
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221011041

X3DOM: a DOM-based HTML5/X3D integration model.

Conference Paper · January 2009

DOI: 10.1145/1559764.1559784 · Source: DBLP

CITATIONS

242
READS

1,051

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Arvida View project

instant3Dhub View project

Johannes Behr

Fraunhofer Institute for Computer Graphics Research IGD

72 PUBLICATIONS 1,794 CITATIONS

SEE PROFILE

Yvonne Jung

University of Applied Sciences Fulda

76 PUBLICATIONS 839 CITATIONS

SEE PROFILE

All content following this page was uploaded by Yvonne Jung on 20 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221011041_X3DOM_a_DOM-based_HTML5X3D_integration_model?enrichId=rgreq-17094e3a0904b6709a6dc34241dc4420-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMTA0MTtBUzo5ODk5NzgwMDgwMDI3MkAxNDAwNjE0MzIzNjgw&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221011041_X3DOM_a_DOM-based_HTML5X3D_integration_model?enrichId=rgreq-17094e3a0904b6709a6dc34241dc4420-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMTA0MTtBUzo5ODk5NzgwMDgwMDI3MkAxNDAwNjE0MzIzNjgw&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Arvida?enrichId=rgreq-17094e3a0904b6709a6dc34241dc4420-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMTA0MTtBUzo5ODk5NzgwMDgwMDI3MkAxNDAwNjE0MzIzNjgw&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/instant3Dhub?enrichId=rgreq-17094e3a0904b6709a6dc34241dc4420-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMTA0MTtBUzo5ODk5NzgwMDgwMDI3MkAxNDAwNjE0MzIzNjgw&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-17094e3a0904b6709a6dc34241dc4420-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMTA0MTtBUzo5ODk5NzgwMDgwMDI3MkAxNDAwNjE0MzIzNjgw&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johannes_Behr?enrichId=rgreq-17094e3a0904b6709a6dc34241dc4420-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMTA0MTtBUzo5ODk5NzgwMDgwMDI3MkAxNDAwNjE0MzIzNjgw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johannes_Behr?enrichId=rgreq-17094e3a0904b6709a6dc34241dc4420-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMTA0MTtBUzo5ODk5NzgwMDgwMDI3MkAxNDAwNjE0MzIzNjgw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Fraunhofer_Institute_for_Computer_Graphics_Research_IGD?enrichId=rgreq-17094e3a0904b6709a6dc34241dc4420-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMTA0MTtBUzo5ODk5NzgwMDgwMDI3MkAxNDAwNjE0MzIzNjgw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johannes_Behr?enrichId=rgreq-17094e3a0904b6709a6dc34241dc4420-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMTA0MTtBUzo5ODk5NzgwMDgwMDI3MkAxNDAwNjE0MzIzNjgw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yvonne_Jung?enrichId=rgreq-17094e3a0904b6709a6dc34241dc4420-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMTA0MTtBUzo5ODk5NzgwMDgwMDI3MkAxNDAwNjE0MzIzNjgw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yvonne_Jung?enrichId=rgreq-17094e3a0904b6709a6dc34241dc4420-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMTA0MTtBUzo5ODk5NzgwMDgwMDI3MkAxNDAwNjE0MzIzNjgw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Applied_Sciences_Fulda?enrichId=rgreq-17094e3a0904b6709a6dc34241dc4420-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMTA0MTtBUzo5ODk5NzgwMDgwMDI3MkAxNDAwNjE0MzIzNjgw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yvonne_Jung?enrichId=rgreq-17094e3a0904b6709a6dc34241dc4420-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMTA0MTtBUzo5ODk5NzgwMDgwMDI3MkAxNDAwNjE0MzIzNjgw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yvonne_Jung?enrichId=rgreq-17094e3a0904b6709a6dc34241dc4420-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxMTA0MTtBUzo5ODk5NzgwMDgwMDI3MkAxNDAwNjE0MzIzNjgw&el=1_x_10&_esc=publicationCoverPdf

Copyright © 2009 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
Web3D 2009, Darmstadt, Germany, June 16 – 17, 2009.
© 2009 ACM 978-1-60558-432-4/09/0006 $10.00

X3DOM – A DOM-based HTML5/ X3D Integration Model

Johannes Behr∗

Fraunhofer IGD

Peter Eschler†

NewMediaYuppies GmbH

Yvonne Jung‡

Fraunhofer IGD/ TU Darmstadt

Michael Zöllner§

Fraunhofer IGD/ TU Darmstadt

Figure 1: Moving from a loose plugin-based Scene-Access-Interface (SAI) to the tightly integrated X3DOM model.

Abstract

We present a model that allows to directly integrate X3D nodes
into HTML5 DOM content. This model tries to fulfill the promise
of the HTML5 specification, which references X3D for declarative
3D scenes but does not define a specific integration mode. The goal
of this model is to ease the integration of X3D in modern web appli-
cations by directly mapping and synchronizing live DOM elements
to a X3D scene model. This is a very similar approach to the cur-
rent SVG integration model for 2D graphics.
Furthermore, we propose a framework that includes a new X3D
Profile for the DOM integration. This profile should make imple-
mentation simple, but in addition we show that the current X3D run-
time model still scales well. A detailed discussion includes DOM
integration issues like events, namespaces and scripting. We finally
propose an implementation framework that should work with multi-
ple browser frontends (e.g. Firefox and WebKit) and different X3D
runtime backends.
We hope to connect the technologies and the X3D/ W3C commu-
nities with this proposal and outline a model, how an integration
without plugins could work. Moreover, we hope to inspire further
work, which could lead to a native X3D implementation in browsers
similar to the SVG implementations today.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality I.3.6 [Methodology and
Techniques]: Standards—Languages

Keywords: X3D, DOM, HTML5, Web integration, Real-time

1 Introduction and Motivation

Right after the first 2D HTML pages went online, people where
thrilled with the idea of having 3D content on the net. The ability
to visualize and manipulate spatial content in real-time seemed to
be the next key-enabler for a wide number of application areas. Var-
ious proprietary and a few standard solutions had been developed

∗e-mail:johannes.behr@igd.fraunhofer.de
†email:p.eschler@newmediayuppies.com
‡e-mail:yvonne.jung@igd.fraunhofer.de
§e-mail:michael.zoellner@igd.fraunhofer.de

over the last 15 years and quite some of them introduced a really
new and revolutionary model (e.g. online gaming). However, there
is still not a single technology widely used, even though we now
have rendering and network performance in every phone.

A number of systems and solutions have been implemented in or-
der to overcome this problem, but most of these approaches where
heavily technology driven. Nevertheless, people usually detect or
believe to detect a specific short-come and add a new feature to an
existing environment or standard. Thus a number of rich exten-
sions (e.g. multi-language scripting, distribution, security-layer)
have been added to individual solutions confronting technology
providers and content distributors with a huge amount of over-
loaded environments (e.g. X3D, Second Live, Game Engines, etc.).
These are all quite mature but at the same time only provide isolated
solutions. Some of them offer Browser-Plugins for their engines,
however, the application-model and technologies for scripting and
distribution are unique to each system and not tightly coupled with
todays web-technologies.

On the other hand the web evolved heavily over the last 15 years.
We started with static HTML-pages with inline styling, then sep-
arated the content from the presentation (CSS), and today we are
building dynamic web pages based on JavaScript and AJAX tech-
nology. The basis for these changes are developments driven by the
XHTML and HTML5 communities as well as browser systems like
Mozilla and WebKit.

Those technologies are available and widely used today, and they
are the basis for current web-services and the appearing cloud com-
puting. These applications manipulate dynamic content and style
of an XML-description represented by a DOM-model. This DOM-
model includes a 2D-graph describing the content of a specific
application. These standards include methods to manipulate this
DOM over specific scripting interfaces, which leads to dynamic
changes. There are web-technologies available, which provide dis-
tribution, communication and security of content.

All these developments are not directly available for the existing 3D
environments since these systems developed their own, system- or
standard-specific solutions for e.g. scripting and distribution over
the years. Today we have reached the state where we have a 2D
web and various 3D environments developed in parallel.

To overcome the current state 3D content must become a first class
web media that can be created, modified and shared in the same
way as text, images, audio and video is handled on the web right
now. Key to this request is a direct integration into the DOM tree.

127

2 The current State of 3D in the Web

There has been a large number of systems and proposals over the
last 15 years. Most of the systems disappeared over time, and to-
day we have a number of systems following the traditional browser-
plugin-based approach as well as a small number of systems, which
try to integrate the rendering system directly into the browser archi-
tecture or fake 3D renderer by utilizing 2D pipelines

2.1 Rendering with Plugins

All plugin-based systems have two major drawbacks. First, they are
plugins and not installed by default on most systems. Therefore, the
user has to deal with plugin installation, security and browser or OS
incompatibility issues. Second, the presented systems define an ap-
plication and event model inside of the plugin, which is decoupled
from the DOM content. Developers, who try to develop integrated
web-applications or web-pages that use both, the DOM/browser
and the plugin-model, have to deal with the small plugin-specific
interface and it’s synchronization capabilities. We believe that these
major drawbacks are one reason why plugin-based systems, besides
Flash, were not successful over the years.

2.1.1 Flash and PaperVision

Adobe Flash [ado b] is a multimedia platform currently developed
and distributed by Adobe Systems[ado c]. Since its introduction
in 1996, Flash has become a popular method for adding animation
and interactivity to web pages. Flash is commonly used to create
animations, advertisements, and various web page components, to
integrate video into web pages, and more recently, to develop con-
tent rich Internet applications.

Until the latest update of Flash, Version 10 [ado b], there was no
real-time 3D support at all. However, authoring tools such as Di-
rector [ado a], Cult3D [cul] and Anark [ana] support 3D graphics
natively and make it easy to incorporate 3D elements into web-
based 2D-movies. Flash, until Version 10, does only know how to
display 2D vector shapes on the screen and how to calculate math
expressions. Hence people have built simple 3D rendering systems
by exploiting these 2D vector shapes, like PaperVision3D[Project].
Even so the results are very impressive, they are limited to simple
3D effects and shapes.

Flash Version 10 [ado b] now includes simple 3D transformations
and objects, but they are very limited and only designed for simple
3D composite and GUI effects. However, the PaperVision people
started to update their system to utilize the new Version fully and
the new system will be called PaperVisionX [Project]. Since they
already have produced very impressive results on the 2D render
pipeline this is definitely some development to watch.

2.1.2 Silverlight

Microsoft Silverlight [Microsoft] is a programmable web browser
plugin that enables features such as animation, vector graphics and
audio-video playback that characterizes rich Internet applications.
It was developed by Microsoft as Flash alternative and is based on
the .Net framework. Even so Microsoft provides Plugins for Win-
dows and Mac, the user and install base is much smaller compared
to Flash.

Since Microsoft follows the development of Flash very closely the
situation today is very similar. They even dropped the native 3D
support of WPF (an successor of Silverlight) since Flash had no
3D support at that time. Until the very last release, Version 3.0,

which was unveiled at the MIX091 Silverlight did not have native
3D support. People where faking 3D content using similar tech-
niques like in Flash. A new feature in Silverlight 3 are the so-called
Perspective Transforms. They allow transforming 2D objects in a
3D coordinate system, but no real 3D shapes – which is again very
similar to the last Flash version.

2.1.3 Java, Java3D, JOGL and JavaFX

Even so Sun were pushing Java [Sun a] as client-side technique
and were providing browser-plugins for integrating Applets, Java is
today mainly used for server-side services and applications. Com-
pared to Flash or even Silverlight it has a much smaller user and
install base since it was never officially supported on Windows by
Microsoft and early implementations were lacking the performance
improvements today’s Java runtimes offer.

The Java3D [Sun b] runtime, a scene-graph system that incorpo-
rates the VRML/X3D design, was also popular for desktop-based
applications but its power was never really utilized for the web and
today it is no longer supported by Sun at all. Sun dropped the
high-level Java3D library and now provides a lower level interface,
which provides direct language-bindings for the OpenGL interface.
This interface is called JOGL [Sun d] and e.g. used in the Xj3D run-
time. JavaFX [Sun c], officially announced 2008, is the last effort
by Sun to build an alternative technology to Flash based on Java. It
offers similar media and 2D elements but does not have any official
3D support.

2.1.4 O3D

O3D [Google 2009b] is yet another graphics API for creating rich,
interactive 3D applications within a browser. The system consists
of two layers. The lower level is implemented using C/C++ as
browser plugin and provides a geometry (as vertex buffers) and
shader abstraction that is mapped to OpenGL [Khronos 2009b] or
DirectX [Microsoft 2009]. The higher level API is implemented
in JavaScript and provides a scene-graph API similar to OpenSG
[OpenSG 2009] (C++ based), Java3D [Sun b] (Java-based), or
C3DL [Bishop 2008] (JavaScript).

The target audience are JavaScript programmers who need the flex-
ibility of a low-level graphics API. Even so the model of the scene-
graph is close to existing standards, e.g. X3D [Web3DConsortium
2008], it does not provide a method to define the content in a declar-
ative way. Application developers have to use JavaScript code to
build and manipulate the graph-content. However, there are of-
fline processing tools, which allow transcoding declarative 3D data
(e.g. Collada files [Arnaud and Barnes 2006]) into a number of
JavaScript-calls, which can be used to build the tree structure.

The system also provides basic functions, similar to other scene-
graph APIs, for picking and culling. However, they are imple-
mented in the JavaScript-layer and therefore they are slower com-
pared to native implementations provided by high-level runtime ab-
stractions as e.g. included in X3D-browsers. Performance in gen-
eral may be a problem since the O3D model forces the developer
to implement all parts of the application logic and behavior (e.g.
physics) in JavaScript. Google hopes that the latest improvements
in the V8 JavaScript engine [Google 2009c] will help to minimize
this issue but there will always be a potential performance hit.

2.1.5 X3D

X3D is an ISO standard [Web3DConsortium 2008] that describes
an abstract functional behavior of time-based, interactive 3D, mul-

1MIX09: Las Vegas, March 18-20th 2009

128

Figure 2: X3D data-encodings and programming language bind-
ings – DOM is just a recommendation.

timedia information. It supports a multi-parent scene- and event-
graph. The standard is IO-device independent, portable and sup-
ports multiple datafile-encodings. It has the ability to encode the
scene using an XML syntax, Open Inventor-like syntax derived of
VRML97, or by using a binary FastInfoSet2 based binary encoding.
It is the successor to VRML97 and includes a large number of new
and extended features and components (e.g. Humanoid Animation,
NURBS, GeoVRML and so on).

The X3D specification [Web3DConsortium 2008] includes various
internal and external APIs and a full runtime, event and behavior
model, and is therefore much more than a simple exchange for-
mat. X3D defines several profiles (sets of components) for var-
ious levels of capability including X3D Core, X3D Interchange,
X3D Interactive, X3D CADInterchange, X3D Immersive, and X3D
Full. Browser producers can define their own component exten-
sions prior to submitting them for standardization by the Web3D
Consortium.

There is a web-browser integration model right now which al-
lows running plugins inside a browser. The browser holds the
X3D scene internally and the application developer can update
and control the content using the Scene Access Interface (SAI)
[Web3DConsortium a], which is part of the standard. The standard
already defines an integration model for DOM-Nodes, as part of
SAI, but the current state only imports the DOM-elements a single
time. There is currently no update or synchronization mechanism.

A subset of X3D is XMT-A, a variant of XMT, defined in MPEG-
4 Part 11. It was designed to provide a link between X3D and
3D content in MPEG-4 (BIFS). The abstract specification for X3D
(ISO/IEC 19775) was first approved by the ISO in 2004, whereas
the XML and ClassicVRML encodings for X3D (ISO/IEC 19776)
were approved in 2005.

2.1.6 MPEG-4 and MPEG-4 Part 11

MPEG-4 is a suite of standards that has many ”parts”, where each
part standardizes various entities related to multimedia, such as au-
dio, video, and other content formats. The MPEG-4 Part 11, or
Binary Format for Scenes (BIFS) is a binary format for two- or
three-dimensional audiovisual content. It is based on X3D and Part

2http://java.sun.com/developer/technicalArticles/xml/fastinfoset/

11 of the MPEG-4 standard. BIFS is a MPEG-4 scene description
protocol for composing MPEG-4 objects, describing interactions
with MPEG-4 objects and for animating 2D and 3D MPEG-4 ob-
jects [Pandzic and Forchheimer 2002].

Therefore, there is a 3D subset in MPEG-4 but this fact is neither
well known nor supported at all. None of the major MPEG-4 play-
ers supports 3D content at all and therefore, today it is unfortunately
no available technology for web-application developers.

2.1.7 Collada

Collada [Arnaud and Barnes 2006] is not really a single technol-
ogy but a 3D-file standard for content exchange now developed by
the Khronos group. It was started by Sony and Intel to improve
the interoperability of DAE-tools. The main goal was to ease and
streamline the game development process and existing game cre-
ation pipelines. The specification does not include, unlike the X3D
specification, a runtime- or event-model, which would allow defin-
ing interactive elements or the behavior and content.

Therefore, it is really designed as intermediate format which can
be used in the creation pipeline together with a final deployment
format like X3D. The special use case, developing web applica-
tions with Collada and X3D, is elaborated by Arnaud and Parisi
[Arnaud and Parisi]. There are other fields of cooperation between
the Web3D consortium and the Khronos group which led finally to
the official liaison [Web3DConsortium c]. Even so Collada is not
build as deployment format, there are some tools, e.g. GoogleEarth
[Google], which utilize Collada data-files directly to define content
for the runtime-environment.

2.2 Rendering without Plugins

There are several proposals available today which utilize existing
internal 2D browser techniques to fake a 3D pipeline or even some,
which really try to provide an abstraction for the 3D hardware layer
directly to the web-application developer without any additional
plugin. All these efforts are in an early development state and not
standardized in any way right now. However, there is a large inter-
est in these techniques since they allow building more interesting
web-applications.

2.2.1 CCS/SVG Rendering Solutions

The current browser techniques like CSS [W3C 2009a], Can-
vas [W3C 2009c], and SVG [W3C 2009d] do not support 3D at
all. With the enormous improvements in browser and JavaScript
[ECMA] performance over the last years people started to use
these 2D elements to build 3D pipelines based on DHTML tech-
niques. Systems like SVG-VML-3D [Tautenhahn 2006], tree-
builder [treebuilder] and especially the latest Google chrome ex-
periments [Google 2009a] are very impressive examples of how
powerful the current systems are.

Apple even added some 3D CSS transformations [Apple 2008] to
their WebKit engine. But it should be noted, that these 3D trans-
forms only apply to 2D elements. However, the transforms allow
a web developer to translate, scale, rotate, skew, and change the
perspective of almost any DOM element in 3D space, resulting in
some rather spectacular effects. However this is still far from a full
3D scene setup as is for instance provided by X3D.

2.2.2 Hardware Accelerated Rendering

The goal of this proposal is to have an 3D rendering ,which can be
hardware accelerated but also a basic feature of any standard web-

129

browser. Recently, there have been some developments with simi-
lar goals, e.g. the Canvas3D [Vladimir Vukicevic 2009] extensions
from Mozilla and 3D-Context [Tim Johansson 2007] from Opera.
Both more or less wrap OpenGL [Khronos 2009b] or OpenGL-
ES [Khronos 2008] and allow web developers to call OpenGL-
commands for a specific canvas directly. The Khronos Group even
launched an initiative to create an standard for this type of integra-
tion [Khronos 2009a] very recently (24th March 2009).

This works quite well in general since OpenGL [Khronos 2009b]
is a stable abstraction for 3D graphics subsystems. The standard is
utilized for more than 20 years for e.g. games (DOOM III, WOW),
Second Live and almost all CAD/CAM systems, and is available
on all major and minor platforms. However, it is a very low level
interface, where the JavaScript programmer has to deal with every
triangle and transformation. This has the advantage that the appli-
cation developer is free to use whatever visualization model he can
think of but it is hard to just visualize a complex 3D model.

People started to develop libraries, like C3DL [Bishop 2008]
or X3DomCanvas3D [Excors 2007], to overcome this drawback.
These libraries allow loading and displaying more complex data
and models more easily, however, performance is a main issue since
they have to be implemented in JavaScript, and graphics related al-
gorithms, e.g. culling and collision detection, tend to be complex
and runtime intensive.

2.3 The HTML5 Promise

Most people do not realize this important fact but the latest HTML5
specification already explicitly utilizes X3D for declarative 3D
scenes. However, the HTML5 specification only states a single line
for declarative 3D scenes [W3C 2009b]:

12.2 Declarative 3D scenes

Embedding 3D imagery into XHTML documents
is the domain of X3D, or technologies based on X3D
that are namespace-aware.

Therefore, HTML5 does already define how X3D data should be
included into the DOM but does not define how the connection to
the runtime system should look like. The HTML5 standard does
not specifically define, how the DOM integration should look like
or, even more important, how to access the scene-graph content.
The specification does not define at all if this 3D imagery should
be produced in place, similar to SVG content, or if this DOM ele-
ments should just be data containers available to an X3D runtime
system that exists elsewhere. So far the current X3D SAI Specifica-
tion supports the latter one. It allows importing DOM-content from
the browser space into an X3D scene living inside of an additional
plugin. However there is no update or even live mechanisms and
therefore it is a very limited interface.

3 The X3DOM Architecture

As the previous sections show there are a number of activities right
now to bring 3D to the web. However they all have different draw-
backs which we try, at least partly, to address in our architecture.

Most of the current plugin-based systems and standards offer small
interfaces to the runtime- and application-model. These plugins
include their own runtime-systems which control all the visualiza-
tion, interaction, communication and distribution issues internally.
A new integration model should avoid new plugins or system in-
terfaces but should rather be accessible through the standard Docu-
ment Object Model (DOM). This was the same model for the first
generation SVG viewers years ago. Today, SVG is an integrated

part of a modern Web-browser and the SVG elements can be di-
rectly manipulated utilizing the same DOM technology used for
HTML content.

Flash and Silverlight are plugin-based and still have very little sup-
port for 3D which limits the application developer to visual effects.
X3D has a full scene-graph model and already includes some DOM
import mechanism but it does not support live DOM data. X3D
applications also need plugins to perform scripting, animation and
rendering right now. The recently developed JavaScript/OpenGL
integration, proposed by Mozilla and Khronos[Khronos 2009a], is
a nice abstraction which will run without plugins but really needs
an internal scene-graph extension, like X3D, to perform well.

Thus, we propose a more abstract scene-graph layer that should be
directly mapped to DOM elements. The scene-graph model is a vi-
sualization data structure, which is well established and able to han-
dle large datasets efficiently. And even more important, it allows the
application developer to define the scene in a declarative way sim-
ilar to other web-technologies like SVG or XHTML and not just a
programming interface like OpenGL. Libraries like [Excors 2007]
try to integrate DOM declaration with a canvas based rendering ap-
proach but decouple both which increases the complexity.

Therefore, we present a more integrated and simpler solution. The
solution is based on X3D and HTML5. We use X3D as scene graph
model for three reasons. First it is a mature and established ISO
standard which already defines an XML encoding. Second, as men-
tioned in section 2.3 the HTML5 specification already explicitly
utilizes X3D for declarative 3D scenes. Last but not least, there al-
ready is a DOM tree interface described in the X3D-Programming
Language binding interface [Web3DConsortium 2008], but an up-
dating mechanism for live and changing DOM content is missing.
We use HTML5 because it already utilizes X3D for declarative 3D
scenes. But again, the HTML5 standard does not specifically de-
fine, how the DOM integration should look like or, even more im-
portant, how to access the scene-graph content. The current situa-
tion does also, similar to [Excors 2007], decouple the plugin-DOM-
object and DOM-data-elements which leads to even more confusion
since both are XML based.

We propose to extend this integration model to produce the im-
ages not in an extra plugin but rather in place, similar to how SVG
works today. To ease the integration and development the model
will only support a well defined subset of the full X3D specifica-
tion and exclude all the scripting and distribution from the X3D
execution Context which shares the data with the DOM-tree. The
X3D-nodes will be directly integrated as DOM elements. The X3D
subsystem will be mainly used to render the scene. All scene-graph
manipulation in the DOM execution Context will be done using
the standard DOM-based browser scripting interfaces as in conven-
tional DHTML documents.

Thus, we can improve the state of the current 3D-Web integration
by not introducing more but less technology. The key is to reduce
the 3D-system to the visualization component and to borrow web-
technology for e.g. dynamics, distribution, security and scripting.
A slim environment for a single point of access fusing traditional
environments into 3D worlds adopting new strategies based on an
appropriate and extended model avoiding ”yet another plugin”.

The proposed architecture, called X3DOM, acts as a connector for
the HTML5 and X3D world and content. The goal is to support
HTML5 content that includes X3D data in a separate namespace
inside of the browser’s DOM tree. The foundation for this design
is the HTML5 specification [W3C 2009b], which already utilizes
X3D for this purpose. The proposed architecture tries to explore
this model by providing the the missing link between both worlds.

130

Figure 3: X3DOM overview showing the components of the proposed integration framework.

Therefore, it not just connects the actual content but tries to bridge
the gap between the two communities.

3.1 Connector

The connector is the inner core of the proposed architecture. It con-
nects the web-browser frontends with the X3D backends and sup-
ports mechanisms to communicate changes in the DOM or X3D
representation. The architecture does not use the DOM-tree for
rendering directly but creates and synchronizes an X3D-tree rep-
resentation. It should include a DOM/X3D adapter to support dif-
ferent backends and frontends. We plan to have at least two fron-
tend adapters as Firefox- and WebKit-Extensions and two back-
end adapters for different X3D runtimes (e.g. Instant Reality [?],
FreeX3D [Stewart]).

The frontend adapter must be able to access the DOM tree content
directly. It should not read and parse an XML-data-stream but read
and write the DOM representation. Therefore the backend adapter
has direct access to the X3D runtime context including the X3D
scene, which reflects the DOM tree. The main task of the connector
is to keep both representations in sync and distribute changes in
both directions.

3.2 Model Updates

Any updates on the DOM tree, like creates, disposes and changes to
DOM-elements, must be reflected to the X3D tree using the back-
end adapter. This includes DOM elements that directly represent
X3D nodes but also additional structures like X3D Routes.

3.3 Observer Responses

Depending on the supported Profile the X3D execution-model can
create changes in the X3D-tree based on time or user interaction.
The connector must be able to distribute those changes back into the
DOM representation. This will be enabled by connecting observers
to specific X3D-tree elements (e.g. Sensors) which will distribute
these changes.

3.4 Media streams

The proposed architecture must be able to handle media down- and
upstreams through the connector component.

3.4.1 Media Downstream

Elements in the X3D namespace can reference external media el-
ements like images and movies for texturing and sound. The
X3DOM architecture must be able to resolve these external pack-
ages using the browser URI/URL streaming mechanism. This
should allow to downstream and integrate media through the
browser into the X3D representation.

3.4.2 Media Upstream

At least the rendering results from the visualizer must be provided
by the X3D-backend. However, usually this is not a pixel-image
but a buffer as part of a given graphic-context (e.g. OpenGL or
Direct3D). Therefore the architecture must be able to request and
transfer an graphics-context once from the browser-frontend to the
X3D-backend. Afterwards, synchronized updates and upstreams
will be performed by the backend. The resulting image, including
color and transparency information, will be available for any further

131

Figure 4: The proposed DOM Profile shown in relation to the ex-
isting X3D Profiles.

CSS composite requests.

3.5 Scalability and Multi-Profile support

The proposed architecture allows integrating X3D data directly into
XHTML content. This enables the developer to incorporate 3D
structures into the DOM. This should work well for applications,
which only want to utilize a 3D subsystem for composite effects or
GUI-elements. For applications which include mega- or even giga-
bytes of 3D-data, e.g. games or product presentations, this would
not work efficiently on the proposed architecture, since all the data
must be included within a single XHTML page. However, via the
Inline-node [Web3DConsortium b] there is already a mechanism in
the X3D-spec which allows including subparts of the scene. This
allows application developers to segment the 3D-content in various
parts, which could be referenced from the DOM elements using the
IMPORT/EXPORT feature. A very nice aspect of the X3D specifi-
cation is that every inlined scene resembles an own namespace and
can support different X3D-profiles. Therefore the extra parts could
support Profiles which include e.g. Scripting and Protos

3.5.1 X3D Profiles

There are a number of different X3D-Profiles already included in
the current spec (see Figure 4). Each X3D-Profile bundles a num-
ber of nodes and features for different spec-components to provide a
spec-subset for a specific purpose. This allows X3D tools and appli-
cations to work on data that uses a well defined subset of the overall
specification. This already well defined method allows us to build
a scalable and simple to implement architecture by using the exist-
ing X3D Profiles and creating an additional Profile that bundles the
features we would like to be directly supported in the DOM-tree.

3.5.2 X3D DOM Profile

The goal is to define a specific Profile that defines all nodes and ele-
ments for the DOM integration. This profile must be rich enough to
support the intended use-cases but also easy to implement so peo-
ple can build X3D browser extensions easily. Therefore we pro-
pose a Profile that extends the Interactive Profile to include some
additional features for animation and event handling. The profile
however will not include any support for Prototypes or Scripts (see
Table 1).

Component Level Level Comment

Core 1 Proto optional

Time 2

Networking 3 Inline + http/https

Grouping 3

Rendering 5

Shape 4

Geometry3D 4

Geometry2D 2

Text 1

Sound 2

Lighting 2

Texturing 3

Interpolation 5

Pointing device Sensor 1

Environmental Sensor 3

Navigation 3

Scripting 0 No Scripts

Event utilities 1

Programmable Shader 1

Followers component 1

Table 1: Components and level of the proposed DOM Profile.

Therefore all the scripting on DOM elements must be performed
from the browser side. However, it will include Inline nodes to sup-
port subtrees. We propose some changes to the spec at this point
to allow different Profiles in those subtrees. This would support
more complex applications, which include Protos and Scripts or
event distribution channels to other runtimes using NetworkSen-
sors in any number of subtrees. The only requirement is, that the
X3DOM architecture has to provide a list of supported Profiles for
the frontend.

3.6 X3D Elements as Single Point of Access

The X3D element in the DOM tree should provide a single point of
access for all X3D related interfaces and manipulation issues. The
proposed architecture includes two sets for setup and manipulation.

3.6.1 X3D Element Attributes

The X3D element must provide additional attributes to configure
and setup the Inline and in-place render and execution engine. This
is based on the current SVG-spec and includes generic attributes
like ’xmlns’, ’x’, ’y’, ’width’, ’height’ and especially ’version’ and
’baseProfile’ to request a specific x3D-runtime version and profile.

3.6.2 SAI Interface

The X3D spec includes a Scene Access Interface (SAI)
[Web3DConsortium a]. This abstract specification allows to build
bindings for different languages (e.g. Java, JavaScript) to access
and manipulate the scene at runtime. Our architecture will in-
clude a specific X3D browser object, which allows to interface the
scene with the standard interface through the X3D element by using
browser-side scripting.

4 DOM Integration Aspects

X3D content can be integrated into any XML and XHTML docu-
ment using namespaces today. What is missing is a rendering and
execution model. The X3DOM architecture proposes an in-place
renderer, like SVG, but other integration models should be similar.

132

In the following we present some code examples on how to inte-
grate an XML encoded X3D world into an XHTML document. We
will show several examples, starting with the most explicit markup,
and then go on cleaning the markup, thereby showing some com-
plications with the default namespace of attributes according to the
XML standard.

The following examples have been tested in Firefox3. For all of
the example code you have to make sure that the documents are
delivered and interpreted with the correct mimetype. As the docu-
ment is an XHTML document, the mimetype should be ”applica-
tion/xhtml+xml”. Normally the mimetype of the document is given
by the server, which must be configured accordingly. When work-
ing with local files, it is important to use the ”.xhtml” suffix to in-
struct Firefox (FF) to interpret the document as an XML document.
When the ”.html” suffix is used, FF will interpret the document as
HTML (and namespaces will not work).

4.1 X3D Namespace in DOM Documents

The <html> element in the code example below defines a default
namespace for the document. Thus, the <h1> and <p> elements
are part of the xhtml namespace. The <x3d> element defines a
namespace prefix x3d, which is then used on all nodes belonging to
the X3D world. As one can see this is a lot of code to type.

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head><title>

X3D DOM integration and manipulation

</title></head>

<body>

<h1>X3D DOM integration and manipulation</h1>

<x3d:x3d xmlns:x3d=

"http://www.web3d.org/specifications/x3d-3.0.xsd">

<x3d:Scene>

<x3d:Shape>

<x3d:Box x3d:size="4 4 4" />

</x3d:Shape>

</x3d:Scene>

</x3d:x3d>

</body>

</html>

In order to get rid of the need to prefix every X3D element, we
can use a default namespace on the <x3d> element itself, thereby
removing the explicit ”x3d” prefix. You can find more information
about XML default namespaces in [W3C].

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>X3D DOM integration and manipulation</title>

</head>

<body>

<h1>X3D DOM integration and manipulation</h1>

<p>This page demonstrates how to integrate an X3D

world into an XHTML webpage.</p>

<!-- All elements within the x3d element (and the

element itself) belong to the x3d namespace -->

<x3d xmlns=

"http://www.web3d.org/specifications/x3d-3.0.xsd">

<Scene>

<Shape><Box size="4 4 4" /></Shape>

</Scene>

</x3d>

</body>

</html>

According to the XML specification the ”xmlns” attribute of the
<x3d> element establishes a namespace for itself and all of its chil-
dren. Therefore the <Scene>, <Shape> and <Box> elements
are part of the x3d namespace. Unfortunately there is one flaw in
the code example above. While the ”xmlns” established a names-
pace for all children elements of the containing node, the names-
pace does not apply to the attributes of the children elements. This
means that the ”size” attribute is technically not part of the ”x3d”
namespace. To fix this we need to reintroduce a namespace prefix,
which is then used on the attribute.

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>X3D DOM integration and manipulation</title>

</head>

<body>

<h1>X3D DOM integration and manipulation</h1>

<p>This page demonstrates how to integrate an X3D

world into an XHTML webpage.</p>

<x3d xmlns=

"http://www.web3d.org/specifications/x3d-3.0.xsd"

xmlns:x3d=

"http://www.web3d.org/specifications/x3d-3.0.xsd">

<Scene>

<!-- The x3d:size and the size attribute belong

to different namespaces and therefore

are different attributes.

Technically the x3d:size is the correct

one, but it would be cumbersome to add

the x3d namespace to every attribute.

Further investigation is needed here.

-->

<Shape><Box x3d:size="4 4 4" size="5 5 5" />

</Shape>

</Scene>

</x3d>

</body>

</html>

While this last example is technically correct, it would be very cum-
bersome to add the ”x3d” prefix to every attribute of an element in
the ”x3d” namespace. In fact this is the same problem as with the
SVG standard and you can read more about it in [Watt].

In any practical implementation the attribute namespacing can be
neglected for the following reasons: First of all, the context of the
attribute is the element which is in the ”x3d” namespace. Second,
the interpreter can then safely assume that the element’s attribute
is part of that namespace, too. Last but not least, as long as no
other XML applications are mixed into the X3D application, no
namespace clashes can occur (since only X3D element attributes
are interpreted).

4.2 Accessing/Manipulating X3D using DOM Methods

The following example demonstrates how to access and manip-
ulate an attribute of a DOM node. But again: In order to
make it work in Firefox you need to use a ”.xhtml” file pre-
fix, otherwise the document will be interpreted as HTML. This
behavior is based on how FF detects the mimetype of local
files (using the file:// protocol). You can learn more about
Firefox mimetype detection at https://developer.mozilla.org/En/
How Mozilla determines MIME Types.

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

133

<head>

<title>X3D DOM integration and manipulation</title>

</head>

<body>

<h1>X3D DOM integration and manipulation</h1>

<x3d xmlns=

"http://www.web3d.org/specifications/x3d-3.0.xsd">

<Scene>

<Shape><Box size="4 4 4" /></Shape>

</Scene>

</x3d>

<script type="text/javascript">

// The namespace URIs

var xhtml_ns = "http://www.w3.org/1999/xhtml";

var x3d_ns =

"http://www.web3d.org/specifications/x3d-3.0.xsd";

// Get elements using namespaces

var h1 =

document.getElementsByTagNameNS(xhtml_ns, "h1");

var box =

document.getElementsByTagNameNS(x3d_ns, "Box")[0];

// Edit an attribute of the <Box /> element

alert(box.getAttributeNS(null, "size"));

box.setAttributeNS(null, "size", "2 2 2");

alert(box.getAttributeNS(null, "size"));

</script>

</body>

The example above changes the ”size” attribute of the <Box> ele-
ment to the value ”2 2 2”. Note the usage of the namespace aware
functions (e.g. getElementsByTagNameNS(), getAttributeNS()).

4.3 Naming and Identifying Nodes

While XHMTL uses the ”id” attribute of a node to specify a unique
id for an element in the DOM, the X3D standard uses the ”DEF”
attribute. It should be considered to change the X3D identifier at-
tribute ”DEF” to ”id” in order to be compliant with the rest of the
web.

Besides the unique id of an element, the XHTML standard also
defines the ”class” attribute, which associates a given element to
the class named in the ”class” attribute. The X3D standard has no
concept like ”class”. Strangely the ”class” attribute can be found in
the X3D schema, but is not mentioned elsewhere in the X3D ISO
standard.

4.4 Events

In order to be able to implement interactive web sites and X3D
worlds, both standards ((X)HTML and X3D) define an event
model. Unfortunately these two model differ dramatically, due to
their different application domains. The following example shows
how a possible connection between X3D’s and XHTML’s event
model can look like.

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head><title>X3D DOM Events</title></head>

<body>

<h1>X3D DOM Events</h1>

<x3d xmlns=

"http://www.web3d.org/specifications/x3d-3.0.xsd">

<Scene>

<Transform>

<Shape><Box size="4 4 4" />

</Shape>

<TouchSensor id="ts" DEF="ts" />

</Transform>

</Scene>

</x3d>

<script type="text/javascript">

// The namespace URIs

var xhtml_ns = "http://www.w3.org/1999/xhtml";

var x3d_ns =

"http://www.web3d.org/specifications/x3d-3.0.xsd";

// Get elements using namespaces

var h1 =

document.getElementsByTagNameNS(xhtml_ns, "h1");

var x3d =

document.getElementsByTagNameNS(x3d_ns, "x3d")[0];

var ts = x3d.getElementsByTagName("TouchSensor")[0];

alert("ts=" + ts);

ts.addEventListener("touchTime", function() {

alert("clicked");

}, false);

</script>

</body>

</html>

4.5 Multi-parent relations

While the DOM tree of an (X)HTML document is a single-parent
graph, the X3D scene graph is a multi-parent graph (i.e. one
node can be the child of more than one parent – the node can be
reUSEed). Therefore we propose a special USE-element which will
be used and returned for the USEed node.

5 Implementation

The current implementation is just a pre-alpha test to evaluate the
interfaces and mechanisms available in the current browser archi-
tectures. The first tests run as a Firefox extension, which allows to
directly manipulate and monitor the DOM elements. The browser
also provides an OpenGL context which is passed to the backend
structure. Any downstream media handlers are not yet defined but
we are convinced that this is possible with the Mozilla infrastruc-
ture. We are evaluating the WebKit framework right now to see if
we get the same functionality there. In the end we would like to
develop a single system that uses loadable extensions to connect
to different front- and backend systems. Furthermore, the plan is
to open-source this X3DOM component so every browser or X3D
system provider can develop and provide own extensions.

We believe, the approach discussed in this paper will help both
worlds or sides respectively to evaluate and develop the integration
idea. However, the software framework as well as the extensions
have to be installed and therefore the requirements are similar to
traditional X3D-plugins. We hope to initiate a process, which is
similar to SVG that took place in browser developments during the
last years. The first systems were plugin-based and not integrated.
Now, SVG is a base functionality of every modern browser. If this
project is successful, we have demonstrated a bridge between DOM
and X3D, and finally people will start to write native extensions or
will directly integrate the techniques into their systems.

6 Conclusion and Future Work

In this paper we have presented a DOM-based integration model
for X3D and HTML5. Both specifications already reference each
other but the actual integration is currently not sufficiently defined.
HTML5 references X3D with a single line of text and X3D only
supports simple DOM-Node imports without any support for live
data. Our proposed X3DOM design and architecture exploits the
current X3D-ISO and W3D-HTML5 standard and tries to provide
the missing link and integration model. The model does not try to
render the DOM-content directly but synchronizes and updates an

134

X3D tree automatically. We also propose an in-place renderer sim-
ilar to the current SVG/XHTML integration model. Furthermore,
we have defined a specific X3D-Profile, which excludes Scripting
and Protos to ease further implementations but supports Inlines to
be scalable and thereby useful for applications utilizing large data-
sets. The architecture is not bound to a specific browser or plugin
but includes a flexible mechanism to support different browser fron-
tends (e.g Firefox and WebKit) and different X3D-backends.

The whole proposal shows how a tight integration of X3D and
HTML5 could look like. The architecture and implementation
should inspire people to get both communities, around W3C and
Web3D, closer together to work on a final integration model or
even different official models (e.g. one in-place rendering model
like X3DOM and one out-of-place JavaScript/Canvas3D model).
The goal is to create a similar effect for X3D that we have seen
for SVG. People started with plugins (this is the same situation as
for X3D today), and now we have a tight integration and in-place
rendering of SVG content. The proposed system can provide the
same solution for X3D and finally, the HTML5 promise would be
fulfilled – 3D for everyone and everywhere.

References

Adobe director. http://www.adobe.com/uk/products/director/.

Adobe flash. http://www.adobe.com/products/flashplayer/.

Adobe systems. http://www.adobe.com/.

Anark Cooperation. http://www.anark.com/.

APPLE, 2008. 3d ccs-transforms for the webkit. http://webkit.org/
specs/CSSVisualEffects/CSSTransforms3D.html.

ARNAUD, R., AND BARNES, M. 2006. Collada: Sailing the Gulf
of 3d Digital Content Creation, 1 edition ed. No. ISBN-13: 978-
1568812878. AK Peters, 2006, August 30.

ARNAUD, R., AND PARISI, T. Developing web applications with
collada and x3d. http://www.khronos.org/collada/presentations/
Developing Web Applications with COLLADA and X3D.pdf.

BISHOP, C., 2008. Canvas 3d js library. http://www.c3dl.org/.

Cult3d by cycore systmes. http://www.cult3d.com/.

ECMA. Ecma-262, ecmascript lan-
guage specification. http://www.ecma-
international.org/publications/standards/Ecma-262.htm.

EXCORS, P., 2007. Canvax3d. https://labs.mozilla.com/ fo-
rum/comments.php?DiscussionID=363.

GOOGLE. Google earth. http://earth.google.com/.

GOOGLE, 2009. Google chrome experiments.
http://www.chromeexperiments.com/.

GOOGLE, 2009. O3d; an javascript based scene-graph api.
http://code.google.com/apis/o3d/.

GOOGLE, 2009. V8 is google’s open source javascript engine.
http://code.google.com/apis/v8/.

KHRONOS, 2008. Opengles. Khronos Group.
http://www.khronos.org/opengles/.

KHRONOS, 2009. Khronos launches initiative to create open roy-
alty free standard for accelerated 3d on the web. Khronos Group.
http://www.khronos.org/news/press/releases/khronos-launches-
initiative-for-free-standard-for-accelerated-3d-on-web/.

KHRONOS, 2009. Opengl. http://www.opengl.org/documentation/.

MICROSOFT. Silverlight. http://www.microsoft.com/SILVERLIGHT/.

MICROSOFT, 2009. Directx. http://msdn.microsoft.com/directx/.

OPENSG, 2009. OpenSG. http://opensg.vrsource.org/trac.

PANDZIC, I. S., AND FORCHHEIMER, R. 2002. MPEG-4 Fa-
cial Animation: The Standard, Implementation and Applica-
tions. John Wiley & Sons Ltd, West Sussex, England.

PROJECT, P. Papervision3d. http://blog.papervision3d.org/.

STEWART, J. Freewrl, open-source vrml/x3d runtime.
http://freewrl.sourceforge.net/index.html.

SUN. Java. http://java.com/en/.

SUN. Java3d. https://java3d.dev.java.net/.

SUN. Javafx. http://javafx.com/.

SUN. Jogl. https://jogl.dev.java.net/.

TAUTENHAHN, L., 2006. Svg-vml-3d.
http://www.lutanho.net/svgvml3d/index.html.

TIM JOHANSSON, O., 2007. Taking the canvas to another di-
mension. http://my.opera.com/timjoh/blog/2007/11/13/taking-
the-canvas-to-another-dimension.

TREEBUILDER. Treebuilder. http://www.treebuilder.de/default.asp?
file=206524.xml.

VLADIMIR VUKICEVIC, M. C., 2009. Canvas 3d: Gl power, web-
style. http://blog.vlad1.com/2007/11/26/canvas-3d-gl-power-
web-style/.

W3C. Namespaces in xml. W3C Consortium.
http://www.w3.org/TR/REC-xml-names/.

W3C, 2009. Cascading style sheets.
http://www.w3.org/Style/CSS/.

W3C, 2009. Declarative 3d scenes in html5.
http://dev.w3.org/html5/spec/Overview.html#declarative-
3d-scenes.

W3C, 2009. Html 5 specification, canvas section.
http://dev.w3.org/html5/spec/Overview.html#the-canvas-
element.

W3C, 2009. Scalable vector graphics.
http://www.w3.org/Graphics/SVG/.

WATT, J. Svg authoring guidelines. http://jwatt.org/svg/authoring/.

WEB3DCONSORTIUM. Scene access inter-
face(sai), iso/iec cd 19775-2 ed. 2:200x.
http://www.web3d.org/x3d/specifications/ISO-IEC-CD-19775-
2.2-X3D-SceneAccessInterface/.

WEB3DCONSORTIUM. X3d inline node from the networking
component. http://www.web3d.org/x3d/specifications/ISO-IEC-
19775-X3DAbstractSpecification Revision1 to Part1/Part01/
components/networking.html#Inline.

WEB3DCONSORTIUM, K. G. Formal liaison with
khronos group. http://www.web3d.org/press/detail/
web3d enters formal liaison with khronos group/.

WEB3DCONSORTIUM, 2008. X3D.
http://www.web3d.org/x3d/specifications/.

135

136

Citation

Behr, Johannes; Eschler, Peter; Jung, Yvonne; Zöllner, Michael:
X3DOM - A DOM-based HTML5 / X3D Integration Model.
In: Spencer, Stephen N. (Ed.); ACM SIGGRAPH u.a.:
Proceedings Web3D 2009 : 14th International Conference on 3D Web Technology.
New York : ACM Press, 2009, pp. 127-135

View publication statsView publication stats

https://www.researchgate.net/publication/221011041

