
Using Images and Explicit Binary Container for Efficient and Incremental
Delivery of Declarative 3D Scenes on the Web

Johannes Behr∗ Yvonne Jung† Tobias Franke‡ Timo Sturm§

Fraunhofer IGD, Darmstadt, Germany

Figure 1: Two different high-resolution models visualized with X3DOM in the Web Browser. Left: architectural walk-through model of Hall
11 of the Fair of Frankfurt – represented and rendered using our sequential image geometry (SIG) approach for fast content delivery and
data compression on the Web. Right: 3D-scanned historical object rendered as triangle mesh and as point set using our SIG approach.

Abstract

JSON, XML-based 3D formats (e.g. X3D or Collada) and Declar-
ative 3D approaches share some benefits but also one major draw-
back: all encoding schemes store the scene-graph and vertex data in
the same file structure; unstructured raw mesh data is found within
descriptive elements of the scene. Web Browsers therefore have to
download all elements (including every single coordinate) before
being able to further process the structure of the document. There-
fore, we separate the structured scene information and unstructured
vertex data to increase the user experience and overall performance
of the system by introducing two new referenced containers, which
encode external mesh data as so-called Sequential Image Geometry
(SIG) or Typed-Array-based Binary Geometry (BG). We also dis-
cuss compression, rendering and application results and introduce a
novel data layout for image geometry data that supports incremen-
tal updates, arbitrary input meshes and GPU decoding.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality I.3.6 [Methodology and
Techniques]: Standards—Languages

Keywords: X3D, Declarative 3D, HTML5, WebGL, DOM, Web
Integration, Image Geometry, Typed Array, Mesh Compression

1 Introduction

The expected user experience of web pages and web applications is
quite different to traditional desktop or mobile applications: there

∗e-mail:johannes.behr@igd.fraunhofer.de
†e-mail:yvonne.jung@igd.fraunhofer.de
‡e-mail:tobias.franke@igd.fraunhofer.de
§e-mail:timo.sturm@igd.fraunhofer.de

is no explicit and visible application startup or data preparation and
processing step. Everything starts with a single click, which leads
to an instantaneous user experience, where inconsistent or partial
presentations are accepted when loading the page (e.g. images are
missing, layout is not yet final). This asks for very compact doc-
uments and data chunks that can be interpreted and used for the
visualization before all data is fully delivered to the client.

With X3DOM, a DOM-based integration model for declarative
(X)3D in HTML5 was proposed [Behr et al. 2011; Behr et al. 2010]
which allows a seamless integration of 3D content into the HTML
document model by utilizing standard Web APIs. The approach is
one of the prototype systems used for the evaluation of use cases
and requirements in the declarative 3D community group [W3C
(Community Group) 2012]. However, for real world applications
with large 3D data sets such declarative approaches, which inte-
grate the 3D data into the HTML DOM, soon lead to huge HTML
documents (see Figure 2). This in turn causes unpleasant, non-
interactive user experiences due to long loading times and non-
responsive web pages, because Web Browsers are not build to parse
DOM attribute data sets beyond several megabytes in size.

Providing the data not just in one document but in multiple data-sets
using the X3D compliant Inline mechanism [Web3D Consortium
2011] is often no suitable solution. First, an <Inline> element
externalizes a complete subtree instead of the raw vertex attribute
data, which requires the implementation of an additional parser ar-
chitecture. Second, X3D Inline nodes by design hide their con-
tent from the application developer via a black-box interface, which
contradicts to the requirement that the whole DOM tree needs to be
dynamically manipulatable. Third, inlined files are like HTML typ-
ically ASCII-encoded to be human-readable and therefore the file
size itself is an issue, even when editing the file. Since this vast
amount of mesh data usually is not manipulated via DOM script-
ing but preprocessed in a modeling tool, binary compressed XML/
X3D files that reduce the data transmission issue can also be an
option here. However, though binary XML compression formats
are streamable in general, they are not useful for progressive ap-
proaches because of the single document and parser model. Finally,
to make the tree structure accessible to the application developer, all
data (incl. the raw mesh data) will be provided as part of the DOM
and therefore increases the document structure similarly.

Hence, we propose another solution: we do not split the scene-
graph into sub-graphs, but divide the lightweight, structured infor-
mation from the heavy, unstructured data (not only images but also
vertex attributes). The light structured information such as transfor-
mation groups and materials (that usually makes up less than five
percent of the file size) are put into the HTML / XML document
and get processed and delivered as usual. The heavy unstructured
data (that usually makes up more than 95 percent of a file) is stored
very efficiently in binary containers which are transmitted on re-
quest. This is very similar to how the web already works today:
lightweight HTML pages hold the DOM structure and script code
and the heavy data containers, like images, videos, and sound, are
requested afterwards on demand.

Key for this concept is a form of binary container, which is very effi-
cient to transport and decode on the Web and useful even for partial
or progressive transmission. Our main contribution is a new mech-
anism to store, retrieve and decode binary data of mesh geometry,
separated away from the lightweight declarative 3D structure pro-
vided within the web document. We explore two different options
for binary formats and show that using images with a very tailored
data layout and compression scheme as mesh container leads to im-
pressive results. We get close to 6 bytes per triangle for regular
meshes (in case only positions and normals are given), which we
decode on the GPU while rendering. We also show that dynamic
updates via MPNG streams or videos can be used to efficiently
update the vertex data. In addition, we compare this approach to
standard binary data buffers, how we integrated both approaches
into X3DOM and how both representations affect additional re-
quirements such as compression, streaming and animation. We also
provide a short discussion on browser behavior concerning time to
load data for both encodings. We then conclude the paper with a
discussion of results and applications.

The benefit of this work is twofold: first, structuring of 3D docu-
ments on the web is improved dramatically due to the clear external-
ization of unstructured data away from the scene-graph and (X)3D
application. This separation is beneficial for human-readability and
browsers, since parsers need not wade through heavy chunks of bi-
nary data within XML documents, also improving the loading time.
Clearly, this affects the overall user experience: instantaneous load-
ing and displaying 3D content is now supported just like in regular
web documents. Second, with our new geometry container format
we enable prioritized progressive transmission; large geometries
can be streamed to the user instantaneously in a specific ordering
with little effort. Therefore, we exploit existing browser technol-
ogy, so that a 3D application appears as natural as possible to web
engines parsing and loading binary and DOM data.

2 Related Work

There exist various possibilities to reduce the overall size of a 3D
scene-graph in general and of mesh data in particular that are in-
dependent from a special encoding scheme. On the one hand, the
amount of vertex data can be decreased by methods such as strip-
ing [Behr and Alexa 2002], which also reduces the GPU load. On
the other hand, compression algorithms can be utilized. Impor-
tant examples for binary XML compression formats are x3db (a
binary encoding for X3D [Web3D Consortium 2011] that is based
on FastInfoSet [Sun 2004]), the W3C format EXI [W3C 2011], and
the ISO standard x3z. All of them require decoding at the level
of JavaScript, though for most of these encodings except for the
latter no JavaScript library for decompression is available. Like-
wise, BIFS, which is part of MPEG-4, also allows compressing the
3D scene-graph. To overcome several issues like better mesh and
animation data compression and transmission a new architectural
model was proposed by [Jovanova et al. 2009].

Figure 2: DOM holds structure and data of declarative 3d content.
But, apart from very simple examples like this little mesh, usually
more than 95% of the file size are unstructured data.

In [Stocker and Schickel 2011] an interesting study of encoding
sizes using the x3db binary encoding and GZIP / BZIP2 compres-
sion algorithms in X3D is presented, which shows that with X3D
binary encoding followed by GZIP compression, bandwidth re-
quirement of content delivery can be reduced by a factor of two.
It was also shown that a scene-graph given as x3db loads around
three times faster than ASCII-encoded X3D files and is also the
fastest to parse. With the introduction of WebGL [Marrin 2011] the
need for binary interfaces in JavaScript did arise as well. Therefore,
the Typed Array specification [Khronos 2012] provides an API for
the interoperability with native binary data by defining a generic
buffer type, the ArrayBuffer, and typed array view types (e.g.
Float32Array) that represent a certain view of it to allow in-
dexing and manipulation of the data stored within the buffer. For
binary download, an XMLHttpRequest1 (XHR) can be used, which
since 2011 directly supports ArrayBuffers as response type.

In real-time rendering, 2D images are usually used to store textures
that are applied and interpolated during the shading process to flat
surfaces (e.g. triangles) in 3D space. Normal maps and displace-
ment maps give the illusion of more structured details, which are
only useful for the shading process (cf. e.g. [Donnelly 2005]), but
not for collision or picking. In [Schwartz et al. 2011], a WebGL-
based framework for representing reflectance information via BTFs
is proposed, which allows for the progressive transmission and in-
teractive rendering of digitized artifacts by employing a progressive
streaming approach for huge BTF data sets.

Analogously, we follow with a similar approach for lightweight ge-
ometry compression and transmission via sequential image geome-
tries that likewise utilizes image compression techniques. Storing
3D meshes in image containers has been the target of extensive re-
search, with investigation of regular meshes stored as height maps,
as well as the remeshing of irregular triangle meshes into a 2D do-
main. 2D height maps stored as images usually provide so called
2.5D coordinates per pixel by defining a regular 2D grid with 1D
height data. Therefore, they are especially useful for terrain ren-
dering applications. Because of their regular structure, height maps
can easily be resampled to gain level of detail capabilities.

Online streaming of large regular datasets with geometry clipmaps
has been presented in [Losasso and Hoppe 2004; Asirvatham and
Hoppe 2005], where multiple nested detail levels contain a view
on the currently visible geometry centered around the viewer. The
level of detail (LOD) decreases from the center to the edges. This
approach has been largely used for terrain rendering applications
and streaming large texture sets to the GPU (similar to Megatex-
turing). However, 3D surfaces are usually described by irregular

1http://dvcs.w3.org/hg/xhr/raw-file/tip/Overview.html

Figure 3: Implicit mesh topology and drawing order in comparison: height maps (left) and the original geometry image method [Gu et al.
2002] use regular grids to sample the 3D data from the image; sculpted prims [SecondLife 2009] use textures, whose color values are
interpreted as radial offsets. Our approach (right) uses images as binary container without a direct correlation to the mesh structure.

triangle meshes, and since we want to transform arbitrary meshes
into binary containers such as images, we therefore do not further
investigate regular datasets within the course of this paper.

Remeshing of irregular geometry involves cutting it into charts and
mapping these piecewise to a planar domain, which is then sampled
by a (semi-)regular grid. Hoppe et al. [Gu et al. 2002] introduce the
geometry image, a 2D array of size N ×M that stores the xyz po-
sition information as rgb values. Geometry images aim to store an
entire surface in a single image with an accompanying normal map
without waste-space. Instead of cutting the geometry into several
disjoint chart-like pieces, the proposed algorithm reparameterizes
the mesh after every cut in an iteration until no further improvement
can be made in order to create one seamless square chart or atlas.
A number of other methods exist to resample geometry into images
with arbitrary genus or with genus 0 [Praun and Hoppe 2003]. A
rather simple approach with similar properties as geometry images
are the Sculpted Prims in SecondLife [SecondLife 2009], which are
textures, whose pixel color values are interpreted as radial xyz off-
set to a sphere, where values less than 127 are negative offsets and
values greater than 127 are positive (see Figure 3).

Resampling arbitrary geometry to regular structures such as im-
ages has several benefits, which include improved compression
and multiresolution geometries using mipmapping via up-/ down-
sampling operations. Remapping is not effective for all geometries
though and may introduce geometric stretch. Undersampling of
high-frequency surface features can occur if the geometry image is
not large enough [Gu et al. 2002]. Additionally, geometry images
can be created from pre-cut patches into a regularly packed format
[Purnomo et al. 2004] (a regular structure of sub-atlases). To com-
bat issues like the support for others than only genus-zero surfaces
as well as geometric distortion and stretch, in [Sander et al. 2003] ir-
regular multi-chart geometry images are proposed. After partition-
ing the model into charts, pieces remain as disjoint charts and some
waste pixels remain. To improve border-handling by preventing
cracks during reassembly of the geometry, a “zippering-algorithm”
is introduced, which identifies and unifies boundary samples of
each chart with its neighbors.

LOD can be implemented for geometry images. Ji et al. [Ji et al.
2005] create a seamless texture atlas with a quadtree structure. In a
two-pass rendering process, an LOD is first selected in a fragment
shader and the resulting buffer is subsequently used in a second
pass responsible for culling away unnecessary data. GPU-based
LOD for geometry images has been proposed in [Hernández and
Rudomin 2006]. Through mipmapping a series of LODs is readily

accessible at runtime, which are selected based on the distance of
the object to the camera. To further improve the results, a special
selector-map contains precalculated mipmap levels for selection. In
[Maglo et al. 2010] a framework for streaming large 3D datasets in
scientific visualization is presented, including a method for progres-
sive mesh compression with LOD management in X3D.

3 Concept and Design

The overall goal is to develop a compression technique which works
well with the declarative 3D approach, allows for progressive trans-
mission and decoding to improve the user experience and works
well with today’s client and server standards. Increasing the inter-
activity is the major goal. Handling larger objects is also desirable
but not necessary for all relevant use cases.

3.1 Separating Structured and Unstructured Data

Embedding the 3D scene data into the DOM and therefore into the
HTML document is the fundamental idea of the declarative 3D ap-
proach. This kind of data is in all real-world scenarios significantly
larger than the information usually stored in HTML documents.
Objects with millions of points and normals are very common and
therefore soon lead to documents in the gigabyte range. This is
not only problematic for today’s web browsers but really destroys
the user experience since the user has to wait without any feedback
from the browser until the full page is loaded.

The interesting quality of the scene file is now that it is not uni-
formly structured. For most cases the scene structure, which holds
all the elements like cameras, lights, groups and geometry objects,
including their simple attributes hold up to 5 percent of the actual
document and in-memory amount. This is the scene which usu-
ally holds all the necessary structural information to be used during
runtime. On average, 95 percent of the document are used to store
vertex and vertex-related data sets. The positions, normals, texCo-
ords, etc. are unstructured data blobs, which are stored as long lists
of float values in the document and memory (see Figure 2), and
which typically are never touched by the web developer.

3.2 Reference Binary Container for Unstructured Data

As mentioned, in most applications the vertex attributes are not di-
rectly manipulated during runtime. They are used to be transformed
and rendered, but only in a very few cases it is necessary to change

Figure 4: Bytes per triangle stored for the Stanford Bunny (blue)
and the Georgia Tech Horse model (red): sequential image geome-
tries with PNG compression can reduce the file sizes substantially.

a specific vertex attribute during runtime. Therefore, our approach
is now to separate this static unstructured data and move it into ex-
ternal binary container, which can be downloaded during runtime
on request. This is very similar to how HTML works already. We
have the usual HTML document that includes the document struc-
ture and text, whereas the heavy elements like images and videos
get referenced and downloaded when needed.

Therefore we need an external format which can hold meshes or
vertex attribute data. The final format stores only vertex informa-
tion since it should be really flexible to be useful for different ap-
plications, and the goal is also to map those files to GPU structures
directly. Hence, the corresponding HTML element for specifying
the mesh should be able to reference external binary data elements.

4 Mesh Data Encoding

To handle binary resources on the Web we basically have two pos-
sibilities: on the one hand, we can think of a generic asset dictio-
nary. Here, the raw data is directly loaded to TypedArrays while the
data assignment is done in JavaScript. This of course requires hav-
ing several arrays per external data file, and thus multiple files per
scene. On the other, we can use images and videos. The int and
float arrays (e.g. coordinates, normals, and generic attributes)
are encoded in RGBA images. This leads to around one to two
images per array, and thus multiple images per scene.

We use images and ArrayBuffer dumps as binary container, as these
are the options we have right now to load and decode vertex data to
the GPU without too much CPU interference in the JavaScript layer.
Therefore, two encodings are provided: binary geometry (BG) and
sequential image geometry (SIG). The following sections describe
how the information is stored and what the different properties of
both methods are.

4.1 Images and Videos

First, we describe how we use and <video> HTML ele-
ments as generic binary container and how they serve as a powerful
abstraction for efficient data encoding for Web apps. In this regard,
images are related to potentially static (e.g. image) and dynamic
(e.g. video) regular grids of pixels.

4.1.1 Sequential Image Layout and Mesh Topology

All image-based 3D rendering methods, which are related to this
work, produce 3D primitives (e.g. triangles) from 2D image data.
This includes height fields, Geometry Images [Gu et al. 2002], and

the so-called Sculpted Prims [SecondLife 2009]. They all use a
specific implicit mesh topology to derive the 1D or 3D data from
the images and to create those primitives (cp. Figure 3). All these
cases are based on regular grids which can resample the image data
to a lower or even higher resolution. This is a great application for
images, but a really hard to fulfill requirement for meshes. Input
meshes have to be pre-processed and must be converted to regular
grids, which unfortunately cannot be done for every type of base
mesh [Sander et al. 2003].

We propose another approach which does not transform and resam-
ple the original mesh to a regular structure, but uses the image to
store unlinked vertex data (e.g. coordinates and normals). The pixel
neighborhood on the images does not correlate to the neighborhood
on the mesh topology. Therefore, up- or down-sampling is not sup-
ported with this image type. However, this structure does not have
the limitations of the previously described techniques and is very
well suited for patching, compression, transmission, and rendering
with no special requirements on the input mesh. All vertex-data is
stored in a simple fixed sequential order, which is the reason for the
name of the layout: Sequential Image Geometry (SIG).

The content can be fully described by HTML (or HTML with our
proposed X3DOM extensions) together with image and/or video re-
source data. One of the most important aspects is that utilizing im-
ages as data container allows decompression for free, although only
lossless compression like PNG is useful right now. Even more, we
also get streaming updates for free since WebGL and X3DOM both
directly support the HTML <video> tag as texture source. Fur-
thermore, web servers and browsers are well optimized to handle a
large number of images and parallel downloads of images, which
in turn guarantees a great user experience.

4.1.2 Vertex Data Layout and Encoding

Most previous research on Geometry Images (e.g. [Gu et al. 2002])
just state that they encode xyz coordinates in rgb values without
a concrete encoding scheme. With the goal to provide a solution
which works well with todays web standards, we have to deal with
the limitations of 8 bit images. The HTML standard does not de-
fine a specific image or video encoding, but the image formats cur-
rently supported by all common browsers are GIF, JPEG, and PNG
[Hickson 2012] – all of them with 8 bit per color channel. With
RGBA textures we therefore get 32 bits per texel. This is not precise
enough for encoding normals, texCoords, and especially positions
in one image each. Therefore we propose a simple put progressive
encoding to complete the SIG layout.

First, coordinates and texture coordinates are linearly normalized to
their corresponding bounding boxes, which results in harmonized
coordinate components in the range of [0, 1]. The bounding boxes
are stored in the HTML / X3D document as part of the structured
information and can be used (e.g. for culling) before the vertex data
is actually loaded. 2D texture coordinates and normals are usually
uncritical since they can be stored quite efficiently in 32 bit, because
one RGBA texture can hold 16 bit uv coordinates or alternatively
16 bit θ and φ angles for normals in spherical coordinates.

The normalized xyz coordinates however need much more than 8
bits to be useful. Storing x, y, and z in separate textures would
give us up to 32 bits for every axis but would increase drastically
the amount of textures needed before we can render anything and
would not support any form of progressiveness. Therefore we de-
cided to map xyz to RGB but store the different bytes needed in
separate textures. So, the first coordinate texture holds the first byte
of the coordinate, the second texture the next one and so on. This al-
lows us to render already a raw and not yet fully correct shape with
the first texture (cp. Figure 5, left) and supports any precision since

Figure 6: Using an index texture to access the first and second byte
of the corresponding vertex data textures (here the coordinates).

we are not limited to 32 bit. The actual 3D vertex positions are nor-
malized and quantified to 2n·8 values, where n > 0 can be error-/
user-controlled and would be chosen as part of the data prepara-
tion process. Generally, multiple images can be used to distribute
precision. This encoding inherently supports LOD and streaming
of precision (e.g., closer objects get higher precision). However,
for most cases, 16 bit are close to the original data for visualization
purposes (see Figure 5) and therefore allow to drastically reduce the
amount of memory needed for storage (compare Figure 4).

An additional (but optional) index image is supported to create a 2D
single index access mechanism. This map reduces the amount of
data to transmit even further (see Figure 6) and can be 8 bit uv (i.e.,
16 bit indices) or 16 bit uv (i.e., 32 bit indices), and therefore sup-
ports up to 655362 vertices instead of 2562. This comes along with
some cache limitations while rendering, as will be described in sec-
tion 5.5. Nevertheless, this encoding is simple, fast and works with
any type of mesh, while the content is fully described by HTML5
including image or video resource data.

4.2 Binary Geometry Data Handling

With the Typed Array specification [Khronos 2012], using binary
data is straightforward in JavaScript, because the whole attribute
encoding is simply achieved by dumping the vertex data containers
to binary files. For binary download, an XHR with responseType
set to ”arraybuffer” is sent to open the binary file. On load, the
XHR response contains the ArrayBuffer object from which a typed
array view (mostly a Uint16Array or a Float32Array) needs to be
created, which in turn can directly be used to set the buffer data of
the currently bound VBO as shown below. This data only resides
in GPU memory and can directly be used for rendering.

gl.bufferData(gl.ARRAY_BUFFER,
new Float32Array(xhr.response), gl.STATIC_DRAW);

4.3 Graphics Primitives and Optimization

For both encodings, Binary Geometry (BG) and Sequential Image
Geometry (SIG), we support various graphics primitives per mesh,
including points, lines, triangles and triangle strips. Every mesh can
use any numbers of primitives with corresponding vertex count or
length to represent a single draw call. We usually use a simple but
fast striping method [Behr and Alexa 2002] to create triangle strips
and stitch the resulting strips (by introducing degenerate triangles
for concatenating strips) in order to increase the number of triangles
rendered in the one call and to decrease the byte-per-triangle count,
with or without additional index map. This method allows us to
draw every mesh with two draw calls – one for the stitched triangle
strips and one for the remaining triangles. This simple but efficient
method allows reducing the amount of bytes needed to store trian-
gles even further. Table 1 provides a comparison of relevant encod-
ings, where for generating the x3db encoding the Instant Reality
[FhG 2012] transcoder tool was used.

(a)
X3D X3DB BG SIG raw SIG PNG

raw tris 11,135,415 2,298,303 5,000,472 1,875,177 1,388,904
tri-strip 4,638,412 1,910,977 2,150,664 806,499 535,483
ind. tris 2,977,736 1,130,963 1,252,722 730,212 584,695
ind. strips 2,269,225 937,259 1,055,238 492,728 405,799

(b)
X3D X3DB BG SIG raw SIG PNG

raw tris 16,324,694 2,026,318 6,981,552 2,618,082 2,009,258
tri-strip 6,647,483 2,742,016 3,087,816 1,157,931 741,350
ind. tris 4,399,737 1,539,600 1,745,436 1,018,161 883,318
ind. strips 3,411,800 1,304,490 1,420,958 693,683 607,876

Table 1: Number of bytes for (a) 69,451 triangles bunny and (b)
96,966 triangles horse model, both with coordinates and normals
(as X3D XML-encoding, X3D binary encoding with zlib compres-
sion, BG, SIG - 16 bit raw, and SIG - 16 bit with PNG compression).

Figure 7: Using the x- and y-position of the implicit mesh vertices
as texCoords to directly map a vertex to its corresponding texel.

5 Rendering

In this section, we describe the SIG and BG rendering methods, be-
cause they are critical for the overall results. However, the current
and final extensions to any declarative approach (see section 6) ad-
ditionally must be able to render regular grids for traditional image
data like height maps and regular geometry images (cp. Figure 3).

5.1 SIG Rendering with GPU Decoding

The actual rendering method of the SIG data depends very much on
browser and rendering-backend use. For the WebGL-backend we
utilize the standard and <video> tags to asynchronously
download the pixel data to the browser and decode the information
on the GPU or CPU. Most modern GPUs allow texture access in
vertex shaders (which was introduced with Shader Model 3.0) and
therefore support the GPU method. The Flash-backend always uses
the slower CPU version (cp. section 5.2) since Stage3D2 does not
support texture access inside of the vertex shader at all.

For an efficient and fast rendering we use the vertex texture fetch
feature of OpenGL ES 2.0 / WebGL [Marrin 2011]. This allows us
to read data from textures inside a vertex shader. With this data,
we can then transform the vertices and manipulate or set vertex
properties like position, color, normal, and texture coordinates. As
mentioned in section 4.1.2, even indexed rendering is possible by
using a special index texture (see Figure 6). Thus, we can transfer
the whole SIG decoding and most of the buffer generation process
from the slower JavaScript layer directly to the GPU. By allowing
multiple textures per vertex property (see section 6 for the node in-
terface), the precision (as already described in section 4.1.2) grows
until the GPU’s vertex texture limit is reached.

To invoke the vertex shader appropriately, we render one very sim-
ple base mesh that directly provides the texture coordinates for ac-

2http://www.adobe.com/devnet/flashplayer/stage3d.html

Figure 5: Close-up on the Buddha model for 8 bit (left) vs. 16 bit encoding (middle) of the coordinate images. Especially for the positions,
low precision leads to severe errors such as cracks within the mesh and at borders between mesh patches described by another coordinate
image (where the bounding boxes are per patch). The rightmost image shows the 32 bit binary data encoding given as arraybuffer.

Figure 8: SIG rendering with (left) and without GPU decoding.

cessing the correct texel for the corresponding vertex, which is vi-
sualized in Figures 7 and 3 (right). Hence, only one Vertex Buffer
Object (VBO) for these implicit mesh vertices (see Figure 7) needs
to be generated by the JavaScript layer, which reduces the number
of vertex buffer switches on rendering, since for all image geome-
tries (assuming they don’t have different chunk sizes) the same im-
plicit mesh (i.e., the same VBO) is bound. All other data is directly
uploaded as texture to the GPU. This not only decreases the pro-
cessing time but also allows to store more mesh-data on the GPU
since we keep the normalized and quantized data and decode and
generate the 3D coordinates and other vertex properties on the fly
on the GPU while rendering.

The decoding in the vertex shader is split up into two main parts.
First, the xy positions of the implicit mesh vertices, which provide
the texture coordinates as described above, are transformed such
that the center of the texel is sampled instead of the corner to get
the exact value of the data textures. After that, the full precision is
calculated by shifting the summed coordinate samples of one vertex
8 bits to the left (i.e., multiplied with 256) and then adding the new
precision sample of the vertex multiplied with 255. This is done
in a loop until the desired precision n is reached. This sum is then
divided by 2n·8 − 1 to obtain the normalized result, which finally
is transformed to its original value with the help of the bounding
box of the respective mesh patch, which is separately stored in the
geometry node’s ’position’ and ’size’ fields. For the 2D texture
coordinates a similar operation is applied, though 16 bit precision
can be encoded in one RGBA texture. The normals however are
stored in the rgb channels comparable to an object-space normal
map. The colors obviously do not require any decoding. After that,
further rendering works as usual.

5.2 SIG Rendering without GPU Decoding

With Flash or WebGL on older systems and some mobile devices
that don’t support Vertex Texture Units on the GPU, we provide a
SIG software implementation as fallback. Here, all the data textures
are decoded on the CPU and single VBO’s are created for positions,
normals, colors, etc., which are then loaded to the GPU similar to

other geometry nodes (e.g., IndexedTriangleSet). This implemen-
tation is much slower (at least on recent machines) and we loose all
the advantages of the pure GPU version, but at the moment it is the
only way to guarantee that SIG runs on all systems. Figure 8 shows
the difference between both implementations.

5.3 BG Rendering

As outlined in section 4.2, no decoding of binary containers given
as ArrayBuffer is required, since they can be transferred directly to
the GPU. Hence, rendering is very simple: the respective typed ar-
ray views directly map to the required VBO data structures. The
standard rendering code can be used out of the box. However,
while rendering is very fast and easy, accessing the binary encoded
data (BG as well as SIG) is much more difficult than for the tra-
ditional X3D-SAI [Web3D Consortium 2011] or DOM-based ap-
proach, where all index and attribute data are part of the XML rep-
resentation. Though modifying single data values from large vertex
attribute multi-fields is quite unusual in a web application anyway,
one can still fall back to more traditional geometry representations
as trade-off between speed and parameterizability.

5.4 Priority Controlled Rendering

All relevant use-cases and applications include more than a single
mesh and therefore easily hundreds of external SIG or BG data ref-
erences. Therefore, a simple question has to be answered: in what
order should the chunks be downloaded and used for rendering?
FIFO processing could be an option but does not always lead to
the desired user-experience for progressively appearing of objects.
Therefore, we propose a simple but efficient priority-controlled ren-
dering mechanism, which combines the content- or content-type-
specific user preferences with runtime behavior. We use three fac-
tors which influence the final chunk priority to control the ordering
(compare Figure 9).

Content There could be a specific object in the scene, which
should be loaded earlier, and therefore the user can set a factor
per specific SIG or BG node tag.

Chunk type There is a specific chunk-type (e.g. positions or nor-
mals) which should be loaded first. This can be controlled by
a global per scene and type factor. The standard values define
the following order, where the first coordinate set (first 8 bit)
are loaded at the beginning, afterwards normals and texCo-
ords, and than the rest of the coordinate data. This leads to a
nice progressive refinement behavior.

Size and view-frustum While rendering, the priority of yet not
downloaded content is controlled by two additional parame-
ters: the size of the options in world coordinates and whether

Figure 9: Content, view and size controlled priority refinement.

the object is inside of the view-frustum and therefore visible.
The default factors increment the priority for both cases, to
increase the chance that objects of the scene, which are most
relevant, are downloaded earlier.

We are still experimenting with different formulas, but all those
factors lead to a single priority number that is actually used in the
download manager to determine which request is committed to the
browser next. The download manager commits only a small number
of request at once to assure an interactive overall user experience.

It is important to note that the requests to the browser are not guar-
anteed to be processed in a specific order. There are browser-
caches, thread-managers, different file sizes, and server-side down-
load mangers, which all influence the final result. Therefore the
download manager is more used to provide a general behavior but
cannot guarantee a specific order at all. However, we found that
this is usually not a major issue. With Web applications, people are
used to imperfect intermediate results (e.g. not all images are yet
loaded on a standard HTML page) as long as the overall experience
is pleasant and progressively improves.

5.5 Patch Creation

The overall goal of this effort is to increase the user experience
by providing interesting and useful representations of the scene in a
progressive manner more efficiently. Transferring a non-streamable
single large binary representation which is loaded while a spinning
wheel or even progress-bar is presented is not an option. Therefore
finding a streamable and piecewise useful representation is key.

One simple way is to create and transfer patches as parts of the
mesh. Interestingly enough all methods, regular Geometry Im-
ages, SIGs and BGs, need specific patch sizes to work as in-
tended. The original Geometry Images method [Gu et al. 2002]
only worked with genus zero meshes and had parametrization dis-
tortion issues. The original author proposed a multi-chart Geome-
try Image [Sander et al. 2003] which uses an atlas construction to
map the surface piecewise onto charts of arbitrary shape. Our SIG
method works with arbitrary large meshes but for streaming and
rendering speed it makes sense to stick to the same grid size, which
should be power-of-two, since non-power-of-two textures are not
supported on most mobile devices. The BG encoding in addition
has to deal with a hard API limit: WebGL (based on OpenGL ES
2.03) and Flash 11 / Stage3D only support 16 bit indices [Marrin
2011]. Hence, indexed rendering only allows addressing a maxi-
mum of 65.535 vertices per draw call anyway.

Since the elements for SIG- and BG-based meshes do not really
have to represent some closed surface patches, much simpler meth-
ods can be used to cut the triangles in sub-parts. We use simple KD
trees to collect triangles in a minimal bounding box which share
vertices for better cache and triangle-strip-generation operations.

3http://www.khronos.org/registry/gles/specs/2.0/es full spec 2.0.25.pdf

5.6 Interaction and Picking

Both implementations, SIG and BG, work really well with the exist-
ing render-buffer-based picking approach described in [Behr et al.
2010] for handling mouse or touch events and user interaction with
the 3D scene. The BG implementation works almost out of the box
(only the mesh’s bounding box needs to be calculated on the CPU
from the loaded Float32Array with the coordinates), in case
the geometry’s Shape node does not provide the ’bboxCenter’ and
’bboxSize’ hints. Similarly, for the SIG implementation only a few
modifications of the – otherwise very simple – vertex shader used
in the picking-pass are required to provide the coordinate data.

6 X3D Node Design

The current interfaces of both nodes, which we have implemented
in X3DOM [Behr et al. 2010] and in the Instant Reality framework
[FhG 2012], are tailored for performance, not generalized at all,
and only used for prototyping. Any final interface must be har-
monized to hold arbitrary binary references to vertex data (not just
positions, normals, texCoords, and color). We only show their cur-
rent state, which conceptually follows the respective X3D geometry
nodes [Web3D Consortium 2011], for completeness’ sake.

Our prototyped ImageGeometry node to represent SIGs, whose in-
terface is shown below, reads the vertex properties from the at-
tached image files. The ’implicitMeshMode’ field defines the image
mode as outlined in Figure 3 and defaults to our described SIG ap-
proach. As the name implies, ’implicitMeshCount’ (which should
be a power-of-two value) defines the size of the implicit mesh (and
therefore the size of the attribute textures). The used primitive types
are given via the ’primType’ multi-field (e.g. triangle strips, trian-
gles, or points). The multi-field ’vertexCount’ describes how many
vertices are used for each primitive type. To keep the number of
draw calls to a minimum, both fields typically contain two values:
the first bunch of primitives is described via triangle strips, whereas
the rest of the mesh consists of those triangles that would introduce
too many degenerated triangles in the striping pre-process.

The bounding box is described by ’position’ and ’size’, both of type
SFVec3d, which is necessary to correctly scale and translate the nor-
malized patch coordinates for the rendering and picking pass. The
SFNode field index holds the optional index image (cp. Figure 6)
to further reduce the size of the attribute textures, whereas the other
MFNode fields refer to the other vertex attributes like coordinates,
normals and colors. Note that in contrast to standard X3D geome-
try nodes the normals and texture coordinates must be provided, if
lighting and texturing is needed.

ImageGeometry : X3DGeometryNode {
SFString [in,out] implicitMeshMode "auto"
SFVec2f [in,out] implicitMeshCount 256 256
MFInt32 [in,out] vertexCount []
MFString [in,out] primType ["triangles"]
SFVec3d [in,out] position 0 0 0
SFVec3d [in,out] size 1 1 1
SFNode [] index null
MFNode [] coord []
MFNode [] normal []
MFNode [] texCoord []
MFNode [] color []
...

}

Another experimental geometry node to test the different binary
packaging methods is the BinaryGeometry (i.e., BG), whose node
interface is shown next. The ’vertexCount’ and ’primType’ fields
are defined as described above. Likewise, the index field as well as
the other attribute fields hold the URL that refers to the respective

Figure 10: Lossless vs. lossy compression of a 3D hand model.

binary files to be loaded. Since ArrayBuffers can hold various at-
tributes in an interleaved manner, the shown node interface is rather
debatable, because in this case, one also needs to be able to specify
the respective offset and stride into the array view.

BinaryGeometry : X3DGeometryNode {
MFInt32 [in,out] vertexCount []
MFString [in,out] primType ["triangles"]
SFString [in,out] index ""
SFString [in,out] coord ""
SFString [in,out] normal ""
...

}

7 Discussion and Results

7.1 Image Compression

SIGs enjoy implicit compression from the image formats supported
by browsers. RLE encoding can naturally reduce the size of a SIG
container, as well as LZ DEFLATE lossless compression used by
the PNG image format. Because SIGs come separated for index,
vertex and normal data, different compression schemes can be used
for each container. An interesting option we have not yet fully ex-
plored is normal compression via lookup tables in standard GIF
files: geometry normals can be quantized into 256 directions, which
are stored in the color table of a GIF image. The lookup table then
simply indexes into this normal table.

As mentioned, we save geometry in several images, retaining their
original structure and connectivity, since SIGs use images to store
vertex and normal data in an indexed array. This is a major differ-
ence to other, seamless image formats [Purnomo et al. 2004; Gu
et al. 2002]: vertex and normal data are not spatially coherent. A
major downside to this storage type is that compression algorithms
which exploit local coherence cannot work properly. For instance,
JPEG or similar Fourier-based compression types will distort ge-
ometry quite radically. In figure 3 we show an example of an image
containing vertex data compressed with a lossless scheme in direct
contrast to a compression to 80% with JPEG.

Compressing SIGs therefore has to resort to classical non-lossy en-
coding such as RLE or LZW and hence provide only limited com-
pression capabilities in their new domain. Because of these com-
pression issues, streaming operations with lossy video codecs such
as MJPEG can lead to distortions and loss of topology. To remain
faithful to the original geometric properties, an MJPEG compressed
movie stream of SIGs has to maintain a very low compression rate,
which unfortunately defeats the purpose of the compression.

7.2 Dynamic Data Updates

Figure 11 shows two frames of a cloth simulation. The visualiza-
tion is dynamically updated in real-time via MPNG image streams
provided by a Tomcat server to efficiently update the vertex data.
Likewise, videos with lossless encoding can be used for dynamic

Figure 11: Two frames of a cloth simulation that is streamed via
MPNG to the client and visualized in real-time using SIGs.

updates and animations. As previously discussed, this approach is
also suited for streaming large geometries in an LOD-like way.

7.3 Load Timing Comparison

We have captured timings loading the Buddha model from a remote
web server encoded as both BG and SIG, as well as the Horse and
Bunny models, also encoded as BG and SIG, with Chrome 18 on a
Windows 7 machine. All timings were taken with uncached, freshly
started browsers. Averaging out variance due to network latency
and other factors, the BGs will usually outperform the SIGs when
loaded from a local resource with smaller models such as Bunny
and Horse. However, the situation is turned on its head when we
compared the results of a bigger model like the Buddha loaded from
a remote server: here, the BGs usually take approximately 20% up
to 100% (depending on the quality of the Internet connection) more
time to load on average than their respective SIGs.

7.4 Image Operators

An interesting exercise is the application of image operators on
SIGs. An adjustment such as contrast enhancement in image space
translates to a mapping of points in 3D space. Therefore, image
operators can be used for scaling, inversion other geometrically rel-
evant operations on images containing coordinate information. An
important aspect to first note is the spatial incoherence of vertex
properties in SIGs (cf. section 7.1): compression algorithms seek-
ing to exploit neighborhood similarities cannot be used in conjunc-
tion with our approach. This also affects the outcome of spatial
filters applied to vertex property images. E.g., blur operators such
as a Gaussian blur usually distort or destroy the geometry at hand,
as do other filter operations such undersampling, averaging or detail
enhancement and are therefore not useful as 3D operators.

The following operators have useful effects on SIG vertex contain-
ers: brightness (translation), contrast (resize along axis), gamma
(stretch geometry along extremities), negative (invert positions, flip
face directions) and color channel flipping (swizzel operator on ver-
tices). The last two operations are format independent (LDR or
HDR) that generate one-to-one mappings in color space. These op-
erations retain the general structure of the geometry but may flip
face directions from clock-wise to counter-clock-wise. A special
class of image operators only work with set thresholds (usually
given by an LDR representation) such as Solarize: a specific bound
is chosen which limits the space of values and truncates or remaps
values. In case of image solarization, a geometric volume limits the
expansion of the model to an arbitrary threshold and reverses value
growth beyond this point, making geometry grow into itself.

7.5 Applications

Figure 1 (left) shows a walk-trough application realized with SIGs
in X3DOM. To ease the application development by excluding the

Figure 12: Cultural heritage data viewer on iPad 3 WebGL-
enabled browser. This use case is explicitly build with binary ge-
ometry (BG) models, since mobile graphics chips do not yet support
vertex textures units and therefore no GPU-based SIG decoding.

vertex attribute data from the HTML file on the one hand and to
compress this large geometric data set on the other hand we used
our image geometry approach to represent and render the vertex
attribute data by utilizing images as binary data containers. A Cul-
tural Heritage application running on an iPad is shown in Figure 12.
For this use case we explicitly use BG models, since currently only
few mobile graphics chips support Vertex Textures Units needed for
GPU-based decoding of SIGs. Another CH example with a high-
resolution mesh of a laser-scanned historical object that is com-
pressed via the SIG approach is shown in Figure 1 (right), where it
can be seen that point rendering is also supported.

8 Conclusion and Future Work

The SIG and BG approaches both support the overall goal of more
efficient data container for declarative 3D scenes. Both work with
arbitrary point, line or triangle primitives and are much easier to en-
code, decode and render compared to the original Geometry Image
approach proposed by Hoppe et al. SIGs usually lead to smaller
files but need hardware support for Vertex Texture Units for effi-
cient rendering. BGs work perfectly with WebGL and Flash even
on older or mobile devices and are even easier to generate.

We will direct future work into various areas of research. The cur-
rent design and implementation just presents the current state of this
experiment. The current X3D / X3DOM node design for instance
is also only for prototyping and needs to be harmonized into a final
geometry container that holds any type of external binary reference,
which may include a data flow concept to configure the actual CPU /
GPU processing load. Furthermore, we would like to include some
form of hierarchical refinement for images, better striping methods
to reduce the illegal triangle count, and some form of interleaved
vertex data encoding to support even better progressive updates.

Acknowledgements

The described work was carried out in the project v-must, which has
received funding from the European Community’s Seventh Frame-
work Programme (FP7 2007/2013) under grant agreement 270404.

References
ASIRVATHAM, A., AND HOPPE, H. 2005. Terrain rendering us-

ing GPU-based geometry clipmaps. In GPU Gems 2. Addison-
Wesley, ch. 2, 27–45.

BEHR, J., AND ALEXA, M. 2002. Fast and effective striping. In
Proc. of OpenSG Symposium 2002. Report 02i015-ZGDV.

BEHR, J., JUNG, Y., KEIL, J., DREVENSEK, T., ESCHLER, P.,
ZÖLLNER, M., AND FELLNER, D. 2010. A scalable archi-
tecture for the HTML5/ X3D integration model X3DOM. In
Proceedings Web3D 2010, ACM, New York, USA, 185–193.

BEHR, J., JUNG, Y., DREVENSEK, T., AND ADERHOLD, A.
2011. Dynamic and interactive aspects of X3DOM. In Pro-
ceedings Web3D 2011, ACM Press, New York, USA, 81–87.

DONNELLY, W. 2005. Per-pixel displacement mapping with dis-
tance functions. In GPU Gems 2, M. Pharr, Ed. Addison Wesley,
ch. 8, 123–136.

FHG, 2012. Instant Reality. http://www.instantreality.org/.
GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry im-

ages. In Proceedings SIGGRAPH ’02, ACM, New York, NY,
USA, 355–361.

HERNÁNDEZ, B., AND RUDOMIN, I. 2006. Simple dynamic lod
for geometry images. In Proceedings of GRAPHITE ’06, ACM,
New York, NY, USA, 157–163.

HICKSON, I., 2012. HTML5 (W3C Working Draft).
http://www.w3.org/TR/2012/WD-html5-20120329/.

JI, J., WU, E., LI, S., AND LIU, X. 2005. Dynamic lod on gpu.
In Computer Graphics International 2005, 108 – 114.

JOVANOVA, B., PREDA, M., AND PRETEUX, F. 2009. Mpeg-4
part 25: A graphics compression framework for xml-based scene
graph formats. Signal Processing: Image Communication 24, 1-
2, 101 – 114. Advances in three-dimensional TV and video.

KHRONOS, 2012. Typed array specification.
http://www.khronos.org/registry/typedarray/specs/latest/.

LOSASSO, F., AND HOPPE, H. 2004. Geometry clipmaps: terrain
rendering using nested regular grids. In ACM SIGGRAPH 2004
Papers, ACM, New York, NY, USA, SIGGRAPH ’04, 769–776.

MAGLO, A., LEE, H., LAVOUÉ, G., MOUTON, C., HUDELOT,
C., AND DUPONT, F. 2010. Remote scientific visualization of
progressive 3d meshes with x3d. In Proceedings Web3D 2010,
ACM, New York, NY, USA, Web3D ’10, 109–116.

MARRIN, C., 2011. Webgl specification.
https://www.khronos.org/registry/webgl/specs/1.0/.

PRAUN, E., AND HOPPE, H. 2003. Spherical parametrization and
remeshing. In ACM SIGGRAPH 2003 Papers, ACM, New York,
NY, USA, SIGGRAPH ’03, 340–349.

PURNOMO, B., COHEN, J. D., AND KUMAR, S. 2004. Seamless
texture atlases. In Proceedings of the EG/ACM symposium on
Geometry processing, ACM, New York, USA, 65–74.

SANDER, P. V., WOOD, Z. J., GORTLER, S. J., SNYDER, J., AND
HOPPE, H. 2003. Multi-chart geometry images. In Proceedings
of the EG/ACM symposium on Geometry processing, Eurograph-
ics Association, Aire-la-Ville, Switzerland, SGP ’03, 146–155.

SCHWARTZ, C., RUITERS, R., WEINMANN, M., AND KLEIN, R.
2011. Webgl-based streaming and presentation framework for
bidirectional texture functions. In Proceedings VAST 2011, Eu-
rographics, 113–120.

SECONDLIFE, 2009. Sculpted prims: Technical explanation.
http://wiki.secondlife.com/wiki/Sculpted Prim Explanation.

STOCKER, H., AND SCHICKEL, P. 2011. X3d binary encoding
results for free viewpoint networked distribution and synchro-
nization. In Proceedings Web3D 2011, ACM, New York, NY,
USA, Web3D ’11, 67–70.

SUN, 2004. Fast infoset. http://java.sun.com/developer/ techni-
calArticles/xml/fastinfoset/.

W3C (COMMUNITY GROUP), 2012. Declarative 3D for the Web
Architecture. http://www.w3.org/community/declarative3d/.

W3C, 2011. Efficient xml interchange (exi) format.
http://www.w3.org/TR/2011/REC-exi-20110310/.

WEB3D CONSORTIUM, 2011. Extensible 3d (X3D).
http://www.web3d.org/x3d/specifications/.

