
Visibility optimization is currently the most
effective technique for improving render-

ing performance in complex 3D environments (see Fig-
ures 1 and 2). The primary reason for this is that during
each frame the pixel processing subsystem needs to
determine the visibility of each pixel individually. Cur-
rently, rendering performance in larger scenes is input

sensitive, and most of the processing
time is wasted on rendering geome-
try not visible in the final image.

In this article we concentrate on
real-time visualization using main-
stream graphics hardware that has
a z-buffer as a de facto standard for
hidden surface removal. In an ideal
system only the complexity of the
geometry actually visible on the
screen would significantly impact
rendering time—3D application
performance should be output sen-
sitive. Furthermore, opportunities
exist for using lower accuracy for
artificial intelligence, physics com-
putations, and collision detection in
the hidden parts of the scene.

A vast majority of applications have at least partially
dynamic environments. Modeling packages, computer
games, and military simulations have moving objects
such as characters, vehicles, or destructible buildings.
Our main goal was to develop a system that adapts to
runtime changes in the environment. The primary issue
in dynamic adaptation is maintaining a spatial subdivi-
sion. Strict real-time requirements pose limitations on
the choice of subdivision algorithm. For example, gener-
ic BSP trees or partitioning into convex cells are difficult
and expensive to maintain under dynamic changes.
Additionally, to retain output sensitivity, the database
must provide an approximate front-to-back traversal of
the scene’s visible subset.

An industrial-strength visibility determination sys-
tem must not pose artificial limitations on the input
geometry: the objects can’t be assumed static, convex,
two manifold, or closed. Also, modeling packages might
decompose scenes into objects in a manner not suitable
for efficient rendering or visibility determination. For
example, they might group all windows of a large build-
ing into a single object. We optionally perform an auto-
matic restructuring of the input data to obtain spatially
coherent objects.

Another important application of our system is the

Feature Article

A platform-independent

occlusion culling library for

dynamic environments,

dPVS, can benefit such

applications as CAD and

modeling tools, time-

varying simulations, and

computer games.

Timo Aila
Hybrid Graphics and Helsinki University of
Technology

Ville Miettinen
Hybrid Graphics and University of Helsinki

dPVS: An Occlusion
Culling System for
Massive Dynamic
Environments

86 March/April 2004 Published by the IEEE Computer Society 0272-1716/04/$20.00 © 2004 IEEE

1 Traffic Jam. Large dynamic simulation of 16,000 buildings and 20,000 moving cars. Occlusion culling avoids
processing hidden objects and level-of-detail mechanisms simplify the visible geometry. Our system can render
walkthroughs of the scene at 30 Hz on a low-end PC.

out-of-core rendering of massive models. Only the
bounding volumes of the hidden parts of the environ-
ment need to be loaded into memory. This is a key fea-
ture when a scene requires more memory than
available, or when it’s visualized on a remote machine
over a limited-bandwidth connection.

A level-of-detail (LOD) mechanism can further
improve rendering performance or reduce memory foot-
print. Visibility optimization and LOD are complemen-
tary techniques; both are required for real-time
visualization of complex scenes. Our system provides
information for selecting an appropriate LOD level.
Optionally, visual artifacts can be traded for higher over-
all performance by enabling contribution culling, which
discards barely visible objects.

One common characteristic of our target platforms is
limited memory bandwidth. Also, the connection
between the CPU and the graphics processing unit
(GPU) is practically unidirectional—requesting data
from the GPU is slow and has a high latency.

These factors have a great effect on the design of effi-
cient culling algorithms and have motivated our choice
of a purely software-based approach.

Related work
Output-sensitive visualization systems performing

view frustum culling and occlusion culling require an
acceleration structure, the spatial database. In certain
regularly structured scenes, a uniform subdivision is suf-
ficient, but in practice, the database needs a hierarchi-
cal organization. Additionally, output-sensitive
occlusion culling requires approximate front-to-back
traversal of the database. A visibility solver is responsi-
ble for answering occlusion queries—that is, “Would
this object contribute to the final image if it was ren-
dered?” The visibility solver can be implemented either
in software or using modern graphics hardware. Due to
its complex nature, the spatial database needs to be
implemented in software.

Researchers have proposed numerous occlusion
culling systems for the limited case of urban environ-
ments. Wonka covers many of these in his recent the-
sis.1 These systems assume that buildings are essentially
boxes with different heights and therefore reduce the
visibility problem into a 2D subproblem.

Airey et al.2 and Teller and Séquin3 propose subdi-
viding the scene into cells connected by portals. This
subdivision is particularly well suited for architectural
scenes. Most intuitively this is explained with cells cor-
responding to rooms, and portals to doors and windows
through which other rooms can be seen. Computer
games often incorporate this approach, with scenes
mostly consisting of closed indoor environments.

Several object-space algorithms have been proposed
for static scenes; Cohen-Or et al.4 cover many of these
in their comprehensive surveys. An object is often
blocked from view by the combined effect of several
occluders. In practice, such occluder fusion is required
for retaining output sensitivity. Exploiting occluder
fusion is difficult in object space whereas image-space
discretization makes it relatively simple. Therefore we
concentrate on image-space algorithms.

Greene and Kass propose extensions to the z-buffer
hardware for avoiding per-pixel depth comparisons.5

They organize the scene into an octree for approximate
front-to-back traversal. An occlusion query is performed
for each octree node. If a node is not visible, neither it nor
its children need processing. The z-buffer is organized
into a z-pyramid, the lowest level of the hierarchy being
the traditional z-buffer. A primitive can be quickly deter-
mined hidden if its 2D bounding rectangle with the prim-
itive’s closest depth value is hidden. In many cases a single
comparison on the appropriate z-pyramid level can
accomplish this. Because the visibility information is gen-
erated as a side product of the actual rasterization, it’s
possible to use all visible objects as occluders.

ATI, Hewlett-Packard, Nvidia, and possibly others
have implemented hardware occlusion queries. Their
occlusion culling extensions provide a simple way for
confirming the visibility of a complex model before it’s
rendered. Output-sensitive, front-to-back traversal of a
spatial database typically requires hundreds or even
thousands of occlusion queries every frame. HP’s imple-
mentation effectively synchronizes the CPU and the
graphics card, causing them to operate at a suboptimal
performance level. Nvidia’s implementation is more
flexible, issuing several queries simultaneously and
wasting less time waiting for the results. Hillesland et
al. note that efficient use of hardware requires careful
scheduling of occlusion queries and rendering of
objects, as otherwise excessive fill rate problems are
encountered.6 The major cause for the increased fill rate
is that the occlusion query semantics in Direct3D 9.0
require returning the number of visible pixels; imple-
mentations can’t thus early exit a test when the first vis-
ible pixel is found.

Morein describes a hardware implementation of a
two-layer z-pyramid (see http://www.merl.com/
hwws00/presentations/ATIHot3D.pdf). A z-pyramid
with two or three layers is implemented in commodity
graphics hardware, such as ATI Radeon and Nvidia

IEEE Computer Graphics and Applications 87

2 Occlusion
culling is to
minimizes a
frame’s render-
ing time by
quickly finding a
tight superset of
the visible
objects. (a) Parts
of an urban
environment
intersected by a
view frustum.
(b) Wireframe
renderings of
the buildings
from the same
viewpoint.

(a)

(b)

GeForce3. In addition to memory bandwidth optimiza-
tions, parts of the incoming triangles can be culled
before rasterization. The occlusion query can also exe-
cute faster because of the hierarchical representation.
However, this approach works well only if the scene is
drawn in a front-to-back order.

Klosowski and Silva7 first render an approximation of
a scene using a fixed budget of resources. They subdi-
vide the scene into convex cells as a preprocess and com-
pute a solidity estimate for each cell. Their front-to-back
traversal is controlled by a priority queue, which orders
the nodes according to their expected importance. The
algorithm estimates a node’s importance from the cur-

rently accumulated solidity values of the correspond-
ing screen-projection area. A second pass finds the rest
of the visible objects using hardware occlusion queries
until the visible set converges.

The algorithm can guarantee output-sensitive visu-
alization and impressive real-time results have been
published. The authors did not design the system for
dynamic scenes. In particular, a scene can’t be easily sub-
divided into convex cells at runtime and meaningful
solidity estimation is tricky when objects are moving.

Zhang et al. point out that the occlusion query can be
divided into two separate subtests: one for coverage and
one for depth.8 The occlusion query is conservatively cor-
rect as long as the coverage test is performed at full res-
olution and the depth test is performed conservatively.
This is a valuable observation, as a lower resolution can
be used for the memory and bandwidth-consuming
depth buffer. Their hierarchical occlusion maps (HOM)
framework finds the prominent occluders as a pre-
process. At runtime this set of occluders is used for culling
the other objects. Although the results are convincing,
the system can’t guarantee output sensitivity in dynam-
ic scenes due to the static occluder classification. Our
approach is most closely related to this work and to that
of Greene and Kass.5

Wonka et al.9 compute the visibility simultaneously
for multiple viewpoints by shrinking the occluders suf-
ficiently. Their results for large scenes are impressive,
but due to the required preprocessing the approach does
not lend itself easily to dynamic environments. Baxter
et al. introduce a system for interactive walkthroughs
of complex environments.10 It runs on two SGI Infinite
Reality pipelines in parallel and uses HOM as its occlu-
sion culling algorithm. The system supports out-of-core
visualization but dynamic updates to the database are
not considered.

System overview
Our goal was to build a framework into which multi-

ple visibility determination algorithms could be incor-
porated. We wanted the system to be portable to a
number of different platforms and to be independent of
the underlying graphics hardware and rendering API.
The implementation should have minimal overhead in
simple scenes while being capable of handling extreme-
ly large ones—even such that can’t be fit into the avail-
able memory. The system should be extendable to
existing and upcoming hardware culling methods.

We implemented dPVS as a library placed between the
application and the rendering layer (see Figure 3). The
library consists of approximately 70,000 lines of highly
optimized C++ code divided into 150 files and 100 class-
es. The interface of the library is tight; it has only a dozen
classes with a total of 120 public member functions.

The code is reasonably portable—we have success-
fully built and tested the library on all mainstream CPUs
and operating systems including game consoles as well
as high-end 64-bit multiprocessor workstations. The ini-
tial implementation required work hours adding up to
48 months. We have also developed a profiling and visu-
alization tool that allows interactive analysis of new
culling algorithms (see Figure 4).

Feature Article

88 March/April 2004

CULL (dPVS)

- Dynamic spatial database
- Visibility culling
- Object/light intersections

DRAW (graphics card)

Frustum

Objects

Rendering commands

Updates

Affecting lights

Application (dynamics, collisions, AI, …)

3 Our system maintains a dynamic spatial database
internally. The application notifies dPVS about changes
in the scene geometry. A visibility query returns a list of
potentially visible objects for the submitted view frus-
tum. The application then sends the related rendering
commands to the graphics hardware.

4 dPVS’profiling and debugging tool collects hundreds of different statis-
tics and provides visualizations of the algorithms and data structures. The
right part of the image shows a bird’s eye view of the visible subset of the
Naked Empire scene.

Using the system
Because dPVS is an external module we can use it as

a runtime optimizer with any 3D rendering application
(see Figure 5). In most cases we only need only a few
hundred lines of code to integrate it into an application.
The possibility for interactive scene editing is a funda-
mental requirement for CAD and other modeling soft-
ware. The system can accomplish fast WYSIWYG model
editing. Time-varying simulations—especially military
simulations—have a lot of moving entities and often
need to modify the environment dynamically. Yet anoth-
er application area is the remote visualization of mas-
sive datasets.

Figure 3 illustrates the use according to the common
APP-CULL-DRAW model. When the application loads a
scene description, it also submits the geometry data and
the related transformation matrices to our system,
which then internally computes bounding volumes for
the models. We use a mixture of axis-aligned (AABB)
and oriented (OBB) bounding boxes.

A hierarchical spatial database is built during the vis-
ibility queries. At the end of each query, a bounded
amount of time is allocated for refining the database.
Objects can be inserted or deleted at any time, and their
transformation matrices and associated model data can
be updated even during a visibility query.

When the application issues a visibility query for a
view frustum, our system returns a list of potentially vis-
ible objects and optionally a list of affecting light
sources. The application then sends the related render-
ing commands to the underlying graphics subsystem.
Coarse-grained parallelization is possible by running
the visibility determination in a dedicated thread on a
multiprocessor machine.

Our system needs to keep a separate copy of the scene
geometry. However, for visibility determination, sim-
plified versions of the models can be used—for exam-
ple, deforming occludees may be represented using
conservative bounding volumes. Most physics and col-
lision detection packages take a similar approach. Addi-
tionally, only the geometry for the visible and nearly
visible parts of the world need to be kept in memory. To
further reduce the memory overhead, we support shar-

ing model data between objects. Also, we internally per-
form a custom lossless compression of the connectivity
information and vertex position data achieving on aver-
age a 4:1 reduction in memory consumption.

The system has two high-level components: a spatial
database and a visibility solver (see Figure 6, next page).
When the application provides a view frustum descrip-
tion, the spatial database begins a hierarchical traversal
of the scene in an approximate front-to-back order. Vis-
ibility of each database node is queried from the visibil-
ity solver. If the node is determined to be visible, its
children and the contained objects are tested for visibil-
ity. Otherwise the entire subhierarchy is skipped. For vis-
ible objects we decide whether they should be used as
potential occluders and placed into the write queue.
When the contribution of the potential occluders is need-
ed by the subsequent occlusion queries, the occluders
are fetched from the write queue and rasterized into the
occlusion maps.

The visibility solver performs all operations using pro-
gressive and lazy computations. For example, objects
are selected as occluders at runtime and their rasteri-
zation is postponed until their contribution is absolute-
ly needed.

Contributions
Our main contribution is a framework that unifies a

number of culling methods into a system that works effi-
ciently with massive dynamic environments (see Table
1). For example, we can use moving occluders to cull
portals and light sources. We also support various pre-
computed visibility solutions: potentially visible sets
(PVS) can easily be used in conjunction with our sys-
tem, as our database supports fast insertion and removal
of objects. The user can also define additional visibility
relations between objects. Pregenerated coverage and
depth buffers are also accepted as input, as some com-
puter games and modeling packages use them to accel-
erate rendering. A more detailed discussion of the
algorithms and their implementations can be found in
the dPVS reference manual.11 The library and the test
scenes are freely available for research projects and aca-
demic institutions.

IEEE Computer Graphics and Applications 89

5 dPVS has been used over the last three years in various academic research projects, massive multiplayer games,
and commercial visualization tools. (Examples of products using our system are courtesy of Sony Online Entertain-
ment/LucasArts Entertainment and Artifact Entertainment.)

Spatial database
To achieve hierarchical traversal and culling of

objects, we organize them into a spatial database.
Although a variety of methods for representing object
hierarchies exist, few meet our needs. The most impor-
tant requirements for the hierarchy are that it can be
built and maintained at runtime, must adapt to dramatic
changes in the scene, and can handle all kinds of scenes
robustly, even if the input data is degenerate. The data-
base management should be output sensitive and scale

to extremely large environments.
We use an axis-aligned BSP tree

as our subdivision model (see Fig-
ure 7). We permit an arbitrary order
for the partitioning planes, for
example x-y-z-z-y, and allow each
splitting plane to vary in its location
along the axis. Such a choice of hier-
archy with adjustable partitioning
planes adapts more tightly to the
scene geometry than octrees while
being orders of magnitude faster to
build and maintain than freely ori-
ented BSP trees. Our strategy for
selecting partitioning planes for
nodes is to minimize the surface
areas of the resulting child nodes.12

In our implementation, building
and updating the hierarchy are
closely tied to the database traver-
sal. Initially, we create a single root

Feature Article

90 March/April 2004

For potentially useful
occluders in write queue

Spatial database

Dynamically adapting
hierarchical structure

Hierarchical view frustum
culling

Front-to-back traversal

Portal culling

isObjectVisible()

Frustum description

List of potentially visible objects

Result, visible point

Visible point tracking

Test done

Rectangle/OBB test

addOccluder()

Occluder selection

Extract silhouette

Rasterize silhouette
and OBB depth values

Write queue

Hierarchical
occlusion maps

Coverage buffer

Depth
estimation buffer

Rectangle/OBB test

Hidden

Visible

isNodeVisible()

6 The database maintains a hierarchical representation of the scene and provides an approximate front-to-back
traversal by using a priority queue. It performs hierarchical view frustum culling whereas the visibility solver man-
ages both conservative and aggressive occlusion culling.

Table 1. We combine into a single framework a number of
different culling algorithms that operate seamlessly together.

Culling Method Handled by

View frustum Spatial database (hierarchically)
Occlusion Silhouette rasterization
Contribution Image-space coverage information
Portal View frustum culling and scissoring
Potentially visible sets Fast spatial database updates
Light source Sweep-and-prune over visible object

7 The picture
shows the
partitioning of
5,000 randomly
oriented torii
and icosahedra.
The green
boxes are the
tight AABBs of
the hierarchy’s
leaf nodes.

node that encloses the bounding volumes of all objects
in the world. The visibility query then traverses visible
nodes within the database and subdivides them, push-
ing objects downward in the hierarchy. This means that
after the first query we have a refined hierarchy for the
visible parts of the database (see Figure 8). As we move
the camera around, new high-level nodes become visi-
ble and are subdivided. This lazy approach for building
the database effectively amortizes the creation cost over
a long period of time. In many walkthroughs only a
small part of the world is explored; the lazy construc-
tion ensures that hidden parts of the world are never
accessed.

Objects are placed into a node if their bounding vol-
umes intersect the node’s bounding box. An object can
belong to multiple nodes—we use timestamps for pro-
cessing each object only once per query—and is pushed
down the hierarchy as long as it’s smaller than the cur-
rent node. We use the length of the diagonal of the
bounding volumes for size comparison. Nodes are sub-
divided until they contain less than 10 objects.

Dynamic objects
If an existing object is modified—that is, its transfor-

mation matrix is updated or its model data is changed—
we don’t remove and reinsert the object into the
database. Instead, we first find out if the new bounding
volume occupies the same nodes as before; in that case
no updates are needed. Otherwise we push the object
up in the hierarchy until its new bounding volume fits
completely inside a node. We tag this node as modified
but take no further action until it’s reached by a subse-
quent visibility query. This approach ensures that objects
moving in hidden parts of the world require minimal
processing.

Furthermore, each object is internally classified as
either static or dynamic. Any object that has not been
modified for a while is considered static and placed into
the hierarchy by using its exact bounding volume. For
a dynamic object we construct a temporal bounding
volume (TBV)13 that we expect to enclose all the exact
bounding volumes of the object over a certain period
of time.

We use TBVs only for placing dynamic objects into the

spatial database and for coarse view frustum culling.
The tight OBBs of the objects are used for object-level
culling tests. Our main motivation for using TBVs is to
reduce the amount of database modifications caused by
hidden dynamic objects. We construct the TBVs for hid-
den objects by a simple feedback-based heuristic. When-
ever an object moves outside its temporal bounding
volume, we grow the TBV. We shrink the TBV whenev-
er an object’s TBV is visible but its exact OBB is hidden.
After a few visibility queries we end up with a large TBV
that stays hidden.

We also use history-based motion prediction for
selecting the directions in which the TBVs are grown or
shrunk. This additional rule produces much better TBVs
for objects with limited motion in certain directions, for
example, vehicles, elevators, and people. Some addi-
tional heuristics are also needed for keeping the system
stable. For example, if an object’s position changes by a
considerable amount between two visibility queries, we
consider it to be teleporting and ignore the motion pre-
diction information. The TBVs of visible dynamic objects
are constructed by predicting the path of the object over
the duration of one second.

By using temporal bounding volumes combined with
lazy updates of hidden parts of the scene we can man-
age worlds with tens of thousands of moving objects.
For example, in our Traffic Jam test scene (see Figure 1)
only 0.2 percent of all object updates caused actual mod-
ifications to the database and less than 5 percent of the
CPU time used by the visibility queries was spent in data-
base maintenance.

Implementation issues
We measure the number of clock cycles taken by

each visibility query and use 2.5 percent of the time to
update hidden database nodes. These updates might
subdivide nodes containing many objects or collapse
nodes containing only a few objects. The main purpose
for this maintenance work is to avoid sudden slow-
downs when previously hidden parts of the world
become visible for the first time. The same refining
process recomputes partitioning planes for nodes, thus
adapting the spatial hierarchy to modifications in the
world. We collapse nodes that have been hidden for a

IEEE Computer Graphics and Applications 91

8 Using lazy construction of the spatial database, all objects are initially placed into a single node. The first visibility query (the frus-
tum is shown in gray) refines the hierarchy in visible areas. After the camera has moved around a while, explored parts of the database
are refined but the unseen areas stay relatively coarse.

long time to reduce the memory requirements of the
database. The strict time budget for this additional
maintenance work ensures that our visibility queries
remain output sensitive. To facilitate out-of-core ren-
dering, the system provides hints for the application
so that well-hidden parts of the world can be swapped
out of the memory.

When profiling our code, we noticed that on practi-
cally all platforms the visibility queries were limited by
the memory bandwidth rather than the available CPU
power. The majority of our code optimizations are there-
fore memory and cache related. The most important one
is the use of a custom memory manager that provides
efficient and highly coherent pool allocators for all of
our small data structures, for example, nodes and object
instances. The data structure sizes are carefully tuned
so that all data is exactly aligned on cache lines. Many
parts of the structures are overlaid in memory and infre-
quently used parts are allocated separately. For exam-
ple, hidden objects consume less memory than visible
ones and static objects less than dynamic ones. Addi-
tionally, data structure member order is based on mea-
sured memory access patterns.

Sophisticated level-of-detail algorithms might require
scene modification during the visibility query. For exam-
ple, a building might be initially stored in the database
as a single object.

When the building becomes visible for the first time,
the application might replace it with an object hierar-
chy consisting of individual rooms, furniture, and other
contained objects. Performing this substitution before
the visibility query is difficult, as it would require pre-
dicting the outcome of the query. On the other hand, if
the update is made afterwards, output sensitivity might
be lost, as the objects can’t be used as occluders during
the query. Due to many requests from the users of our
system, we added support for database modifications
during visibility queries.

Portals
Certain scenes—such as architectural environ-

ments—are best represented by using multiple spatial
databases connected by portals. Portals are placed into
the databases the same way as other objects; they are
also culled by the same criteria. For example, dynamic
objects can occlude portals. Our portals can have arbi-
trary shapes and be freely moved or deformed. Each por-
tal also has an associated warp matrix applied when the
visibility query proceeds through the portal. This matrix
can help produce special effects—for example, mirror
reflections for planar surfaces.14

Portals participate in the culling process in two ways.
First, the view frustum of the camera is shrunk to tight-
ly fit the current portal sequence. This means that the
hierarchical view frustum culling automatically rejects
objects and database nodes not seen through a portal.
Second, we compute a screen-space axis-aligned bound-
ing rectangle for the portal sequence and allow the
application to submit it to the rendering hardware as a
scissor rectangle. This lets the GPU further limit the ren-
dering of visible objects to the area specified, effective-
ly performing triangle and pixel-level culling.

Optimizing lighting computations
Determining the lights affecting each object can opti-

mize the geometry processing of scenes containing
many local light sources. The light attenuation models
commonly used in rendering applications allow the
determination of the region of influence (ROI) of a light
source. In general, point light sources can be modeled
using a sphere primitive with a radius equal to the far
attenuation range and spot lights can be modeled using
cones.

Our system allows tagging objects as ROIs. Once we
have determined the visible objects and the visible ROIs,
we perform a separate sweep-and-prune pass that finds
out the spatially overlapping object and ROI pairs in an
average of O(objects + ROIs) time. We supply this over-
lap information to the application, which can in turn
reduce the amount of lighting computations done by
the GPU by disabling the noncontributing light sources.
The light sources are culled the same way as the other
objects, that is, completely hidden ROIs are discarded.

Visibility solver
A visibility solver is a high-level component responsi-

ble for occlusion culling and contribution culling. Imple-
mentations of visibility solvers differ mainly in how
occluder selection is done, occlusion queries and occlu-
sion writes are scheduled, and occlusion information is
stored.

Our approach is to maintain separate hierarchical
buffers for coverage and depth information. Rasteriz-
ing silhouettes of meshes using a custom software ren-
derer generates the coverage information. The depth
values are conservatively estimated from the objects’
bounding volumes. The visibility solver collects infor-
mation about the usefulness of occluders, allowing feed-
back-based occluder selection. Our occlusion queries
have no fill rate problems even with large screen reso-
lutions as we use hierarchical tests that early exit when
the first visible pixel is found. Visible point tracking
(VPT) further optimizes occlusion queries of visible
objects.

Visible point tracking
Every visible object or database node must have one

or more visible points (VPs), see Figure 9. If such an
object-space point is known in advance, we can confirm
that the object is visible with a single ray cast; this oper-
ation can be implemented by comparing the depth value
of the projected VP with the corresponding depth buffer
value. Alternatively, we can perform a single-pixel hard-
ware occlusion query. In our implementation, we
receive VPs as feedback from the occlusion culling sys-
tem. In the absence of such information, visible point
candidates can be generated by randomly selecting a
point inside an object’s bounding volume. If the point is
determined visible, it’s cached and retested during the
next visibility query. Otherwise, a new random point is
selected during the next query.

The main motivation for using VPs is to replace most
of the costly occlusion queries by an inexpensive, fixed-
cost operation. Many objects and nodes tested during a
hierarchical database traversal are visible and thus vis-

Feature Article

92 March/April 2004

ible point tracking can optimize
their processing. In our test scenes,
VPT replaced more than 90 percent
of the occlusion queries of visible
objects. Visible point tracking can be
seen as a unified early-exit test for
all kinds of visibility queries.

Occlusion queries
Due to the large number of occlu-

sion queries, both their execution
speed and accuracy play a major role
in application performance. Using a
lower accuracy in the queries might
significantly increase the number of objects reported as
visible. It makes sense to search for the optimal break-
even point where the processing time lost due to
increased accuracy roughly equals the rendering time
won due to reduced rendering work. The optimal solu-
tion is dependent on the relative performances of the
CPU and the GPU.

If the visible point candidate is hidden, the visibility
of an object is tested using an axis-aligned rectangle
with a single depth value. If the rectangle is visible, a
more accurate test is executed using the silhouette of
the OBB and interpolated depth values. The OBB test
is required because a flat rectangle tends to exaggerate
the size of the object depending on the camera orien-
tation. In our test scenarios the use of a more accurate
test increases the cost of visibility determination by 10
percent while reducing the number of objects report-
ed as visible by 25 percent.

Occluder selection
Not all visible objects serve as meaningful occluders.

For example, a clock on a wall is redundant as the wall
acts as an efficient occluder or glasses on a table are too
small and because of their transparency will not occlude
even if viewed up close. Our occluder selection algo-
rithm attempts to avoid such objects by collecting his-
tory information about their effectiveness as occluders.
Therefore selecting a subset of the visible objects as
occluders generally improves performance. Hardware
implementations can equally benefit from occluder
selection because postponing the rendering of nonoc-
cluders to the frame’s end can reduce the latency of the
occlusion queries.

Our selection algorithm is based on cost/benefit esti-
mation. An object is considered a potential occluder if
its expected benefits exceed the expected costs. An
object’s rendering cost is estimated from its triangle
count, approximate projection area, and a complexity
term. The occlusion cost is the predicted time spent on
rasterizing the object into the hierarchical occlusion
maps. This estimate is based on the number of silhou-
ette edges and the screen size of the object. Anticipated
benefits are the combined rendering costs of the other
objects that can be culled if the object is used as an
occluder.

We subdivide the screen into 64 × 64-pixel tiles to esti-
mate the benefits. For each tile, we maintain a list of
occluders that have contributed to the occlusion inside

the tile during the current query. The spatial database
keeps track of the combined rendering costs of the
objects contained by the database nodes. When an
object or a node is found to be hidden, we consider its
rendering cost as gained benefits. The gained benefits
are distributed evenly to all tiles intersected by the axis-
aligned rectangle of the object.

Inside each intersected tile the benefits are divided
evenly to all of the objects that have contributed to the
occlusion before the object was tested. Front-to-back
traversal guarantees that the objects close to the cam-
era generally receive more benefits than the far objects.

We must use an object as an occluder to validate its
expected benefits. Therefore we maintain a short histo-
ry of the measured benefits for every object. Whether
an object is considered as a potential occluder is based
on a weighted average of the most recent benefit infor-
mation and the history data. Objects whose status
changes from hidden to visible are always considered
to be potential occluders until proven otherwise. Addi-
tionally, a small random term avoids over adaptation of
the selection process.

As illustrated in Figure 6, we delay the processing of
potential occluders up to the point when their contri-
bution is actually needed. The process is conceptually
similar to the lazy occlusion grid by Hey et al.15 This
reduces the overhead caused by occlusion culling in
cases when the scene has a very limited depth com-
plexity. For example, if a terrain is viewed from above,
occlusion culling is next to useless and we can discard 97
to 99 percent of potential occluders.

In our test scenes, the occluder selection algorithm
used 30 to 80 percent of the visible objects as occluders.
However, due to its heuristic nature, the algorithm
might fail to block some lines of sight. Therefore we
track the overall costs of the visibility queries. If a sig-
nificant increase is observed between consecutive
queries, we abort the database traversal and re-resolve
the query using all visible objects as occluders. This usu-
ally happens when the camera accidentally penetrates
an object and sees through it.

Silhouette rasterization
We introduce a new way for generating coverage

information. Instead of rendering an object using tri-
angles, we extract its silhouette in object space and ras-
terize the silhouette directly (see Figure 10, next page).
A high-performance implementation is possible since

IEEE Computer Graphics and Applications 93

Camera
moves

A
B

C
D

A
B

CD

9 An object-space visible point has been cached for each object. After the camera is moved,
the visibility of objects B and D can be proven with a single 3D ray cast to their cached VPs. The
VPs of objects A and C have become hidden and therefore a more involved occlusion query is
required.

the coverage rasterization needs to produce only a sin-
gle bit per pixel and can thus be easily parallelized. Also,
the average number of silhouette edges in many com-
plex models is roughly the square root of the number of
edges of the object.16 This approach lends itself to an
extremely fast software implementation.

Silhouette extraction
The complexity of brute force silhouette extraction is

linear to the number of edges in the mesh. When a scene
contains complex objects, the extraction operation is
too expensive for time-critical use. To overcome this
problem, we amortize the extraction work over several
frames by using temporal coherence. Although other
algorithms with sublinear complexity exist,16 we chose
a different approach due to its simplicity and efficient
implementation.

An edge is a silhouette edge if a front- and back-facing
triangle share it (see Figure 11). A triangle is front fac-
ing if the signed distance from the viewpoint to the plane
defined by the triangle and its surface normal is positive.
The distance indicates how much the camera can move
before the visibility status of the triangle can change. We
define the visibility event distance (VED) of an edge as
the smaller of the two distances to the defining planes.
Figure 11 shows two lines, spanned by edges AB and BC

and their normal vectors NAB and NBC, that define four
subspaces. The signs of the signed distances dAB and dBC

from the viewpoint to the two lines
categorize the subspaces. A view-
point in the + + subspace means that
the vertex B is a front-facing interi-
or vertex, − − indicates a back-facing
interior vertex, and + − and − + are
silhouette vertices. The distances
indicate how much the viewpoint
can move before potentially entering
another subspace. Our algorithm
keeps track of these distances, and
only updates the status of an edge
when the viewpoint has potentially
entered another subspace. A 3D gen-
eralization of this algorithm is
straightforward.

In the caching part of our algo-
rithm we compute the VEDs for all
edges of an object from the current
camera position. The edges are clas-
sified as either silhouette edges or
interior edges. We store all silhou-
ette edges and N interior edges that
have the smallest VED.

The value N has been empirically
determined to be twice the number
of silhouette edges. The greatest
absolute distance among the stored
interior edges is the validity radius
of the cached representation. As
long as the viewpoint stays inside
the validity radius, the resulting sil-
houette can be fully reconstructed
from the cached representation.

The extraction pass computes the distance from the
cached viewpoint to the current viewpoint. The stored
silhouette edges having VEDs less than the viewpoint
movement are still parts of the silhouette and are triv-
ially accepted. Interior edges with VEDs larger than the
viewpoint movement remain interior edges. The rest of
the cached edges might be part of the silhouette and are
tested for inclusion. This test requires two dot products
per edge. On average we need to perform less than 3N
dot products to extract a silhouette of N edges from the
cached representation.

To bound the memory consumption of the silhouettes,
we place all extracted silhouette data into a silhouette
cache. This cache stores up to 256 Kbytes of silhouette
data and has a least-recently-used policy for discarding
old data. In our test scenes the cache is rarely congest-
ed, as a typical frame requires 20 to 100 Kbytes of sil-
houette information. We have measured cache-hit ratios
ranging from 60 to 100 percent with the average being
around 95 percent. The silhouette caching and extrac-
tion consume on average 10 percent of the total time
spent on visibility determination. Meshes with less than
50 vertices are always brute-force processed and their
silhouettes are not cached.

Parallel silhouette rasterization
The silhouette of a mesh always consists of closed

loops of edges and can be seen as an arbitrary 2D poly-

Feature Article

94 March/April 2004

Viewpoint Viewpoint

A A

B

C

C

dBC dAB

NBC

NBC

NAB

NAB

− −
B

+ −

+ −
+ + − +

− + + + − −

dBC dAB
11 2D illustra-
tion of our
temporally
coherent silhou-
ette extraction
algorithm.

10 Instead of
scan converting
triangles, we
generate our
coverage infor-
mation by
extracting
model silhou-
ettes and raster-
izing them
directly.
This approach
lends itself to an
extremely fast
software imple-
mentation.
Both methods
generate the
same coverage
information.

gon. We fill the silhouette as described in Figure 12. A
pixel is covered if the corresponding accumulated
depth complexity is greater than zero. Since the scan
lines are independent of each other, we can process
multiple scan lines simultaneously. Our implementa-
tion fills 64 scan lines in parallel. The depth complex-
ity indicates the number of overlapping parts in the
silhouette. With convex meshes, the depth complexity
of a pixel is always zero or one. For arbitrary meshes
the maximum depth complexity is not bounded, but
rarely exceeds five in practice. We implement the depth
complexity counter using 3 bits per pixel. As a result, a
depth complexity value of eight is incorrectly inter-
preted as zero—that is, the pixel is not covered. This
simplification might lose some of the existing cover-
age, but due to its conservativeness it does not lead to
visual artifacts.

A 3-bit accumulator can be implemented using rough-
ly 10 logical bitwise operations. Thus a 64-bit processor
can simultaneously execute 64 three-bit accumulators
using a sequence of 10 integer operations. As a result,
our parallel filler has a peak fill rate exceeding 5 billion
pixels per second on a 1.1-GHz Intel Pentium 3 using
MMX instructions.

Implementation Issues
We have implemented several optimizations to save

the limited memory bandwidth. First, we subdivide the
screen into 64 × 64 pixel tiles and perform the filling
operation using a tile-sized cache. The edges intersect-
ing a tile are rasterized into the cache when the tile is
being filled. Three bit planes are needed for the cache
and the full-screen buffer stores only 1 bit per pixel.

If the tile is already full or there are no edges inter-
secting it, the filling operation can be skipped. Second-
ly, if a block corresponding to an 8 × 8-pixel screen area
is fully covered, we store the information into a lower
resolution coverage buffer instead. Occlusion queries
always use the lower resolution buffer before resorting
to the full resolution.

Edges or parts of edges outside the viewport can be
ignored with the exception of the left plane of the view
frustum. The x-coordinates of the parts outside the left
plane have to be clamped to the leftmost pixel column to
guarantee correct coverage after the execution of the filler.

Because the silhouette rasterizer generates only cov-
erage information, the depth values are conservatively

estimated from the back faces of the OBB of a mesh. The
depth estimation buffer stores one floating-point depth
value for each 8 × 8 block of pixels. To facilitate faster
occlusion queries we further organize the depth esti-
mation buffer hierarchically.5

Results
We have measured the speedups gained by using

dPVS in a number of complex environments (see Figure
13, next page). We made the performance measure-
ments on a 1.3-GHz AMD Athlon workstation with an
Nvidia GeForce4 graphics card. The scenes and demo
applications are available online at http://www.
hybrid.fi/main/dpvs/download.php. In our tests, we
constantly modified the environments by moving
objects around. These modifications had no impact on
the performance.

Table 2 shows the average number of frames rendered
per second, the number of visible objects per frame, and
the number of rendered triangles per frame for the
scenes with and without occlusion culling, respectively.
The rightmost column lists the average time used by the
visibility query. Each test run lasted two minutes and
was rendered in 1,280 × 1,024 resolution without
antialiasing. (The Wonderland scene could not be ren-
dered without occlusion culling.)

CPU usage breakdown of the visibility determination
framework for the five test scenes was: occlusion writes
(34 percent), visibility tests (24 percent), miscellaneous
(11 percent), database traversal (10 percent), silhou-
ette extraction (10 percent), occluder selection (7 per-
cent), and database maintenance (4 percent). All of the
queries were conservative—that is, contribution culling
was not used although it would significantly increase
the performance in the more complex scenes.

The time-varying Traffic Jam simulation has 16,000
buildings and 20,000 moving vehicles. Both the cars and
the buildings use level-of-detail rendering. In our test
the camera was placed into one of the cars.

The Naked Empire architectural scene consists of 167
million triangles. Walls and most floors are missing and
therefore the visibility function is extremely complex.
As a result, precomputed solutions would not be feasi-
ble. Although we rendered the scene in real time with
occlusion culling enabled, we did not manage to render
a single frame without it. Therefore we decided to make
the comparisons using only eight floors of the building.

IEEE Computer Graphics and Applications 95

1 1 1
1
1

1
1

1
1

1
1

1
1

1
1

−1
−1
−1
−1
−1

1
1

1
1

0
0

0
0
0
0

0
0
0
0

0
0

0
0

0 0
0 0

0 0 0
0

0 0
0
0

0
0

−1
−1

0
0

0
0

0
0

0
0

0
0
0
0

0
0

0 0
0

0 0
0
0

0
0

0
0

0
0

0
0

0
0
0
0

1
1

0
0
0
0
0

0
A B B

1

1
1
1

1
1

1

1

1
1 0

0
0
0

0
0

0
0

0

0
0
0

0
0

0
0
0
0
0

1
1

1
1
1

1
1
1 1

Left edge: +1 Right edge: −1

Per-pixel fill
operation
B = B + A

Sweep direction

1
1

1

1

0
0

0
0

0
0

0
0

0
0
0
0

1
1

1
1
1
1

1 1

1
1

1

1 1
1 1

−1
−1
−1
−1
−1

−1
−1

−1
−1
−1
−1
−1

−1
−1

12 In the first pass of our parallel rasterization scheme, the silhouette edges are rasterized using the value +1 for
left-side edges and −1 for right-side edges. Then, each scan line is filled independently by accumulating the stored
values from left to right.

The resulting data set was comprised of 300,000 objects.
The Grand Canyon scene is a 4-million triangle model

of the Grand Canyon. Level-of-detail rendering was used
for the terrain, as it would be in a flight simulator. If the
terrain is viewed from high above, occlusion is virtual-
ly nonexistent and therefore occlusion culling is useless.
We measured the performance loss due to the overhead
of our system in such view positions. However, if the
camera is lowered into the canyon, occlusion is plenti-
ful and large parts of the scene can be culled (we named
this scene Grand Canyon 2).

Wonderland is a procedural scene containing 2 mil-
lion objects; each model has 108 triangles and 258 ver-
tices making the total triangle count 216 million.
Out-of-core rendering was used for controlling the
memory consumption. The database was partially
dynamic: 5 percent of the objects were moving around
every frame.

The Power Plant model contains 13 million triangles.
Our automatic objectification algorithm converted it into
60,000 objects. No level-of-detail rendering was used.

Future work
Our system performs efficiently in various test sce-

narios, employing several new algorithms. There are a
few problematic cases common to almost every visibil-
ity determination system up to date, including ours. We
can’t handle complex deforming occluders efficiently.
However, most deforming objects in typical applications
tend to be characters and would not be good occluders
in any case. The exact representations of displacement
maps, parametric surfaces, or highly complex objects
such as trees can’t be efficiently used as occluders with-
out simplification.

Other limitations include alpha matte objects. For
example, a branch of a tree is often rendered using two
intersecting polygons that have the shape of the branch
encoded into the alpha channel. As our silhouette ras-
terization scheme does not support textures, we can’t
use such objects as occluders. A workaround is to gen-
erate a simple mesh from the alpha matte.

Hardware occlusion queries have been recently
included in Microsoft’s Direct3D API. Most parts of our
framework and the majority of the algorithms dis-
cussed in this article will remain unchanged when
hardware occlusion queries are used. Although our sys-
tem will support hardware queries on selected plat-
forms, we will also continue using the silhouette
rasterization scheme due to the large installed base of

graphics hardware without occlu-
sion query functionality.

Extending the system to handle
shadow volumes in an output-sen-
sitive fashion is an interesting pos-
sibility. For example, our silhouette
extraction algorithm could be used
for fast construction of shadow vol-
umes. Should dependent hardware
occlusion queries become available
in the future, we could significantly
reduce the query latency by provid-
ing a point test condition in the

Feature Article

96 March/April 2004

13 Complex environments used to test our system. (a) Traffic Jam simula-
tion (courtesy of Hybrid Graphics). (b) Naked Empire (courtesy of Ned
Greene and Gavin Miller, Apple Computer) and Grand Canyon (courtesy of
the United States Geological Survey with processing by Chad McCabe of
the Microsoft Geography Product Unit). (c) Wonderland (courtesy of
Hybrid Graphics) and Power Plant (courtesy of the Walkthrough Group at
the University of North Carolina at Chapel Hill).

(a)

(b)

(c)

Table 2. Average frame rates achieved with and without occlusion culling.

Frames Time
Test Scene Per Second Objects Triangles (ms)

Traffic Jam 36.1/2.2 110/11.3K 150K/15.2M 7.1
Naked Empire 18.5/1.4 800/60K 25K/2M 38.9
Grand Canyon 65/68 140/140 180K/180K 1.8
Grand Canyon 2 81/40 20/301 25K/155K 8.6
Wonderland 31.1/- 204/- 22.1K/- 19.9
Power Plant 15.8/4.8 750/7.6K 155K/1.2M 25.3

fashion of our VPT algorithm to avoid the execution of
a more involved query. �

Acknowledgments
We thank the R&D team at Hybrid Graphics. We also

thank the anonymous reviewers and John Airey, Jeff
Grills, Eric Haines, Theodore Jump, Janne Kontkanen,
Jaakko Lehtinen, Kari Pulli, Lauri Savioja, Tapio Takala,
Matthias Wloka, and Hansong Zhang for their valuable
feedback. The development of dPVS was partially
financed by Tekes, the National Technology Agency of
Finland.

References

1. P. Wonka, Occlusion Culling for Real-Time Rendering of
Urban Environments, doctoral dissertation, Inst. of Com-
puter Graphics, Vienna Univ. of Technology, 2001.

2. J. Airey, J. Rohlf, and F. Brooks Jr., “Towards Image Real-
ism with Interactive Update Rates in Complex Virtual
Building Environments,” Computer Graphics (Proc. 1990
Symp. Interactive 3D Graphics), vol. 24, no. 2, ACM Press,
1990, pp. 141-150.

3. S. Teller and C. Séquin, “Visibility Preprocessing for Inter-
active Walkthroughs,” Computer Graphics (Proc. ACM Sig-
graph), vol. 25, no. 4, 1991, pp. 61-69.

4. D. Cohen-Or et al., “A Survey of Visibility for Walkthrough
Applications,” IEEE Trans. Visualization and Computer
Graphics, vol. 9, no. 3, 2003, pp. 412-431.

5. N. Greene and M. Kass, “Hierarchical Z-Buffer Visibility,”
Proc. ACM Siggraph, ACM Press, 1993, pp. 231-240.

6. K. Hillesland et al., Fast and Simple Occlusion Culling Using
Hardware-Based Depth Queries, tech. report TR02-039,
Univ. of North Carolina, Chapel Hill, 2002.

7. J.T. Klosowski and C.T. Silva, Efficient Conservative Visi-
bility Culling Using the Prioritized-Layered Projection
Algorithm,” IEEE Trans. Visualization and Computer Graph-
ics, vol. 7, no. 4, 2001, pp. 365-379.

8. H. Zhang et al., “Visibility Culling Using Hierarchical
Occlusion Maps,” Proc. ACM Siggraph, ACM Press, 1997,
pp. 77-88.

9. P. Wonka, M. Wimmer, and F. Sillion, “Instant Visibility,”
Computer Graphics Forum, vol. 20, no. 3, 2001, pp. 411-
421.

10. W. Baxter et al., “Gigawalk: Interactive Walkthrough of
Complex Environments,” Proc. 13th Eurographics Work-
shop on Rendering, Eurographics Assoc., 2002, pp. 203-
214.

11. T. Aila and V. Miettinen, dPVS Reference Manual, Hybrid
Graphics, Sept. 2000.

12. J.D. MacDonald and K.S. Booth, “Heuristics for Ray Trac-
ing Using Space Subdivision,” The Visual Computer, vol. 6,
no. 3, 1990, pp. 153-166.

13. O. Sudarsky and C. Gotsman, “Output-Sensitive Visibility
Algorithms for Dynamic Scenes with Applications to Vir-
tual Reality,” Computer Graphics Forum, vol. 15, no. 3,
1996, pp. 249-258.

14. D. Luebke and C. Georges, “Portals and Mirrors: Simple,
Fast Evaluation of Potentially Visible Sets,” Proc. 1995 Symp.
Interactive Computer Graphics, ACM Press, pp. 105-106.

15. H. Hey, R. Tobler, and W. Purgathofer, “Real-Time Occlu-
sion Culling with a Lazy Occlusion Grid,” Proc. 12th Euro-
graphics Workshop on Rendering Techniques,
Springer-Verlag, 2001, pp. 217-222.

16. P. Sander et al., “Silhouette Clipping,” Proc. ACM Siggraph,
ACM Press, 2000,pp. 327-334.

Timo Aila is a PhD student in the
Laboratory of Telecommunications
Software and Multimedia at the
Helsinki University of Technology
and he also works at Hybrid Graph-
ics. His research interests include vis-
ibility and shadow algorithms, and

graphics hardware architectures. Aila has an MSc in com-
puter science from the Helsinki University of Technology.

Ville Miettinen is the head of visu-
al research at Hybrid Graphics in
Helsinki. He also studies computer sci-
ence at the University of Helsinki. His
research interests include visibility
determination, real-time processing
of massive dynamic environments,

and rendering on mobile phones and other limited-capabil-
ity devices. He is a member of ACM Siggraph, the Interna-
tional Game Developers Association, and the Khronos Group.

Readers may contact Timo Aila at the Helsinki Univ. of
Technology, P.O. Box 5400, FIN-02015 HUT, Finland;
timo@tml.hut.fi.

IEEE Computer Graphics and Applications 97

Investing in Students
computer.org/students/

Student members active in IEEE Computer
Society chapters are eligible for the Richard E.

Merwin Student Scholarship.
Up to four $3,000 scholarships are available.

Application deadline: 31 May

SCHOLARSHIP
MONEY FOR
STUDENT
LEADERS

