
Arduino
by Dr. Geoff Bunza
Photos by the author

A modeler’s introduction to the

• INDEX • TABLE OF CONTENTS

Put Arduinos to work on your layout ...

• INDEX • TABLE OF CONTENTS

Model Railroad Hobbyist | December 2016 | #82

Model Railroaders throw switches all
the time – to turn on the power, to switch a track, to blow a
whistle, to turn a light on or off, and more. But what if you had a
little automated help?

Suppose you want to easily set up a route through a yard, or dis-
play a sequence of lights on a movie marquee? Maybe you would
like to model a welder in action, or to simulate a thunderstorm?

My approach here is to introduce non-technical modelers to some
easy but useful projects like these without getting buried in the
technical jargon. I’m focusing more on the do-it-yourself basics,
and I’m not diving into all the technical details of how it works.

For the purposes of this article, just know it works, let’s not be
overly concerned with the details of why.

Anyone can put these projects together, some with little or no
soldering. You will not need to read a schematic or program a
computer. However, you may need some imagination to envision
all the possibilities available to enhance your modeling!

Introducing the Arduino
The Arduino is a user-friendly board family for building electron-
ics projects. While physically different, the various boards in the
Arduino family all perform many of the same basic functions,
controlled by a very small but powerful microcomputer chip.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 4

2. Here is the Arduino Uno board and the Arduino Pro Mini board
with “header pins” that fit into the board holes. As you can see,
connecting to the Uno is easier than with the Pro Mini, but the
Mini is far more compact and costs less. Both function the same.

. .
What is the Arduino?
“Arduino” is an Italian name for a group of electronic control
boards that are low cost, small, and remarkably useful. While
physically different, they all perform many of the same basic
functions.

In this article, I use two small boards in the family, the Uno and
the Pro Mini [2]. The Uno is easier for a novice to use, but is
larger and costs more. At the time of this writing, the Uno costs
between $8 and $20, depending on where you purchase it.

The smaller Pro Mini will substitute for the Uno without modify-
ing the project instructions and can be found for as low as $2.
The Uno is easier to connect to, so we start with it. ■
. .

Arduino Uno Arduino Pro Mini

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 5
Originally, the Arduinos were created for use as a digital electron-
ics and software teaching tool. All aspects of their design and
construction are totally open and available for public use rather
than being proprietary. In this article, I use two small processor
boards in the family, the Uno and the Pro Mini [2].

An Arduino project consists of both the programmable board
and some instructions called “sketches” in the Arduino world.
To provide the sketch instructions to the board, you use an app
on your home computer called an IDE (Integrated Develop-
ment Environment) to edit and load the instructions into the
board’s memory. See the bonus downloads for IDE instructions.

The instructions tell the Arduino what “switchable connection
points” to turn on or off, and in what order and at what time.

3. The larger Uno board has “header pin sockets” that easily allow
plugging in wires and components like resistors to the board. Here
I built some other plugable boards too using LEDs and resistors.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 6
. .
What this article is and is not
Normally, an article on a technical subject like this would start
with basic concepts and terminology, and then move on to
describing the tools, the process and usage. And of course, there
would be plenty of very technical footnotes all along the way.

But this article is for modelers and we want to have some fun!

I’m focusing here on interesting projects that take a minimum
of effort. Project categories include lighting, servo control, and
sound generation. Any project can be just a one-time effort, or
together these projects may start you on a new sub-hobby.

For the more technically savvy, Arduino development includes a
fully Integrated Development Environment (IDE) that incorpo-
rates a GNU GCC optimizing compiler. The IDE is automatically
configured for a family of dissimilar microprocessor modules
via background scripts and file descriptors. This is all enabled by
freely available libraries covering a wide range of drivers and sen-
sors. This platform directly supports C, C++, and object oriented
programming.

Are you lost yet?

Rather, this article takes the simpler route of whetting your
appetite by showing how to easily use a $2 device (the Arduino
Pro Mini) to align various routes through a yard, ring bells,
sequence lights, model a welder, create a thunderstorm, and
maybe perhaps bring things to life on your layout that could
even impress non-modelers!

Indeed, a tech savvy modeler should appreciate this too. ■
. .

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 7
Both the Uno and the Pro Mini can be loaded with the same sketch
instructions. Both boards have the same number of switchable
connection points (pins) that are consistently labeled the same [4].

It often is easier to test out a project on the larger Uno, and then
load the same instructions into the smaller and cheaper Pro Mini
for final use.

Let’s start by getting familiar with the Uno. The Uno is the larger
of the two boards and was designed for ease of use and simple
interconnection with other companion boards called “shields.”

4. The Uno and the Pro Mini have the same digital pin numbers, as
you can see here. This allows starting a project using the easier-
to-test-with Uno and then copying the final tested instructions
into the Mini for deploying the finished project.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 8

The Arduino Uno
Notice the Arduino Uno has connection points around the edge as fe-
male pin sockets [3, 5] into which you can plug wires, components like
LEDs and resistors, and special “shield” board pins to form a stack [6, 7].

Shield boards neatly enhance the capabilities of the Uno. Two com-
mon shield boards are a motor control shield and a sensor shield.

The motor control shield allows the Uno to power high current de-
vices: I will provide an example of its use later in a sample project.

The sensor shield actually has no sensors itself. Instead, it pro-
vides a connection to all the switchable pins on the Arduino Uno

5. The Uno has this basic layout: a USB socket, external power
socket, reset button, some LEDs on the board, and a number of
connection points using header pins (digital, analog, and power).

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 9
side by side with 5 Volt and Ground (GND) pins, allowing easy
connection to a number of special sensor modules. But it also
turns out, this is precisely the right arrangement for easily con-
necting with servo motors too!

You can insert wires and component leads directly into the Uno
sockets or use “header pins” and solder connecting wires to the
pins. The header pins allow disconnecting or changing your wir-
ing fairly easily. Using header pins is quite reliable and I heartily
recommend their use [3].

The website Pololu.com (pololu.com/
category/71/wires-with-pre-crimped-
terminals) offers a wide selection of
wires with the appropriate pins al-
ready attached. Or you can search for
“jumper wire” to find other sources.

Motor driver shield Sensor shieldUno

Proto shield

6. Here are some of the the add-on
“shield” boards that you can plug
into the header pin sockets on the
Uno board. See text for details.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 10

7. In this photo, you can see how the shield boards “stack”
onto the Uno. In the top photo, I’ve aligned the pins, and in the
bottom photo, I’ve pushed the boards all the way together.
The Uno is on the bottom, the motor and sensor shields above.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 11

MRH has already published a guide to the Arduino Pro Mini
in the November, 2014 issue, see: mrhpub.com/2014-11-nov/
land/#99.

Powering your Arduino board
You can power the Uno with 5-12 volts DC power, including
DC power supplies, batteries and small power adapters with a
2.5mm barrel connector (center positive with 5-12 Volts DC) ei-
ther through the power socket or by feeding wires directly to the
GND and VIN pin sockets on the Uno [8].

Or you can also feed 4.5-5.2 volts directly to the GND and 5V pin
sockets on the Uno [8].

Finally, these boards can also get power just from the USB cable.

8. Here are the different options for getting power to the Uno.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 12

Any of these power feed methods works, just pick one.

By itself an Arduino consumes very little power. I have built a
Pro Mini controlled DCC board that operated an animation with
a motor, lights and sound for more than 24 hours total just on
eight AA batteries!

When it comes to the board’s current limits (amperage), any one
pin on the Uno can handle a max of 40 milliamps, with the total
current through all the pins not exceeding a total of 200 mil-
liamps (ma). However, keep in mind it’s the total current actually
being drawn that we’re talking about, not the rated current.

To see how this works, read about a real-life example I did using
eighteen LEDs in the sidebar: LEDs and Arduinos.

9. To source the power for your board, you can use either an
eight AA battery pack (on left, 12V), or a 9V wall wart power
adapter (on right) with an Arduino 5.5x2.5mm barrel plug.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 13
. .
LEDs and Arduinos
An output pin of an Arduino can switch back and forth from 0.0-
0.5 volts (LOW) to 4.5-5.0 volts (HIGH), and can handle currents
up to 20ma per pin. However the total current handled by all pins
must not exceed 200ma.

So if we want to light up eighteen LEDs at the same time [12], then
we must limit the current to each LED down to 10 ma or lower, or
light up fewer LEDs simultaneously. Fortunately, this is easy to do.

Each LED we use in these projects has its own “limiting” device
called a resistor. These are quite cheap and readily available from
many sources, including the ubiquitous Radio Shack.

Resistors are rated by a value of resistance stated in Ohms, and
an associated power rating in Watts (w) – like a light bulb. Resis-
tors in the range from 1,000 to 10,000 Ohms and any of either
1/4w, 1/8w, or 1/6w (available from China) will do fine here.

The higher the value (in Ohms)
resistor the more dim the LED
will glow. I recommend getting
and keeping a range of values
in your collection, like 470, 680,
1000, 2200, 4700, 5600, 6800,
and 10,000. This way you can
run tests to determine what
an acceptable value will be for
you to use in your electronic
modeling projects.

LED manufacturers have
dramatically improved the 10. LED examples.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 14

efficiency of LEDs over the last
20 years. The red LED pictured
[10] was manufactured in 1981
and can barely be seen when
powered with 18 ma. The small
LED (second from the right) is so
bright at 20 ma it hurts your eye
to look into it for more than a
fleeting glance.

The small green LEDs I use [11]
light up very brightly at less
than 0.2 ma. These are modern
examples of what’s currently be-
ing made.

This efficiency difference is what is missing from most modeler
discussions of LEDs and why I avoid formulas and equations in
suggesting what resistor values to use.

Just keep a collection of various resistance values on hand and
try several using the LEDs you will actually use in your project.
Start with the highest value resistors (dimmest LED) and work
down, until you get a pleasing brightness.

The vast majority of modelers’ LEDs have metal leads similar to
those pictured. Note that four of the five LEDs have a long and a
shorter metal lead. The longer lead goes to the positive voltage
if you want the LED to light up. The shorter lead is the negative
side and is usually connected to GND or Ground (as labeled on
the Arduino).

In additional reading, you may find the positive LED lead called the
“anode” and the negative LED lead called the “cathode.”

11. This blue LED is being
checked with a simple 9 volt
battery and 470 Ohm resistor.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 15

Also note the red LED on the left [10] has 2 leads of the same
length. There is an easy way to identify the positive and nega-
tive leads on this type of LED – and test it at the same time! Get
a 9 volt battery and a battery connector (Radio Shack #2700325)
along with a 470 Ohm ¼ Watt resistor (Radio Shack #2711317).

Connect one side of the resistor to the Red wire of the 9 volt bat-
tery connector (solder it or just twist it on). Touch the free end of
the resistor to one leg of the ‘unknown” LED and touch the black
lead from the battery connector to the other leg of the LED. If the
LED does not light, reverse the connections to the LED.

When the LED lights, you will know that the black lead is con-
nected to the negative side of the LED. It will also indicate
whether or not you have a working LED. For the vast majority of
LEDs you will use in modeling, this test will work fine. ■

11. I wired all 18 LEDs shown here with 10k resistors, resulting
in a total combined current draw for all the LEDs of less than
20ma – well below the Uno’s 200ma board limit.
. .

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 16
Let’s look at some projects
Let’s look at a range of easy projects that can enhance your lay-
out. I have divided them into lighting control, servo control, and
sound generation. These projects do not require any complex
computer interfacing but are simple stand-alone projects using
just the Arduino and some electronic components, which is why
I chose them.

Controlling these projects: Okay, let’s say you build one of
these projects. So where is the on/off button?

For most of these projects, the “on/off button” is pin 14 (A0).
On the Arduino, this is a master control pin that when set LOW
(connected to Ground or dropped to zero Volts) turns off the
project’s function(s). When set to HIGH (a voltage greater than
3.5 volts or more), the board turns on.

One fun way to control this pin is with a special sensor that
senses heat using infrared light called a PIR Sensor [12].

After setting up a project, you make three connections to the PIR
sensor. Make one connection to 5 Volts, another to Ground, and
finally to pin 14 (the master control pin) and point the sensor
away from you.

When you put your hand or body in the field of view of the PIR
sensor, the project you are controlling will turn on. When you
move out of view to the side, the project continues to function
briefly and then stops.

If you put a piece of wood, cardboard or plastic in front of the
PIR sensor – it will not respond! It’s only activated by your body
heat. If you want to create an animation or turn something on

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 17

when a person is in front of your model, put this sensor where it
can “see” them come by. How cool is that?

This is great for clubs and public shows as an “attention getter.”
You do need to learn how to set the PIR sensor to “retriggerable”
(done with a jumper), and then make an adjustment to the two
yellow variable resistors [12] to set the “time on delay” and the
“sensitivity.”

Project setup
The following projects all list the sketch file which needs to be
loaded onto your Arduino (see the subscriber bonus downloads).
I describe the sketch loading process a special how-to supple-
ment in this issue’s bonus downloads.

12. Here is a PIR sensor. Use the jumper on the lower left to set
to retrigger each time, and adjust the yellow variable resistors
to set the time delay and sensitivity.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 18
Projects that include the control notation “Control: pin 14 (A0)”
indicate using control pin 14 (A0) as the master control pin for
turning the function on and off. If you just leave this pin uncon-
nected, then the project starts to function as soon as you apply
power to the Arduino board.

The “Setup:” reference in the project points to the specific pic-
tured pin connections needed.

In the project descriptions I highlight key settings (with names
used in the sketch) that affect operation and results you see and/
or hear. You can use these as is, with no modification. If you like,
you can easily edit them and experiment to see what you might
prefer for your situation.

Whatever changes you make can be saved for future use. You do
not need to understand programming to use any of these, but
you can learn if you want!

I am not a proponent of asking modelers to learn how to pro-
gram – all you need to do is learn how to use this new IDE app
– and if you can use a word editor you can use this app. You can
take using the IDE as far as you want, but I will say learning to
use the IDE can add a great deal to your modeling enjoyment!

In the projects, I use a notation for led_pins to show which Uno
or Pro Mini pins to make the appropriate connections. I use pic-
tures rather than diagrams to give you setup details.

To get the sketches, see this issue’s subscriber bonues. A step-by-
step procedure showing how to setup and load a sketch into your
Arduino is in this issue’s bonus downloads.

These projects give you some idea of the capability and versatility
of the Arduino for modeling. And they’re just a start!

• INDEX • TABLE OF CONTENTS

Once you decide which project you would like to use:

1. Set up IDE editor on your computer (see bonus downloads).

2. From the bonus downloads this issue, copy all the files in the
MRH folder to your Arduino sketches folder – usually:
…\Documents\Arduino\ on a Windows machine.

3. From the bonus downloads, copy all the files in MRH_
libraries folder to your Arduino libraries folder – usually:
…\Documents\Arduino\libraries\ on a
Windows machine.

4. Wire your Arduino according to the pictures or diagrams.

5. Download the specific sketch to your Arduino using the
instructions in the bonus downloads and enjoy!

Lighting projects
Watch the video below to see what the lighting projects do.

Modeler’s intro to the Arduino | 19

Playback problems? Click here ...

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 20
BARRIER DIRECTION LIGHTS
Sketch folder: Barrier_Lights
Setup: Lights in a row [photo 14]
Control: pin 14 (A0)
Connected pins: led_pins - 2,3,4,5,6,7,8,9,10,11,12,13
This project blinks a row of LEDs from the middle out with the
timing determined by sketch setting delta. The sketch defaults
to 300 for delta.
For each LED, you can connect the positive leg of the LED to a
resistor and then insert the resistor end into any Uno pin. The
negative end of the LED needs to connect to Ground. Since
Ground is literally the common wire, then all the LED negative
connections can be wired together and only a single wire would
run back to Uno Ground [13].
I mounted the LEDs and resistors in sets of six with header pins
on a small piece of perfboard (a.co/hWSnKzQ), see below.

13. Here are the LED wiring components used for many of the
lighting projects.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 21

14. Lights in a row setup.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 22

15. Single LED setup.

BLINK SINGLE LED A NUMBER OF TIMES
Sketch folder: Blink_Single
Setup: Single LED [photo 15]
Control: pin 14 (A0)
Connected pins: led_pin - 12
This project repeatedly blinks a single LED a blink_number
number of times with the timing determined by sketch set-
ting delta. The sketch defaults to 6 for blink_number and
95 for delta.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 23

16. Random building lights in action on the layout.

RANDOM BUILDING LIGHTING
Sketch folder: Building_Lights
Setup: Lights in a row [photo 14]
Control: pin 14 (A0)
Connected pins: led_pins - 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15 (A1),
16 (A2), 17 (A3), 18 (A4), 19 (A5)
This project randomly blinks 17 LEDs in a random pattern allow-
ing a 60% “ON” time. Timing determined by sketch setting tim_
delay, which defaults to 1100. People enter a room, turn on
lights, stay for some time, and then leave turning off the lights.
This sketch tries to account for such behavior with a pseudo-ran-
domness that looks convincing to the casual observer.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 24

17. Monochrome TV setup.

MONOCHROME TELEVISION
Sketch folder: BW_TV
Setup: Monochrome TV [photo 17]

Control: pin 14 (A0)
Connected pins: TV - 12
This project randomly blinks a blue LED in a random pattern simu-
lating a flickering monochrome TV screen. Timing determined by
sketch setting change_delay, which defaults to 100.

I used was a 3mm white LED that was tinted blue with a per-
manent marker, and placed it about ¼ inch back from a paper
screen I pasted to a scaled down TV cabinet picture.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 25
CHASE PATTERN FOR THEATER MARQUEE

Sketch folder: Chase_Lights

Setup: Lights in a row [photo 14]

Control: pin 14 (A0)

Connected pins: led_pins - 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15 (A1),
16 (A2), 17 (A3), 18 (A4), 19 (A5)

This project blinks a row of LEDs with a specific pattern
defined by sketch setting chase_pattern. Default pattern
is: 0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1.

Timing determined by sketch setting delta, which defaults to 46.

CHASE PATTERN-2 FOR THEATER MARQUEE
Sketch folder: Chase_Lights2
Setup: Lights in a row [photo 14]

Control: pin 14 (A0)
Connected pins: led_pins - 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15 (A1),
16 (A2), 17 (A3), 18 (A4), 19 (A5)
This project blinks a row of LEDs with a specific pattern
defined by sketch setting chase_pattern. Default pattern
is: 0,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,0.

Timing determined by sketch setting delta, which defaults to 76.

This uses a different pattern and different timing to demonstrate
what else can be done.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 26
CHRISTMAS TREE
Sketch folder: Christmas_Lights
Setup: Lights in a row [photo 14]
Control: pin 14 (A0)
Connected pins: led_pins - 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15 (A1),
16 (A2), 17 (A3), 18 (A4), 19 (A5)
This project randomly blinks 17 LEDs in a true random pattern.
Timing determined by sketch setting delta, which defaults to 300.
This is an example of using the same sketch developed on the Uno,
but loaded into an Arduino Pro Mini. Look closely: the Christmas
tree is actually mounted on the Pro Mini in the photo below [17].
I used a small bristle brush tree, added some beads, glitter, and
“snow” from Woodland Scenics. I used white LEDs colored with
permanent ink markers, Tamiya clear acrylics, dyes, and so on.

18. Christmas tree project on the layout (somewhat whimsically.)

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 27

19. Color TV setup.

COLOR TELEVISION
Sketch folder: Color_TV
Setup: Color TV [photo 18]
Control: pin 14 (A0)
Connected pins: TVRED - 12, TVGRN - 11, TVBLU - 10
This project randomly blinks red, blue and green LEDs in a
weighted random pattern simulating a flickering color TV screen.
Timing is determined by sketch setting change_delay, which
defaults to 150.

I used 0602 prewired LEDs colored red, green, and blue set back ¼
inch from a paper screen glued to a cutout scale TV paper picture.
I placed the resistors on a small perf board as a connection strip
for the LED connections, and held the jumpers to the Uno.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 28

20. Fire light setup.

FIRE LIGHT
Sketch folder: Fire_Light
Setup: Fire light [photo 19]
Control: pin 14 (A0)
Connected pins: TVRED - 12, TVYEL - 11, TVWHT - 10
This project randomly blinks red, yellow and white LEDs in a
weighted random pattern simulating a flickering fire. Timing is
determined by sketch setting change_delay, which defaults
to 100.

This is actually similar to the color TV. Here the I colored the 0602
LEDs red, yellow, and white. The timing is different for each so the
order is important – the white is fired intermittently as an explod-
ing coal. The LEDs stick 1/8 inch up into the wood pile of the “fire.”

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 29
ROTATING BEACON OR SEARCH LIGHT

Sketch folder: Rotating_Beacons

Setup: Lights in a row [photo 14] or Single LED [photo 15]

Control: pin 14 (A0)

Connected pins: led_pin1 - 12 and led_pin2 - 10

This project repeatedly blinks 2 LEDs with a gradual fade on
and fade off. Timing is determined by sketch settings del-
tatime1 (default 700) and deltatime2 (default 300).

ADVERTISEMENT

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 30

21. Dual LED connections setup.

RAILROAD CROSSING LIGHTS

Sketch folder: RR_Crossing_Lights

Setup: Dual LED connections [photo 20]

Control: pin 14 (A0)

Connected pins: led_pin1 - 11 and led_pin2 - 12

This project alternately blinks 2 LEDs . Flash timing is determined

by sketch setting delta, which defaults to 630.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 31
AIRPORT RUNWAY LIGHTS
Sketch folder: Runway_Lights
Setup: Lights in a row [photo 14]
Control: pin 14 (A0)
Connected pins: led_pins - 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15 (A1),
16 (A2), 17 (A3), 18 (A4), 19 (A5)
This project blinks a row of LEDs from start to finish with one
LED on at a time like airport runway lights. Timing determined
by sketch setting delta, which defaults to 46.

STROBE LIGHTS
Sketch folder: Strobes
Setup: Lights in a row [photo 14]
Control: pin 14 (A0)
Connected pins: led_pin1 - 11 and led_pin2 - 12
This project repeatedly blinks 2 LEDs simulating 2 strobe lights.

Timing determined by sketch settings ON_TIME1 & OFF_TIME1
as well as ON_TIME2 & OFF_TIME2 repectively.

WELDER IN ACTION (INDIRECT VIEW)
Sketch folder: Welder_Indirect
Setup: Dual LED connections [photo 20]

Control: pin 14 (A0)
Connected pins: welderpinWH-12 and welderpinBL-11
This project controls two white LEDs: one tinted blue with a
marker, to simulate a welding operation with the material being
welded not in direct view. By the way, Tamiya clear acrylics also
work well for color-tinting white LEDs.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 32
Servo Motor projects
Watch the video below to see what the servo motor projects do.

A servo is a motor-driven rotary mechanism that is electronically
controlled to allow precise angular positioning and speed
control.
Rather than get mired in a lot of details about servos here, let me
simply point you at the wealth of info on the MRH site in Peter
Randerson’s Servos 101 thread: mrhmag.com/node/25958.

Low-cost servos are available from many radio control (R/C)
hobby sources. Besides driving LEDs, Arduinos can easily drive
servo motors directly from each pin.

What may not be obvious is that while a single servo motor can
be controlled with one Uno pin, it is not a simple on/off switch.
Rather, the Uno is switching the servo control pin on and off
about 50 times a second!

Playback problems? Click here ...

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 33

This is just a bit faster than most of us can toggle a panel switch!
The Arduino also has to control the “on time” of the switch to
consistently set the servo position.

For these projects, we install a Sensor Shield into the Arduino
Uno board pins to make a “stack”. The Sensor shield has conve-
niently replicated the Arduino pins sockets side by side with 5V
and Ground pin sockets – perfect for operating servos.

Be aware these servo projects get a bit more involved than the
LED examples, especially as we work our way through the proj-
ect examples. We delve more into editing the sketch files, so you
will want to check out the last section of this article on using the
Arduino IDE to edit a sketch file.

Let’s see what we can do with some low cost servos and an
Arduino stack with a Sensor Shield!

22. Two 9G sub-micro sized servos.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 34

23. Single servo with switch.

SERVO MOVING END TO END CONTINUOUSLY
Sketch folder: Servo_Back_and_Forth
Setup: Single servo with switch [photo 22]
Control: pin 14 (A0)
Connected pins: servo_pin - 3
This project moves the servo arm back and forth repeatedly.
The starting point is determined by servo_start (default 20)
while servo_stop (default 168) sets the stopping point.

This motion can move a pump, figures, and other items with a
repetitive motion. A servo needs +5 Volts (red wire), ground (black
wire), and control (usually a white or yellow wire) which connects
through the Sensor Shield to an Uno pin.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 35

ONE SERVO CONTROLLED BY SIMPLE SWITCH
Sketch folder: Servo_One_Switched
Setup: Single servo with switch [photo 22]
Control: pin 14 (A0)
Connected pins: servo_pin - 3
This project moves the servo arm from end to end, trig-
gered by a simple on/off switch connected to pin 14 (A0). The
starting point is determined by servo_start (default 20)
while servo_stop (default 168) sets the stopping point.
You need one Uno pin for the servo control and one Uno pin to
attach the switch. This is a simple on/off switch with two connec-
tions, one to Uno pin 14 (A0) and the other connected to Ground.
Any kind of simple switch will work.
If you look at this sketch in the IDE editor, lines 8 and 9 say:
#define servo_start 20 // Servo start position
#define servo_stop 168 // Servo stop position
If you change either of these numbers, you will change the tra-
verse of the servo arm. These represent positions from 0 to 180
degrees in an arc. For cheap generic 9G servos, you will likely not
be able to go completely from 0 to 180 degrees.

SERVO MOVING SLOWLY END TO END CONTINUOUSLY
Sketch folder: Servo_Slow_Back_and_Forth
Setup: Single servo with switch [photo 22]
Control: pin 14 (A0)
Connected pins: servo_pin - 3
This project moves the servo arm slowly back and forth repeat-
edly. The movement speed is set by servo_delay (default
5) while the end points are set by servo_start (default 20)
and servo_stop (default 168).

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 36
6 PUSHBUTTON CONTROLLED SERVOS WITH LED INDICATOR
Sketch folder: Switched_6_Servos
Setup: Servo setup 2 [photo 24, next page]
Control: pin 14 (A0)
Connected pins: servos - spins - 2, 3, 4, 5, 6, 7;
pushbuttons - pins - 14 (A0), 15 (A1), 16 (A2), 17 (A3), 18 (A4), 19 (A5)
This project controls 6 servos with corresponding start and
stop positions using push buttons. The starting positions are
determined by sstart-25,25,25,25,25,25 and the stop
positions by sstop-160,160,160,160,160,160.
Each push of the corresponding button causes the servo to seek
the opposite position and changes the state of the corresponding
LED, using the pushbutton/LED connections shown below [23].

24. Push button and LED wiring diagram.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 37

25. Servo setup 2, using an Uno and a Sensor Shield.

8 PUSHBUTTON CONTROLLED SERVOS WITH LED INDICATOR

Sketch folder: Switched_8_Servos

Setup: Servo setup 2 with eight servos and buttons [photo 24]

Control: pin 14 (A0)

Connected pins: servos - spins - 2, 3, 4, 5, 6, 7, 8, 9;
pushbuttons - pins - 11, 12, 14 (A0), 15 (A1), 16 (A2), 17 (A3), 18 (A4), 19 (A5)

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 38
This project controls 8 servos with corresponding start and
stop positions using push buttons. The starting positions are
determined by sstart-25,25,25,25,25,25,25,25 and the stop
positions by sstop-160,160,160,160,160,160,160,160.
Each push of the corresponding button causes the servo to seek
the opposite position and changes the state of the corresponding
LED, using the pushbutton/LED connections pictured [23].

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 39
8 PUSHBUTTON CONTROLLED ROUTES USING SERVOS WITH
LED INDICATOR

Sketch folder: Switched_8_Routes

Setup: Servo setup 2 with eight servos and buttons [photo 24]

Control: pin 14 (A0)

Connected pins: servos - spins - 2, 3, 4, 5, 6, 7, 8, 9;
pushbuttons - pins - 11, 12, 14 (A0), 15 (A1), 16 (A2), 17 (A3), 18 (A4), 19 (A5)

This project controls 8 routes. A route is simply a defined set of track
switch positions, often in a yard, that collectively defines a single path
through the yard. To form this route, the 8 servos each need to be set to a
given start or stop position (think turnouts with two directions).

Each push of a corresponding button sets a route. A route is a collection
of servo settings in this table found in this project’s sketch:

routes [8][8] = { // ROUTE TABLE Definition for each route & servo
 {0,0,1,1,0,0,0,0}, // route 0 pushbutton 0
 {0,0,0,0,1,1,0,0}, // route 1 pushbutton 1
 {0,0,0,0,0,0,0,0}, // route 2 pushbutton 2
 {1,1,1,1,1,1,1,1}, // route 3 pushbutton 3
 {1,1,1,0,0,0,0,0}, // route 4 pushbutton 4
 {0,0,0,1,1,1,0,0}, // route 5 pushbutton 5
 {0,0,0,0,0,1,1,1}, // route 6 pushbutton 6
 {1,0,1,0,1,0,1,0} // route 7 pushbutton 7

This is a useful way to throw track switches controlled by servos. For
each route 0-7, a “0” in the routes table row sets the corresponding servo
to its saved sstart position and a “1” sets the corresponding servo to
its saved sstop position. It also changes the state of the corresponding
route LED.

You can set the routes (each table row) up any way you want!

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 40
Final note: For all the 6 and 8 servo pushbutton-controlled
projects, the 5 volt power to the servos should be a separate
power source. Neither the Uno nor the Pro Mini can provide
enough power via the on board regulator. Low cost 9G servos can
have a peak current draw of over 1 amp!

Sound projects
Watch the video below to see what the sound projects do.

Playback problems? Click here ...

Note: All the sound projects use a small, low-cost module called
a DFPlayer. This is available from dfrobot.com (dfrobot.com/
wiki/index.php/DFPlayer_Mini_SKU:DFR0299) or from eBay.
com (ebay.com/itm/191947254444). You can also Google for DF-
Player and find still more sources.

More detailed documentation on the DFPlayer is included in this
month’s subscriber bonus downloads.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 41
CROSSING LIGHTS & BELL SYNCHRONIZED TOGETHER
Sketch folder: RR_Crossing_Bell_Synched
Setup: Sound setup 1 [photo 25]
Control: pin 14 (A0)
Connected pins: led_pin1-11, led_pin2-12, bell_pin-15
This project alternates the flashing of two LEDs synchronized
with the “gong” sound of the crossing bell. This an older style of
prototype crossing signal. Flash rate depends on setting delta,
which defaults to 540.

This project is a good example illustrating simple synchronization
of each crossing lamp with the single strike of the bell. Using an
Arduino, the lights and sound can all be synchronized to a very
good degree of accuracy to convincingly simulate such older cross-
ing signals.

CROSSING LIGHTS & BELL FREE RUNNING
Sketch folder: RR_Crossing_Bell_FreeRun_PB
Setup: Sound setup 1 [photo 25]
Control: pin 14 (A0)
Connected pins: led_pin1-11, led_pin2-12, bell_pin-15 (A1),
silence_pin-16 (A2), control_pin-14 (A0)
This project alternates the flashing of two LEDs. Flash rate
depends on setting delta, which defaults to 745.

A pushbutton is connected to control_pin- 14 (A0). Each press
switches the project on – off – on – etc.

The crossing bell runs at an independent rate, determined in the
prototype by the bell mechanism itself. This is a more modern style
of prototype crossing signal.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 42

The speaker [25] is a small oval speaker that I obtained from a
discarded computer laptop although you can find a very similar
speaker on Amazon at this link: a.co/3TkbYbp. I placed the
speaker in an open plastic box about 2 inches deep to improve
its sound.

The resistors in series with the LEDs are 1000 Ohm.

The sound files are included in the subscriber bonus downloads,
and they must be loaded onto a micro SD memory card for use
with the DFPlayer [25].

You can get a USB to SD card reader and a micro SD Card to
standard SD Card adapter, then load the files onto the micro SD
card from your computer [26].

26. Sound setup 1: Uno and DFPlayer module connections on a
Prototype Shield using a small speaker.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 43
CROSSING LIGHTS & BELL FREE RUNNING ACTIVE HIGH
Sketch folder: RR_Crossing_Bell_SW_HIGH
Setup: Sound setup 1 [photo 25]
Control: pin 14 (A0)
Connected pins: led_pin1-11, led_pin2-12, bell_pin-15 (A1),
silence_pin-16 (A2), control_pin-14 (A0)
This project alternates the flashing of two LEDs. Flash rate
depends on setting delta, which defaults to 745.
A simple on/off switch is connected to control_pin- 14 (A0). The
project switches ON when the control_pin is HIGH.
The crossing bell runs at an independent rate, simulating a more
modern style of prototype crossing signal.
Note: The only difference between RR_Crossing_Bell_SW_HIGH
and RR_Crossing_Bell_SW_LOW is whether the enabling switch
is HIGH or LOW. The choice is often dictated by the sensor,
mechanism, or switch you use. These are provided to demon-
strate the ease of customizing activation as needed.

CROSSING LIGHTS & BELL FREE RUNNING ACTIVE LOW
Sketch folder: RR_Crossing_Bell_SW_LOW
Setup: Sound setup 1 [photo 25]
Control: pin 14 (A0)
Connected pins: led_pin1-11, led_pin2-12, bell_pin-15 (A1),
silence_pin-16 (A2), control_pin-14 (A0)
This project alternates the flashing of two LEDs. Flash rate
depends on setting delta, which defaults to 745.
A simple on/off switch is connected to control_pin- 14 (A0). The
project switches ON when the control_pin is LOW.
The crossing bell runs at an independent rate, simulating a more
modern style of prototype crossing signal.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 44

. .
What do HIGH and LOW really mean?
In the world of digital electronics, HIGH means 5.00 volts exactly
and is interpreted as one (1). LOW means 0.00 volts exactly and
is interpreted as zero (0).

In practical terms, however, an Arduino interprets any voltage
level above 3.5 Volts (3.5-5.0) as HIGH and any voltage below 1.5
volts (0.0-1.5) as LOW. Ground is always considered LOW.

In all the sketches presented in this article, care was taken to
enable an internal Arduino circuit to set all unconnected, open
inputs to the board so they default to HIGH. If this action were
not taken, a disconnected open input could not reliably be read
as either HIGH or LOW. ■. .

Place the sounds clips on the micro SD memory card “in the root,”
which means do not put the sound files into any folders.

First, re-format your micro SD memory card, then load the files
in order, one at a time, from the SoundSetup1 folder in the bonus
downloads for this article.

27. Micro SD memory card adapters to USB.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 45
PLAY RANDOM SOUND TRACKS
Sketch folder: Random_Sound_Clips
Setup: Sound setup 2 [photo 27]
Control: pin 14 (A0)
Connected pins: (no other pins needed)
This project plays a set of mp3 sound tracks stored on a micro
SD Memory Card in random order. A simple on/off switch con-
nected to pin 14 (A0) will enable playing.
Place the sound clips on a micro SD card in a folder labeled mp3.
Name them 0001.mp3, 0002.mp3, 0003.mp4, 0004.mp3, etc.
The sketch has two values you can set: num_clips (default 9)
sets the total number of sound clips to select from on the SD
memory card, and sound_start_delay (default 0) sets how
many minutes to delay before starting to play after turn on.

PLAY SELECTED SOUND TRACKS
Sketch folder: Selected_Sound_Clips
Setup: Sound setup 2 [photo 27]
Control: pin 14 (A0)
Connected pins: select_pins-2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
This project plays one of a set of pre-recorder mp3 sound clips
stored on a micro SD Memory Card by pulling a chosen pin
LOW to ground. A simple on/off switch connected to pin 14
(A0) enables playing.
Place the sound clips on the micro SD card in a folder labeled
mp3 and named 0001.mp3, 0002.mp3, 0003.mp4, 0004.mp3, etc.
corresponding to the order of the pins defined by select_pins.
Pulling pin 3 LOW plays clip 0002.mp3. Sketch value num_clips
(default 9) sets the total number of sound clips/tracks on the SD
card, and sound_start_delay (default 0) sets the number of
minutes to delay before starting to play after turn on.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 46

28. Sound setup 2, using an iPhone cell phone speaker. You can
get an iPhone speaker for a few dollars on Amazon at this link:
a.co/564x5AP. Cut off the plastic housing extension and seal the
small hole left with some epoxy or putty, leaving the rest of the
speaker as shown here. These tiny speakers produce excellent sound.

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 47
PLANNED SOUND: CREATE A THUNDERSTORM
Sketch folder: Thunderstorm

Setup: Sound setup 2 [photo 27]

Control: pin 14 (A0)

Connected pins: lightning_pin - 3, lightning_pin2 - 4

This project plays a set of mp3 sound tracks stored on a micro
SD Memory Card to simulate a thunderstorm approaching and
then passing.

A simple on/off switch connected to pin 14 (A0) enables playing.

You can set up a start delay by changing lightning_delay in
the sketch to the number of minutes you want to pass after the
initial turn on.

You can also set next_storm_delay to the number of min-
utes before the next storm arrives!

Note: While you can use this as a sound-only sketch, it does
include synchronized switching for firing two independent
slave strobe lights. These are activated with a relay connected
to pin 3 and pin 4.

The entire sketch with sound and lights simulates a thunder-
storm approaching and passing by. Two strobes are needed to
account for the long re-charging time of the strobes. You will
notice closely timed lightning bolts in your area!

Load all the sound files onto your micro SD Memory card and
try to stay out of the rain! When I have given clinics on model-
ing with sound, I often will stage things so the thunderstorm
will arrive and pass somewhat unannounced in the middle of
the clinic!

• INDEX • TABLE OF CONTENTS

Modeler’s intro to the Arduino | 48

29 and 30. Thunderstorm components all wired and
ready to create a storm above. Relay wiring diagram
shown below.

(Digikey.com #CP3-1004-ND)

Strobe relay D82Y-S-DC5V
(Digikey #255-1078-ND)

• INDEX • TABLE OF CONTENTS

. .
Geoff Bunza

Geoff Bunza started as a model railroader when
he received a Mantua train set for Christmas,
at age 6. He fed his interests through college,
becoming a member of the Tech Model Railroad
Club (TMRC) at MIT while getting his doctorate
and three other degrees in electrical engineering.
He has collected Lionel HO trains for many years,

which spawned his interest in realistic model animation and light-
ing. Primarily, he models the New York Central Railroad.

Geoff is a member of the New York Central System Historical
Society, a life member of the NMRA, and holds an Extra Class ama-
teur radio license. ■
. .

Modeler’s intro to the Arduino | 49

Be sure to check the subscriber
bonus downloads for this
month’s issue. There’s a lot of
supplemental material in there
to go along with this article.
Have fun! ☑

31. Self-contained strobe
for lightning/thunder-
storm.

Amazon link:
a.co/ba5G273

• INDEX • TABLE OF CONTENTS

