

Roberto Baldoni, Roberto Beraldi, Vivien Quema,
Leonardo Querzoni, and Sara Tucci-Piergiovanni.
Tera: topic-based event routing for peer-to-peer
architectures. In DEBS, 2007.

Spyros Voulgaris, Etienne Riviére, Anne-Marie
Kermarrec, and Maarten Van Steen. Sub-2-sub:
Self-organizing content-based publish and subscribe
for dynamic and large scale collaborative networks.
Research report, INRIA, December 2005.

Xep-0060: Publish-subscribe. Xep-0060 (standard
track, v 1.13, XMPP Standards Foundation,
http://xmpp.org/extensions/xep-0060.html, 2010.

S. Deering. Host extensions for ip multicasting. RFC
1112, August 1989.

D. Estrin, D. Farinacci, A. Helmy, D. Thaler,

S. Deering, M. Handley, V. Jacobson, C. Liu,

P. Sharma, and L. Wei. Protocol Independent
Multicast-Sparse Mode (PIM-SM): Protocol
Specification. RFC 2362 (Experimental), June 1998.
T. Pusateri. Protocol Independent Multicast - Sparse
Mode (PIM-SM) IETF Proposed Standard
Requirements Analysis. RFC 4602 (Informational),
August 2006.

Y.-H. Chu, S.-G. Rao, and H. Zhang. A case for end
system multicast. In SIGMETRICS, 2000.

S. Banerjee, B. Bhattacharjee, and

C. Kommareddyand. Scalable application layer
multicast. In SIGCOMM, 2002.

J. Jannotti, D.-K. Gifford, and K.-L. Johnsonand.
Overcast: Reliable multicasting with an overlay
network. In USENIX OSDI, 2000.

Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and
Ayellet Tal. The bloomier filter: an efficient data
structure for static support lookup tables. In the

(25]

(26]

Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, 2004.

H. Kwak, C.Lee, H.Park, and S.Moon. What is
twitter, a social network or a news media? In WWW,
2010.

R. Mahajan, N. Spring, D. Wetherall, and

T. Anderson. Inferring link weights using end-to-end
measurements. In JMW, 2002.

