
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221010876

Dynamic and interactive aspects of X3DOM

Conference Paper · June 2011

DOI: 10.1145/2010425.2010440 · Source: DBLP

CITATIONS

32
READS

1,270

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Web 3D View project

V-Must.net View project

Johannes Behr

Fraunhofer Institute for Computer Graphics Research IGD

72 PUBLICATIONS 1,794 CITATIONS

SEE PROFILE

Yvonne Jung

University of Applied Sciences Fulda

76 PUBLICATIONS 839 CITATIONS

SEE PROFILE

All content following this page was uploaded by Yvonne Jung on 13 March 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221010876_Dynamic_and_interactive_aspects_of_X3DOM?enrichId=rgreq-1dba2b5e7b4886c6911dee5888bbee8d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMDg3NjtBUzoxMDEzNDM5MjI0OTEzOTdAMTQwMTE3MzY4MjUwMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221010876_Dynamic_and_interactive_aspects_of_X3DOM?enrichId=rgreq-1dba2b5e7b4886c6911dee5888bbee8d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMDg3NjtBUzoxMDEzNDM5MjI0OTEzOTdAMTQwMTE3MzY4MjUwMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Web-3D?enrichId=rgreq-1dba2b5e7b4886c6911dee5888bbee8d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMDg3NjtBUzoxMDEzNDM5MjI0OTEzOTdAMTQwMTE3MzY4MjUwMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/V-Mustnet?enrichId=rgreq-1dba2b5e7b4886c6911dee5888bbee8d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMDg3NjtBUzoxMDEzNDM5MjI0OTEzOTdAMTQwMTE3MzY4MjUwMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1dba2b5e7b4886c6911dee5888bbee8d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMDg3NjtBUzoxMDEzNDM5MjI0OTEzOTdAMTQwMTE3MzY4MjUwMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johannes_Behr?enrichId=rgreq-1dba2b5e7b4886c6911dee5888bbee8d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMDg3NjtBUzoxMDEzNDM5MjI0OTEzOTdAMTQwMTE3MzY4MjUwMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johannes_Behr?enrichId=rgreq-1dba2b5e7b4886c6911dee5888bbee8d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMDg3NjtBUzoxMDEzNDM5MjI0OTEzOTdAMTQwMTE3MzY4MjUwMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Fraunhofer_Institute_for_Computer_Graphics_Research_IGD?enrichId=rgreq-1dba2b5e7b4886c6911dee5888bbee8d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMDg3NjtBUzoxMDEzNDM5MjI0OTEzOTdAMTQwMTE3MzY4MjUwMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johannes_Behr?enrichId=rgreq-1dba2b5e7b4886c6911dee5888bbee8d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMDg3NjtBUzoxMDEzNDM5MjI0OTEzOTdAMTQwMTE3MzY4MjUwMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yvonne_Jung?enrichId=rgreq-1dba2b5e7b4886c6911dee5888bbee8d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMDg3NjtBUzoxMDEzNDM5MjI0OTEzOTdAMTQwMTE3MzY4MjUwMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yvonne_Jung?enrichId=rgreq-1dba2b5e7b4886c6911dee5888bbee8d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMDg3NjtBUzoxMDEzNDM5MjI0OTEzOTdAMTQwMTE3MzY4MjUwMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Applied_Sciences_Fulda?enrichId=rgreq-1dba2b5e7b4886c6911dee5888bbee8d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMDg3NjtBUzoxMDEzNDM5MjI0OTEzOTdAMTQwMTE3MzY4MjUwMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yvonne_Jung?enrichId=rgreq-1dba2b5e7b4886c6911dee5888bbee8d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMDg3NjtBUzoxMDEzNDM5MjI0OTEzOTdAMTQwMTE3MzY4MjUwMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yvonne_Jung?enrichId=rgreq-1dba2b5e7b4886c6911dee5888bbee8d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMDg3NjtBUzoxMDEzNDM5MjI0OTEzOTdAMTQwMTE3MzY4MjUwMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Dynamic and Interactive Aspects of X3DOM

Johannes Behr∗ Yvonne Jung† Timm Drevensek‡ Andreas Aderhold§

Fraunhofer IGD, Darmstadt, Germany

Abstract

The previous publications on X3DOM focused on the general in-
tegration model [Behr et al. 2009] and implementation strategies
[Behr et al. 2010]. The aspects of dynamic and interactive worlds
were an essential part, but not specifically addressed as such. The
recent major additions to the system are CSS Animations and CSS
3D-Transforms as well as various forms of events for user interac-
tion and system monitoring, which complement the existing design
to support a large number of interactive and dynamic use cases.
This overall design, including scene update mechanisms, anima-
tions, and a large number of DOM-based events are thus presented
in this paper as part of a single overall system design.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality I.3.6 [Methodology and
Techniques]: Standards—Languages

Keywords: X3D, HTML5, WebGL, DOM, Web Integration

1 Introduction

The goal of the X3DOM model [Behr et al. 2009; Behr et al. 2010]
is an open and and human-readable 3D scene-graph embedded in
the HTML DOM, which extends the well-known DOM interfaces
only where necessary, and which thereby allows the application de-
veloper to access and manipulate the 3D content by only adding,
removing or changing the DOM elements via standard DOM script-
ing – just as it is nowadays done with standard HTML elements
like <div>, or <canvas>. Thus, no specific plugins
or plugin interfaces like the SAI [Web3DConsortium 2009] are
needed. Furthermore, this seamless integration of 3D contents in
the web browser integrates well with common web dynamic tech-
niques such as DHTML and Ajax, and the web browsers already
provide a complete deployment structure.

The integration model is on the one hand very similar to how SVG
now is part of HTML, but on the other hand it has specific and often
3D related properties which are deeply situated in the field of ma-
terial management and interactive systems. The material manage-
ment, especially in relation to CSS, is still an open research topic,
since user defined CSS properties are still not supported by HTML
and any web browser. For interactive and dynamic systems a overall
design can be presented which should be the foundation for further
work in the field of scene updates, animation, and UI events.

∗email:johannes.behr@igd.fraunhofer.de
†email:yvonne.jung@igd.fraunhofer.de
‡email:timm.drevensek@igd.fraunhofer.de
§email:andreas.aderhold@igd.fraunhofer.de

Figure 1: SVG, Canvas, WebGL, and X3DOM relation.

2 Related Work

The previous publications on the X3DOM framework focused on
the general integration model [Behr et al. 2009] and implementation
strategies [Behr et al. 2010], including X3D plugins and WebGL
[Khronos 2011] backends. Dynamic and interactive aspects where
mentioned, but not yet the main focus of these publications.

Lately, Khronos published the final WebGL [Khronos 2011] speci-
fication in March 2011, and there is already a large number of mid-
dleware components, which build on this low-level API [Kay 2010;
Brunt 2010; Benedetto et al. 2010] to increase its usability. These
libraries are comparable to typical graphics engines as well as to
other JavaScript libraries like e.g. jQuery (cp. http://jquery.com/),
but none of them seamlessly integrates the 3D content into the web
page in a declarative way, nor do they directly connect the HTML
DOM tree to the 3D content.

In addition, using libraries like SpiderGL [Benedetto et al. 2010]
forces the web developer to learn new APIs as well as graphics
concepts. But when considering that the Document Object Model
(DOM) of a web page already is a declarative 2D scene-graph of the
web page, it seems natural to directly utilize and extend the well-
known DOM as scene-graph and API also for 3D content. Hence,
the XML3D system [Sons et al. 2010] provides a very similar over-
all integration model, but in contrast to X3DOM is not based on
X3D [Web3D 2008] at all, and the first paper here focused on the
introduction of the new tag set, but likewise not particularly on dy-
namic and interactive aspects.

3 X3DOM Runtime System

Already the first paper on X3DOM [Behr et al. 2009] stated that the
declarative 3D design includes not just a rendering abstraction but
also a minimal X3D runtime system including e.g. animations and
events. The design is therefore similar to how the SVG integration
was designed (see Figure 1). It maps the DOM subtree to a scene-
graph, which is part of the HTML document and fully integrated in
the DOM, and works with CSS and DOM Events. Therefore it is
not a standard X3D runtime [Web3D 2008] like the Instant Reality

system [IR 2010], since we incorporate DOM changes and events
as major form of update instead of X3D sensor nodes and the like.

The X3DOM system only contains a minimalistic X3D runtime and
maintains the current state of the scene graph, redraws the scene
as needed, receives input from the User Agent’s (UA) event sys-
tem and propagates field/ attribute changes though standard X3D
ROUTES [Behr et al. 2009]. Moreover, the runtime system must
be independent of any specific implementation or backend (e.g.
browser plugin or WebGL), as already introduced in [Behr et al.
2010]. The runtime environment detects changes in the DOM and
coordinates the processing of events, both are the primary means of
generating behaviors in HTML and X3D. The overall system tries
to minimize redraws and only draws the scene anew if the scene,
viewport, and browser page is visible, and if some scene data has
changed or should have changed according to CSS changes. The
main categories for updates are therefore per-frame, time-based
trigger, scene changes, user input, and viewport visibility.

3.1 Per-frame Updates

X3D and X3DOM, like most modern interactive graphics systems,
do not depend on a fixed refresh rate. Therefore, per frame updates
should not be triggered by an extra setInterval() or setTimeout()
function. The application developer should provide a function in-
stead, which will be called every animation frame automatically by
the x3dom runtime:

x3dom.runtime.enterFrame = funcRef;

This general idea of a per-frame callback is not new at all, but re-
ally helpful, especially for smooth but efficient animation. Syntax
and naming are borrowed from the WebGL [Khronos 2011] related
proposal for window.onbeforepaint [Mozilla 2011a].

3.2 Time-based Updates

CSS Animation [W3C 2010] and X3D TimeSensor nodes [Web3D
2008] are both methods to provide time-based triggers and are
mainly used for animation purposes. Both do not change the scene-
graph directly, but fire an X3D event or update the CSS state. For
more information see section 4.

3.3 Scene Changes

The scene-graph holds the declarative 3D description and all (direct
or indirect) changes of the scene should trigger the redraw if neces-
sary. This includes includes the following three main cases, where
the first two where already explained in [Behr et al. 2010].

DOM element changes This includes the inserts/ removals of el-
ement and attribute changes. The application developer can
use JavaScript standard methods like elem.appendChild(),
elem.removeChild(), and elem.setAttribute(). The latter func-
tion needs text encoded values but can handle e.g. HTML
colors like ’blue’ directly.

Field interface Using the standard setAttribute() method to update
attributes and therefore X3D field values every frame is quite
inefficient for large updates (e.g. 10,000 vertices), since the
data has to be encoded and parsed as text value. To acceler-
ate accessing and updating large single- and especially multi-
valued fields we support a subset of X3D’s SAI standard in-
terface to access the field values via elem.getField().

CSS changes An update can also be triggered if any related CSS
structure has changed.

It is essential to notice that the first two changes mentioned above
are monitored and can lead to direct actions. The CSS state however

has to be pulled frequently, since there is no notion of time or frame
in the CSS subsystem.

3.4 User Input and Events

One of the main advantages of the DOM integration is the interac-
tivity of the content, which can also easily be scripted by utilizing
standard web APIs and architectures for integrating user interac-
tions and 3D contents. Generally, the user interaction thereby can
be classified into two main categories: navigating the virtual camera
through the scene and interacting with 3D content (e.g. picking).

Navigation Steering and moving the viewpoint. This form of in-
teraction changes the camera transformation parameters and
therefore needs to trigger a redraw (see section 5).

HTML UI Events Interacting with the scene additionally can be
achieved through UI events only, which thereafter can be used
to change certain parts of the scene. Therefore, e.g. picking a
box in 3D does not necessarily trigger a redraw (section 6).

Environmental Events These are events that build on HTML
events, but which do not reflect a specific form of user interac-
tion. They get fired e.g. if the transformation of an object has
been changed or if a specific sub-tree is now visible. All those
events again do not trigger a redraw automatically (compare
section 7 for our proposal).

In this regard, it is important to notice that any given event type
(e.g. HTML UI Event or the Environmental events) does not trigger
a scene update or redraw automatically. This could be a follow-up,
but it depends on user-code and application logic.

3.5 Viewport Visibility and Refresh Rate

The scene should only be redrawn if its viewport is visible, and
the refresh rate should not exceed the screen refresh rate. Both
would waste resources, which is especially important for mobile
devices. To follow this basic and obvious rule is not always easy
to implement but critical in multi-tasking environments. Visibility
can be easily detected in a native client, and most plugin interfaces
provide callbacks for visibility, but not for the screen refresh rate.

Until very recently, JavaScript didn’t provide the ability to access
this kind of information. Therefore, a new function called re-
questAnimationFrame() lately was introduced by Khronos [Mozilla
2011a] and there already exist various implementations in almost
all UAs. The method now can be used instead of setTimeout() or
setInterval(), and will only be called if the canvas is visible with the
maximum refresh rate the display supports.

4 Animation and Automated Scene Changes

One goal of the system design is to include declarative animation
and automated scene changes into the scene description. Basically,
two possibilities are incorporated, which will be described here.

4.1 CSS 3D-Transforms & Animations

There are several possibilities to animate virtual 3D objects (e.g.
for showing a device in action or visualizing a task), ranging from
updating attributes in a script every frame over standard X3D Inter-
polator nodes [Web3D 2008] up to using CSS-3D-Transforms and
CSS-Animations, which are currently given as W3C working draft
[W3C 2010], and which are only implemented in WebKit-based
web browsers, such as Apple Safari and Google Chrome.

While X3D interpolators are supported by current Digital Content
Creation (DCC) tools (e.g., Blender) and are also able to animate

vertex data (e.g. coordinates or colors), CSS animations are easily
accessible using standard web techniques. However, despite their
smooth web integration, they are only useful for simple rigid trans-
formation changes. The following little code fragment shows an
example on how to use CSS 3D-Transforms to update Transform
nodes for animating their child nodes.

<style type="text/css">
#trans {

-webkit-animation: spin 8s infinite linear;
}
@-webkit-keyframes spin {

from { -webkit-transform: rotateY(0); }
to { -webkit-transform: rotateY(360deg); }

}
</style>
...
<transform id="trans">

<transform
style="-webkit-transform: rotateY(45deg);">

...
</transform>

</transform>

4.2 X3D Interpolators & Followers

Like the CSS 3D-Transforms and Animations, the X3D standard
also brings a well-defined animation framework with correspond-
ing nodes, called interpolators [Web3D 2008]. The range of ani-
mation functionality by the two approaches nearly matches by their
animation variety (linear, easing or Bezier). In extension to the data
type support of the CSS transformations, the X3D interpolators are
offering the same set of types plus interpolators for vertex-based
keyframe animations like the CoordinateInterpolator or the Nor-
malInterpolator, which allows morphing of meshes etc.

The main difference between interpolators and CSS animations is
defined by the binding of interpolators to a value type and not to a
destination property. Any interpolator acts as a single step inside
an animation pipeline. This approach allows creating a signal chain
for typed fields like vectors or scalars. While the interpolator itself
acts as a generator, the output can be routed through any amount
of pipeline elements like chaser or damper, which are part of the
X3D followers component [Web3D 2008]. So the actual output to a
transformation can be modified by a set of intermediate steps. An-
other advantage of X3D interpolators is their keyframe-based na-
ture. While CSS animations are bound to single animation steps, in-
terpolators can have unlimited keys and non-equidistant key times,
which is typical for 3D animations.

X3D Follower nodes support the dynamic creation of parameter
changes by receiving a destination value, e.g. given by a previously
clicked 3D position. Upon this they create an animation that transi-
tions the output value from the current value towards the newly set
destination value by internally using the concept of linear filters as
known from signal processing [Stocker 2006; Web3D 2008]. Like
the interpolators, the follower concept is anchored in X3D by its
field and route concept, and implemented in X3DOM.

5 Navigation

The rendering of virtual content inside a graphics pipeline ulti-
mately is the orthographical- or perspective projection of 3D ge-
ometry onto a 2D plane. The parameters for this projection are
usually defined by some form of virtual camera – here given as
Viewpoint node. Any changes to the camera position or orientation,
as well as changes at the perspective bias are leading to changes
of the projection and view. The interactive manipulation of these
camera parameters is usually called navigation.

5.1 Built-in Navigation

X3DOM, as a minimal X3D runtime system supports different
built-in forms of navigation. This ensures that the application de-
veloper can easily provide an abstract definition without specifying
a certain method. This gives the system the freedom to map a spe-
cific input device or device configuration (e.g. multi-touch screen)
to a meaningful form of interaction. The basic types are set as the
NavigationInfo node’s “type” field.

The X3D standard [Web3D 2008] defines the following navigation
types, which are almost self-explanatory: any (allows the user to
switch freely between all available modes), fly, walk, examine
(suitable for examine a single object from every direction while
rotating and zooming), lookAt (allows the user to pick a point of
interest which the system will focus on), and none. The latter type
disables the navigation interaction by the user with the scene and is
suitable for controlling the camera with some other technique.

The built-in navigation functionality thereby not only allows to
quickly create dynamic 3D scenarios, but can also be more effi-
ciently implemented internally. This is especially important in case
picking is required like for the walk mode, which is implemented
by rendering the scene from different directions (forwards, down-
wards) into an additional buffer to avoid expensive traversals.

5.2 Application-specific Navigation

The system also supports application-specific implementations of
any form of navigation. Since the virtual camera is part of the
DOM, it can be manipulated directly. The developer can grab an
event or device state (e.g., accelerometer) to perform an update of
the transformation and viewing parameters via cam.setAttribute().
If the application should only support this specific type of nav-
igation, it is important to first switch off the built-in mode with
<NavigationInfo type=’none’> in order to avoid any un-
intended interference.

6 DOM Events

The DOM specification (Document Object Model) defines a stan-
dard for accessing HTML (Hypertext Markup Language) and well-
formed XML documents. Anything found in an XML or HTML
document can be accessed, changed, removed, or added program-
matically by means of a tree structure defined by the DOM [W3C
2000a]. The DOM Level 2 specification includes a module defin-
ing a generic event system that describes event flow through a tree
structure, and provides basic contextual information for each event,
whereas in this section we mainly focus on UI events. The follow-
ing classes of events are outlined in the DOM events specification
[W3C 2000b, Section 1.1]:

UI Events Generated by user interactions through an external de-
vice like a mouse, keyboard, etc.

UI Logical Events Device independent events such as focus
change or element triggering notifications.

Mutation Events Events fired by actions that modify the structure
of the document (e.g. node insertion).

6.1 Event Flow

Events, once fired, traverse through the DOM tree in two directions
[W3C 2000b]. First, the events are propagated down the tree to the
target element, this is called the capture phase. Once they reached
their target, the event enters the target phase. Then, during the
bubble phase, the events are bubbled upwards the tree back to the
root element (see Figure 2). Event propagation may be canceled,

which prevents the default action being executed. It is also possible
to capture the event before it reaches its target. This mechanism
allows handling of the event by one of the targets’ ancestors before
its actual target is reached.

As illustrated in Figure 2, the X3DOM implementation follows the
event capture and bubbling phases outlined previously. The X3D
element and its child elements are treated like any other HTML el-
ement embedded in the HTML document and are thus interpreted
as another valid part of that document. In order to allow user in-
teractions with the 3D scene, the X3DOM runtime obviously reacts
to certain UI events. Depending on the action desired, for example
rotating an object in the scene, mouse dragging is recognized and
the scene adapted and rendered accordingly. In contrast to X3D,
where the event flow is propagated through an orthogonal route
graph connected between in- and out-slots (shown in red in Fig-
ure 2), in X3DOM the original DOM event objects are persistent
throughout all phases and then bubbled upwards the tree to allow
parent elements to react to it as well. However, it should be further
explored, in how far the synchronous event processing of X3D in-
teracts and integrates with the asynchronous browser environment.

6.2 DOM Level 2 Events on X3DOM

The DOM specification outlines various different event types in the
UI category, which are required to be supported by X3DOM in or-
der to manipulate 3D scenes. The following UI events are specified
in the DOM Level 2 Events module and likewise processed by the
X3DOM environment [W3C 2000b]:

click When a pointing device is clicked over an element. The click
event is defined as mousedown event immediately followed
by a mouseup event over the same location. The following se-
quence of events are fired: mousedown, mouseup, click. This
event is comparable to the X3D TouchSensor’s “touchTime”
event out-slot.

mousedown Fired when a pointing device button is pressed over
an element – comparable to “isActive” TRUE.

mouseup Fired when the pointing device button is released over
an element – comparable to “isActive” FALSE.

mouseover Fired when the pointer is moved over an element –
comparable to “isOver” TRUE.

mouseout Fired when the pointer is moved away from an element
– comparable to “isOver” FALSE.

mousemove Fired when the pointing device is moved while
over an element. This event is mostly comparable to “hit-
Point changed”, whereas (as always for DOM events) the
mouse position is an attribute of the fired Event object.

With the current DOM Level 2 specification there are no provi-
sions for keyboard events. Therefore key events are considered non-
standard. Most browsers vendors however implement non-standard
keyboard events with their browsers:

keydown Fires when a key is pressed and repeats as long as the
key keeps being pressed.

keypress Fires when a character is being inserted into an e.g. text
input element. It repeats as long as the key is pressed (not
recognized on WebKit/iOS).

keyup Fires when a key is released after the default action of that
key has been performed.

These events are also used by X3DOM to allow for keyboard -based
interaction on the X3D root element, whereas in the X3D standard
key events are handled by the KeySensor node instead, which gen-
erates events when the user presses keys on the keyboard [Web3D
2008]. In order to capture for keyboard events, an HTML ele-

Figure 3: Carousel menu: 3D navigation through 2D “mouse-
move” event combined with 3D “click” event to choose a planet.

ment needs to be able to acquire focus. Since focus behavior with
X3DOM presents an opportunity for future research, it is not yet
implemented on an per-element level. Hence, capturing keyboard
events is currently only possible for the whole X3D scene.

To be able to deal with multiple X3D elements here, the corre-
sponding internal event listeners are – like the mouse events – also
attached directly to the internal canvas element, whose “tabindex”
property therefore must be set to “0” to be focusable. During run-
time, focus itself is given by clicking onto the whole X3D element.

In order to allow the application developer to hook into the event
chain and perform custom actions in reaction to UI events, the
X3DOM runtime allows to attach event handlers to the following
X3D elements: X3DBoundedObject like Group, Transform, and
Shape, and X3DGeometryNode like IndexedTriangleSet or Box.
The following example, where the object’s color is changed on
click, illustrates how the developer can influence the behavior of
the 3D scene by reacting to e.g. a click event on a Shape node.

<x3d>
<scene>
<shape id="shape">
<appearance>
<material id="mat" diffuseColor="red">
</material>

</appearance>
<box></box>

</shape>
</scene>

</x3d>
...
changeColor = function() {
var m = document.getElementById(’mat’);
m.setAttribute(’diffuseColor’, ’green’);

};
element = document.getElementById(’shape’);
element.addEventListener(’click’, changeColor);

The DOM specification also defines mutation events – events that
are fired when the documents is being modified [W3C 2000b].
As already outlined in [Behr et al. 2010], some X3DOM back-
ends (e.g. the WebGL-based one) currently watch and react
to the DOMNodeInserted, DOMNodeRemoved, DOMAttrModified
events, in order to allow the application developer to hook into the
chain and perform custom actions.

6.3 3D Pick Events

Most visible HTML tags can react to mouse events, if an event han-
dler was registered. The latter is implemented either by adding a
handler function via element.addEventListener() or by

Figure 2: Event flow of DOM events (blue) vs. X3D events (red) that are propagated via special routes.

directly assigning it to the attribute that denotes the event type, e.g.
onclick. As already mentioned supports the X3DOM system stan-
dard HTML mouse events like onclick, onmouseover, or onmouse-
move are also supported for 3D objects alike. In addition, we also
propose to create a new “3DPickEvent” type, which extends the
W3C MouseEvent IDL interface [W3C 2000b] to better support
3D interaction. The new interface is defined like follows:

interface 3DPickEvent : MouseEvent {
readonly attribute float worldX;
readonly attribute float worldY;
readonly attribute float worldZ;
readonly attribute float localX;
readonly attribute float localY;
readonly attribute float localZ;
readonly attribute float normalX;
readonly attribute float normalY;
readonly attribute float normalZ;
readonly attribute float colorRed;
readonly attribute float colorGreen;
readonly attribute float colorBlue;
readonly attribute float colorAlpha;
readonly attribute float texCoordS;
readonly attribute float texCoordT;
readonly attribute float texCoordR;
object getMeshPickData (in DOMString vertexProp);

};

This allows the developer to use the 2D attribute (e.g. screenX)
and/ or the 3D attributes – e.g. worldX, worldY, worldZ or localX/
-Y/ -Z for 3D world or object local coordinates respectively –, if the
vertex semantics are given appropriately (in this case the positions).
Analogously, surface normal, texture coordinate, and color (if set)
can be accessed via the correspondent attributes (e.g. normalZ). In
general, the 2D/ 3D event now bubbles, as expected from standard
HTML events, through the DOM tree and can be combined with
e.g. a typical 2D event on the X3D element as in the application
prototype shown in Figure 3.

Since all mouse and keyboard events are also supported directly on
the <x3d> element, it allows the application developer to design
own forms of navigation or mix 2D and 3D references freely. The
example shown in Figure 3 utilizes such events to create a sim-
ple carousel menu, where the 3D navigation is achieved with user-

defined JavaScript code through a 2D mouse event. Here, moving
the mouse over the scene causes the planets to rotate. A standard
mousemove event on the X3D root element is used to get the mouse
pointer’s position values to calculate the planet’s rotation.

However, these events are not just useful to build own navigation
types, but great for anything that needs pixels without a clear refer-
ence to a specific object like a context menu. If additionally an ob-
ject reference is needed, one can also use these events on the 3D ele-
ments (e.g. <group> or <shape>) to get a standard MouseEvent,
which provides pixels and additional 3D properties (e.g. worldX).
Picking of the 3D objects, i.e. the planets, hence is achieved us-
ing a standard click event, where clicking on a planet reveals ad-
ditional information (which in this example links to an appropriate
Wikipedia entry) embedded in an overlay. Likewise, JavaScript’s
click event applied upon a planet’s geometry is used as the trigger.

The getMeshPickData() method additionally can be used to
access generic vertex data. Depending on the currently selected in-
teraction mode, different actions can be performed for the scene,
e.g. color or texture coordinate picking. Figure 4 (middle/ right)
shows a first 3D CAE prototype for the visualization of simulation
data in the web browser using X3DOM, where two examples from
the domain of sheet metal forming (middle) and electromagnetic
field simulation (right) are taken. These application prototypes have
a huge potential to ease the communication and presentation of sim-
ulation results dramatically, without distributing a whole applica-
tion while providing more information than a screenshot.

Here, the example in the middle shows the results of a sheet metal
forming simulation. The material thickness after the forming pro-
cess is color coded and applied via a look-up texture. By clicking
onto a colored region, the corresponding thickness value is obtained
and marked with a yellow arrow and textual information in the top
right of the application. The sliders below can be used to interac-
tively modify the color coding by setting offset, bias, and threshold.
The leftmost image in Figure 4 shows the visualization of a flow
simulation, where the respective color can be retrieved by picking
a certain 3D flow region. This color again maps to a specific tem-
perature, which is obtained by inverting the original look-up value.
An in-depth description of techniques for scientific visualization for
instance can be found in [Schumann and Müller 2000].

Figure 4: Picking of generic vertex and/or fragment properties (left: temperature, middle: material thickness, right: field strength).

6.4 Touch and Multitouch Events

With the recent proliferation of touch and even multitouch devices,
corresponding interfaces become also of interest in browser APIs.
However, the current DOM specification is still lacking a touch
events module. Effort is being taken by major browsers vendors to
implement this functionality as non-standard extensions [Mozilla
2011b].1 Apple’s proprietary Webkit/iOS implementation basically
provides a feature-rich reference of how such functionality could
be integrated into browsers [Apple 2010, Chapter 6, p.59 ff].

In the context of X3D, in [Jung et al. 2008] basic multitouch func-
tionality was proposed with the HypersurfaceSensor node, a spe-
cialized pointing device sensor that handles typical multitouch in-
teraction. However, web technologies and the DOM already pro-
vide an established path for handling user interaction, whereas the
X3D sensor concept seems rather odd to web developers. The ex-
plicit goal of the X3DOM runtime is to minimize duplication and
to use established standard technologies in the web application do-
main. A developer familiar with DOM scripting is able to program
touch interaction using X3DOM by means of registering event han-
dlers for touch events.

Although touch events are not yet widely supported by browsers,
some vendors have entered experimental stage and with Apple
already providing a production ready solution on Webkit/iOS,
other vendors are following. Therefore we propose to extend the
X3DOM system with multitouch support by choosing Apple’s API
as template. Such extensions would result in the following events
that could be registered with X3D nodes (however, the device driver
therefore needs to support touch and gesture events concurrently):

touchstart Fired when an object is placed on the screen.
touchmove Fired when an object (e.g. a finger) touches the device

and moves over its surface.
touchend Fires when an object is removed from the screen.
touchcancel Fires when the touch action is aborted by the system.
gesturestart Fires when two or more objects are touching.
gesturechange Fires when two or more objects are touching the

screen and moving.
gestureend Fires when two or more objects are not touching the

screen anymore.

When one of the above events is fired, a TouchEvent object is passed
into the function handling the event. The event object contains three
lists: touches, targetTouches and changedTouches, which contain

1http://code.google.com/p/chromium/issues/detail?id=16305
http://www.chromium.org/user-experience/multitouch#TOC-Proposed-
behaviors

Touch objects with information about the currently active “fingers”
including data like a unique identifier, the position on screen, and
the event target.

We propose the introduction of a 3DTouch object which amends
touches with 3D information. In contrast to the 3DPickEvent a
3DTouch object is not an event, but an object encapsulated in a
list stored within a TouchEvent provided by the browser. This ad-
ditional layer is required to track multiple touches per event. The
proposed interface could extend the Touch definition specified in
[Apple 2008] adding additional 3D information like shown next:

interface 3DTouch : Touch {
readonly attribute float worldX;
readonly attribute float worldY;
readonly attribute float worldZ;
...

};

Similar to the 3DPickEvent outlined in section 6.3, the application
developer can use 2D and 3D attributes to program interactions with
the scene like in the following example.

<shape>
<appearance>
<material id="mat" diffuseColor="red"></material>

</appearance>
<box ontouchstart="document.getElementById(’mat’)

.setAttribute(’diffuseColor’, ’green’);"
ontouchend="document.getElementById(’mat’)
.setAttribute(’diffuseColor’, ’red’);>

</box>
</shape>

Short of Apple’s iOS implementation, only the Gecko 2.0 engine
currently provides experimental DOM support for touch events
[Mozilla 2011b]. Multitouch and gestures are not supported either,
leaving the implementation as future work for the X3DOM engine.

7 Environmental Events

Inspired by the X3D environmental sensors, which are nodes that
emit events based on some other event that occurs within the envi-
ronment [Web3D 2008], we propose three additional 3D events that
extend the Dom Level 3 UIEvent. These can not only be triggered
by the user, but also indirectly by an animation or an interaction
between two elements within the world. The event interfaces are
shown next.

interface 3DVisibilityEvent : UIEvent {
readonly attribute float sizeHint;
...

}

interface 3DProximityEvent : UIEvent {
readonly attribute object position;
readonly attribute object orientation;
...

}

interface 3DTransformEvent : Event {
readonly attribute array transformations;
...

}

The 3DVisibilityEvent fires whenever the visibility of the given
sub-trees changes, like for example a planet that moves off the
viewport area. The similar X3D concept is the VisibilitySensor,
which likewise detects when a user can see a specific object or re-
gion [Web3D 2008]. Comparable to the X3D ProximitySensor that
generates events when the viewer enters, exits and moves within a
region of space that is defined by a box, the 3DProximityEvent is a
sensor for detecting object-camera transformations.

Finally, the 3DTransformEvent fires in case of object transforma-
tions, and hence can be used similar to the out-slots of an X3D
Transform node. This is done by attaching a callback to the
<transform> element via addEventListener(), which listens for
an event of that type. Obviously, most eventOut slots of X3D nodes,
like the “position” of the Viewpoint node etc., can serve as basis for
new 3D events, but this discussion is left open for future work.

8 Conclusions

Important factors for authoring and rapid development of web ap-
plications are the possibility for declarative content description,
flexible content in general, and interoperability – i.e., write once,
run anywhere (web/ desktop/ mobile). In X3DOM this is achieved
by utilizing the well-known JavaScript and DOM infrastructure of
web browsers also for 3D in order to bring together both, open ar-
chitectures and declarative content design known from web design
as well as imperative approaches known from game engine devel-
opment. Moreover, the application-independent visualization en-
ables context sensitive and on-demand information retrieval, which
is even more of interest for distributed content development using
available web standards. Thus, the unification of 2D and 3D media
development is another essential aspect.

Therefore, in this paper the aspects of dynamic and interactive
worlds were addressed. The recent major additions to the system
are CSS Animations and CSS 3D-Transforms [W3C 2010] as well
as various forms of events for user interaction and system monitor-
ing, which complement the existing design of X3DOM to support
a large number of interactive and dynamic use cases. We therefore
presented the overall design, including scene update mechanisms,
animations, and the incorporation of a large number of DOM-based
events as part of an overall system design.

Future work will be mainly influenced by the discussions and re-
sults of the newly founded W3C incubator group “Declarative 3D”.
Furthermore, we’d like to explore in how far new HTML5 elements
like the <device> tag can be utilized towards interactive Aug-
mented Reality applications and so on.

Acknowledgements

Part of this research has been carried out within the Software-
Cluster (EMERGENT), which was funded by the German ministry
for education and research (BMBF), and within the V-MusT.net
Network of Excellence that has received funding from the Euro-
pean Community’s Seventh Framework Programme.

References

APPLE, 2008. Touch event interface definition.
http://www.opensource.apple.com/source/WebCore/WebCore-
351.9/dom/Touch.idl.

APPLE, 2010. Safari web content guide.
http://developer.apple.com/library/safari/documentation/Apple-
Applications/Reference/SafariWebContent/.

BEHR, J., ESCHLER, P., JUNG, Y., AND ZÖLLNER, M. 2009.
X3DOM – a DOM-based HTML5/ X3D integration model. In
Proceedings Web3D ’09, ACM Press, New York, USA, 127–135.

BEHR, J., JUNG, Y., KEIL, J., DREVENSEK, T., ESCHLER, P.,
ZÖLLNER, M., AND FELLNER, D. 2010. A scalable architec-
ture for the HTML5/ X3D integration model X3DOM. In Proc.
Web3D 2010, ACM Press, New York, USA, 185–193.

BENEDETTO, M. D., PONCHIO, F., GANOVELLI, F., AND
SCOPIGNO, R. 2010. Spidergl: a javascript 3d graphics library
for next-generation www. In Proc. Web3D 2010, ACM, New
York, USA, 165–174.

BRUNT, P., 2010. Glge. http://www.glge.org/.

IR, 2010. Instant Reality. http://www.instantreality.org/.

JUNG, Y., KEIL, J., BEHR, J., WEBEL, S., ZÖLLNER, M., EN-
GELKE, T., WUEST, H., AND BECKER, M. 2008. Adapt-
ing X3D for multi-touch environments. In Proceedings Web3D
2008, ACM Press, New York, USA, 27–30.

KAY, L., 2010. Scenejs. http://www.scenejs.org/.

KHRONOS, 2011. Webgl specification. https://cvs.khronos.org/svn/
repos/registry/trunk/public/webgl/doc/spec/WebGL-spec.html.

MOZILLA, 2011. Mozbeforepaint. https://developer.mozilla.org/
en/DOM/window.onmozbeforepaint.

MOZILLA, 2011. Touch events. https://developer.mozilla.org/en/
DOM/Touch events.

SCHUMANN, H., AND MÜLLER, W. 2000. Visualisierung –
Grundlagen und allgemeine Methoden. Springer Verlag.

SONS, K., KLEIN, F., RUBINSTEIN, D., BYELOZYOROV, S., AND
SLUSALLEK, P. 2010. Xml3d: interactive 3d graphics for the
web. In Proc. Web3D 2010, ACM, New York, USA, 175–184.

STOCKER, H. 2006. Linear filters: animating objects in a flexible
and pleasing way. In Proceedings of the eleventh international
conference on 3D web technology, ACM, New York, NY, USA,
Web3D ’06, 119–129.

W3C, 2000. Document object model (dom) level 2 core specifica-
tion. http://www.w3.org/TR/DOM-Level-2-Core/.

W3C, 2000. Document object model (dom) level 2 specifi-
cation events module. http://www.w3.org/TR/DOM-Level-2-
Events/events.html.

W3C, 2010. Css 3d transforms. http://dev.w3.org/csswg/css3-3d-
transforms/.

WEB3D. 2008. X3D. http://www.web3d.org/x3d/specifications/.

WEB3DCONSORTIUM, 2009. Scene access interface(sai), iso/iec
19775-2.2:2009. http://www.web3d.org/x3d/specifications/ISO-
IEC-FDIS-19775-2.2-X3D-SceneAccessInterface/.

View publication statsView publication stats

https://www.researchgate.net/publication/221010876

